On Generalizations and Refinements of Triangle Inequalities: Tamotsu Izumida
On Generalizations and Refinements of Triangle Inequalities: Tamotsu Izumida
On Generalizations and Refinements of Triangle Inequalities: Tamotsu Izumida
of triangle inequalities
Tamotsu Izumida
Niigata University
March 2015
Contents
Preface 2
Acknowledgements 5
References 70
1
Preface
Let (X, k · k) be a normed space. The triangle inequality
is one of the most significant inequalities in mathematics. This inequality and the
relevant topics have been studied by many authors (cf. [2], [3], [4], [6], [9], [10], [11],
[12], [13], [19], [20], [21], [22], [24], [27], [29], [30], [31], [33], [36], [37], [38], [40], [42]
etc. ).
In this thesis, we study the triangle inequality in two directions. We first study
a generalized triangle inequality of the following type. For a Hilbert space H, we
recall the parallelogram law
Saitoh in [38] noted the inequality (1) may be more suitable than the usual triangle
inequality and used the inequality (1) to the setting of a natural sum Hilbert space
for two arbitrary Hilbert spaces. This inequality actually holds in any normed space.
The following inequality which is a generalization of (1)
where q ≥ 1 also holds in any normed space. Motivated by this, Belbacir et al.
[6] considered that replacing the triangle inequality in the definition of a norm by
(2). On the other hand, for a Hilbert space H, we recall the Euler-Lagrange type
identity
kxk2 kyk2 kax + byk2 kνbx − µayk2
+ − = (x, y ∈ H),
µ ν λ λµν
where a, b, λ, µ, ν ∈ R with λ = µa2 + νb2 . If λµν > 0, this implies the following
inequality
kax + byk2 kxk2 kyk2
≤ + (x, y ∈ H).
λ µ ν
2
This inequality can be considered a generalization of (1). In this direction, for a
normed space X, Takahasi et al. [40] considered the following type inequality
kax + bykp kxkp kykp
≤ + (x, y ∈ X), (3)
λ µ ν
where p ∈ R with p > 0, a, b ∈ C and λ, µ, ν ∈ R. They gave necessary and
sufficient conditions which the inequality (3) and its reverse inequality hold. In [9],
Dadipour et al. characterized all (µ1 , . . . , µn ) ∈ Rn which satisfy a general case of
this inequality:
kx1 kp kxn kp
kx1 + · · · + xn kp ≤ + ··· + (x1 , . . . , xn ∈ X) (4)
µ1 µn
and its reverse inequality. Our main aim in chapter 1 is to present a generalization
of (4) by using ψ-direct sums of Banach spaces (cf. [18]). Therefore, we give another
approach to characterizations of all (µ1 , . . . , µn ) ∈ Rn which satisfy (4) and its
reverse inequality (cf. [9, Theorems 2.4–2.7]).
Next we study the inequalities which are sharper than the usual triangle inequal-
ity for a Banach space X. We consider the usual triangle inequality for n-elements
Xn
X n
xj
≤ kxj k (x1 , · · · , xn ∈ X).
j=1 j=1
In [19], Kato, Saito and Tamura proved the sharp triangle inequality and reverse
inequality as follows: for all nonzero elements x1 , · · · , xn in a Banach space X,
!
n n
X
X x j
xj
+ n −
min kxj k
kxj k
1≤j≤n
j=1 j=1
n
X
≤ kxj k
j=1
!
n n
X
X xj
≤
xj
+ n−
max kxj k
j=1
kxj k
1≤j≤n
j=1
hold. In the case of two elements, above inequalities are following: for all nonzero
elements x, y ∈ X,
x y
kx + yk + 2 −
+
min{kxk, kyk}
kxk kyk
≤ kxk + kyk
x y
≤ kx + yk + 2 −
kxk kyk
max{kxk, kyk}
+
3
hold (cf. [14] and [20]). These sharp triangle inequalities are applied to the char-
acterizations of geometric properties of Banach spaces like the strict convexity, the
uniform convexity and so on (cf. [19] and [37]). After that, Mitani et al. [29] suc-
ceeded in the further extension of above inequalities as follows: for all nonzero
elements x1 , x2 , . . . , xn in a Banach space X with kx1 k ≥ kx2 k ≥ · · · ≥ kxn k, n ≥ 2,
n
n
k
!
X
X
X x
j
xj
+ k−
(kxk k − kxk+1 k)
kxj k
j=1 k=2 j=1
n
X
≤ kxj k
j=1
n n
n
X
X
X xj
≤
xj
− k −
(kxn−k k − kxn−(k−1) k)
j=1
k=2
kxj k
j=n−(k−1)
4
Acknowledgements
I would like to express the deepest gratitude to my supervisor Professor Kichi-Suke
Saito at Niigata University for his great guidance and useful advices. I have studied
under him during a master’s course from 1997 to 1999 and a doctoral course. He
provided much support and instructions. I also wish to thank all my colleagues in
Professor Saito’s laboratory.
Moreover I would like to express his thanks to Professor Tomoyoshi Ohwada at
Shizuoka University for his many instructive suggestions in Chapter 2 of this thesis.
5
1 On generalized triangle inequalities
1.1 Introduction
In this chapter, for a normed space (X, k · k), we consider the following generalized
triangle inequality which is involved with the Euler-Lagrange type identity: for any
fixed n ∈ N with n ≥ 2 and fixed p ∈ R with p > 0,
ka1 x1 + · · · + an xn kp kx1 kp kxn kp
≤ + ··· + (x1 , . . . , xn ∈ X) (5)
λ µ1 µn
where (a1 , . . . , an , λ, µ1 , . . . , µn ) ∈ Cn × R × Rn . In [40], Takahasi et al. gave a
necessary and sufficient condition in order that a special case of (5):
kax + bykp kxkp kykp
≤ + (x, y ∈ X)
λ µ ν
and its reverse inequality hold. For simplicity, we shall write, for example,
for
{(λ, µ, ν) ∈ R3 : λ > 0, µ > 0, ν > 0}.
Theorem 1.1.1 (cf. [40, Theorem 1.1 and 4.1]). Let X be a normed space. Let
p ∈ R, p ≥ 1, a, b ∈ C, λ, µ, ν ∈ R. Put
kax + bykp kxkp kykp
+
Dp = (a, b, λ, µ, ν) : ≤ + (x, y ∈ X) .
λ µ ν
If p > 1, then
6
(iv) Dp+ ∩ {λ < 0, µ < 0, ν < 0} = ∅.
7
1.2.1 Absolute normalized norms on Cn and their characterizations
A norm k · k on Cn is absolute if
and normalized if
An `p -norm on Cn :
( 1
(|z1 |p + · · · + |zn |p ) p (1 ≤ p < ∞)
k(z1 , . . . , zn )kp =
max{|z1 |, . . . , |zn |} (p = ∞)
is such an example. We first show some basic facts about these norms. Let ANn be
the set of all absolute normalized norms on Cn .
