The Olympiad Corner: No. 307 Nicolae Strungaru
The Olympiad Corner: No. 307 Nicolae Strungaru
The Olympiad Corner: No. 307 Nicolae Strungaru
Nicolae Strungaru
The solutions to the problems are due to the editor by 1 March 2014.
Each problem is given in English and French, the official languages of Canada. In
issues 1, 3, 5, 7, and 9, English will precede French, and in issues 2, 4, 6, 8, and 10,
French will precede English. In the solutions’ section, the problem will be stated in the
language of the primary featured solution.
The editor thanks Rolland Gaudet of Université de Saint-Boniface for translations
of the problems.
OC102. Let N denote the set of all nonnegative integers. Find all functions
f : N → N so that both (1) and (2) are satisfied.
(1) 0 ≤ f (x) ≤ x2 for all x ∈ N.
(2) x − y divides f (x) − f (y) for all x, y ∈ N with x > y.
OC103. Let K and L be the points on the semicircle with diameter AB.
Denote the intersection of AK and BL as T and let N be the foot of the perpen-
dicular from T to AB. If U is the intersection of the perpendicular bisector of AB
and KL and V is a point on KL such that angles U AV and U BV are equal, then
prove that N V is perpendicular to KL.
OC104. Given a triangle ABC, let D be the midpoint of the side AC and let
M be the point on the segment BD so that BM : M D = 1 : 2. The rays AM
and CM intersect the sides BC and AB at E and F respectively. We know that
AM ⊥ CM . Prove that the quadrilateral AF ED is cyclic if and only if the median
from A in ∆ABC meets the line EF at a point situated on the circumcircle of
∆ABC.
OC105. Let n > 1 be an integer, and let k be the number of distinct prime
divisors of n. Prove that there exists an integer a, 1 < a < nk + 1, such that
n | a2 − a.
.................................................................
OC101. Soient n et k des entiers positifs tels que 1 < k < n − 1. Démontrer
n
que le coefficient binomial k est divisible par au moins deux nombres premiers
distincts.
Copyright
c Canadian Mathematical Society, 2013
360/ THE OLYMPIAD CORNER
OC102. Soit N l’ensemble de tous les entiers non négatifs. Déterminer toutes
les fonctions f : N → N telles que les deux conditions suivantes soient satisfaitent.
(1) 0 ≤ f (x) ≤ x2 pour tout x ∈ N.
(2) x − y divise f (x) − f (y) pour tout x, y ∈ N tels que x > y.
OC103. Soient K et L des points sur le demi cercle de diamètre AB. Dénoter
par T le point d’intersection de AK et BL ; soit N le pied de la perpendiculaire de
T vers AB. Soit U le point d’intersection de la bissectrice perpendiculaire de AB
avec KL ; soit V un point sur KL tel que les angles U AV et U BV soient égaux.
Démontrer que N V est perpendiculaire à KL.
OLYMPIAD SOLUTIONS
OC30. Let P be an interior point of a regular n-gon A1 A2 · · · An . Each line
Ai P meets the n-gon at another point Bi . Prove that
X
n X
n
P Ai ≥ P Bi .
i=1 i=1
Ai Bi ≤ max{Ai Aj , Ai Aj+1 } ≤ d .
Thus,
P Ai + P Bi = Ai Bi ≤ d .
Similar solutions by Arkady Alt, San Jose, CA, USA ; Michel Bataille, Rouen,
France ; Marian Dincă, Bucharest, Romania ; and David E. Manes, SUNY at
Oneonta, Oneonta, NY, USA. We will give the solution of Dinca.
We start by proving the Hayashi inequality:
PA · PB PA · PC PB · PC
+ + ≥ 1.
CA · CB BA · BC AB · AC
To prove this inequality we proceed as follows. We view A, B, C, P as points in
the complex plane, and we denote by a, b, c, z their complex coordinates.
Let
P (z) = (z − a)(z − b)(a − b) + (z − b)(z − c)(b − c) + (z − c)(z − a)(c − a) .
Then P (z) is a polynomial of degree at most two, and it is easy to see that
P (a) = P (b) = P (c) = (a − b)(b − c)(c − a). Thus, P (z) must be the constant
polynomial (a − b)(b − c)(c − a). Hence
(z −a)(z −b)(a−b)+(z −b)(z −c)(b−c)+(z −c)(z −a)(c−a) = (a−b)(b−c)(c−a) .
