Nothing Special   »   [go: up one dir, main page]

The Current Status On The Taxonomy of Pseudomonas Revisited, Peix2018

Download as pdf or txt
Download as pdf or txt
You are on page 1of 46

Accepted Manuscript

The current status on the taxonomy of Pseudomonas revisited: An


update

Alvaro Peix, Martha-Helena Ramírez-Bahena, Encarna Velázquez

PII: S1567-1348(17)30379-9
DOI: doi:10.1016/j.meegid.2017.10.026
Reference: MEEGID 3314
To appear in: Infection, Genetics and Evolution
Received date: 29 May 2017
Revised date: 28 October 2017
Accepted date: 30 October 2017

Please cite this article as: Alvaro Peix, Martha-Helena Ramírez-Bahena, Encarna
Velázquez , The current status on the taxonomy of Pseudomonas revisited: An update.
The address for the corresponding author was captured as affiliation for all authors. Please
check if appropriate. Meegid(2017), doi:10.1016/j.meegid.2017.10.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.
ACCEPTED MANUSCRIPT

The current status on the taxonomy of Pseudomonas revisited: an update

Alvaro Peix1,2, Martha-Helena Ramírez-Bahena3 and Encarna Velázquez2,3

1. Instituto de Recursos Naturales y Agrobiología. IRNASA-CSIC. Salamanca.


Spain.
2. Unidad Asociada Universidad de Salamanca- CSIC „Interacción Planta-
Microorganismo‟. Salamanca. Spain

PT
3. Departamento de Microbiología y Genética and Instituto Hispanoluso de
Investigaciones Agrarias. Universidad de Salamanca. Spain.

RI
SC
*Corresponding author: Encarna Velázquez. Departamento de Microbiología y
NU
Genética. Lab. 209. Edificio Departamental de Biología. Campus Miguel de
Unamuno. 37007 Salamanca. Spain. Phone: +34 923 294532. Fax number: +34 923
224876. E-mail: evp@usal.es
MA

Running title: Pseudomonas taxonomy


E D
PT
CE
AC

1
ACCEPTED MANUSCRIPT

Abstract

The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous
bacterial genera which encompass species isolated worldwide. In the last years more
than 70 new species have been described, which were isolated from different
environments, including soil, water, sediments, air, animals, plants, fungi, algae,
compost, human and animal related sources. Some of these species have been isolated

PT
in extreme environments, such as Antarctica or Atacama desert, and from
contaminated water or soil. Also, some species recently described are plant or animal

RI
pathogens. In this review, we revised the current status of the taxonomy of genus
Pseudomonas and the methodologies currently used for the description of novel

SC
species which includes, in addition to the classic ones, new methodologies such as
MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species
NU
described in the last years are listed, together with the available genome sequences of
the type strains of Pseudomonas species present in different databases.
MA

Keywords: Pseudomonas; taxonomy; MLSA; genomes; MALDI-TOF MS


E D
PT
CE
AC

2
ACCEPTED MANUSCRIPT

1. The genus Pseudomonas: a brief historical review


The genus Pseudomonas was described at the end of 19th century (Migula, 1894)
when descriptions of genera were based on the macro and microscopic morphologies,
a practice universally accepted by the microbial taxonomists (Cohn, 1872). Already in
the 20th century, the physiological characteristics were proposed as basic criteria for
bacterial taxonomy (Orla-Jensen, 1909). In the Bergey‟s Manual published in 1923,
several phenotypic characteristics were added to the morphology, Gram-stain,
flagellation type and metabolism with respect to the oxigen, in an attempt to

PT
differentiate the species of the genus Pseudomonas (Bergey et al., 1923).
When the techniques based on DNA began to make possible the use of genetic

RI
approaches in bacterial taxonomy (Marmur, 1961; Marmur and Dotty, 1961;

SC
Schildkraut et al., 1961), the DNA base composition (G+C) and the DNA-DNA
hybridization were the first techniques applied to Pseudomonas taxonomy (Colwell
NU
and Mandel, 1964; Colwell et al., 1965; Johnson and Ordal, 1968). This way, the G+C
content of all Pseudomonas species was included in the Bergey‟s Manual from 1974
(Doudoroff and Palleroni, 1974). Later, the pseudomonads were divided into five
MA

rRNA subgroups based on the measurements of RNA-DNA and this classification


was reported in the Bergey's Manual of Systematic Bacteriology published in 1984
D

(Palleroni, 1984).
The deepest changes in bacterial taxonomy occurred in the 1980‟s, when Woese and
E

collaborators proposed the analysis of the 16S ribosomal RNA gene sequences for the
PT

classification of bacteria placing the genus Pseudomonas into the Gamma


Proteobacteria (Woese et al., 1984). Nevertheless, the most relevant of these changes
CE

affecting the genus Pseudomonas began from the 2000‟s year onwards with a first
work compiling the sequences of the 16S rRNA gene of 128 Pseudomonas species
AC

carried out by Anzai et al. (2000), who showed that many species did not fit within
the Pseudomonas sensu stricto cluster, which contained the members of the rRNA
group I from Palleroni (1984). The members of the remaining rRNA groups were
splitted in more than 25 genera belonging to the classes Alpha, Beta and
Gammaproteobacteria (Peix et al., 2009; García-Valdés and Lalucat, 2016). These
changes were recorded in the edition of Bergey‟s Manual of Systematic Bacteriology
from year 2005, which changed from printed to on-line format in 2015 where each
genus constitutes an independent chapter. This new format will permit the information

3
ACCEPTED MANUSCRIPT

to be updated more frequently, which is currently essential taking into account that the
bacterial genera and species number is continuously increasing.

2. The recently described species: from 2009 onwards


In our previous review on Pseudomonas taxonomy we reported the species described
up to year 2009 (Peix et al., 2009). From this year onwards their number continues
increasing with the description of more than 70 new species (Table 1). Some of them
have been isolated from human related sources, such as 'P. saudiphocaensis' and 'P.

PT
saudimassiliensis', which were isolated from currency notes (Azhar et al., 2016) and
'P. massiliensis', isolated from a woman stool specimen (Bardet et al., 2017), or from

RI
animal sources, such as P. weihenstephanensis, P. helleri, P. lactis and P. paralactis

SC
isolated from cow's milk (von Neubeck et al., 2016, 2017), and P. coleopterorum
isolated from the bark beetle Hylesinus fraxini (Menéndez et al., 2015). Some recently
NU
described species were pathogenic for animals, such as the entomopathogenic P.
entomophila (Mulet et al., 2012) and the fish Dicologlossa cuneata pathogen P.
baetica (López et al., 2012), or for plants, such as P. cerasi, pathogenic for cherry
MA

trees (Kałużna et al., 2016), P. asturiensis, pathogenic for soybean (González et al.,
2013) and P. caspiana, pathogenic for citrics (Busquets et al., 2017). The remaining
D

species were isolated from different sources, being the soil the major isolation source
with 30 novel Pseudomonas species isolated from this environment (Table 1). Some
E

of the new Pseudomonas species recently described were isolated from plant related
PT

sources and have several in vitro plant growth promotion mechanisms. This way, P.
sagittaria and P. donghuensis, were found to produce siderophores (Liu et al., 2013;
CE

Gao et al., 2015), P. guariconensis and P. helmanticensis, could solubilize phosphate


(Toro et al., 2013; Ramírez-Bahena et al., 2014), P. endophytica was found to have
AC

several PGPR mechanisms and P. protegens and P. canadensis, were reported as


biocontrol agents (Ramette et al., 2011; Tambong et al., 2016). Other species were
isolated from extreme environments, as the case of P. guguanensis and P.
yangmingensis isolated from hot springs (Liu et al., 2013; Wong and Lee, 2014), P.
arsenicoxydans isolated in the Atacama desert (Campos et al., 2010) and the
psychrotrophic species isolated in Antarctic locations, P. extremaustralis (López et
al., 2009); P. deceptionensis (Carrión et al., 2011), P. prosekii (Kosina et al., 2013), P.
yamanorum (Arnau et al., 2015), P. gregormendelii (Kosina et al., 2016) and P.
versuta (See-Too et al., 2017). It is to be highlighted that all these novel species are

4
ACCEPTED MANUSCRIPT

phylogenetically very diverse. Such diversity is not surprising taking into account the
very heterogeneous habitats where these species were found, which reflects that
Pseudomonas is an ubiquitous genus. Considering that most environments remain still
unstudied from a microbiological point of view, it is to be expected that the number of
new Pseudomonas species will significantly increase in future years.

3. Current methods used in Pseudomonas taxonomy


The criteria used in Pseudomonas taxonomy has been previously reviewed (Peix et

PT
al., 2009; García-Valdés and Lalucat, 2016) and an exhaustive list of methods used in
Pseudomonas taxonomy is also included in the current edition of Bergey‟s Manual of

RI
Systematic Bacteriology (Palleroni, 2015).

SC
The phenotypic-based methods are still used not only for the characterization of new
Pseudomonas species, but also for their identification. The commercial systems used
NU
for identification of Pseudomonas species include kits of automatic read which are
still routinely used in many laboratories. Some of these kits, such as API 20NE, were
specifically designed for the identification of clinical Pseudomonas (Barr et al., 1989),
MA

but they fail in the identification of non-clinic species being only useful for
phenotypic characterization (Behrendt et al., 1999; Peix et al., 2003). By contrast, the
D

Biolog Microbial Identification Systems, firstly the GN2 (GEN II) and currently the
GEN III plates, have been applied to the identification of Pseudomonas species
E

isolated from non-clinical sources (Avidano et al., 2010; Janisiewicz and Buyer, 2010;
PT

Martin et al., 2011; Li et al., 2013; Liu et al., 2013; Akter et al., 2014). All these
systems are commonly used for the phenotypic characterization of novel
CE

Pseudomonas species (Palleroni, 2015).


Several chemotaxonomic characteristics are also useful for bacterial characterization
AC

being the quinone systems and the fatty acid profiles always included in Pseudomonas
species descriptions. The analysis of fatty acid profiles (FAMES) has also been
proposed as an identification method through the MIDI system (Mansfeld-Giese et al.,
2002; Chao et al., 2010; Janisiewicz and Buyer, 2010), particularly for the
identification of plant pathogenic strains (Lamichhane et al., 2010; Gitaitis et al.,
2012; Conner et al., 2013; Gumtow et al., 2013; Bozkurt et al., 2016; Webb et al.,
2016).
The SDS-PAGE, polyamine and siderophore profiles are not currently included within
the taxonomic markers needed for new species descriptions, but they are useful to

5
ACCEPTED MANUSCRIPT

differentiate among Pseudomonas species and therefore they have been included in
the description of some of them (Auling et al., 1991; Vancanneyt et al., 1996; Meyer
et al., 2002). For example, the SDS-PAGE has been used in the description of some
novel species, such as P. cuatrocienegasensis (Escalante et al., 2009) and P. prosekii
(Kosina et al., 2013). The polyamine patterns were used to differentiate the species P.
psychrotolerans (Hauser et al., 2004), P. knackmussii (Stolz et al., 2007) and P.
hussainii (Hameed et al., 2014). The siderotyping has been used to characterize novel
species, such as P. costantinii, which causes brown blotch disease in mushrooms

PT
(Munsch et al., 2002), P. salomonii, which causes 'Café au lait' disease in garlic
(Gardan et al., 2002), or the non-pathogenic ones P. palleroniana (Gardan et al.,

RI
2002) and P. protegens (Ramette et al., 2011).

SC
Despite the usefulness of the phenotypic and chemotaxonomic features in
Pseudomonas classification and identification, the most precise techniques for these
NU
purposes are the genomic-based procedures, which comprise nucleic acid
fingerprinting, particularly used for biodiversity analysis, and gene sequence analysis,
which can be used for biodiversity analysis and for phylogenetic and taxonomic
MA

studies. Although fingerprinting techniques such as amplified ribosomal DNA


restriction analysis (ARDRA), repetitive extragenic palindromic (REP),
D

enterobacterial repetitive intergenic consensus (ERIC), bacterial repetitive BOX


elements (BOX) and randomly amplified polymorphic DNA (RAPD) were developed
E

many years ago, they are still the most reliable techniques for biodiversity studies and
PT

currently they are profusely used to analyse Pseudomonas strains isolated from both
environmental and clinical samples (Auda et al., 2016; Bazhanov et al., 2016;
CE

Kalferstova et al., 2016; Keshtkar et al., 2016; Morales et al., 2016; Moretti et al.,
2016; Santoro et al., 2016; Streeter et al., 2016; Wu et al., 2016; Cohen et al., 2017;
AC

Kallufa et al., 2017; Rijaveca and Lapanje, 2017).