In particular,
k · k ∞ ≤ k · k ≤ k · k1 .
8
Then we have (B1 ). Similarly, we have (B2 ), . . . , (Bn ). Therefore, for any
(z1 , z2 , . . . , zn ) ∈ Cn , we have
Proposition 1.2.2 (cf. [7, Proposition IV.1.1]). Let k · k ∈ ANn . If |zj | ≤ |wj | for
any j = 1, . . . , n, then
k(z1 , z2 , . . . , zn )k
= k(tw1 , z2 , . . . , zn )k
1+t 1−t 1+t 1−t 1+t 1−t
=
w1 − w1 , z2 + z2 , . . . , zn + zn
2 2 2 2 2 2
1+t 1 + t 1 + t 1 − t 1 − t 1 − t
=
w1 , z2 , . . . , zn + − w1 , z2 , . . . , zn
2 2 2 2 2 2
1 + t 1−t
=
2 (w 1 , z 2 , . . . , z n ) + (−w1 , z2 , . . . , z n )
2
1+t 1−t
≤ k(w1 , z2 , . . . , zn )k + k(−w1 , z2 , . . . , zn )k
2 2
1+t 1−t
= k(w1 , z2 , . . . , zn )k + k(w1 , z2 , . . . , zn )k
2 2
= k(w1 , z2 , . . . , zn )k.
9
Similarly, we have
k(w1 , z2 , z3 , . . . , zn )k ≤ k(w1 , w2 , z3 , . . . , zn )k
k(w1 , w2 , z3 , . . . , zn )k ≤ k(w1 , w2 , w3 , z4 , . . . , zn )k
..
.
k(w1 , w2 , . . . , wn−1 , zn )k ≤ k(w1 , w2 , . . . , wn−1 , wn )k.
Then we have
Bonsal and Duncan [8] showed the following characterization of absolute nor-
malized norms on C2 . Let Ψ2 denote the set of all continuous convex functions ψ
on [0, 1] with ψ(0) = ψ(1) = 1 satisfying
Then k · kψ ∈ AN2 , and k · kψ satisfies (7). In fact, AN2 and Ψ2 are in one-to-one
correspondence under (7).
In [35], Saito et al. characterized absolute normalized norms on Cn by means of
the corresponding convex function as follows. For each n ∈ N with n ≥ 2, put
( n
)
X
∆n = (t1 , . . . , tn ) ∈ Rn : t1 , . . . , tn ≥ 0, tj = 1 ,
j=1
and let Ψn denote the set of all continuous convex functions ψ on ∆n satisfying the
following conditions:
10
t2 tn
ψ(t1 , . . . , tn ) ≥ (1 − t1 )ψ 0, ,..., (A1 )
1 − t1 1 − t1
t1 t3 tn
ψ(t1 , . . . , tn ) ≥ (1 − t2 )ψ , 0, ,..., (A2 )
1 − t2 1 − t2 1 − t2
..
.
t1 tn−1
ψ(t1 , . . . , tn ) ≥ (1 − tn )ψ ,..., ,0 . (An )
1 − tn 1 − tn
Then ψ ∈ Ψn . Conversely,
(ii) For given ψ ∈ Ψn define
k(z1 , . . . , zn )kψ
(|z | + · · · + |z |)ψ |z1 | |zn |
1 n |z1 |+···+|zn |
, . . . , |z1 |+···+|zn |
((z1 , . . . , zn ) 6= (0, . . . , 0))
=
0 ((z1 , . . . , zn ) = (0, . . . , 0)).
(9)
To show this theorem, we prepare some lemmas. We remark that the case of an
`p -norm on Cn , by the Hölder inequality, ψ = ψp ∈ Ψn is
( 1
(t1p + · · · + tnp ) p (1 ≤ p < ∞)
ψp (t1 , . . . , tn ) =
max{t1 , . . . , tn } (p = ∞).
11
Proof. Let ψ ∈ Ψn . By (A0 ) and the convexity of ψ, it is clear that
ψ(t1 , t2 , · · · , tn ) ≤ 1. Next, from (A0 ), (A2 ), . . . , (An ), we have
t1 t3 tn
ψ(t1 , . . . , tn ) ≥ (1 − t2 )ψ , 0, ,...,
1 − t2 1 − t2 1 − t2
t1 t4 tn
!
t3 1−t2 1−t2 1−t2
≥ (1 − t2 ) 1 − ψ t3 , 0, 0, t3 , . . . , t3
1 − t2 1 − 1−t 2
1 − 1−t 2
1 − 1−t
2
t1 t4 tn
= (1 − t2 − t3 )ψ , 0, 0, ,...,
1 − t2 − t3 1 − t2 − t3 1 − t2 − t3
≥ ···
t1
≥ (1 − t2 − t3 − · · · − tn )ψ , 0, . . . , 0
1 − t2 − t3 − · · · − tn−1
= t1 ψ(1, 0, . . . , 0)
= t1 .
ψ(t1 , . . . , tn ) ≥ ti .
12
Finally, from (A0 ), (A1 ), . . . , (An−1 ), we have
t2 tn
ψ(t1 , . . . , tn ) ≥ (1 − t1 )ψ 0, ,...,
1 − t1 1 − t1
t3 tn
!
t2 1−t1 1−t1
≥ (1 − t1 ) 1 − ψ 0, 0, t2 , . . . , t2
1 − t1 1 − 1−t 1
1 − 1−t
1
t3 tn
= (1 − t1 − t2 )ψ 0, 0, ,...,
1 − t1 − t2 1 − t1 − t2
≥ ···
tn
≥ (1 − t1 − · · · − tn−1 )ψ 0, . . . , 0,
1 − t1 − · · · − tn−1
= tn ψ(0, . . . , 1)
= tn .
ψ(t1 , . . . , tn ) ≥ ti .
Thus we have
1
ψ(t1 , . . . , tn ) ≥ max{t1 , · · · , tn } ≥ ,
n
so,
1
ψ(t1 , . . . , tn ) ≥ ψ∞ (t1 , . . . , tn ) ≥ .
n
This completes the proof.
