Nothing Special   »   [go: up one dir, main page]

The Olympiad Corner: No. 307 Nicolae Strungaru

Download as pdf or txt
Download as pdf or txt
You are on page 1of 6

THE OLYMPIAD CORNER / 359

THE OLYMPIAD CORNER


No. 307

Nicolae Strungaru
The solutions to the problems are due to the editor by 1 March 2014.
Each problem is given in English and French, the official languages of Canada. In
issues 1, 3, 5, 7, and 9, English will precede French, and in issues 2, 4, 6, 8, and 10,
French will precede English. In the solutions’ section, the problem will be stated in the
language of the primary featured solution.
The editor thanks Rolland Gaudet of Université de Saint-Boniface for translations
of the problems.

OC101.  positive integers so that 1 < k < n − 1. Prove that the


Let n, k be
binomial coefficient nk is divisible by at least two distinct primes.

OC102. Let N denote the set of all nonnegative integers. Find all functions
f : N → N so that both (1) and (2) are satisfied.
(1) 0 ≤ f (x) ≤ x2 for all x ∈ N.
(2) x − y divides f (x) − f (y) for all x, y ∈ N with x > y.

OC103. Let K and L be the points on the semicircle with diameter AB.
Denote the intersection of AK and BL as T and let N be the foot of the perpen-
dicular from T to AB. If U is the intersection of the perpendicular bisector of AB
and KL and V is a point on KL such that angles U AV and U BV are equal, then
prove that N V is perpendicular to KL.

OC104. Given a triangle ABC, let D be the midpoint of the side AC and let
M be the point on the segment BD so that BM : M D = 1 : 2. The rays AM
and CM intersect the sides BC and AB at E and F respectively. We know that
AM ⊥ CM . Prove that the quadrilateral AF ED is cyclic if and only if the median
from A in ∆ABC meets the line EF at a point situated on the circumcircle of
∆ABC.

OC105. Let n > 1 be an integer, and let k be the number of distinct prime
divisors of n. Prove that there exists an integer a, 1 < a < nk + 1, such that
n | a2 − a.
.................................................................

OC101. Soient n et k des entiers positifs tels que 1 < k < n − 1. Démontrer
n
que le coefficient binomial k est divisible par au moins deux nombres premiers
distincts.

Copyright
c Canadian Mathematical Society, 2013
360/ THE OLYMPIAD CORNER

OC102. Soit N l’ensemble de tous les entiers non négatifs. Déterminer toutes
les fonctions f : N → N telles que les deux conditions suivantes soient satisfaitent.
(1) 0 ≤ f (x) ≤ x2 pour tout x ∈ N.
(2) x − y divise f (x) − f (y) pour tout x, y ∈ N tels que x > y.

OC103. Soient K et L des points sur le demi cercle de diamètre AB. Dénoter
par T le point d’intersection de AK et BL ; soit N le pied de la perpendiculaire de
T vers AB. Soit U le point d’intersection de la bissectrice perpendiculaire de AB
avec KL ; soit V un point sur KL tel que les angles U AV et U BV soient égaux.
Démontrer que N V est perpendiculaire à KL.

OC104. Soit le triangle ABC. Soient aussi D le mipoint du côté AC et puis


M le point sur le segment BD tel que BM : M D = 1 : 2. Les rayons AM et
CM intersectent les côtés BC et AB aux points E et F respectivement. Nous
savons que AM ⊥ CM . Démontrer que le quadrilatère AF ED est cyclique si et
seulement si la médiane de A dans ∆ABC rencontre la ligne EF à un point situé
sur le cercle circonscrit de ∆ABC.

OC105. Soit n > 1 entier et soit k le nombre de diviseurs premiers distincts


de n. Démontrer qu’il existe un entier a, 1 < a < nk + 1, tel que n | a2 − a.

OLYMPIAD SOLUTIONS
OC30. Let P be an interior point of a regular n-gon A1 A2 · · · An . Each line
Ai P meets the n-gon at another point Bi . Prove that
X
n X
n
P Ai ≥ P Bi .
i=1 i=1

(Originally question 8 from the 2008 China Western Mathematical Olympiad.)

Solved by George Apostolopoulos, Messolonghi, Greece.


  £
Let m = n2 , then, with the convention An+k = Ak for all k = 1, 2, ..., n,
the diagonals Ak Ak+m are the longest diagonals in the polygon. Let d denote the
length of these diagonals. For each Ai there exists some j so that Bi is a point on
the edge Aj Aj+1 , possibly one of the vertices Aj , Aj+1 . Then

Ai Bi ≤ max{Ai Aj , Ai Aj+1 } ≤ d .