Regarding gene analysis, the 16S rRNA gene continues to be the basis of bacterial
classification allowing the differentiation of genus Pseudomonas from the remaning
genera of bacteria (Palleroni et al., 2015). Therefore, 16S rRNA sequence analysis is
mandatory in every description of novel bacterial species (Tindall et al., 2010).
Nevertheless, this gene is not discriminative at species level in several phylogenetic
groups of Pseudomonas and therefore, in the last decade, other protein codifying
genes have been added to the taxonomic and phylogenetic studies of this genus. These
genes are commonly analysed for the description of the new Pseudomonas species

6
ACCEPTED MANUSCRIPT

and a MLSA (multilocus sequence analysis) database (PseudoMLSA) has been


developed to compile multiple gene sequences of the type strains of species described
since 2008 (Bennasar et al., 2010). Considering the usefulness of MLSA to
differentiate among Pseudomonas species, in several recent works this approach has
been used for identification and phylogenetic and population analyses of plant
pathogenic (Chapman et al., 2012; Beiki et al., 2016; Newberry et al., 2016), clinical
(Cholley et al., 2014; Eusebio et al., 2015; Suzuki et al., 2016; Yonezuka et al., 2016;
Mulet et al., 2017) and environmental (Parejko et al., 2013) strains.

PT
Among the housekeeping genes proposed along the years for genus Pseudomonas
(reviewed by García-Valdés and Lalucat, 2016), the gyrB, rpoB, and rpoD genes are

RI
particularly useful in species delineation (Mulet et al., 2010; Gomila et al., 2015;

SC
García-Valdés and Lalucat, 2016), being the rpoD the most discriminative for this
purpose, followed by gyrB, which is also a powerful phylogenetic marker, and by the
NU
rpoB, the least discriminative marker among them (Mulet et al., 2010). Using
concatenated sequences of 16S rRNA, gyrB, rpoB and rpoD genes (MLSA), the most
comprehensive studies on the phylogenetic relationships of the different Pseudomonas
MA

species carried out to date, showed the existence of two main lineages, the P.
fluorescens lineage and the P. aeruginosa lineage (Mulet et al., 2010; Gomila et al.,
D

2015; García-Valdés and Lalucat, 2016). According to these authors, the P.


fluorescens lineage comprises 6 phylogenetic groups: P. fluorescens, P. syringae, P.
E

lutea, P. putida, P. anguilliseptica and P. straminea groups, where the biggest is the
PT

P. fluorescens group, which includes numerous subgroups. The P. aeruginosa lineage


includes 4 groups: P. aeruginosa, P. oleovorans, P. oryzihabitans and P. stutzeri
CE

groups (Mulet et al., 2010; Gomila et al., 2015; García-Valdés and Lalucat, 2016),
and, recently, a new group was defined, the P. pertucinogena group, which clusters
AC

separately from the two main phylogenetic lineages of Pseudomonas (P. fluorescens
and P. aeruginosa), (García-Valdés and Lalucat, 2016). In their analysis, these
authors also found that several Pseudomonas species clustered out of the 11 defined
groups, such as P. rhizosphaerae, P. caeni, P. luteola or P. duriflava. Now we have
performed a MLSA based on concatenated 16S rRNA, gyrB, rpoB and rpoD genes of
the species described from 2009 to date finding that they are distributed in almost all
the Pseudomonas groups previously defined by Mulet et al. (2010) and García-Valdés
and Lalucat (2016), with the exception of the P. lutea and P. oryzihabitans groups
(Fig. 2). However, some of these novel species could represent novel yet undefined

7
ACCEPTED MANUSCRIPT

groups, such as P. turukhanskensis, P. massiliensis, P. kuykendallii, P. salegens and


P. aestusnigri, as can be seen in Fig. 2. The phylogenetic analysis also shows that two
novel groups can now be defined, the P. rhizosphaerae group within the P.
fluorescens lineage, and the P. luteola group within the P. aeruginosa lineage.
Moreover, a novel lineage can be proposed, the P. pertucinogena lineage, which
includes the well consolidated “P. pertucinogena group” previously defined by
García-Valdés and Lalucat (2016) in which several of the new species group together.
The tree topology we inferred is in agreement with García-Valdés and Lalucat (2016),

PT
but using the same genes in MLSA analysis, Garrido-Sanz et al. (2016) excluded from
the P. fluorescens phylogroup the groups of P. anguilliseptica and P. straminea,

RI
placing them into P. aeruginosa phylogroup. These differences can be explained

SC
because they used a different concatenation placement of the genes and different
methods to infer the phylogeny, nevertheless they obtained a coherent topology for
NU
most groups showing similar phylogenetic relationships among them.
This fact also evidence the enormously complex phylogeny of genus Pseudomonas,
which contains more than 190 species to date
MA

(http://www.bacterio.net/pseudomonas.html). It is likely that in the future the current


genus Pseudomonas may be splitted in more than one genus, based on phylogenetic
D

and chemotaxonomic analyses, if a thorough taxonomic revision of family


Pseudomonadaceae is performed.
E
PT

4. Modern approaches in Pseudomonas taxonomy: the omics era


In year 2003 Guttmacher and Collins published an opinion article in the New England
CE

Journal of Medicine entitled "welcome to genomic era" where they considered that
the genomic era began in 2003 with the complete sequencing of the human genome.
AC

However, the genome sequencing began many years before, concretely with the
sequencing of the first bacterial genome sequenced, the Haemophilus influenzae
genome in 1995 (Fleischmann et al., 1995). The post-genomic era also began in the
2000's decade when many genomes and metagenomes were sequenced leading to
great changes in Microbiology (Medini et al., 2008).
The comparison of whole genomes offers a more exact picture about the phylogenetic
relationships among bacteria facilitating the differentiation of bacterial taxa, although
the number of genomes is still low and it is not easy to conciliate the genomics with
the microbial taxonomy (Klenk and Göker, 2010). This objective was approached by

8
ACCEPTED MANUSCRIPT

the Genomic Encyclopaedia of Archaea and Bacteria (GEBA), which has been
developed in different phases and incorporates the sequences of many type strains of
bacteria and archaea (Wu et al., 2009; Kyrpides et al., 2014; Whitman et al., 2015).
The incorporation of the whole genomes to the systematics or taxonogenomics has
been proposed as a reliable tool for novel species description (Ramasamy et al.,
2014). This is currently applied mainly, but not only, to describe new species of
uncultured bacteria isolated from human related sources, constituting together
culturomics the new trend in clinical microbiology (Lagier et al., 2015).

PT
The first complete genome sequenced in the genus Pseudomonas was that of strain P.
aeruginosa PAO1 in 2000 (Stover et al., 2000) and in the same year an interactive

RI
database based on this genome was developed as a bioinformatic tool for

SC
Pseudomonas researchers (Croft et al., 2000). From this date, the number of whole
genomes of Pseudomonas species has been continuously increasing (Tables 2 and S1)
NU
and the databases of Pseudomonas genomes have been improved along the time
adding new tools to facilitate their use in gene searching, genome annotation and
genome comparison and analysis (Winsor et al., 2009, 2010 and 2016). The
MA

comparison and analysis of whole genomes is a good tool in Pseudomonas taxonomy


and ANI (Average Nucleotide Identity) or Genome-to-Genome Distance (GGDC)
D

have been analysed in recently published descriptions of new species, such as P.


donghuensis, P. alkylphenolica, P. cerasi or P. versuta (Gao et al., 2015; Mulet et al.,
E

2015; Kałużna et al., 2016; See-Too et al., 2017). It is currently widely accepted that
PT

the range threshold values of 94-96 % ANI similarity proposed by Richter and
Rosselló-Mora (2009) for delineation of bacterial species is equivalent to the 70%
CE

DNA-DNA hybridization classically established for experimental laboratory


procedures. In addition, the comparison of Pseudomonas whole genomes is a tool in
AC

epidemiological (Spencer et al., 2013; Snyder et al., 2013), plant interaction (Silby et
al., 2009; Loper et al., 2012; McCann et al., 2013; Nowell et al., 2016), diversity
(Silby et al., 2009; Jun et al., 2015) and environmental (Schwartz et al., 2015; Lidbury
et al., 2016) studies.
The rapid increase of the whole genome sequences available in databases in the last
decade has also favoured the development of genome mining methods focusing on the
search of bacterial metabolites (Ziemert et al., 2016). Currently, the genome analysis
is a good tool in the field of clinical microbiology (Thomsen et al., 2016; Houldcroft
et al., 2017), food microbiology (Deng et al., 2016; Ronholm et al., 2016; Walsh et

9
ACCEPTED MANUSCRIPT

al., 2017), phytopathology (Bull and Koike, 2015; Vinatzer et al., 2017) or agriculture
(Thao and Tran, 2016). The availability of many Pseudomonas whole genomes has
facilitated the genome mining (Winsor and Brinkman, 2014) to search antimicrobial
metabolites (Loper et al., 2008; van der Voort et al., 2015; Krzyżanowska et al.,
2016), enzymes (Ficarra et al., 2016; Sun et al., 2016) and diverse biological activities
(Garrido-Sanz et al., 2016). Nevertheless, this is a field still poorly studied in this
genus which should be further exploited.
Techniques based on protein analysis, proteomics, are also currently applied in

PT
bacterial taxonomy and within them, matrix-assisted laser desorption ionization time
of flight mass spectrometry (MALDI-TOF MS) is the most promising technique. It

RI
has been applied to bacterial identification, particularly for strains isolated from

SC
clinical sources (Angeletti, 2016). In the case of Pseudomonas, this methodology has
been applied to the identification of clinical isolates since the last decade when
NU
Degand et al. (2008) reported that Pseudomonas aeruginosa strains isolated from
cystic fibrosis patients were correctly identified by MALDI-TOF MS. From this date
onwards several works reported the identification of different Pseudomonas species
MA

isolated from these patients (Baillie et al., 2013) and from several clinical sources
(Seng et al., 2009; Jacquier et al., 2011; Fall et al., 2015; Lo et al., 2015; Mulet et al.,
D

2017) and foods (Böhme et al., 2013; Vithanage et al., 2014; Höll et al., 2016). In
several works the accuracy of MALDI-TOF MS for identification of bacteria
E

including Pseudomonas was compared with that of other methods concluding that it is
PT

comparable to the results of automatized phenotypic methods (Jamal et al., 2014).


MALDI-TOF MS allows the correct identification of Pseudomonas species,
CE

subspecies, genomovars and strains in agreement with gene sequence analyses (Mulet
et al., 2012; Scotta et al., 2013; Mulet et al., 2016; Mulet et al., 2017).
AC

From all these studies MALDI-TOF MS has been revealed as a powerful technique
for the identification of pathogenic species, nevertheless, this technology can be
applied to any bacteria if the databases are enlarged with the spectra of bacteria from
other origins (Rahi et al., 2016). Currently environmental species of Pseudomonas
have been also identified by using this methodology, some of them isolated from
water (Emami et al., 2012) or roots of cereals (Stets et al., 2013). In addition this
methodology has been used for new species description in the present decade, such as
P. arsenicoxydans (Campos et al., 2010), P. entomophila (Mulet et al., 2012), P.

10
ACCEPTED MANUSCRIPT

prosekii (Kosina et al., 2013), P. alkylphenolica (Mulet et al., 2015), P. kribbensis


(Chang et al., 2016) and P. cerasi (Kałużna et al., 2016).

5. Conclusions
At present we have a plethora of methodologies and techniques that allow the
differentiation of bacterial genera and species. These modern procedures led to an
explosive increase in the number of taxa described annually, contributing also to
wider biodiversity studies. Moreover, the current generalized sequencing of complete

PT
bacterial genomes has significantly increased the level of knowledge in Bacteriology.
In the case of genus Pseudomonas, more than 70 novel species have been described

RI
since 2009, with an annual average of 10 new species in the last three years. Since

SC
most of the environments in which Pseudomonas strains may be present remain
unexplored, it is foreseeable that the number of species of Pseudomonas will increase
NU
enormously in the next years. This fact, together with the phylogenetic complexity of
this genus, will likely force it to be splitted in more genera.
MA

Acknowledgments
The authors would like to thank our numerous collaborators and students involved in
D

this research over the years. Funding was provided by Ministerio de Economía,
Industria y Competitividad (MINECO) and Junta de Castilla y León from Spain.
E
PT

References
CE

Amoozegar, M.A., Shahinpei, A., Sepahy, A.A., Makhdoumi-Kakhki, A.,


Seyedmahdi, S.S., Schumann, P., Ventosa, A., 2014. Pseudomonas salegens sp. nov.,
AC

a halophilic member of the genus Pseudomonas isolated from a wetland. Int. J. Syst.
Evol. Microbiol. 64, 3565–3570.

Angeletti, S., 2016. Matrix assisted laser desorption time of flight mass spectrometry
(MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods. 6, pii: S0167-
7012(16)30253-6.

Anwar, N., Abaydulla, G., Zayadan, B., Abdurahman, M., Hamood, B., Erkin, R.,
Ismayil, N., Rozahon, M., Mamtimin, H., Rahman, E., 2016. Pseudomonas populi sp.