Lemma 1.2.5 (cf. [35, Theorem 3.5]). For any (p1 , . . . , pn ), (a1 , . . . , an ) ∈ Cn such
that 0 ≤ pi ≤ ai (i = 1, . . . , n), we have that
13
Take any (t1 , . . . , tn ) ∈ ∆n , and consider the line segment
t2 tn
(1, 0, . . . , 0), 0, ,...,
1 − t1 1 − t1
in ∆n . For any real number λ such that 1 < λ ≤ 1/(1 − t1 ), we put
14
respectively in (12). Thus, we have
p2 pn
ψ a1 +p2a+···+p
1
,
n a1 +p2 +···+pn
, . . . , a1 +p2 +···+pn
p1
a1 +p2 +···+pn
p1 p2
ψ ,
p1 +p2 +···+pn p1 +p2 +···+pn
, . . . , p1 +p2p+···+p
n
n
≥ p1 .
p1 +p2 +···+pn
So,
(a1 +p2 + · · · + pn )
p1 p2 pn
×ψ , ,...,
a1 + p 2 + · · · + p n a1 + p 2 + · · · + p n a1 + p 2 + · · · + p n
≥ (p1 + p2 + · · · + pn )
p1 p2 pn
×ψ , ,..., .
p1 + p2 + · · · + pn p1 + p2 + · · · + pn p1 + p2 + · · · + pn
15
(An ). (A0 ) is clear. By (B1 ), we have
ψ(t1 , . . . , tn )
= k(t1 , t2 , . . . , tn )k
≥ k(0, t2 , . . . , tn )k
t2 tn
= (t2 + · · · + tn )
0,
,...,
t2 + · · · + tn t2 + · · · + tn
t2 tn
= (1 − t1 )
0,
,...,
1 − t1 1 − t1
t2 tn
= (1 − t1 )ψ 0, ,..., .
1 − t1 1 − t1
for any (z1 , . . . , zn ), (w1 , . . . , wn ) ∈ Cn . From Lemma 1.2.5 and the convexity of ψ,
for any (z1 , . . . , zn ), (w1 , . . . , wn ) ∈ Cn , we have
16
= (|z1 | + · · · + |zn | + |w1 | + · · · + |wn |)
|z1 | |zn |
×ψ ,...,
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
|w1 | |wn |
+ ,...,
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
= (|z1 | + · · · + |zn | + |w1 | + · · · + |xn |)
|z1 | + · · · + |zn |
×ψ
|z1 | + · · · + |zn | + |w1 | + · · · + |wn |
|z1 | |zn |
,...,
|zn | + · · · + |zn | |z1 | + · · · + |zn |
|w1 | + · · · + |wn |
+
|z1 | + · · · + |zn | + |w1 | + · · · + |wn |
|w1 | |wn |
,...,
|w1 | + · · · + |wn | |w | + · · · + |wn |
1
|z1 | |zn |
≤ (|z1 | + · · · + |zn |)ψ ,...,
|z1 | + · · · + |zn | |z1 | + · · · + |zn |
|w1 | |wn |
+ (|w1 | + · · · + |wn |)ψ ,...,
|w1 | + · · · + |wn | |w1 | + · · · + |wn |
= k(z1 , . . . , zn )kψ + k(w1 , . . . , wn )kψ .
In this subsection, we consider the dual space of Cn with absolute normalized norm
(cf. [28]). Let ψ ∈ Ψn . For any (z1 , z2 , . . . , zn ) ∈ Cn , the dual norm k · k∗ψ of k · kψ is
defined by
( n )
X
k(z1 , z2 , . . . , zn )k∗ψ = sup zj wj : k(w1 , w2 , . . . , wn )kψ = 1 . (14)
j=1
17
(ii) A corresponding convex function of k · k∗ψ in Ψn is given by
Pn
j=1 tj sj
ψ ∗ (s1 , . . . , sn ) = sup
(t1 ,...,tn )∈∆n ψ(t1 , . . . , tn )
for (s1 , . . . , sn ) ∈ ∆n .
(iii) k · k∗ψ = k · kψ∗ .
Proof.
(i) All properties of an absolute normalized norm are clear except the normalization.
k(1, 0, . . . , 0)k∗ψ
= sup |y1 | : k(y1 , . . . , yn )kψ = 1
= sup y1 : k(y1 , . . . , yn )kψ = 1, y1 , . . . , yn ≥ 0, (y1 , . . . , yn ) 6= (0, . . . , 0)
s1
= sup : (s1 , . . . , sn ) ∈ ∆n
ψ(s1 , . . . , sn )
1 − 0 − ··· − 0
=
ψ(0, . . . , 0)
= 1,
where
y1 yn
s1 = , . . . , sn = .
y1 + · · · + yn y1 + · · · + yn
Similarly, we have the others.
(ii) For all (s1 , . . . , sn ) ∈ ∆n .
ψ ∗ (s1 , . . . , sn )
= k(s1 , . . . , sn )k∗ψ
= sup |s1 y1 + · · · + sn yn | : k(y1 , . . . , yn )kψ = 1
= sup |s1 y1 + · · · + sn yn | : k(y1 , . . . , yn )kψ = 1,
y1 , . . . , yn ≥ 0, (y1 , . . . , yn ) 6= (0, . . . , 0)
= ψ ∗ (s1 , . . . , sn )
Pn
j=1 tj sj
= sup ,
(t1 ,...,tn )∈∆n ψ(t1 , . . . , tn )
where
y1 yn
t1 = , . . . , tn = .
y1 + · · · + yn y1 + · · · + yn
18
(iii) If (x1 , . . . , xn ) 6= (0, . . . , 0), then
k(x1 , . . . , xn )kψ∗
∗ |x1 | |xn |
= (|x1 | + · · · + |xn |)ψ ,...,
|x1 | + · · · + |xn | |x1 | + · · · + |xn |
|x1 | |xn |
t1 |x1 |+···+|x n|
+ · · · + tn |x1 |+···+|x n|
= (|x1 | + · · · + |xn |) sup
(t1 ,...,tn )∈∆n ψ(t1 , . . . , tn )
t1 |x1 | + · · · + tn |xn |
= sup
(t1 ,...,tn )∈∆n ψ(t1 , . . . , tn )
= sup |x1 |y1 + · · · + |xn |yn : k(y1 , . . . , yn )kψ = 1,
y1 , . . . , yn ≥ 0, (y1 , . . . , yn ) 6= (0, . . . , 0)
= sup |x1 y1 + · · · + xn yn | : k(y1 , . . . , yn )kψ = 1
= k(x1 , . . . , xn )k∗ψ ,
where
t1 tn
y1 = , . . . , yn = .
ψ(t1 , . . . , tn ) ψ(t1 , . . . , tn )
If (x1 , . . . , xn ) = (0, . . . , 0), it is clear. This completes the proof.