Then
AB · AC · BC = |(a − b)(b − c)(c − a)|
= |(z − a)(z − b)(a − b) + (z − b)(z − c)(b − c)
+(z − c)(z − a)(c − a)|
≤ |(z − a)(z − b)(a − b)| + |(z − b)(z − c)(b − c)|
+ |(z − c)(z − a)(c − a)|
= P A · P B · AB + P B · P C · BC + P C · P A · CA .
Dividing the inequality by AB · AC · BC we get the Hayashi inequality.
PA
Now, using the well known (x + y + z)2 ≥ 3(xy + yz + zx) with BC = x,
PB PC
AC = y, AB = z we get
2
PA PB PC PA · PB PA · PC PB · PC
+ + ≥3 + + ≥ 3.
BC AC AB CA · CB BA · BC AB · AC
Copyright
c Canadian Mathematical Society, 2013
362/ THE OLYMPIAD CORNER
OC42. Find the smallest n for which n! has at least 2010 different divisors.
(Originally question 3 from the 2009-2010 Finish National Olympiad, Final round.)
Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA ;
David E. Manes, SUNY at Oneonta, Oneonta, NY, USA ; Mihaı̈-Ioan Stoënescu,
Bischwiller, France ; and Titu Zvonaru, Cománeşti, Romania. We give the
solution of Manes.
The smallest n is 14.
Let τ (n) denote the number of divisors of n. As τ is a multiplicative function,
with τ (pα ) = α + 1 when p is prime and α ≥ 0 is an integer, we get
As k! divides 13! for all k ≤ 13, we know that τ (k!) ≤ τ (13!) = 1584 for all k ≤ 13,
and this shows that n = 14 is the smallest number with the desired property.
(Originally question 3 from the 2009 Romania National Olympiad, 10th grade.)
Solved by Michel Bataille, Rouen, France ; Oliver Geupel, Brühl, NRW, Germany ;
and Titu Zvonaru, Cománeşti, Romania. We give the solution of Geupel.
The functions
f (x) = cx, c∈R
satisfy the given functional equation, and we are going to prove that there are no
other solutions.
Suppose that f is a solution. Setting y = 0, we see that f (x3 ) = xf (x2 ).
Hence, f (x3 + y 3 ) = xf (x2 ) + yf (y 2 ) = f (x3 ) + f (y 3 ), which implies the identity
f (x + y) = f (x) + f (y). Also, f (−x3 ) = −xf (x2 ) = −f (x3 ), from which we obtain
the identity f (−x) = −f (x). We conclude
0 = f (x + 1)3 − (x + 1)f (x + 1)2 + f (x − 1)3 − (x − 1)f (x − 1)2
= f x3 + 3f x2 + 3f (x) + f (1) − (x + 1) f x2 + 2f (x) + f (1)
+ f x3 − 3f x2 + 3f (x) − f (1) − (x − 1) f x2 − 2f (x) + f (1)
= 2(f (x) − f (1) · x),
Thus,
α+β α − β − 2δ
sin δ = sin(α − δ) − sin(β + δ) = 2 cos sin .
2 2
α+β α − β − 2δ
Since sin δ and cos are positive, we see that sin is also positive,
2 2
α − β − 2δ α+β
that is, 0 < < . We obtain
2 2
α+β α − β − 2δ α − β − 2δ α − β − 2δ
2 cos sin < 2 cos sin = sin(α − β − 2δ).
2 2 2 2
Thus,
sin δ < sin(α − β − 2δ).
By the monotonicity of the sine function in the interval [0, π/2] we deduce that
δ < α − β − 2δ. The conclusion follows.
Copyright
c Canadian Mathematical Society, 2013
364/ THE OLYMPIAD CORNER
Solved by Michel Bataille, Rouen, France ; Chip Curtis, Missouri Southern State
University, Joplin, MO, USA ; Alex Song, Phillips Exeter Academy, NH,
USA and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON ;
Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA ; and Titu
Zvonaru, Cománeşti, Romania. We give the solution of Song and Wang.
Let pn denote the nth prime. We prove the following general result:
xd ≡ −a1 (mod pk )
ar ≡ a1 + rd ≡ 0 (mod pk ) ,