11
ACCEPTED MANUSCRIPT

nov., an endophytic bacterium isolated from Populus euphratica. Int. J. Syst. Evol.
Microbiol. doi: 10.1099/ijsem.0.000896.

Anwar, N., Rozahon, M., Zayadan, B., Mamtimin, H., Abdurahman, M., Kurban, M.,
Abdurusul, M., Mamtimin, T., Abdukerim, M., Rahman, E., 2017. Pseudomonas
tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica. Int. J.
Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.002295.

PT
Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., Oyaizu, H., 2000. Phylogenetic
affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol.

RI
Microbiol. 50, 1563–1589.

SC
Akter, S., Kadir, J., Juraimi, A.S., Saud, H.M., Elmahdi, S., 2014. Isolation and
identification of antagonistic bacteria from phylloplane of rice as biocontrol agents for
sheath blight. J. Environ. Biol. 35(6), 1095–1100.
NU
Auda, I.G., Al-Kadmy. I.M., Kareem, S.M., Lafta, A.K., A'Affus, M.H., Khit, I.A.,
MA

Kheraif, A.A., Divakar, D.D., Ramakrishnaiah, R., 2016. RAPD- and ERIC-Based
typing of clinical and environmental Pseudomonas aeruginosa isolates. J. AOAC Int.
100, 532–536.
D

Avidano, L., Rinaldi, M., Gindro, R., Cudlín, P., Martinotti, M.G., Fracchia, L., 2010.
E

Culturable bacterial populations associated with ectomycorrhizae of Norway spruce


PT

stands with different degrees of decline in the Czech Republic. Can. J. Microbiol. 56,
52–64.
CE

Azhar, E.I., Papadioti, A., Bibi, F., Ashshi, A.M., Raoult, D., Angelakis, E., 2016.
AC

'Pseudomonas saudiphocaensis' sp. nov., a new bacterial species isolated from


currency notes collected during the Hajj pilgrimage in 2012 at Makkah, Saudi Arabia.
New Microbes New Infect. 15, 131–133.

Azhar, E.I., Papadioti, A., Bibi, F., Ashshi, A.M., Raoult, D., Angelakis, E., 2017.
'Pseudomonas saudimassiliensis' sp. nov. a new bacterial species isolated from air
samples in the urban environment of Makkah, Saudi Arabia. New Microbes New
Infect. 16, 43–44.

12
ACCEPTED MANUSCRIPT

Arnau, V.G., Sánchez, L.A., Delgado, O.D., 2015. Pseudomonas yamanorum sp.
nov., a psychrotolerant bacterium isolated from a subantarctic environment. Int. J.
Syst. Evol. Microbiol. 65, 424–431.

Auling, G., Busse, H.J., Pilz, F., Webb, L., Kneifel, H., Claus, D., 1991. Rapid
differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic
pseudomonads and other members of the class Proteobacteria interacting with plants.
Int. J. Syst. Bacteriol. 41, 223–228.

PT
Baillie, S., Ireland, K., Warwick, S., Wareham, D., Wilks, M., 2013. Matrix-assisted

RI
laser desorption/ionisation-time of flight mass spectrometry: rapid identification of
bacteria isolated from patients with cystic fibrosis. Br. J. Biomed, Sci. 70, 144–148.

SC
Bardet, L., Cimmino, T., Buffet, C., Michelle, C., Rathored, J., Tandina, F., Lagier,
J.C., Khelaifia, S., Abrahão, J., Raoult, D., Rolain, J.M., 2017. Microbial culturomics
NU
application for global health: noncontiguous finished genome sequence and
description of Pseudomonas massiliensis Strain CB-1T sp. nov. in Brazil. OMICS.
MA

doi: 10.1089/omi.2017.0027.

Barr, J.G., Emmerson, A.M., Hogg, G.M., Smyth, E., 1989. API-20NE and sensititre
D

autoidentification systems for identifying Pseudomonas spp. J. Clin. Pathol. 42, 1113–
E

1114.
PT

Bazhanov, D.P., Li, C., Li, H., Li, J., Zhang, X., Chen, X., Yang, H., 2016.
Occurrence, diversity and community structure of culturable atrazine degraders in
CE

industrial and agricultural soils exposed to the herbicide in Shandong Province, P.R.
China. BMC Microbiol. 16, 265.
AC

Behrendt, U., Ulrich, A., Schumann, P., Erler, W., Burghardt, J., Seyfarth, W., 1999.
A taxonomic study of bacteria isolated from grasses: a proposed new species
Pseudomonas graminis sp. nov. Int. J. Syst. Bacteriol. 49, 297–308.

Beiki, F., Busquets, A., Gomila, M., Rahimian, H., Lalucat, J., García-Valdés, E.,
2016. New Pseudomonas spp. are pathogenic to Citrus. PLoS One 11, e0148796.

13
ACCEPTED MANUSCRIPT

Bennasar, A., Mulet, M., Lalucat, J., García-Valdés, E., 2010. PseudoMLSA: a
database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol.
10, 118.

Bergey, D.H., Harrison, F.C., Breed, R.S., Hammer, B.W., Huntoon, F.M., 1923.
Bergey‟s Manual of Determinative Bacteriology, 1st edn. Williams and Wilkins,
Baltimore, USA.

PT
Böhme, K., Fernández-No, I.C., Pazos, M., Gallardo, J.M., Barros-Velázquez, J.,
Cañas, B., Calo-Mata, P., 2013. Identification and classification of seafood-borne

RI
pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS
fingerprinting. Electrophoresis 34, 877–887.

SC
Bozkurt, I.A., Horuz, S., Aysan, Y., Soylu, S., 2016. First report of bacterial leaf spot
of parsley caused by Pseudomonas syringae pv. apii in Turkey. J. Phytopathol. 164,
NU
207–221.
MA

Bull, C.T., Koike, S.T., 2015. Practical benefits of knowing the enemy: modern
molecular tools for diagnosing the etiology of bacterial diseases and understanding the
taxonomy and diversity of plant-pathogenic bacteria. Annu. Rev. Phytopathol. 53,
D

157–180.
E

Busquets, A., Gomila, M., Beiki, F., Mulet, M., Rahimian, H., García-Valdés, E.,
PT

Lalucat, J., 2017. Pseudomonas caspiana sp. nov., a citrus pathogen in the
Pseudomonas syringae phylogenetic group. Syst. Appl. Microbiol. 40:266–273.
CE

Campos, V.L., Valenzuela, C., Yarza, P., Kämpfer, P., Vidal, R., Zaror, C., Mondaca,
AC

M.A., López-López, A., Rosselló-Móra, R., 2010. Pseudomonas arsenicoxydans sp.


nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst. Appl.
Microbiol. 33, 193–197.

Carrión, O., Miñana-Galbis, D., Montes, M.J., Mercadé, E., 2011. Pseudomonas
deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int. J. Syst.
Evol. Microbiol. 61, 2401–2405.

14
ACCEPTED MANUSCRIPT

Chang, D.H., Rhee, M.S., Kim, J.S., Lee, Y., Park, M.Y., Kim, H., Lee, S.G., Kim,
B.C., 2016. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon,
Korea. Antonie van Leeuwenhoek. 109, 1433–1446.

Chao, J., Wolfaardt, G.M., Arts, M.T., 2010. Characterization of Pseudomonas


aeruginosa fatty acid profiles in biofilms and batch planktonic cultures. Can. J.
Microbiol. 56, 1028–1039.

PT
Chapman, J.R., Taylor, R.K., Weir, B.S., Romberg, M.K., Vanneste, J.L., Luck, J.,
Alexander, B.J., 2012. Phylogenetic relationships among global populations of

RI
Pseudomonas syringae pv. actinidiae. Phytopathology 102, 1034–1044.

SC
Cholley, P., Ka, R., Guyeux, C., Thouverez, M., Guessennd, N., Ghebremedhin, B.,
Frank, T., Bertrand, X., Hocquet, D., Population structure of clinical Pseudomonas
aeruginosa from West and Central African countries. PLoS One 9, e107008.
NU
Cohen, R., Babushkin, F., Cohen, S., Afraimov, M., Shapiro, M., Uda, M., Khabra,
MA

E., Adler, A., Ben Ami, R., Paikin, S., 2017. A prospective survey of Pseudomonas
aeruginosa colonization and infection in the intensive care unit. Antimicrob. Resist.
Infect, Control. 6, 7.
D

Conner, K.N., Olive, J., Zhang, L., Jacobi, J., Putnam, M.L., 2013. First report of
E

bacterial gall on Loropetalum chinense caused by Pseudomonas savastanoi in the


PT

United States. Plant Dis. 97, 835.


CE

Cohn, F., 1872. Untersuchungen über Bakterien. Beitr. Biol. Pflanz. 1, 127–224.

Colwell, R.R., Citarella, R.V., Ryman, I., 1965. Deoxyribonucleic acid base
AC

composition and Adansonian analysis of heterotrophic aerobic pseudomonads. J.


Bacteriol. 90, 1148–1149.

Colwell, R.R., Mandel, M. 1964. Adansonian analysis and deoxyribonucleic acid base
composition of some Gram-negative bacteria. J. Bacteriol. 87, 1412–1422.

Croft, L., Beatson, S.A., Whitchurch, C.B., Huang, B., Blakeley, R.L., Mattick, J.S.,
2000. An interactive web-based Pseudomonas aeruginosa genome database:
discovery of new genes, pathways and structures. Microbiology 146, 2351–2364.

15
ACCEPTED MANUSCRIPT

Degand, N., Carbonnelle, E., Dauphin, B., Beretti, J.L., Le Bourgeois, M., Sermet-
Gaudelus, I., Segonds, C., Berche, P., Nassif, X., Ferroni, A., 2008. Matrix-assisted
laser desorption ionization-time of flight mass spectrometry for identification of
nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J. Clin.
Microbiol. 46, 3361–3367.

Deng, X., den Bakker, H.C., Hendriksen, R.S., 2016. Genomic Epidemiology: Whole-
Genome-sequencing-powered surveillance and outbreak investigation of foodborne

PT
bacterial pathogens. Annu. Rev. Food Sci. Technol. 7, 353–374.

RI
Doudoroff, M., Palleroni, N. J., 1974. Genus I: Pseudomonas Migula 1984, 237 Nom.
cons. Opin. 5, Jud. Comm. 1952, 121. In: Buchanan, R.E. and Gibbons, N.E. (Eds.).

SC
Bergey‟s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore,
USA, pp. 217-243.
NU
Emami, K., Askari, V., Ullrich, M., Mohinudeen, K., Anil, A.C., Khandeparker, L.,
Burgess, J.G., Mesbahi, E., 2012. Characterization of bacteria in ballast water using
MA

MALDI-TOF mass spectrometry. PLoS One 7, e38515.

Escalante, A.E., Caballero-Mellado, J., Martínez-Aguilar, L., Rodríguez-Verdugo, A.,


D

González-González, A., Toribio-Jiménez, J., Souza, V., 2009. Pseudomonas


E

cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro


PT

Cienegas valley in Coahuila, Mexico. Int. J. Syst. Evol. Microbiol. 59, 1416–1420.

Eusebio, N., Amorim, A.A., Gamboa, F., Araujo, R., 2015. Molecular identification
CE

and genotyping of Pseudomonas aeruginosa isolated from cystic fibrosis and non-
cystic fibrosis patients with bronchiectasis. Pathog. Dis. 73, 1–7.
AC

Fall, B., Lo, C.I., Samb-Ba, B., Perrot, N., Diawara, S., Gueye, M.W., Sow, K.,
Aubadie-Ladrix, M., Mediannikov, O., Sokhna, C., Diemé, Y., Chatellier, S., Wade,
B., Raoult, D., Fenollar, F., 2015. The ongoing revolution of MALDI-TOF mass
spectrometry for microbiology reaches tropical Africa. Am. J. Trop. Med. Hyg. 92,
641–647.

16
ACCEPTED MANUSCRIPT

Feng, Z., Zhang, J., Huang, X., Zhang, J., Chen, M., Li, S., 2012. Pseudomonas
zeshuii sp. nov., isolated from herbicide-contaminated soil. Int. J. Syst. Evol.
Microbiol. 62, 2608–2612.

Ficarra, F.A., Santecchia, I., Lagorio, S.H., Alarcón, S., Magni, C., Espariz, M., 2016.
Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas
alcaliphila ED1 isolated from a dairy wastewater lagoon. Arch. Microbiol. 198, 893–
904.

PT
Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F.,

RI
Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenney,
K., Sutton, G.G., FitzHugh, W., Fields, C.A., Gocayne, J.D., Scott, J.D., Shirley, R.,

SC
Liu, L.I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T.,
Hedblom, E., Cotton, M.D., Utterback, T., Hanna, M.C., Nguyen, D.T., Saudek,
NU
D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen, N.S.,
Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O., Venter, J.C.,
1995. Whole-genome random sequencing and assembly of Haemophilus influenzae
MA

Rd. Science. 269, 496–512.