19
for any (y1 , . . . , yn ) ∈ Cn such that k(y1 , . . . , yn )kψ = 1. Put yi = wi /k(w1 , . . . , wn )kψ
for all i = 1, . . . , n, where (w1 , . . . , wn ) 6= (0, . . . , 0) ∈ Cn . Then we have
n
X
zj wj ≤ k(z1 , . . . , zn )k∗ψ k(w1 , . . . , wn )kψ .
j=1
Put zi , wi for |zi |, |wi | respectively, we have (16). This complete the proof.
for ψ̃ ∈ Ψ
e n (cf. [32]). Just as ψ ∈ Ψn (9), for any ψ̃ ∈ Ψ
e n , we define a mapping k · k
ψ̃
on Cn as
k(z1 , . . . , zn )kψ̃
(|z | + · · · + |z |)ψ̃ |z1 | |zn |
1 n |z1 |+···+|zn |
, . . . , |z1 |+···+|zn |
((z1 , . . . , zn ) 6= (0, . . . , 0))
=
0 ((z1 , . . . , zn ) = (0, . . . , 0)).
(17)
This mapping is not a norm, however we have the generalized inverse Minkowski
inequality.
k(|z1 |, . . . , |zn |) + (|w1 |, . . . , |wn |)kψ̃ ≥ k(|z1 |, . . . , |zn |)kψ̃ + k(|w1 |, . . . , |wn |)kψ̃ (18)
Proof. From the concavity of ψ̃, for any (z1 , . . . , zn ), (z1 , . . . , yn ) ∈ Cn , we have
20
= (|z1 | + · · · + |zn | + |w1 | + · · · + |wn |)
|z1 | |w1 |
× ψ̃ + ,...
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
|zn | |wn |
..., +
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
= (|z1 | + · · · + |zn | + |w1 | + · · · + |wn |)
|z1 | |zn |
× ψ̃ ,...,
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
|w1 | |wn |
+ ,...,
|z1 | + · · · + |wn | |z1 | + · · · + |wn |
= (|z1 | + · · · + |zn | + |w1 | + · · · + |xn |)
|z1 | + · · · + |zn |
× ψ̃
|z1 | + · · · + |zn | + |w1 | + · · · + |wn |
|z1 | |zn |
,...,
|zn | + · · · + |zn | |z1 | + · · · + |zn |
|w1 | + · · · + |wn |
+
|z1 | + · · · + |zn | + |w1 | + · · · + |wn |
|w1 | |wn |
,...,
|w1 | + · · · + |wn | |w | + · · · + |wn |
1
|z1 | |zn |
≥ (|z1 | + · · · + |zn |)ψ̃ ,...,
|z1 | + · · · + |zn | |z1 | + · · · + |zn |
|w1 | |wn |
+ (|w1 | + · · · + |wn |)ψ̃ ,...,
|w1 | + · · · + |wn | |w1 | + · · · + |wn |
= k(|z1 |, . . . , |zn |)kψ̃ + k(|w1 |, . . . , |wn |)kψ̃ .
21
Proof. We first show that, if 0 ≤ p1 < a1 , then
k(p1 , p2 , . . . , pn )kψ̃ ≤ k(a1 , p2 . . . , pn )kψ̃ . (20)
This is, we show that if 0 ≤ p1 < a1
p1 pn
(p1 + p2 + · · · + pn )ψ̃ ,...,
p1 + p2 + · · · + pn p 1 + p2 + · · · + pn
a1 pn
≤ (a1 + p2 + · · · + pn )ψ̃ ,..., .
a1 + p 2 + · · · + p n a1 + p 2 + · · · + p n
Take any (s1 , . . . , sn ) ∈ ∆n such that s1 + · · · + sn = 1, and consider the line segment
s2 sn
(1, 0, . . . , 0), 0, ,...,
1 − s1 1 − s1
in ∆n . For any real number λ such that 1 < λ ≤ 1/(1 − s1 ), we put
(s01 , s02 , . . . , s0n ) = (1, 0, . . . , 0) + λ{(s1 , s2 , . . . , sn ) − (1, 0, . . . , 0)}.
Then we have
1 0 0 0 1
(s1 , s2 , . . . , sn ) = (s1 , s2 , . . . , sn ) + 1 − (1, 0, . . . , 0).
λ λ
By the concavity of ψ̃,
1 0 0 0 1
ψ̃(s1 , s2 , . . . , sn ) ≥ ψ̃(s1 , s2 , . . . , sn ) + 1 − ψ̃(1, 0, . . . , 0)
λ λ
1
≥ ψ̃(s01 , s02 , . . . , s0n )
λ
1 − s1
= ψ̃(s01 , s02 , . . . , s0n ).
1 − s01
Thus, we have
ψ̃(s1 , s2 , . . . , sn ) ψ̃(s01 , s02 , . . . , s0n )
≥ . (21)
1 − s1 1 − s01
Since 0 ≤ p1 < a1 , we put
(s1 , s2 , . . . , sn )
a1 p2 pn
= , ,..., ,
a1 + p 2 + · · · + p n a1 + p 2 + · · · + p n a1 + p 2 + · · · + p n
(s01 , s02 , . . . , s0n )
p1 p2 pn
= , ,..., ,
p1 + p2 + · · · + p n p1 + p 2 + · · · + pn p1 + p2 + · · · + pn
a1 + p 2 + · · · + p n
λ= >1
p1 + p2 + · · · + pn
22
respectively in (21). Thus, we have
p2 pn
ψ̃ a1 +p2a+···+p
1
,
n a1 +p2 +···+pn
, . . . , a1 +p2 +···+pn
a1
1− a1 +p2 +···+pn
p1 p2
ψ̃ ,
p1 +p2 +···+pn p1 +p2 +···+pn
, . . . , p1 +p2p+···+p
n
n
≥ p1 .
1 − p1 +p2 +···+pn
Let ψ̃ ∈ Ψ
e n . Denote
Pn
j=1 tj sj
ψ̃∗ (s1 , . . . , sn ) = inf . (22)
(t1 ,...,tn )∈∆n ψ̃(t1 , . . . , tn )
The corresponding map k · kψ̃∗ is defined by (17). Then the following generalized
inverse Hölder inequality holds.
Put
|zj | |wj |
sj = , tj =
|z1 | + · · · + |zn | |w1 | + · · · + |wn |
for j = 1, . . . , n, where (z1 , . . . , zn ), (w1 , . . . , wn ) ∈ Cn , then we have (23). This
completes the proof.
23
1.3 Characterizations of generalized triangle inequalities
In this section, by using ψ-dirct sum of Banach space, we show generalizations of a
following obvious fact: let X be a normed space and a1 , a2 ∈ C, then
if and only if
max{|a1 |, |a2 |} ≤ 1.
We call (X n , k · kψ ) ψ-direct sum of X (cf. [18]), and denote it by `nψ (X). We first
prove the following result.
if and only if
k(a1 , . . . , an )kψ∗ ≤ 1.
24
Conversely, assume that (a1 , . . . , an ) satisfies (25). Take any e ∈ X with kek = 1,
and any (α1 , . . . , αn ) ∈ Cn such that k(α1 , . . . , αn )kψ = 1, we have
n
n
X
X
aj α j =
aj αj e
j=1 j=1
≤ k(α1 e, . . . , αn e)kψ
= k(kα1 ek, . . . , kαn ek)kψ
= k(|α1 |, . . . , |αn |)kψ
= k(α1 , . . . , αn )kψ
= 1.