Thus,
P Ai + P Bi = Ai Bi ≤ d .

Crux Mathematicorum, Vol. 38(9), November 2012


THE OLYMPIAD CORNER / 361

As Ai Ai+m = d we also get by the triangle inequality that


P Ai + P Ai+m ≥ Ai Ai+m = d ≥ P Ai + P Bi .
Hence,
P Ai+m ≥ P Bi .
Adding these relations, we get the desired result.

OC41. Let P be a point in the interior of a triangle ABC. Show that


PA PB PC √
+ + ≥ 3.
BC AC AB
(Originally question 10 from the 2009 India IMO selection test.)

Similar solutions by Arkady Alt, San Jose, CA, USA ; Michel Bataille, Rouen,
France ; Marian Dincă, Bucharest, Romania ; and David E. Manes, SUNY at
Oneonta, Oneonta, NY, USA. We will give the solution of Dinca.
We start by proving the Hayashi inequality:
PA · PB PA · PC PB · PC
+ + ≥ 1.
CA · CB BA · BC AB · AC
To prove this inequality we proceed as follows. We view A, B, C, P as points in
the complex plane, and we denote by a, b, c, z their complex coordinates.
Let
P (z) = (z − a)(z − b)(a − b) + (z − b)(z − c)(b − c) + (z − c)(z − a)(c − a) .
Then P (z) is a polynomial of degree at most two, and it is easy to see that
P (a) = P (b) = P (c) = (a − b)(b − c)(c − a). Thus, P (z) must be the constant
polynomial (a − b)(b − c)(c − a). Hence
(z −a)(z −b)(a−b)+(z −b)(z −c)(b−c)+(z −c)(z −a)(c−a) = (a−b)(b−c)(c−a) .
Then
AB · AC · BC = |(a − b)(b − c)(c − a)|
= |(z − a)(z − b)(a − b) + (z − b)(z − c)(b − c)
+(z − c)(z − a)(c − a)|
≤ |(z − a)(z − b)(a − b)| + |(z − b)(z − c)(b − c)|
+ |(z − c)(z − a)(c − a)|
= P A · P B · AB + P B · P C · BC + P C · P A · CA .
Dividing the inequality by AB · AC · BC we get the Hayashi inequality.
PA
Now, using the well known (x + y + z)2 ≥ 3(xy + yz + zx) with BC = x,
PB PC
AC = y, AB = z we get
 ‹2  ‹
PA PB PC PA · PB PA · PC PB · PC
+ + ≥3 + + ≥ 3.
BC AC AB CA · CB BA · BC AB · AC

Copyright
c Canadian Mathematical Society, 2013
362/ THE OLYMPIAD CORNER

OC42. Find the smallest n for which n! has at least 2010 different divisors.
(Originally question 3 from the 2009-2010 Finish National Olympiad, Final round.)

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA ;
David E. Manes, SUNY at Oneonta, Oneonta, NY, USA ; Mihaı̈-Ioan Stoënescu,
Bischwiller, France ; and Titu Zvonaru, Cománeşti, Romania. We give the
solution of Manes.
The smallest n is 14.
Let τ (n) denote the number of divisors of n. As τ is a multiplicative function,
with τ (pα ) = α + 1 when p is prime and α ≥ 0 is an integer, we get

τ (13!) = τ (210 · 35 · 52 · 7 · 11 · 13)


= (10 + 1)(5 + 1)(2 + 1)(1 + 1)(1 + 1)(1 + 1) = 1584 ,
τ (14!) = τ (211 · 35 · 52 · 72 · 11 · 13)
= (11 + 1)(5 + 1)(2 + 1)(2 + 1)(1 + 1)(1 + 1) = 2592 .

As k! divides 13! for all k ≤ 13, we know that τ (k!) ≤ τ (13!) = 1584 for all k ≤ 13,
and this shows that n = 14 is the smallest number with the desired property.

OC43. Find all functions f : R → R verifying

f (x3 + y 3 ) = xf (x2 ) + yf (y 2 ) ; ∀x, y ∈ R .

(Originally question 3 from the 2009 Romania National Olympiad, 10th grade.)