Frasson, D., Opoku, M., Picozzi, T., Torossi, T., Balada, S., Smits, T.H.M., Hilber,
D

U., 2017. Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis


E

sp. nov., two novel species within the Pseudomonas putida group isolated from forest
PT

soil. Int. J. Syst. Evol. Microbiol. 67:.2853-2861.


CE

Gao, J., Li, B.Y., Wang, H.H., Liu, Z.Q., 2014. Pseudomonas hunanensis sp. nov.,
isolated from soil subjected to long-term manganese pollution. Curr. Microbiol. 69,
19–24.
AC

Gao, J., Xie, G., Peng, F., Xie, Z., 2015. Pseudomonas donghuensis sp. nov.,
exhibiting high-yields of siderophore. Antonie van Leeuwenhoek 107, 83–94.

García-Valdés, E., Lalucat, J., 2016. Pseudomonas: Molecular phylogeny and current
Taxonomy, in: Kahlon, R.S. (Ed.), Pseudomonas: Molecular and Applied Biology.
Springer International Publishing, Switzerland, pp. 1–23.

17
ACCEPTED MANUSCRIPT

Gardan, L., Bella, P., Meyer, J.M., Christen, R., Rott, P., Achouak, W., Samson, R.,
2002. Pseudomonas salomonii sp. nov., pathogenic on garlic, and Pseudomonas
palleroniana sp. nov., isolated from rice. Int. J. Syst. Evol. Microbiol. 52, 2065–2074.

Garrido-Sanz, D., Meier-Kolthoff, J.P., Göker, M., Martín, M., Rivilla, R., Redondo-
Nieto, M., 2016. Correction: Genomic and Genetic Diversity within the Pseudomonas
fluorescens Complex. PLoS One 11, e0150183.

PT
Gibello, A., Vela, A.I., Martín, M., Mengs, G., Alonso, P.Z., Garbi, C., Fernández-
Garayzábal, J.F., 2011. Pseudomonas composti sp. nov., isolated from compost

RI
samples. Int. J. Syst. Evol. Microbiol. 61, 2962–2966.

SC
Gitaitis, R., Mullis, S., Lewis, K., Langston, D., Watson, A.K., Sanders, H., Torrance,
R., Jones, J.B., Nischwitz, C., 2012. First report of a new disease of onion in Georgia
caused by a nonfluorescent Pseudomonas Species. Plant Dis. 96, 285.
NU
Gomila, M., Peña, A., Mulet, M., Lalucat, J., García-Valdés, E., 2015. Phylogenomics
MA

and systematics in Pseudomonas. Front. Microbiol. 6, 214.

González, A.J., Cleenwerck, I., De Vos, P., Fernández-Sanz, A.M., 2013.


Pseudomonas asturiensis sp. nov., isolated from soybean and weeds. Syst. Appl.
D

Microbiol. 36, 320–324.


E
PT

Gumtow, R.L., Khan, A.A., Bocsanczy, A.M., Yuen, J.M.F., Palmateer, A.J.,
Norman, D.J., 2013. First report of a leaf spot disease of golden dewdrop (Duranta
CE

erecta) caused by Pseudomonas cichorii and a Xanthomonas species in Florida. Plant


Dis. 97, 836.
AC

Guttmacher, A.E., Collins, F.S., 2003. Welcome to the Genomic Era. N. Engl. J. Med.
349, 996–998.

Hameed, A., Shahina, M., Lin, S.Y., Liu, Y.C., Young, C.C., 2014. Pseudomonas
hussainii sp. nov., isolated from droppings of a seashore bird, and emended
descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and
Pseudomonas segetis. Int. J. Syst. Evol. Microbiol. 64, 2330–2337.

18
ACCEPTED MANUSCRIPT

Hauser, E., Kämpfer, P., Busse1, H.J., 2004. Pseudomonas psychrotolerans sp. nov.
Int. J. Syst. Evol. Microbiol. 54, 1633–1637.

He, W.H., Wang, Y.N., Du, X., Zhou, Y., Jia, B., Bian, J., Liu, S.J., Chen, G.C., 2012.
Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil
subjected to long-term herbicides application. Curr. Microbiol. 65, 595–600.

Hirota, K., Yamahira, K., Nakajima, K., Nodasaka, Y., Okuyama, H., Yumoto, I.,

PT
2011. Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile
that utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 61, 1842–1848.

RI
Höll, L., Behr, J., Vogel, R.F., 2016. Identification and growth dynamics of meat

SC
spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-
TOF MS. Food Microbiol. 60, 84–91. NU
Houldcroft, C.J., Beale, M.A., Breuer, J., 2017. Clinical and biological insights from
viral genome sequencing. Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.182.
MA

Hunter, W.J., Manter, D.K., 2011. Pseudomonas seleniipraecipitatus sp. nov.: a


selenite reducing γ-proteobacteria isolated from soil. Curr. Microbiol. 62, 565–569.
D

Hunter, W.J., Manter, D.K., 2012. Pseudomonas kuykendallii sp. nov.: a novel γ-
E

proteobacteria isolated from a hexazinone degrading bioreactor. Curr. Microbiol. 65,


PT

170–175.

Hwang, C.Y., Zhang, G.I., Kang, S.H., Kim, H.J., Cho, B.C., 2009. Pseudomonas
CE

pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas
gelidicola. Int. J. Syst. Evol. Microbiol. 59, 3019–3024.
AC

Jacquier, H., Carbonnelle, E., Corvec, S., Illiaquer, M., Le Monnier, A., Bille, E.,
Zahar, J.R., Beretti, J.L., Jauréguy, F., Fihman, V., Tankovic, J., Cattoir, V., 2011.
Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur. J.
Clin. Microbiol. Infect. Dis. 30, 1579–1586.

Jamal, W., Albert, M.J., Rotimi, V.O., 2014. Real-time comparative evaluation of
bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser

19
ACCEPTED MANUSCRIPT

desorption-ionization time-of-flight mass spectrometry systems, for identification of


clinically significant bacteria. BMC Microbiol. 14, 289.

Janisiewicz, W.J., Buyer, J.S., 2010. Culturable bacterial microflora associated with
nectarine fruit and their potential for control of brown rot. Can. J. Microbiol. 56, 480–
486.

Johnson, J. L., Palleroni, N., 1989. Deoxyribonucleic acid similarities among

PT
Pseudomonas species. Int. J. Syst. Bacteriol. 39, 230–235.

Jun, S.R., Wassenaar, T.M., Nookaew, I., Hauser, L., Wanchai, V., Land, M., Timm,

RI
C.M., Lu, T.Y., Schadt, C.W., Doktycz, M.J., Pelletier, D.A., Ussery, D.W., 2015.

SC
Diversity of Pseudomonas genomes, including Populus-associated isolates, as
revealed by comparative genome analysis. Appl. Environ. Microbiol. 82, 375–383.
NU
Kałużna, M., Willems, A., Pothier, J.F., Ruinelli, M., Sobiczewski, P., Puławska, J.,
2016. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue
MA

of cherry. Syst. Appl. Microbiol. 39, 370–377.

Kalluf, K.O., Arend, L.N., Wuicik, T.E., Pilonetto, M., Tuon, F.F., 2017. Molecular
epidemiology of SPM-1-producing Pseudomonas aeruginosa by rep-PCR in hospitals
D

in Parana, Brazil. Infect. Genet. Evol. 49, 130–133.


E
PT

Kalferstova, L., Vilimovska Dedeckova, K., Antuskova, M., Melter, O., Drevinek, P.,
2016. How and why to monitor Pseudomonas aeruginosa infections in the long term
CE

at a cystic fibrosis centre. J. Hosp. Infect. 92, 54–60.

Keshtkar, A.R., Khodakaramian, G., Rouhrazi, K., 2016. Isolation and


AC

characterization of Pseudomonas syringae pv. syringae which induce leaf spot on


walnut. Eur. J. Plant Pathol. 146, 837–846.

Kim, K.H., Roh, S.W., Chang, H.W., Nam, Y.D., Yoon, J.H., Jeon, C.O., Oh, H.M.,
Bae, J.W. Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int. J.
Syst. Evol. Microbiol. 59, 38–41.

20
ACCEPTED MANUSCRIPT

Kiprianova, E.A., Klochko, V.V., Zelena, L.B., Churkina, L.N., Avdeeva, L.V., 2011.
Pseudomonas batumici sp. nov., the antibiotic-producing bacteria isolated from soil of
the Caucasus Black Sea coast. Mikrobiol. Z. 73, 3–8.

Klenk, H.P., Göker, M., 2010. En route to a genome-based classification of Archaea


and Bacteria?. Syst. Appl. Microbiol. 33, 175–182.

Korshunova, T.Y., Ramírez-Bahena, M.H., Chetverikov, S.P., Igual, J.M., Peix, Á.,

PT
Loginov, O., 2016. Pseudomonas turukhanskensis sp. nov., isolated from oil-
contaminated soils. Int. J. Syst. Evol. Microbiol. 66, 4657–4664.

RI
Kosina, M., Barták, M., Mašlaňová, I., Pascutti, A.V., Sedo, O., Lexa, M., Sedláček,

SC
I., 2013. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from
Antarctica. Curr. Microbiol. 67, 637–646. NU
Kosina, M., Švec, P., Černohlávková, J., Barták, M., Snopková, K., De Vos, P.,
Sedláček, I., 2016. Description of Pseudomonas gregormendelii sp. nov., a novel
MA

psychrotrophic bacterium from James Ross Island, Antarctica. Curr. Microbiol. 73,
84–90.

Krzyżanowska, D.M., Ossowicki, A., Rajewska, M., Maciąg, T., Jabłońska, M.,
D

Obuchowski, M., Heeb, S., Jafra, S., 2016. When Genome-Based Approach Meets the
E

"Old but Good": Revealing Genes Involved in the Antibacterial Activity of


PT

Pseudomonas sp. P482 against Soft Rot Pathogens. Front. Microbiol. 7, 782.
CE

Kyrpides, N.C., Hugenholtz, P., Eisen, J.A., Woyke, T., Göker, M., Parker, C.T.,
Amann, R., Beck, B.J., Chain, P.S., Chun, J., Colwell, R.R., Danchin, A., Dawyndt,
AC

P., Dedeurwaerdere, T., DeLong, E.F., Detter, J.C., De Vos, P., Donohue, T.J., Dong,
X.Z., Ehrlich, D.S., Fraser, C., Gibbs, R., Gilbert, J., Gilna, P., Glöckner, F.O.,
Jansson, J.K., Keasling, J.D., Knight, R., Labeda, D., Lapidus, A., Lee, J.S., Li, W.J.,
Ma, J., Markowitz, V., Moore, E.R., Morrison, M., Meyer, F., Nelson, K.E., Ohkuma,
M., Ouzounis, C.A., Pace, N., Parkhill, J., Qin, N., Rosselló-Mora, R., Sikorski, J.,
Smith, D., Sogin, M., Stevens, R., Stingl, U., Suzuki, K., Taylor, D., Tiedje, J.M.,
Tindall, B., Wagner, M., Weinstock, G., Weissenbach, J., White, O., Wang, J., Zhang,
L., Zhou, Y.G., Field, D., Whitman, W.B., Garrity, G.M., Klenk, H.P., 2014.

21
ACCEPTED MANUSCRIPT

Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.


PLoS Biol. 12, e1001920.

Lagier, J.C., Hugon, P., Khelaifia, S., Fournier, P.E., La Scola, B., Raoult, D., 2015.
The rebirth of culture in microbiology through the example of culturomics to study
human gut microbiota. Clin. Microbiol. Rev. 28, 237–264.

Lamichhane, J.R., Kshetri, M.B., Mazzaglia, A., Varvaro, L., Balestra, G.M., 2010.

PT
Bacterial speck caused by Pseudomonas syringae pv. tomato race 0: first report in
Nepal. Plant Pathol. 59, 401.

RI
Lang, E., Burghartz, M., Spring, S., Swiderski, J., Spröer, C., 2010. Pseudomonas

SC
benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by
xenobiotics degrading type strains. Curr. Microbiol. 60, 85–91.
NU
Lee, D.H., Moon, S.R., Park, Y.H., Kim, J.H., Kim, H., Parales, R.E., Kahng, H.Y.,
2010. Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated
MA

seashore. Int. J. Syst. Evol. Microbiol. 60, 2719–2723.

Li, G.E., Wu, X.Q., Ye, J.R., Hou, L., Zhou, A.D., Zhao, L., 2013. Isolation and
identification of phytate-degrading rhizobacteria with activity of improving growth of
D

poplar and Masson pine. World J. Microbiol. Biotechnol. 29, 2181–2193.