Thus ( n )
X
sup aj αj : k(α1 , . . . , αn )kψ = 1 ≤ 1,
j=1
In the above theorem, (a1 , . . . , an ) is an element in the unit ball of (`nψ )∗ = `nψ∗ ,
where (`nψ )∗ is a dual space of `nψ .
From Theorem 1.3.1, we have the following corollary by putting ψ = ψp and
using (15).
Corollary 1.3.2. Let X be a normed space and p ∈ R with p > 1. Let (a1 , . . . , an ) ∈
Cn . Then
n
p
X
aj xj
≤ kx1 kp + · · · + kxn kp (x1 , . . . , xn ∈ X)
j=1
if and only if
1
(|a1 |q + · · · + |an |q ) q ≤ 1,
where 1/p + 1/q = 1.
e n , we define k · k as in (24), and consider (X n , k · k ) which is denoted
For ψ̃ ∈ Ψ ψ̃ ψ̃
by `nψ̃ (X). Note that `nψ̃ (X) is not a normed space. In this case, we have the following
result.
e n . Let (a1 , . . . , an ) ∈ Cn .
Theorem 1.3.3. Let X be a normed space and ψ̃ ∈ Ψ
Then
n
X
aj xj
≤ k(x1 , . . . , xn )kψ̃ (x1 , . . . , xn ∈ X) (26)
j=1
25
if and only if
max{|a1 |, . . . , |an |} ≤ 1.
Proof. Assume that max{|a1 |, . . . , |an |} ≤ 1. Let x1 , . . . , xn ∈ X. From the gener-
alized inverse Minkowski inequality (18), we have
Xn
X n
aj x j
≤ |aj |kxj k
j=1 j=1
Xn
≤ kxj k
j=1
From Theorem 1.3.3, we have the following corollary by putting ψ̃ = ψ̃p , where
0 < p ≤ 1.
Corollary 1.3.4. Let X be a normed space and p ∈ R with 0 < p ≤ 1. Let
(a1 , . . . , an ) ∈ Cn . Then
n
p
X
aj xj
≤ kx1 kp + · · · + kxn kp (x1 , . . . , xn ∈ X)
j=1
if and only if
max{|a1 |, . . . , |an |} ≤ 1.
26
where p ∈ R with p > 0, proved by [9, Theorems 2.4 and 2.5]. We put
X
p X
(
n
n
)
p
kx j k
F (p) = (µ1 , . . . , µn ) ∈ Rn :
xj
≤ (x1 , . . . , xn ∈ X) ,
j=1
j=1
µj
Theorem 1.3.5 (cf. [9, Theorems 2.4 and 2.5]). Let X be a normed space and p ∈ R
with p > 0. Then the following assertions hold:
(i) F (p
;(0) )
Xn 1
n
µjp−1 ≤ 1
(µ1 , . . . , µn ) ∈ R : µ1 , . . . , µn > 0, (p > 1)
j=1
=
(0, 1] × · · · × (0, 1] (0 < p ≤ 1);
where 1/p + 1/q = 1. In the case where 0 < p ≤ 1, from Corollary 1.3.4, we have
1 p 1 p
p
(28) ⇔ max µ1 , . . . , µnp ≤ 1
27
(ii) Suppose µi < 0. In (27), take any e ∈ X with kek = 1, and put xj = δij e
for all j = 1, . . . , n, where δij is a Kronecker’s delta. Hence 1 ≤ 1/µi . This is a
contradiction, and so F (p ; k) = ∅.
(iii) is clear. This completes the proof.
kx1 kp kxn kp
kx1 + · · · + xn kp ≥ + ··· + (x1 , . . . , xn ∈ X) , (29)
µ1 µn
where p ∈ R with p > 0, proved by [9, Theorems 2.6 and 2.7]. We put
X
p X
(
n
n
)
p
kx j k
G(p) = (µ1 , . . . , µn ) ∈ Rn :
xj
≥ (x1 , . . . , xn ∈ X) ,
j=1
j=1
µ j
Theorem 1.3.6 (cf. [9, Theorems 2.6 and 2.7]). Let X is a normed space and p ∈ R
with p > 0. Then the following assertions hold:
;n − 1)
(ii) G(p
µi > 0, µj < 0 (j 6= i)
1 1
n
n
(µ1 , . . . , µn ) ∈ R p−1
P
µi ≥ 1 + j=1, j6=i |µj | p−1 (p > 1)
for some i ∈ {1, . . . , n}
=
µi > 0, µj < 0 (j 6= i)
µi ≥ max (1, |µj |)
(µ1 , . . . , µn ) ∈ Rn
(0 < p ≤ 1);
j∈{1,...,n}\{i}
for some i ∈ {1, . . . , n}
28
Proof. (i) In (29), put xj = 0 for all j ∈ {1, . . . , n} such that µj < 0. Next, for all
i ∈ {1, . . . , n} such that µi > 0, select xi such that xi 6= 0 and x1 + · · · + xn = 0.
Hence the left-hand side of (29) vanishes, and the right-hand side of (29) is strictly
positive. This is a contradiction, and so G(p ; k) = ∅.
(ii) If (µ1 , . . . , µn ) satisfies (29), there exists i ∈ {1, . . . , n} such that µi > 0.
Thus (29) is equivalent to
n
X kxj kp kx1 + · · · + xn kp
µ + 1 ≥ kxi kp (x1 , . . . , xn ∈ X). (30)
j=1
− µji µi
j6=i
29
Theorem 1.3.7 (cf. [2, Theorems 2]). Let X be a normed space and p, q ∈ R with
p > 1, 1/p + 1/q = 1. Let (a1 , . . . , an , λ, µ1 , . . . , µn ) ∈ Cn × R × Rn . Then
(ii) λ < 0, µi < 0 for some i ∈ {1, . . . , n}, µj > 0 for all j ∈ {1, . . . , n} \ {i} and
n 1
1 1 X
q
(−µi ) p−1 |ai | ≥ (−λ) p−1 + µjp−1 |aj |q ,
j=1
j6=i
q X n q
1 1 1 1
p−1
aj
⇔ (−µi ) p−1 ≥ (−λ) p−1 +
ai µ j
.
ai (34)
j=1
j6=i
30
From (i), we have
p
xi + Pnj=1 aj
1
x
ai j
n
ai j6=i kxi kp X kxj kp
(34) ⇔ ≤ + (x1 , . . . , xn ∈ X). (35)
−µi −λ j=1
µj
j6=i
1
Pn aj
In (35), put yj = −xj for any j = 2, 3, . . . , n. Next, put y1 = x
a1 1
+ j=1 ai xj .
j6=i
Hence we have (32).