Solved by Michel Bataille, Rouen, France ; Oliver Geupel, Brühl, NRW, Germany ;
and Titu Zvonaru, Cománeşti, Romania. We give the solution of Geupel.
The functions
f (x) = cx, c∈R
satisfy the given functional equation, and we are going to prove that there are no
other solutions.
Suppose that f is a solution. Setting y = 0, we see that f (x3 ) = xf (x2 ).
Hence, f (x3 + y 3 ) = xf (x2 ) + yf (y 2 ) = f (x3 ) + f (y 3 ), which implies the identity
f (x + y) = f (x) + f (y). Also, f (−x3 ) = −xf (x2 ) = −f (x3 ), from which we obtain
the identity f (−x) = −f (x). We conclude
€ Š € Š € Š € Š
0 = f (x + 1)3 − (x + 1)f (x + 1)2 + f (x − 1)3 − (x − 1)f (x − 1)2
€ Š € Š € € Š Š
= f x3 + 3f x2 + 3f (x) + f (1) − (x + 1) f x2 + 2f (x) + f (1)
€ Š € Š € € Š Š
+ f x3 − 3f x2 + 3f (x) − f (1) − (x − 1) f x2 − 2f (x) + f (1)
= 2(f (x) − f (1) · x),

that is, f (x) = f (1) · x, which completes the proof.

Crux Mathematicorum, Vol. 38(9), November 2012


THE OLYMPIAD CORNER / 363

OC44. In a scalene triangle ABC, we denote by α and β the interior angles


at A and B. The bisectors of these angles meet the opposite sides of the triangle
at points D and E, respectively. Prove that the acute angle between the lines D
and E does not exceed |α−β|
3 .
(Originally question 1 from the 2009 Serbia Mathematical Olympiad, first day.)

Solved by Oliver Geupel, Brühl, NRW, Germany.


Fixing the typo in the problem statement, we are going to prove that the
acute angle between the lines AB and DE does not exceed |α−β|
3 . Moreover, we
show that the inequality is strict.
Let a, b, and c denote the lengths of the sides opposite to A, B, and C,
respectively. Since the points D and E divide BC and CA in the ratios c : b and
a : c, respectively, we have
ca ba ab cb
BD = , CD = , CE = , AE = .
b+c b+c c+a c+a
Let the lines AB and DE meet at point F . There is no loss of generality in
assuming that a > b. Then, A lies between B and F . By Menelaus’ theorem, it
holds
AF AF CD AE b
= = · = ,
AF + c BF BD CE a
bc ac
hence AF = a−b and BF = a−b . [Ed. : CF is the external bisector of angle C.]
Let δ denote the acute angle AF E. By the law of sines, in the triangles
AEF and BDF it holds
sin(α − δ) AF a+c sin(β + δ) BF b+c
= = , = = .
sin δ AE a−b sin δ BD a−b

Thus,
α+β α − β − 2δ
sin δ = sin(α − δ) − sin(β + δ) = 2 cos sin .
2 2
α+β α − β − 2δ
Since sin δ and cos are positive, we see that sin is also positive,
2 2
α − β − 2δ α+β
that is, 0 < < . We obtain
2 2
α+β α − β − 2δ α − β − 2δ α − β − 2δ
2 cos sin < 2 cos sin = sin(α − β − 2δ).
2 2 2 2
Thus,
sin δ < sin(α − β − 2δ).
By the monotonicity of the sine function in the interval [0, π/2] we deduce that
δ < α − β − 2δ. The conclusion follows.

Copyright
c Canadian Mathematical Society, 2013
364/ THE OLYMPIAD CORNER

OC45. Let a1 , a2 , a3 , ..., a15 be prime numbers forming an arithmetic progres-


sion with common difference d > 0. If a1 > 15, prove that d > 30, 000.
(Originally question 3 from the 2009 Singapore Mathematical Olympiad, open
section, round 2.)

Solved by Michel Bataille, Rouen, France ; Chip Curtis, Missouri Southern State
University, Joplin, MO, USA ; Alex Song, Phillips Exeter Academy, NH,
USA and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON ;
Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA ; and Titu
Zvonaru, Cománeşti, Romania. We give the solution of Song and Wang.
Let pn denote the nth prime. We prove the following general result:

If a1 , .., am are prime numbers in arithmetic progression, with


Y
n
common difference d and if a1 > m > pn then d is divisible by pk .
k=1

Indeed, assume by contradiction that pk - d for some 1 ≤ k ≤ n. Then d is


invertible modulo pk , which implies that the equation

xd ≡ −a1 (mod pk )

has a solution 0 ≤ r ≤ pk < m. But then

ar ≡ a1 + rd ≡ 0 (mod pk ) ,

which implies pk | ar . As ar > a1 > pk , we get that ar is not prime, a contradic-


tion.
In particular, in our problem a1 > 15 > 13 = p6 , and hence d is divisible by
2 · 3 · 5 · 7 · 11 · 13 = 30030, so d > 30000.

Crux Mathematicorum, Vol. 38(9), November 2012

You might also like