E
PT

Lidbury, I.D., Murphy, A.R., Scanlan, D.J., Bending, G.D., Jones, A.M., Moore, J.D.,
Goodall, A., Hammond, J.P., Wellington, E.M., Comparative genomic, proteomic and
CE

exoproteomic analyses of three Pseudomonas strains reveals novel insights into the
phosphorus scavenging capabilities of soil bacteria. Environ. Microbiol. 18, 3535–
AC

3549.

Lin, S.Y., Hameed, A., Hung, M.H., Liu, Y.C., Hsu, Y.H., Young, L.S., Young, C.C.,
2015. Pseudomonas matsuisoli sp. nov., isolated from a soil sample. Int. J. Syst. Evol.
Microbiol. 65, 902–909.

Lin, S.Y., Hameed, A., Liu, Y.C., Hsu, Y.H., Lai, W.A., Chen, W.M., Shen, F.T.,
Young, C.C., 2013a. Pseudomonas sagittaria sp. nov., a siderophore-producing
bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 63, 2410–
2417.

22
ACCEPTED MANUSCRIPT

Lin, S.Y., Hameed, A., Liu, Y.C., Hsu, Y.H., Lai, W.A., Young, C.C., 2013b.
Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste
compost in Taiwan. Int. J. Syst. Evol. Microbiol. 63, 3168–3174.

Liu, N.T., Lefcourt, A.M., Nou, X., Shelton, D.R., Zhang, G., Lo, Y.M., 2013. Native
microflora in fresh-cut produce processing plants and their potentials for biofilm
formation. J. Food Prot. 76, 827–832.

PT
Liu, M., Luo, X., Zhang, L., Dai, J., Wang, Y., Tang, Y., Li, J., Sun, T., Fang, C.,
2009. Pseudomonas xinjiangensis sp. nov., a moderately thermotolerant bacterium

RI
isolated from desert sand. Int J Syst Evol Microbiol. 59, 1286-1289.

SC
Liu, Y.C., Young, L.S., Lin, S.Y., Hameed, A., Hsu, Y.H., Lai, W.A., Shen, F.T.,
Young, C.C., 2013. Pseudomonas guguanensis sp. nov. a gammaproteobacterium
isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 63, 4591–4598.
NU
Lo, C.I., Fall, B., Sambe-Ba, B., Diawara, S., Gueye, M.W., Mediannikov, O.,
MA

Sokhna, C., Faye, N., Diemé, Y., Wade, B., Raoult, D., Fenollar, F1., 2015. MALDI-
TOF Mass Spectrometry: A powerful tool for clinical microbiology at Hôpital
Principal de Dakar, Senegal (West Africa). PLoS One 10, e0145889.
D

Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis, E.W. 2nd, Lim, C.K., Shaffer, B.T.,
E

Elbourne, L.D., Stockwell, V.O., Hartney, S.L., Breakwell, K., Henkels, M.D., Tetu,
PT

S.G., Rangel, L.I., Kidarsa, T.A., Wilson, N.L., van de Mortel, J.E., Song, C.,
Blumhagen, R., Radune, D., Hostetler, J.B., Brinkac, L.M., Durkin, A.S., Kluepfel,
CE

D.A., Wechter, W.P., Anderson, A.J., Kim, Y.C., Pierson, L.S. 3rd, Pierson, E.A.,
Lindow, S.E., Kobayashi, D.Y., Raaijmakers, J.M., Weller, D.M., Thomashow, L.S.,
AC

Allen, A.E., Paulsen, I.T., 2012. Comparative genomics of plant-associated


Pseudomonas spp.: insights into diversity and inheritance of traits involved in
multitrophic interactions. PLoS Genet 8, e1002784.

Loper, J.E., Henkels, M.D., Shaffer, B.T., Valeriote, F.A., Gross, H., 2008. Isolation
and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a
genomic mining strategy. Appl. Environ. Microbiol. 74, 3085–3093.

23
ACCEPTED MANUSCRIPT

López, J.R., Diéguez, A.L., Doce, A., De la Roca, E., De la Herran, R., Navas, J.I.,
Toranzo, A.E., Romalde, J.L., 2012. Pseudomonas baetica sp. nov., a fish pathogen
isolated from wedge sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol.
Microbiol. 62, 874-882.

López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel,
A., Méndez, B.S., 2009. Pseudomonas extremaustralis sp. nov., a Poly(3-
hydroxybutyrate) producer isolated from an antarctic environment. Curr. Microbiol.

PT
59, 514-519.

RI
Madhaiyan, M., Poonguzhali, S., Saravanan, V.S., Selvapravin, K., Duraipandiyan,
V., Al-Dhabi, N.A., 2017. Pseudomonas sesami sp. nov., a plant growth-promoting

SC
Gammaproteobacteria isolated from the rhizosphere of Sesamum indicum L. Antonie
van Leeuwenhoek. doi: 10.1007/s10482-017-0859-x.
NU
Mansfeld-Giese, K., Larsen, J., Bødker, L., 2002. Bacterial populations associated
with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS
MA

Microbiol. Ecol. 41, 133–140.

Marmur, J., 1961. Procedure for isolation of deoxyribonucleic acid from micro-
D

organisms. J. Mol. Biol. 3, 208–218.


E

Marmur, J., Doty, P., 1961. Thermal renaturation of deoxyribonucleic acids. J. Mol.
PT

Biol. 3, 585–594.
CE

Martin, N.H., Murphy, S.C., Ralyea, R.D., Wiedmann, M., Boor, K.J., 2011. When
cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese
AC

spoilage. J. Dairy Sci. 94, 3176–3183.

Medini, D., Serruto, D., Parkhill, J., Relman, D.A., Donati, C., Moxon, R., Falkow,
S., Rappuoli, R., 2008. Microbiology in the post-genomic era. Nature Rev. Microbiol.
6, 419–430.

Menéndez, E., Ramírez-Bahena, M.H., Fabryová, A., Igual, J.M., Benada, O., Mateos,
P.F., Peix, A., Kolařík, M., García-Fraile, P., 2015. Pseudomonas coleopterorum sp.
nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini.
Int. J. Syst. Evol. Microbiol. 65, 2852–2858.

24
ACCEPTED MANUSCRIPT

Meyer, J.M., Geoffroy, V.A., Baida, N., Gardan, L., Izard, D., Lemanceau, P.,
Achouak, W., Palleroni, N., 2002. Siderophore typing, a powerful tool for the
identification of fluorescent and non-fluorescent Pseudomonas. Appl. Environ.
Microbiol. 68, 2745–2753.

McCann, H.C., Rikkerink, E.H., Bertels, F., Fiers, M., Lu, A., Rees-George, J.,
Andersen, M.T., Gleave, A.P., Haubold, B., Wohlers, M.W., Guttman, D.S., Wang,
P.W., Straub, C., Vanneste, J.L., Rainey, P.B., Templeton, M.D., 2013. Genomic

PT
analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides
insight into the origins of an emergent plant disease. PLoS Pathog. 9: e1003503.

RI
Migula, N., 1894. Arbeiten aus dem Bakteriologischen Institut der Technischen

SC
Hochschule zu Karlsruhe 1, 235–238.

Morales, P.A., Aguirre, J.S., Troncoso, M.R., Figueroa, G.O., 2016. Phenotypic and
NU
genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold
in retail settings. LWT Food Sci. Technol. 73, 609–614.
MA

Moretti, C., Vinatzer, B.A., Onofri, A., Valentini, F., Buonaurio R., 2016. Genetic and
phenotypic diversity of Mediterranean populations of the olive knot pathogen,
D

Pseudomonas savastanoi pv. savastanoi. Plant Pathol. 66, 595–605.


E

Mulet, M., Gomila, M., Lemaitre, B., Lalucat, J., García-Valdés, E., 2012a.
PT

Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of


Pseudomonas entomophila sp. nov. Syst. Appl. Microbiol. 35, 145–149.
CE

Mulet, M., Gomila, M., Ramírez, A., Cardew, S., Moore, E.R., Lalucat, J.1., García-
AC

Valdés, E., 2016. Uncommonly isolated clinical Pseudomonas: identification and


phylogenetic assignation. Eur. J. Clin. Microbiol. Infect. Dis. 36, 351–359.

Mulet, M., Gomila, M., Ramírez, A., Cardew, S., Moore, E.R., Lalucat, J., García-
Valdés, E., 2017. Uncommonly isolated clinical Pseudomonas: identification and
phylogenetic assignation. Eur. J. Clin. Microbiol. Infect. Dis. 36, 351–359.

Mulet, M., Gomila, M., Scotta, C., Sánchez, D., Lalucat, J., García-Valdés, E., 2012b.
Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-

25
ACCEPTED MANUSCRIPT

flight mass spectrometry and multilocus sequence analysis approaches in species


discrimination within the genus Pseudomonas. Syst. Appl. Microbiol. 35, 455–464.

Mulet, M., Lalucat, J., García-Valdés, E., 2010. DNA sequence-based analysis of the
Pseudomonas species. Environ. Microbiol. 12, 1513–1530.

Mulet, M., Sánchez, D., Lalucat, J., Lee, K., García-Valdés, E., 2015. Pseudomonas
alkylphenolica sp. nov., a bacterial species able to form special aerial structures when

PT
grown on p-cresol. Int. J. Syst. Evol. Microbiol. 65, 4013–4018.

Munsch, P., Alatossava, T., Marttinen, N., Meyer, J.M., Christen, R., Gardan, L.,

RI
2002. Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease,

SC
isolated from cultivated mushroom sporophores in Finland. Int. J. Syst. Evol.
Microbiol. 52, 1973–1983. NU
Newberry, E.A., Jardini, T.M., Rubio, I., Roberts, P.D., Babu, B., Koike, S.T.,
Bouzar, H., Goss, E.M., Jones, J.B., Bull, C.T., Paret, M.L., 2016. Angular leaf spot
MA

of cucurbits is associated with genetically diverse Pseudomonas syringae strains.


Plant Dis. 7, 1397–1404.

Nowell, R.W., Laue, B.E., Sharp, P.M., Green, S., 2016. Comparative genomics
D

reveals genes significantly associated with woody hosts in the plant pathogen
E

Pseudomonas syringae. Mol. Plant. Pathol. 17, 1409–1424.


PT

Orla-Jensen, S., 1909. Die Hauptlinien der natürlichen Bakteriensystems. Zentralbl.


CE

Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II. 22, 305–346.

Palleroni, N.J., 1984. Genus I. Pseudomonas Migula 1894. In: Krieg, N.R. and Holt,
AC

J.G. (Eds). Bergey's Manual of Systematic Bacteriology. Vol I. Williams and Wilkins
Cop., Baltimore, USA, pp 141–171.

Palleroni, N.J., 2015. Pseudomonas. Bergey's Manual of Systematics of Archaea and


Bacteria. John Wiley & Sons, Inc. in association with Bergey's Manual Trust, pp.1-
105. doi: 10.1002/9781118960608.gbm01210.

Palleroni, N. J., Kunisawa, R., Contopoulou, R. and Doudoroff, M., 1973. Nucleic
acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23, 333–339.

26
ACCEPTED MANUSCRIPT

Pascual, J., García-López, M., Bills, G.F., Genilloud, O., 2015. Pseudomonas
granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and
Alhama Natural Park, Granada, Spain. Int. J. Syst. Evol. Microbiol. 65, 625–632.

Pascual, J., Lucena, T., Ruvira, M.A., Giordano, A., Gambacorta, A., Garay, E.,
Arahal, D.R., Pujalte, M.J., Macián, M.C., 2012. Pseudomonas litoralis sp. nov.,
isolated from Mediterranean seawater. Int. J. Syst. Evol. Microbiol. 62, 438–444.

PT
Pascual, J., García-López, M., Carmona, C., Sousa, T. da S., de Pedro, N., Cautain,
B., Martín, J., Vicente, F., Reyes, F., Bills, G.F., Genilloud, O., 2014. Pseudomonas

RI
soli sp. nov., a novel producer of xantholysin congeners. Syst. Appl. Microbiol. 37,
412–416.

SC
Parejko, J.A., Mavrodi, D.V., Mavrodi, O.V., Weller, D.M., Thomashow, L.S., 2013.
Taxonomy and distribution of phenazine-producing Pseudomonas spp. in the dryland
NU
agroecosystem of the Inland Pacific Northwest, United States. Appl. Environ.
Microbiol. 79, 3887–2891.
MA

Peix, A., Ramírez-Bahena, M.H., Velázquez, E., 2009. Historical evolution and
current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9, 1132–
D

1147.
E

Peix, A., Rivas, R., Mateos, P.F., Martínez-Molina, E., Rodríguez-Barrueco, C.,
PT

Velázquez, E., 2003. Pseudomonas rhizosphaerae sp. nov., a novel species that
actively solubilizes phosphate in vitro. Int. J. Syst. Evol. Microbiol. 53, 2067–2072.
CE

Peix, A., Ramírez-Bahena, M.H., Velázquez, E., Bedmar, E., 2015. Bacterial
AC

Associations with Legumes. Crit. Rev. Plant Sci. 34, 17-42.