The case where ai = 0, on one hand there exist no (a1 , . . . , an , λ, µ1 , . . . , µn ) such
that n
1 X 1
0 ≥ (−λ) p−1 + µjp−1 |aj |q .
j=1
j6=i
On the other hand, in (32), put xj = 0 for j ∈ {1, . . . , n} \ {i}, then we have
0 ≤ kxi kp /µi (xi ∈ X), however there exist no µi > 0 such that this inequality
holds. That is not a contradiction.
(iii) is clear. This completes the proof.
(ii) λ < 0, µi < 0 for some i ∈ {1, . . . , n}, µj > 0 for all j ∈ {1, . . . , n} \ {i} and
31
By using these theorems, we have characterizations of (a1 , . . . , an , λ, µ1 , . . . , µn ) ∈
C × R × Rn which holds
n
Theorem 1.3.9. Let X be a normed space and p, q ∈ R with p > 1, 1/p + 1/q = 1.
Let (a1 , . . . , an , λ, µ1 , . . . , µn ) ∈ Cn × R × Rn . Then
ka1 x1 + · · · + an xn kp kx1 kp kxn kp
≥ + ··· + (x1 , . . . , xn ∈ X)
λ µ1 µn
holds if:
(ii) λ > 0, µi > 0 for some i ∈ {1, . . . , n}, µj < 0 for all j ∈ {1, . . . , n} \ {i} and
1
n
1 X 1
q
µip−1
|ai | ≥ λ p−1 + (−µj ) p−1 |aj |q ,
j=1
j6=i
(ii) λ > 0, µi > 0 for some i ∈ {1, . . . , n}, µj < 0 for all j ∈ {1, . . . , n} \ {i} and
32
1.3.3 An application to the parallelogram inequality
Saitoh in [38] noted the parallelogram inequality may be more suitable than the
classical triangle inequality. Motivated by this, Belbachir et al. introduced the notion
of q-norm: let X be a vector space over K(= R or C). For 1 ≤ q < ∞, a mapping
k · k from X into R+ (= {a ∈ R : a ≥ 0}) is called a q-norm if it satisfies the following
conditions:
(i) kxk = 0 ⇔ x = 0,
They proved that for all q with 1 ≤ q < ∞, every norm is a q-norm, and conversely,
every q-norm is a norm in the usual sense (cf. [6]).
Saito et al. in [36] generalized the notion of q-norm, that is, the notion of ψ-norm
by considering function ψ ∈ Ψ2 : let X be a vector space over K(= R or C) and
ψ ∈ Ψ2 . A mapping k · k from X into R+ (= {a ∈ R : a ≥ 0}) is called ψ-norm if it
satisfies the following conditions:
(i) kxk = 0 ⇔ x = 0,
1
(iii) kx + yk ≤ min0≤t≤1 ψ(t)
(kxk, kyk)
ψ
(x, y ∈ X).
Note that the function ψ(t) = ψq (t) = {(1−t)q +tq }1/q take the minimum at t = 1/2
and q q 1q
1 1 1 1
ψq = + = 2 q −1 ,
2 2 2
33
then the condition (iii) of a ψ-norm implies
1
(kxk, kyk)
= 21− 1q kxkq + kykq .
kx + yk ≤
ψq ( 12 ) ψq
Then we have kx + ykq ≤ 2q−1 (kxkq + kykq ) and so k · k becomes a q-norm. They
proved that for all ψ ∈ Ψ2 , every norm is a ψ-norm, and conversely, every ψ-norm
is a norm in the usual sense (cf. [36]).
By using Theorem 1.3.1, we can proof that the constant 1/min0≤t≤1 ψ(t) of the
condition (iii) in a ψ-norm is the best constant of the condition.
Then
1
C≥ .
min0≤t≤1 ψ(t)
Proof. Remark that
1 1
(36) ⇔
C x + y
≤
(kxk, kyk)
ψ
(x, y ∈ X). (37)
C
Then
∗1 1 1
C ≥ k(1, 1)kψ∗ = 2ψ = sup = .
2 0≤t≤1 ψ(t) min0≤t≤1 ψ(t)
This completes the proof.
34
1.4.1 `ψ -spaces
ψ(en ) = 1 (A00 )
t1 tn−1 tn+1
ψ(t) ≥ (1 − tn )ψ ,..., , 0, ,... (A0n )
1 − tn 1 − tn 1 − tn
(n)
for all n = 1, 2, . . . and every t = {tn }∞
n=1 ∈ ∆∞ with tn 6= 1, where en = (0, . . . , 0, 1
, 0, . . .) ∈ `0 .
Conversely, we define the set Ψ∞ of all continuous convex functions on ∆∞
satisfying the conditions (A0n ) for all n = 0, 1, 2, . . .. For any ψ ∈ Ψ∞ , we define the
mapping on `0 :
k{zn }∞
n=1 kψ
P∞ |z | ψ P∞|z1 | , . . . , P∞|zn | , . . . ({zn }∞
j=1 j j=1 |zj | j=1 |zj |
n=1 6= 0)
=
0 ({zn }∞
n=1 = 0),
35
Using this, we introduce the `ψ -spaces. Let `∞ be the Banach space of all
bounded infinite sequences of complex numbers. For {zn }∞
n=1 ∈ `∞ and ψ ∈ Ψ∞ , by
Proposition 1.2.2, {k(z1 , . . . , zn , 0, 0, . . .)kψ }∞
n=1 is an increasing sequence. Thus we
define the space `ψ by
n o
`ψ = {zn }∞
n=1 ∈ `∞ : lim k(z1 , . . . , z n , 0, 0, . . .)kψ < ∞ . (39)
n→∞
Proposition 1.4.1 (cf. [25, Proposition 2.4]). `ψ is a Banach space with the norm
k{zn }∞
n=1 kψ = lim k(z1 , . . . , zn , 0, 0, . . .)kψ .
n→∞
(k)
Proof. Let {yk }∞ ∞
k=1 ⊂ `ψ be any Cauchy sequence of `ψ . We put yk = {zn }n=1 for
every k ∈ N. By Proposition 1.2.2, for each n ∈ N, for any k, l ∈ N, we have
(k)
then {zn }∞
k=1 ⊂ C is a Cauchy sequence in C. Thus there exists zn ∈ C such that
(k)
zn = limk→∞ zn for each n ∈ N. By Proposition 1.2.2, we have
(k)
k(z1 − z1 , . . . , zn(k) − zn , 0, 0, . . .)kψ
(k) (m)
= lim k(z1 − z1 , . . . , zn(k) − zn(m) , 0, 0, . . .)kψ
m→∞
(k) (m)
= lim inf k(z1 − z1 , . . . , zn(k) − zn(m) , 0, 0, . . .)kψ
m→∞
As n → ∞, we have y = {zn }∞
n=1 ∈ `ψ and kyk − ykψ → 0. This completes the
proof.