Rahi, P., Prakash, O., Shouche, Y.S., 2016. Matrix-Assisted Laser


Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) based
microbial identifications: Challenges and scopes for microbial ecologists. Front.
Microbiol. 7, 1359.

Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J.M., Défago, G.,
Sutra, L., Moënne-Loccoz, Y., 2011. Pseudomonas protegens sp. nov., widespread

27
ACCEPTED MANUSCRIPT

plant-protecting bacteria producing the biocontrol compounds 2,4-


diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 34, 180–188.

Ramasamy, D., Mishra, A.K., Lagier, J.C., Padhmanabhan, R., Rossi, M., Sentausa,
E., Raoult, D., Fournier, P.E., 2014. A polyphasic strategy incorporating genomic data
for the taxonomic description of novel bacterial species. Int. J. Syst. Evol. Microbiol.
64, 384–391.

PT
Ramírez-Bahena, M.H., Cuesta, M.J., Flores-Félix, J.D., Mulas, R., Rivas, R., Castro-
Pinto, J., Brañas, J., Mulas, D., González-Andrés, F., Velázquez, E., Peix A., 2014.

RI
Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int. J. Syst. Evol.
Microbiol. 64, 2338–2345.

SC
Ramírez-Bahena, M.H., Cuesta, M.J., Tejedor, C., Igual, J.M., Fernández-Pascual, M.,
Peix Á., 2015. Pseudomonas endophytica sp. nov., isolated from stem tissue of
NU
Solanum tuberosum L. in Spain. Int. J. Syst. Evol. Microbiol. 65, 2110–2117.
MA

Ramos, E., Ramírez-Bahena, M.H., Valverde, A., Velázquez, E., Zúñiga, D.,
Velezmoro, C., Peix, A., 2013. Pseudomonas punonensis sp. nov., isolated from
straw. Int. J. Syst. Evol. Microbiol. 63, 1834-1839.
D

Reddy, G.S., Garcia-Pichel, F., 2015. Description of Pseudomonas asuensis sp. nov.
E

from biological soil crusts in the Colorado plateau, United States of America. J.
PT

Microbiol. 53, 6–13.


CE

Richter, M., Rosselló-Móra, R., 2009. Shifting the genomic gold standard for the
prokaryotic species definition. Proc. Natl. Acad. Sci. U S A. 106, 19126–19131.
AC

Rijavec, T., Lapanje, A., 2017. Cyanogenic Pseudomonas spp. strains are
concentrated in the rhizosphere of alpine pioneer plants. Microbiol. Res. 194, 20–28.

Romanenko, L.A., Tanaka, N., Svetashev, V.I., Mikhailov, V.V., 2015. Pseudomonas
glareae sp. nov., a marine sediment-derived bacterium with antagonistic activity.
Arch. Microbiol. 197, 693–699.

28
ACCEPTED MANUSCRIPT

Ronholm, J., Nasheri, N., Petronella, N., Pagotto, F., 2016. Navigating
microbiological food safety in the era of whole-genome sequencing. Clin. Microbiol.
Rev. 29, 837–857.

Sánchez, D., Mulet, M., Rodríguez, A.C., David, Z., Lalucat, J., García-Valdés, E.,
2014. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated
intertidal sand samples after the Prestige oil spill. Syst. Appl. Microbiol. 37, 89–94.

PT
Santoro, M.V., Bogino, P.C., Nocelli, N., Cappellari, L. del R., Giordano, W.F.,
Banchio, E., 2016. Analysis of plant growth-promoting effects of fluorescent

RI
Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their
volatile organic compounds on essential oil composition. Front. Microbiol. 7, 1085.

SC
See-Too, W.S., Salazar, S., Eea, R., Convey, P., Chan, K.G., Peix, A., 2017.
Pseudomonas versuta sp. nov., isolated from Antarctic soil. Syst. Appl. Microbiol.
NU
https://doi.org/10.1016/j.syapm.2017.03.002.
MA

Schildkraut, C., Doty, P., Marmur, J., 1961. Formation of hybrid DNA molecules and
their use in studies of DNA homologies. J. Mol. Biol. 3, 595.

Schwartz, T., Armant, O., Bretschneider, N., Hahn, A., Kirchen, S., Seifert, M.,
D

Dötsch, A., 2015. Microb. Whole genome and transcriptome analyses of


E

environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa


PT

isolates exposed to waste water and tap water. Biotechnology 8, 116-130.


CE

Scotta, C., Gomila, M., Mulet, M., Lalucat, J., García-Valdés, E., 2013. Whole-cell
MALDI-TOF mass spectrometry and multilocus sequence analysis in the
AC

discrimination of Pseudomonas stutzeri populations: three novel genomovars. Microb.


Ecol. 66, 2–32.

Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M.,
Raoult, D., 2009. Ongoing revolution in bacteriology: routine identification of
bacteria by matrix-assisted laser desorption ionization time-of-flight mass
spectrometry. Clin. Infect. Dis. 49, 543–551.

Silby, M.W., Cerdeño-Tárraga, A.M., Vernikos, G.S., Giddens, S.R., Jackson, R.W.,
Preston, G.M., Zhang, X.X., Moon, C.D., Gehrig, S.M., Godfrey, S.A., Knight, C.G.,

29
ACCEPTED MANUSCRIPT

Malone, J.G., Robinson, Z., Spiers, A.J., Harris, S., Challis, G.L., Yaxley, A.M.,
Harris, D., Seeger, K., Murphy, L., Rutter, S., Squares, R., Quail, M.A., Saunders, E.,
Mavromatis, K., Brettin, T.S., Bentley, S.D., Hothersall, J., Stephens, E., Thomas,
C.M., Parkhill, J., Levy, S.B., Rainey, P.B., Thomson, N.R., 2009. Genomic and
genetic analyses of diversity and plant interactions of Pseudomonas fluorescens.
Genome Biol. 10, R51.

Snyder, L.A., Loman, N.J., Faraj, L.A., Levi, K., Weinstock, G., Boswell, T.C.,

PT
Pallen, M.J., Ala‟Aldeen, D.A., 2013. Epidemiological investigation of Pseudomonas
aeruginosa isolates from a six-year-long hospital outbreak using high-throughput

RI
whole genome sequencing. Euro Surveill. 18, pii=20611.

SC
Spencer, D.H., Kas, A., Smith, E.E., Raymond, C.K., Sims, E.H., Hastings, M.,
Burns, J.L., Kaul, R., Olson, M.V., 2003. Whole-genome sequence variation among
NU
multiple isolates of Pseudomonas aeruginosa. J. Bacteriol. 185, 1316–1325.

Stets, M. I., Pinto, A. S., Huergo, L. F., de Souza, E. M., Guimarães, V. F., Alves, A.
MA

C., Steffens, M. B. R., Monteiro, R. A., de Oliveira Pedrosa, F., Cruz, L. M., 2013.
Rapid identification of bacterial isolates from wheat roots by high resolution whole
cell MALDI-TOF MS analysis. J. Biotechnol. 165, 167–174.
E D

Stolz, A., Busse, H.J., Kämpfer, P., 2007. Pseudomonas knackmussii sp. nov. Int. J.
PT

Syst. Evol. Microbiol. 57, 572–576.

Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J.,
CE

Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L.,
Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger,
AC

K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z.,
Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., Olson, M.V., 2000.
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic
pathogen. Nature. 406, 959–964.

Streeter, K., Neuman, C., Thompson, J., Hatje, E., Katouli, M., 2016. The
characteristics of genetically related Pseudomonas aeruginosa from diverse sources
and their interaction with human cell lines. Can. J. Microbiol. 62, 233–240.

30
ACCEPTED MANUSCRIPT

Sun, H., Gao, W., Wang, H., Wei, D., 2016. Expression, characterization of a novel
nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward
mandelonitrile present in active inclusion bodies. Biotechnol. Lett. 38, 455–461.

Suzuki, M., Yamada, K., Aoki, M., Hosoba, E., Matsumoto, M., Baba, H., Iinuma, Y.,
2016. Applying a PCR-based open-reading frame typing method for easy genotyping
and molecular epidemiological analysis of Pseudomonas aeruginosa. J. Appl.
Microbiol. 120, 487–497.

PT
Tambong, J.T., Xu, R., Bromfield, E., 2016. Pseudomonas canadensis sp. nov., a

RI
biological control agent isolated from a field plot under long-term mineral
fertilization. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001698.

SC
Tao, Y., Zhou, Y., He, X., Hu, X., Li, D., 2014. Pseudomonas chengduensis sp. nov.,
isolated from landfill leachate. Int. J. Syst. Evol. Microbiol. 64, 95–100.
NU
Thao, N.P., Tran, L.S. 2016., Enhancement of Plant Productivity in the Post-
MA

Genomics Era. Curr. Genomics. 17, 295–296.

Thomsen, M.C., Ahrenfeldt, J., Cisneros, J.L., Jurtz, V., Larsen, M.V., Hasman, H.,
Aarestrup, F.M., Lund, O., 2016. A bacterial analysis platform: An integrated system
D

for analysing bacterial whole genome sequencing data for clinical diagnostics and
E

surveillance. PLoS One. 11, e0157718.


PT

Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W., Kämpfer, P., 2010. Notes
CE

on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst.


Evol. Microbiol. 60, 249–266.
AC

Toro, M., Ramírez-Bahena, M.H., Cuesta, M.J., Velázquez, E., Peix, A., 2013.
Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int. J. Syst.
Evol. Microbiol. 63, 4413–4420.

Validation list no. 168., 2016. List of new names and new combinations previously
effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 66: 1603–1606.

31
ACCEPTED MANUSCRIPT

Vancanneyt, U., Torck, D., Dewettinck, M., Vaerewijck, M.J., Kersters, K., 1996.
Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst. Appl.
Microbiol. 19, 556–568.

van der Voort, M., Meijer, H.J., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R.,
Dorrestein, P.C., Gross, H., Raaijmakers, J.M., 2015. Genome mining and metabolic
profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial
compounds. Front. Microbiol. 6, 693.

PT
Vasconcellos, R.L.F., Santos, S.N., Zucchi, T.D., Silva, F.S.P., Souza, D.T., Melo,

RI
I.S., 2017. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated
from mangrove sediments. Arch. Microbiol. doi: 10.1007/s00203-017-1410-1.

SC
Vinatzer, B.A., Weisberg, A.J., Monteil, C.L., Elmarakeby, H.A., Sheppard, S.K.,
Heath, L.S., 2017. A proposal for a genome similarity-based taxonomy for plant-
NU
pathogenic bacteria that is sufficiently precise to reflect phylogeny, host range, and
outbreak affiliation applied to Pseudomonas syringae sensu lato as a proof of concept.
MA

Phytopathol. 107:18–28.

Vithanage, N.R., Yeager, T.R., Jadhav, S.R., Palombo, E.A., Datta, N., 2014.
D

Comparison of identification systems for psychrotrophic bacteria isolated from raw


E

bovine milk. Int. J. Food Microbiol. 189, 26–38.


PT

von Neubeck, M., Huptas, C., Glück, C., Krewinkel, M., Stoeckel, M., Stressler, T.,
Fischer, L., Hinrichs, J., Scherer, S., Wenning, M., 2016. Pseudomonas helleri sp.
CE

nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk.
Int. J. Syst. Evol. Microbiol. 66, 1163–1173.
AC

von Neubeck, M., Huptas, C., Glück, C., Krewinkel M, Stoeckel, M., Stressler, T.,
Fischer, L., Hinrichs, J., Scherer, S., Wenning, M., 2017. Pseudomonas lactis sp. nov.
and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int. J. Syst.
Evol. Microbiol. doi: 10.1099/ijsem.0.001836.

Walsh, A.M., Crispie, F., Claesson, M.J., Cotter, P.D., 2017. Translating omics to
food microbiology. Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-
030216–025729.

32
ACCEPTED MANUSCRIPT

Wang, Y.N., He, W.H., He, H., Du, X., Jia, B., Zeng, Z.P., An, M.L., Chen, G.C.,
2012. Pseudomonas nitritireducens sp. nov., a nitrite reduction bacterium isolated
from wheat soil. Arch. Microbiol. 194, 809–813.

Wang, M.Q., Sun, L., 2016. Pseudomonas oceani sp. nov., isolated from deep
seawater. Int. J. Syst. Evol. Microbiol. 66:4250–4255.

Wang, L.T., Tai, C.J., Wu, Y.C., Chen, Y.B., Lee, F.L., Wang, S.L., 2010.

PT
Pseudomonas taiwanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol.
60, 2094-2098.

RI
Webb, C., Speers, C., Ruhl, G., Creswell, T., 2016. First report of bacterial leaf spot

SC
caused by Pseudomonas cichorii on sweet basil (Ocimum basilicum) in Indiana. Plant
Dis. 100, 1232. NU
Whitman, W.B., Woyke, T., Klenk, H.P., Zhou, Y., Lilburn, T.G., Beck, B.J., De Vos,
P., Vandamme, P., Eisen, J.A., Garrity, G., Hugenholtz, P., Kyrpides, N.C., 2015.
MA

Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the
genomes of soil and plant-associated and newly described type strains. Stand
Genomic Sci. 10, 26.
D

Winsor, G.L., Brinkman, F.S., 2014. Mining the Pseudomonas genome. Methods
E

Mol. Biol. 1149, 417–432.


PT

Winsor, G.L., Griffiths, E.J., Lo, R., Dhillon, B.K., Shay, J.A., Brinkman, F.S., 2016.
CE

Enhanced annotations and features for comparing thousands of Pseudomonas


genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653.
AC

Winsor, G.L., Lam, D.K., Fleming, L., Lo, R., Whiteside, M.D., Yu, N.Y., Hancock,
R.E., Brinkman, F.S., 2010. Pseudomonas Genome Database: improved comparative
analysis and population genomics capability for Pseudomonas genomes. Nucleic
Acids Res. 39, D596–D600.

Winsor, G.L., van Rossum, T., Lo, R., Khaira, B., Whiteside, M.D., Hancock, R.E.,
Brinkman, F.S., 2009. Pseudomonas Genome Database: facilitating user-friendly,
comprehensive comparisons of microbial genomes. Nucleic Acids Res. 37, D483–
D488.

33
ACCEPTED MANUSCRIPT

Woese, C.R., Stackebrandt, E., Weisburg, W.G., Paster, B.J., Madigan, M.T., Fowler,
V.J., Hahn, C.M., Blanz, P., Gupta, R., Nealson, K.H., Fox, G.E., 1984. The
phylogeny of purple bacteria: The alpha subdivision. System. Appl. Microbiol. 5,
315–326.

Wong, B.T., Lee, D.J., 2014. Pseudomonas yangmingensis sp. nov., an alkaliphilic
denitrifying species isolated from a hot spring. J. Biosci. Bioeng. 117: 71–74.

PT
Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N.N., Kunin,
V., Goodwin, L., Wu, M., Tindall, B.J., Hooper, S.D., Pati, A., Lykidis, A., Spring,

RI
S., Anderson, I.J., D'haeseleer, P., Zemla, A., Singer, M., Lapidus, A., Nolan, M.,
Copeland, A., Han, C., Chen, F., Cheng, J.F., Lucas, S., Kerfeld, C., Lang, E.,

SC
Gronow, S., Chain, P., Bruce, D., Rubin, E.M., Kyrpides, N.C., Klenk, H.P., Eisen,
J.A., 2009. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.
NU
Nature 462, 1056–1060.

Wu, M., Wen, J., Chang, M., Yang, G., Zhou, S., 2014. Pseudomonas sihuiensis sp.
MA

nov., isolated from a forest soil in South China. Antonie van Leeuwenhoek 105, 781–
790.
D

Wu, Q., Ye, Y., Li, F., Zhang, J., Guo, W., 2016. Prevalence and genetic
E

characterization of Pseudomonas aeruginosa in drinking water in Guangdong


PT

Province of China. LWT Food Sci. Technol. 69, 24–31.

Xiao, Y.P., Hui, W., Wang, Q., Roh, S.W., Shi, X.Q., Shi, J.H., Quan, Z.X., 2009.
CE

Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an
anaerobic ammonium-oxidizing bioreactor. Int. J. Syst. Evol. Microbiol. 59, 2594-
AC

2598.

Xie, F., Ma, H., Quan, S., Liu, D., Chen, G., Chao, Y., Qian, S., 2014. Pseudomonas
kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a
phosphate mine. Int. J. Syst. Evol. Microbiol. 64, 559–564.

Xin, Y.H., Zhang, D.C,, Liu, H.C., Zhou, H.L., Zhou, Y.G. (2009). Pseudomonas
tuomuerensis sp. nov., isolated from a bird's nest. J. Syst. Evol. Microbiol. 59, 139–
143.

34
ACCEPTED MANUSCRIPT

Yang, G., Han, L., Wen, J., Zhou, S., 2013. Pseudomonas guangdongensis sp. nov.,
isolated from an electroactive biofilm, and emended description of the genus
Pseudomonas Migula 1894. Int. J. Syst. Evol. Microbiol. 63, 4599–45605.

Yonezuka, K., Shimodaira, J., Tabata, M., Ohji, S., Hosoyama, A., Kasai, D.,
Yamazoe, A., Fujita, N., Ezaki, T., Fukuda, M., 2017. Phylogenetic analysis reveals
the taxonomically diverse distribution of the Pseudomonas putida group. J. Gen.
Appl. Microbiol. 63, 1–10.

PT
Yu, Z., Chang, M., Wu, M., Yang, G., Zhou, S., Zhuang, L., 2013. Pseudomonas

RI
oryzae sp. nov. isolated from a paddy soil in South China. Arch. Microbiol. 195, 815–
822.

SC
Zhang, D.C., Liu, H.C., Zhou, Y.G., Schinner, F., Margesin, R., 2011. Pseudomonas
bauzanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 2333-2337.
NU
Zhang, L., Pan, Y., Wang, K., Zhang, X., Zhang, S., Fu, X., Zhang, C., Jiang, J.,
MA

2015a. Pseudomonas songnenensis sp. nov., isolated from saline and alkaline soils in
Songnen Plain, China. Antonie van Leeuwenhoek 107, 711–721.

Zhang, L., Pan, Y., Wang, K., Zhang, X., Zhang, C., Zhang, S., Fu, X., Jiang, J.,
D

2015b. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils.
E

Int. J. Syst. Evol. Microbiol. 65, 1022–1030.


PT

Zhong, Z.P., Liu, Y., Hou, T.T., Liu, H.C., Zhou, Y.G., Wang, F., Liu, Z.P., 2015.
CE

Pseudomonas salina sp. nov., isolated from a salt lake. Int. J. Syst. Evol. Microbiol.
65, 2846–2851.
AC

Ziemert, N., Alanjary, M., Weber, T., 2016. The evolution of genome mining in
microbes – a review. Nat. Prod. Rep. 33, 988–1005.

35
ACCEPTED MANUSCRIPT

Figure legends

Figure 1. Phylogenetic tree showing the phylogenetic positions of the recently


described species from genus Pseudomonas based on the analysis of the complete
sequences of the 16S rRNA gene. Distance was calculated by the Kimura‟s two-
parameter model. Phylogenetic tree was generated by neighbour-joining. The
significance of each branch is indicated by a bootstrap value (in percentage)
calculated for 1000 subsets (only values higher than 50% are indicated). Bar, 1

PT
substitution per 100 nucleotide positions.

RI
Figure 2. MLSA phylogenetic tree showing the clustering of the recently described

SC
species from genus Pseudomonas in the previously defined phylogroups based on the
analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD genes. Distance was
NU
calculated by Jukes-Cantor model. Phylogenetic tree was generated by neighbour-
joining. The significance of each branch is indicated by a bootstrap value (in
MA

percentage) calculated for 1000 subsets (only values higher than 50% are indicated).
Bar, 5 substitution per 100 nucleotide positions. In the figure the groups and
phylogenetic lineages proposed by Mulet et al. (2010) and García-Valdés and Lalucat
D

(2016) are indicated.


E
PT
CE
AC

36
ACCEPTED MANUSCRIPT

Table 1. New species of genus Pseudomonas described since year 2009

Species Isolation source of type strain Geographic location Reference


Pseudomonas tuomuerensis* bird‟s nest China Xin et al. (2009)
Pseudomonas sabulinigri
Pseudomonas xinjiangensis
black beach sand
desert sand
Jeju Island, Korea
China

P T Kim et al. (2009)


Liu et al. (2009)
Pseudomonas cuatrocienegasensis
Pseudomonas caeni
Pseudomonas extremaustralis
evaporating lagoon
anaerobic ammonium-oxidizing bioreactor
temporary pond
Mexico
China

R
Antarctica
I Escalante et al. (2009)
Xiao et al. (2009)
López et al. (2009)
Pseudomonas pelagia
Pseudomonas benzenivorans
Pseudomonas saponiphila
the Antarctic green alga Pyramimonas gelidicola
contaminated groundwater from an industrial plant site
no available data
C
Antarctica

S
USA
USA
Hwang et al. (2009)
Lang et al. (2010)
Lang et al. (2010)
Pseudomonas arsenicoxydans
Pseudomonas taiwanensis
sediment samples
soil
N U Chile
Taiwan
Campos et al. (2010)
Wang et al. (2010)
Pseudomonas taeanensis
Pseudomonas batumici
Pseudomonas seleniipraecipitatus
Pseudomonas protegens
crude oil-contaminated seashore
soil coast
soil
M A
soil suppressing black root rot of tobacco (Nicotiana glutinosa)
Korea
Caucasus, Black Sea
USA
Switzerland
Lee et al. (2010)
Kiprianova et al. (2011)
Hunter et al. (2011)
Ramette et al. (2011)
Pseudomonas toyotomiensis
Pseudomonas bauzanensis soil
E D
soil immersed in hot-spring water containing hydrocarbons Japan
Italy
Hirota et al. (2011)
Zhang et al. (2011)
Pseudomonas deceptionensis
Pseudomonas composti
Pseudomonas litoralis
P T
marine sediment sample collected
compost samples from vegetable and animal waste
Mediterranean seawater
Deception Island, Antarctica
Spain
Spain
Carrión et al. (2011)
Gibello et al. (2011)
Pascual et al. (2012)
Pseudomonas baetica
Pseudomonas entomophila
Pseudomonas kuykendallii C E
wedge sole, Dicologlossa cuneata (Moreau)
female specimen of Drosophila melanogaster
hexazinone degrading bioreactor
Spain
Guadeloupe Island, Mexico
USA
López et al. (2012)
Mulet et al. (2012a)
Hunter and Manter (2012)
Pseudomonas nitritireducens
Pseudomonas zeshuii
Pseudomonas linyingensis A C
wheat soil subjected to long-term herbicides application
herbicide-contaminated soil
wheat soil subjected to long-term herbicides application
China
China
China
Wang et al. (2012)
Feng et al. (2012)
He et al. (2012)
Pseudomonas punonensis straw grass Peru Ramos et al. (2013)
Pseudomonas asturiensis soybean and weeds Spain González et al. (2013)
Pseudomonas sagittaria oil-contaminated soil Taiwan Lin et al. (2013a)
Pseudomonas formosensis food-waste compost Taiwan Lin et al. (2013b)
Pseudomonas guariconensis rhizospheric soil of Vigna unguiculata (L.) Walp. Venezuela Toro et al. (2013)

37
ACCEPTED MANUSCRIPT

Pseudomonas guguanensis hot spring sample Taiwan Liu et al. (2013)


Pseudomonas guangdongensis electroactive biofilm China Yang et al. (2013)
Pseudomonas prosekii soil James Ross Island, Antarctica Kosina et al. (2013)
Pseudomonas oryzae paddy soil China Yu et al. (2013)
Pseudomonas yangmingensis hot spring Taiwan Wong and Lee (2014)
Pseudomonas chengduensis landfill leachate in a solid-waste disposal site China

P T Tao et al. (2014)


Pseudomonas kunmingensis
Pseudomonas aestusnigri
Pseudomonas sihuiensis
phosphate mine
crude oil-contaminated intertidal sand samples
forest soil
China
Spain
China
R I Xie et al. (2014)
Sánchez et al. (2014)
Wu et al. (2014)
Pseudomonas helmanticensis
Pseudomonas hussainii
Pseudomonas hunanensis
forest soil
droppings of a seashore bird
soil subjected to long-term manganese pollution
S C
Spain
Taiwan
China
Ramírez-Bahena et al. (2014)
Hameed et al. (2014)
Gao et al. (2014)
Pseudomonas soli
Pseudomonas salegens
Pseudomonas asuensis
soil sample from Sierra Nevada Park
aquatic plants of the Gomishan wetland
biological soil crusts
NU Spain
Iran
USA
Pascual et al. (2014)
Amoozegar et al. (2014)
Reddy et al. (2015)
Pseudomonas donghuensis
Pseudomonas yamanorum
Pseudomonas granadensis
water of East Lake
soil samples
soil from Almijara and Alhama Natural Park M A China
Isla de los Estados, Argentina
Spain
Gao et al. (2015)
Arnau et al. (2015)
Pascual et al. (2015)
Pseudomonas matsuisoli
Pseudomonas songnenensis
Pseudomonas zhaodongensis
soil sample
saline and alkaline soils
saline and alkaline soils
E D Matsu Island, Taiwan
China
China
Lin et al. (2015)
Zhang et al. (2015a)
Zhang et al. (2015b)
Pseudomonas glareae
Pseudomonas endophytica
P T
sediment sample collected from the sea
stem tissue of Solanum tuberosum L.
Japan
Spain
Romanenko et al. (2015)
Ramírez-Bahena et al. (2015)
Pseudomonas salina
Pseudomonas coleopterorum
Pseudomonas alkylphenolica soil
C E
salt lake Xiaochaidan
the bark beetle Hylesinus fraxini
China
Czech Republic
South Korea
Zhong et al. (2015)
Menéndez et al. (2015)
Mulet et al. (2015)
Pseudomonas flexibilis
Pseudomonas populi
Pseudomonas helleri A C
pond water-mud slurry
stems of Populus euphratica trees
raw cow's milk
USA
China
Germany
Hespell, 1977
Anwar et al. (2016)
von Neubeck et al. (2016)
Pseudomonas weihenstephanensis raw cow's milk Germany von Neubeck et al. (2016)
„Pseudomonas gregormendelii‟ mineral substrate James Ross Island, Antarctica Kosina et al. (2016)
Pseudomonas cerasi diseased tissue of cherry Poland Kałużna et al. (2016)
Pseudomonas oceani deep seawater Northwestern Pacific Ocean Wang and Sun (2016)
Pseudomonas turukhanskensis oil-contaminated soils East Siberia, Russia Korshunova et al. (2016)