36
and k · k∗ψ = k · kψ∗ . Then
n o
∞
`ψ = {wn }n=1 ∈ `∞ : lim k(w1 , . . . , wn , 0, 0, . . .)kψ < ∞
∗ ∗
n→∞
k{wn }∞
n=1 kψ ∗ = lim k(w1 , . . . , wn , 0, 0, . . .)kψ ∗ .
n→∞
∞ ( ∞ p p
n=1 |zn | ) (1 ≤ p < ∞)
k{zn }n=1 kp =
sup1≤n<∞ |zn | (p = ∞),
∞ ∗ ( ∞ q q
n=1 |zn | ) (1 < p < ∞)
k{zn }n=1 kp = (41)
sup1≤n<∞ |zn | (p = 1),
`ψ (X) = {xn }∞ ∞
n=1 ⊂ X : {kxn k}n=1 ∈ `ψ ,
37
Theorem 1.4.2. Let X be a Banach space, ψ ∈ Ψ∞ and {an }∞
n=1 ∈ `∞ . Then
following conditions are equivalent:
P∞
(i) for all {xn }∞
n=1 ∈ `ψ (X), n=1 an xn converges in X and satisfies
X ∞
an xn
≤ k{xn }∞
n=1 kψ ;
n=1
(ii) {an }∞
n=1 ∈ `ψ ∗ and satisfies
k{an }∞
n=1 kψ ∗ ≤ 1.
Proof. If {an }∞
n=1 satisfies (ii), we remark that k(a1 , . . . , an )kψ ∗ ≤ 1 for all n ∈ N.
From the Generalized Hölder inequality (40), we have
Xn
kaj xj k ≤ k(x1 , . . . , xn )kψ
j=1
From Theorem 1.3.1, we have k(a1 , . . . , an )kψ∗ ≤ 1 for all n ∈ N. Hence {an }∞
n=1
holds (ii).
(ii) {an }∞
n=1 ∈ `q and satisfies
k{an }∞
n=1 kq ≤ 1,
38
1.4.2 `ψ̃ -spaces
k{zn }∞
n=1 kψ̃
(P∞ |z |)ψ̃ P∞|z1 | , . . . , P∞|zn | , . . . ({zn }∞
j=1 j j=1 |zj | j=1 |zj |
n=1 6= 0)
=
0 ({zn }∞
n=1 = 0).
Using this, we introduce the `ψ̃ -spaces. Let `∞ is the Banach space of all bounded
infinite sequences of complex numbers. For any ψ̃ ∈ Ψ e ∞ , we define the space ` by
ψ̃
n o
∞
`ψ̃ = {zn }n=1 ∈ `∞ : lim k(z1 , . . . , zn , 0, 0, . . .)kψ̃ < ∞ .
n→∞
k{zn }∞
n=1 kψ̃ = lim k(z1 , . . . , zn , 0, 0, . . .)kψ̃ .
n→∞
This mapping is not a norm, however, we have the generalized inverse Minkowski
inequality:
k{|zn | + |wn |}∞ ∞ ∞
n=1 kψ̃ ≥ k{|zn |}n=1 kψ̃ + k{|wn |}n=1 kψ̃ (42)
∞
! p1
X
ψ˜p (t) = tnp
n=1
1
is a element of Ψe ∞ and k{zn }∞ k e = k{zn }∞ kp = (P∞ |zn |p ) p .
n=1 ψp n=1 n=1
Let (X, k · k) be a Banach space. For any ψ̃ ∈ Ψ∞ , we define the ψ̃-direct sums
e
of X to be the space
39
P∞
(i) for all {xn }∞
n=1 ∈ `ψ̃ (X), an xn converges in X and satisfies
n=1
∞
X
∞
a n n
≤ k{xn }n=1 kψ̃ ;
x
n=1
Proof. If {an }∞
n=1 satisfies (ii), we remark that max{|a1 |, . . . , |an |} ≤ 1 for all n ∈ N.
As in the proof of Theorem 1.3.3, from the generalized inverse Minkowski inequality
(42), we have
n
X
kaj xj k ≤ k(x1 , . . . , xn )kψ̃
j=1
From Theorem 1.3.3, we have max{|a1 |, . . . , |an |} ≤ 1 for all n ∈ N. Hence {an }∞
n=1
holds (ii).
P∞
(i) for all {xn }∞
n=1 ∈ `p (X), n=1 an xn converges in X and satisfies
p
X ∞
an xn
≤ k{xn }∞ p
n=1 k ;
n=1
40
2 On sharp triangle inequalities
2.1 Introduction
In this chapter, we consider the inequalities which are sharper than the usual triangle
inequality for a Banach space X. In [14], Hudizik and Landes remarked a sharp
triangle inequality for two elements. In [19], Kato, Saito and Tamura proved the
sharp triangle inequality and reverse inequality as follows: for all nonzero elements
x1 , · · · , xn ∈ X,
!
n n
X
X xj
xj
+ n−
min kxj k
kxj k
1≤j≤n
j=1 j=1
n
X
≤ kxj k (43)
j=1
!
n n
X
X x j
≤
xj
+ n−
max kxj k
j=1
kxj k
1≤j≤n
j=1
hold. In [29], Mitani et al. succeeded in the further extensions of above inequalities
as follows: for all nonzero elements x1 , x2 , . . . , xn ∈ X, n ≥ 2,
!
n n k
X
X
X x∗j
xj
+ k−
(kx∗k k − kx∗k+1 k)
∗
kxj k
j=1 k=2 j=1
n
X
≤ kxj k (44)
j=1
n n n
x∗j
X
X
X
(kx∗n−k k − kx∗n−(k−1) k)
≤
xj
− k −
j=1
k=2
kx∗j k
j=n−(k−1)
hold, where x∗1 , x∗2 , . . . , x∗n are the rearrangement of x1 , x2 , . . . , xn satisfying kx∗1 k ≥
kx∗2 k ≥ · · · ≥ kx∗n k, and x∗0 = x∗n+1 = 0. Moreover they studied equality attained-
ness on these inequalities in a strictly convex Banach space (cf. [19] and [27]). In
[24], Mineno, Nakamura and Ohwada studied the problem that characterize all the
intermediate value C which satisfies
n
X
Xn
0≤C≤ kxj k −
xj
j=1 j=1
41
by using x1 , x2 , . . . , xn in a Banach space X. Inequalities (43) and (44) give partial
solutions of this problem: for all x1 , x2 , . . . , xn ∈ X,
n
! n
n
X x
X
j
X
0≤ n−
min kxj k ≤ kxj k −
xj
j=1
kx j k
1≤j≤n
j=1
j=1
and
!
n k ∗
n n
X
X x j
∗ ∗
X
X
0≤ k−
(kxk k − kxk+1 k) ≤ kxj k −
xj
∗
k=2
kxj k
j=1
j=1
j=1
hold. Our main aims in this chapter are to give the simple proof of the result of
Mineno et al. and study when this norm inequality attains equality in a strictly
convex Banach space.