38
ACCEPTED MANUSCRIPT

Pseudomonas kribbensis garden soils Korea Chang et al. (2016)


Pseudomonas canadensis a field plot under long-term mineral fertilization Canada Tambong et al. (2016)
‘Pseudomonas saudiphocaensis’ currency notes collected during the Hajj pilgrimage Saudi Arabia Azhar et al. (2016)
'Pseudomonas saudimassiliensis' air samples in an urban environment Saudi Arabia Azhar et al. (2017)
Pseudomonas lactis bovine raw milk Germany von Neubeck et al. (2017)
Pseudomonas paralactis bovine raw milk Germany

P T von Neubeck et al. (2017)


„Pseudomonas sesami‟
Pseudomonas versuta
Pseudomonas caspiana
rhizosphere of Sesamum indicum L.
soil
leaves and stems of citrus
Nigeria
I
Lagoon Island, Antarctica

R
Northern Iran
Madhaiyan et al. (2017)
See-Too et al. (2017)
Busquets et al. (2017)
‘Pseudomonas massiliensis‟
Pseudomonas aestus
Pseudomonas reidholzensis
stools
mangrove sediments
forest soil
S C Brazil
Brazil
Switzerland
Bardet et al. (2017)
Vasconcellos et al. (2017)
Frasson et al. (2017)
Pseudomonas wadenswilerensis
Pseudomonas tarimensis
forest soil
stems of Populus euphratica
N U Switzerland
China
Frasson et al. (2017)
Anwar et al. (2017)
This species has been proposed to be a later heterotypic synonym of Pseudomonas fexibilis (Shin et al., 2015) which was validated in IJSEM (Validation list 168).

M A
E D
P T
C E
A C

39
ACCEPTED MANUSCRIPT

Table 2. Type strains of Pseudomonas species from which the complete genome is available in
different databases

Type strains Accession numbers


P. abietaniphila ATCC 700689, LMG 20220 GCF_900100795.1, Gp0127165
P. aeruginosa DSM 50071 GCF_001045685.1, Gp0120920
P. aeruginosa NCTC 10332 Gp0132017
P. agarici NCPPB 2289 GCF_000280785.1, Gp0005914
P. alcaligenes NBRC 14159 GCF_000467105.1, Gp0024155
P. alcaliphila JCM 10630, NBRC 102411 GCF_900101755.1, Gp0023992
P. alkylphenolica KL28 GCF_000746525.1
P. amygdali CFBP 3205 GCF_000935645.1

PT
P. antarctica DSM 15318 Gp0008489
P. argentinensis LMG 22563 Gp0127182
P. asplenii LMG 2137 Gp0127166

RI
P. avellanae IC 631 GCF_000302915.1, Gp0020557
P. azotifigens DSM 17556, DSM 17556 GCF_000425625.1, Gp0022639

SC
P. azotoformans LMG 21611, NBRC 12693 GCF_001870415.1, Gp0024156
P. baetica LMG 25716 Gp0112912
P. balearica DSM 6083 GCF_000818015.1, Gp0118173
NU
P. batumici UCM B-321 GCF_000820515.1
P. bauzanensis DSM 22558, LMG 26048 GCF_900111225.1, Gp0127174
P. benzenivorans DSM 8628 Gp0127187
P. borbori LMG 23199 Gp0127162
MA

P. caeni DSM 24390 GCF_000421765.1, Gp0013191


P. canadensis 2-92 GCF_000503215.1
P. cannabina ICMP 2823, CFBP 2341 Gp0146366, Gp0127163
P. caspiana FBF102 GCF_000802425.1
D

P. cerasi 58 GCF_900074915.1
P. chloritidismutans AW-1 Gp0047675
E

P. chlororaphis subsp. aureofaciens LMG 1245, NBRC 3521 GCF_001269575.1, Gp0023849


PT

P. chlororaphis subsp. chlororaphis NBRC 3904 Gp0023850


P. chlororaphis subsp. piscium DSM 21509 GCF_001269555.1
P. cichorii ATCC 10857, NCPPB 943 GCF_900104015.1, Gp0127167
CE

P. citronellolis NBRC 103043 Gp0024157


P. composti CCUG 59231, CECT 7516 GCF_900115475.1, Gp0127176
P. congelans DSM 14939, LMG 21466 GCF_900103225.1, Gp0127158
P. coronafaciens ICMP 8921 GCF_001401235.1
AC

P. cremoricolorata DSM 17059, NBRC 16634, DSM 17059 GCF_000425745.1


P. cuatrocienegasensis LMG 24676 Gp0127173
P. deceptionensis DSM 26521, LMG 25555 GCA_001042895.1, Gp0120258
P. delhiensis CCM 7361, LMG 24737 GCA_900099945.1, Gp0127157
P. donghuensis HYS GCF_000259195.1
P. duriflava CGMCC 1.6858 Gp0093941
P. endophytica BSTT44 GCF_001411475.1
P. entomophila L48 GCF_000026105.1, Gp0000348
P. extremaustralis DSM 17835 GCF_900102035.1, Gp0120259
P. flavescens NBRC 103044 Gp0014249
P. flexibilis CGMCC 1.1365, ATCC 29606, JCM 14085 GCF_900101515.1, Gp0127303, Gp0118199
P. fluorescens DSM 50090, NBRC 14160 GCF_001269845.1, Gp0018925
P. fragi NRRL B-727, NBRC 3458 GCF_900105835.1, Gp0023846

40
ACCEPTED MANUSCRIPT

P. fulva NBRC 16637, DSM 17717, NBRC 16637 GCF_000621265.1, Gp0039998, Gp0023554
P. fuscovaginae ICMP 5940 GCF_000467065.1, Gp0049954
P. graminis DSM 11363, LMG 21661 GCA_900111735.1, Gp0127164
P. guineae LMG 24016 Gp0127186
P. helleri DSM 29165 GCA_001043025.1
P. hibiscicola ATCC 19867 GCF_000382065.1
P. hussainii JCM 19513 GCF_900109735.1
P. indica NBRC 103045 Gp0024159
P. japonica NBRC 103040, DSM 22348, NBRC 103040 GCF_000730585.1, Gp0148719
P. jinjuensis NBRC 103047 Gp0024161
P. kilonensis DSM 13647 GCF_001269885.1, Gp0145008

PT
P. knackmussii B13 GCF_000689415.1
P. kuykendallii LMG 26364 Gp0127179
P. litoralis CECT 7670 Gp0127175

RI
P. lundensis DSM 6252 GCA_001042985.1
P. lutea DSM 17257, LMG 21974 GCF_000759445.1, Gp0131761

SC
P. luteola NBRC 103146 Gp0024000
P. mandelii NBRC 103147 Gp0023851
P. marincola LMG 24752 Gp0127170
P. massiliensis CB-1 GCF_000826105.1
NU
P. mediterranea DSM 16733, CFBP 5447 GCF_900106005.1, Gp0102154
P. mendocina NBRC 14162 GCF_000813265.1, Gp0024092
P. migulae NBRC 103157 Gp0024162
MA

P. mohnii DSM 18327 Gp0127185


P. monteilii NBRC 103158 GCF_000730605.1, Gp0023814
P. mosselii DSM 17497 GCF_000621225.1, Gp0039999
P. mucidolens NBRC 103159 Gp0024204
D

P. nitroreducens NBRC 12694 Gp0024205


P. oleovorans LMG 2229 Gp0127178
E

P. oleovorans subsp. oleovorans NBRC 13583 Gp0023843


P. orientalis DSM 17489 GCF_001439815.1
PT

P. oryzihabitans NBRC 102199 GCF_000730625.1, Gp0024206


P. otitidis DSM 17224, LMG 23769 GCF_900111835.1, Gp0127161
P. pachastrellae LMG 23570 Gp0127160
CE

P. panipatensis CCM 7469, LMG 24738 GCA_900099785.1, Gp0127172


P. parafulva NBRC 16636, DSM 17004 GCF_000730645.1, Gp0024207, Gp0021954
P. pelagia CL-AP6 GCF_000410875.1, Gp0041739
AC

P. peli LMG 23201 Gp0127168


P. pertucinogena DSM 18268 Gp0013192
P. pictorum JCM 9942 GCF_001310775.1
P. plecoglossicida NBRC 103162 GCF_000730665.1, Gp0024208
P. poae DSM 14936, DSM 14936 GCF_001439785.1, Gp0133356
P. pohangensis DSM 17875 Gp0127183
P. protegens CHA0 GCF_000397205.1
P. pseudoalcaligenes NBRC 14167 Gp0023768
P. psychrotolerans DSM 15758, LMG 21977 GCF_900102665.1, Gp0127177
P. punonensis CECT 8089, LMG 26839 GCF_900142655.1, Gp0127180
P. putida NBRC 14164 GCF_000412675.1
P. resinovorans DSM 21078 GCF_000423545.1, Gp0013193
P. rhizosphaerae DSM 16299 GCF_000761155.1

41
ACCEPTED MANUSCRIPT

P. sabulinigri CECT 7679 Gp0127171


P. salomonii LMG 22120 Gp0127155
P. saponiphila DSM 9751 Gp0127188
P. segetis DSM 18913 Gp0127159
P. seleniipraecipitatus LMG 25475 Gp0131762
P. simiae CCUG 50988, DSM 18861 GCF_900111895.1, Gp0127156
P. straminea NBRC 16665 Gp0024209
P. stutzeri CGMCC 1.1803, ATCC 14405 GCF_000219605.1, Gp0011553, Gp0016674, Gp0011322
P. synxantha DSM 18928, NBRC 3913 GCF_001439725.1, Gp0023772
P. syringae KCTC 12500 GCF_000507185.2
P. taeanensis MS-3 GCF_000498575.2, Gp0049072

PT
P. taetrolens DSM 21104 GCA_001042915.1
P. taiwanensis DSM 21245, DSM 21245 GCF_000425785.1, Gp0118198
P. thermotolerans DSM 14292 GCF_000364625.1, Gp0013194

RI
P. thivervalensis DSM 13194 GCF_001269655.1
P. tolaasii NCPPB 2192 Gp0112886
P. toyotomiensis JCM 15604 GCF_900115695.1, Gp0127184

SC
P. tremae CFBP 3225 GCF_000935675.1
P. trivialis DSM 14937 GCF_001439805.1, Gp0133357
P. tuomuerensis JCM 14085 GCF_000806415.1
NU
P. veronii DSM 11331 GCF_001439695.1
P. versuta L10.10 Gp0124606
P. viridiflava DSM 6694 GCF_001305955.1
MA

P. vranovensis DSM 16006 GCF_000425805.1, Gp0021956


P. weihenstephanensis DSM 29166 GCA_001043055.1
P. xanthomarina DSM 18231 GCF_900129835.1, Gp0040001
P. xiamenensis DSM 22326 Gp0013197
P. xinjiangensis CCTCC 207151 Gp0127169
D

P. zeshuii KACC 15471, DSM 27927 GCF_900141925.1, Gp0127181


E
PT
CE
AC

42
ACCEPTED MANUSCRIPT

Fig. 1

PT
RI
SC
NU
MA
DE
PT
CE
AC

43
ACCEPTED MANUSCRIPT

Fig. 2

PT
RI
SC
NU
MA
DE
PT
CE
AC

44
ACCEPTED MANUSCRIPT

Highlights:

- The Pseudomonas taxonomy continues progressing very active, with the


description of more than 70 novel species in the last years

- The analysis of complete genomes has proven very useful in the taxonomy
of genus Pseudomonas, leading also to a better knowledge of the biology of
their species

- The diverse habitats in which the recently described species of

PT
Pseudomonas have been found and their biological abilities confirmed their
enormous metabolic versatility.

RI
SC
NU
MA
E D
PT
CE
AC

45

You might also like