In §2.2, we summarize basic results of sharp triangle inequalities and their reverse
inequalities in Banach spaces.
In §2.3, we present the simple proof of the result of Mineno et al. and study when
this norm inequality attains equality in strictly convex Banach spaces.
In §2.4, by using sharp triangle inequalities, we characterize some geometrical
properties of Banach spaces.
In this section, we summarize basic results of sharp triangle inequalities and their
reverse inequalities in Banach spaces. In [19], Kato et al. proved the sharp triangle
inequality and reverse inequalities for an arbitrary number of finitely many nonzero
elements x1 , x2 , . . . , xn ∈ X as follows:
Theorem 2.2.1 (cf. [19, Theorem 1]). For all nonzero elements x1 , x2 , . . . , xn in a
Banach space X,
!
n n
X
X xj
xj
+ n−
min kxj k
kxj k
1≤j≤n
j=1 j=1
n
X
≤ kxj k (45)
j=1
!
n n
X
X x j
≤
xj
+ n−
max kxj k (46)
j=1
kxj k
1≤j≤n
j=1
42
hold.
In the case n = 2, we have the following inequalities which will be used to prove
the general n elements case.
Theorem 2.2.2 (cf. [14] and [20]). For all nonzero elements x, y in a Banach space
X,
x y
kx + yk + 2 −
kxk kyk
min{kxk, kyk}
+
hold.
Proof. If kxk = kyk, both inequalities (47) and (48) hold with equality. Therefore
we may assume this is not the case. Let us see the first inequality. Let kxk > kyk.
Then we have
x y
x y x x
kxk + kyk
=
kyk + kyk − kyk + kxk
x y 1 1
=
+ − − x
kyk kyk kyk kxk
x y
1 1
≥
kyk + kyk
− kyk − kxk kxk
kx + yk 1 1 1 1
= − − kxk − − kyk
kyk kyk kxk kyk kyk
kx + yk kxk + kyk
= − −2 ,
kyk kyk
Hence we obtain
x y
kxk + kyk ≥ kx + yk + 2 −
+
kyk,
kxk kyk
43
or the inequality (47). For the second inequality as in the above proof, let kxk > kyk.
Then we have
x y
x y y y
+
=
+ −
kxk kyk
kxk kxk kxk kyk
+
x y 1 1
=
+ + − y
kxk kxk kyk kxk
x y
1 1
≤
kxk + kyk
+ kyk − kxk kyk
kx + yk 1 1 1 1
= + − kyk + − kxk
kxk kyk kxk kxk kxk
kx + yk kxk + kyk
= + 2− ,
kxk kxk
for which it follows that
kxk + kyk kx + yk
x y
≤ + 2−
kxk kyk
.
+
kxk kxk
Hence we obtain
x y
kxk + kyk ≤ kx + yk + 2 −
+
kxk,
kxk kyk
or the inequality (48). Thus we have the conclusion.
44
n n
X xj
X 1 1
=
− − kxj k
j=1
kxj0 k
j=1 kxj0 k kxj k
!
n n
X x j
X kx j k
=
− −n ,
kxj0 k
j=1
kxj0 k
j=1
Hence we obtain
!
n n n
X
X
X x j
kxj k ≥
xj
+ n−
kxj0 k,
j=1
j=1
kxj k
j=1
and hence
!
n n n
X
X
X xj
kxj k ≤
xj
+ n−
kxj1 k.
j=1
j=1
kxj k
j=1
45
2.2.2 Sharper triangle inequalities
Theorem 2.2.3 (cf. [29, Theorem 1]). For all nonzero elements x1 , x2 , . . . , xn in a
Banach space X, n ≥ 2,
!
n n k ∗
X
X
X x j
xj
+ k−
(kx∗k k − kx∗k+1 k)
kx∗j k
j=1 k=2 j=1
n
X
≤ kxj k (49)
j=1
n n n
x∗j
X
X
X
(kx∗n−k k − kx∗n−(k−1) k)
≤
xj
− k −
(50)
j=1
k=2
kx∗j k
j=n−(k−1)
hold, where x∗1 , x∗2 , . . . , x∗n are the rearrangement of x1 , x2 , . . . , xn satisfying kx∗1 k ≥
kx∗2 k ≥ · · · ≥ kx∗n k, and x∗0 = x∗n+1 = 0.
As the case n = 2 the above theorem includes Theorem 2.2.2. To see explicitly
that the Theorem 2.2.3 refines Theorem 2.2.1, we reformulate Theorem 2.2.3 as
follows: for all nonzero elements x1 , x2 , . . . , xn in a Banach space X, n ≥ 3,
n
n
!
X
X x∗
j
xj
+ n −
kx∗n k
∗
kx k
j=1
j=1 j
!
n−1 k
X
X x∗j
+ k−
(kx∗k k − kx∗k+1 k)
∗
k=2
kxj k
j=1
n
X
≤ kxj k
j=1
!
n n ∗
X
X x j
≤
xj
+ n−
kx∗1 k
∗
j=1
j=1
kx j k
n−1
n ∗
X
X xj
− k −
(kx∗n−k k − kx∗n−(k−1) k)
∗
k=2
kx
j=n−(k−1) j
k
hold, where x∗1 , x∗2 , . . . , x∗n are the rearrangement of x1 , x2 , . . . , xn satisfying kx∗1 k ≥
kx∗2 k ≥ · · · ≥ kx∗n k.
46
In the case of n = 3 we have the following inequalities: for all nonzero elements
x, y, z in a Banach space X with kxk ≥ kyk ≥ kzk,
x y z
kx + y + zk + 3 −
kxk + kyk + kzk
kzk
x y
+ 2−
kxk kyk
(kyk − kzk)
+
hold.
In [27], Mitani and Saito gave a simple proof of these inequalities.
Proof of Theorem 2.2.3. To prove this theorem we shall prove that for all nonzero
elements x1 , x2 , . . . , xn in a Banach space X with kx1 k ≥ kx2 k ≥ · · · ≥ kxn k, n ≥ 2,
!
n n k
X
X
X xj
xj
+ k−
(kxk k − kxk+1 k)
kxj k
j=1 k=2 j=1
n
X
≤ kxj k (51)
j=1
n n
n
X
X
X xj
≤
xj
− k −
(kxn−k k − kxn−(k−1) k) (52)
j=1
k=2
kxj k
j=n−(k−1)
hold, where x0 = xn+1 = 0. According to Theorem 2.2.1, inequalities (51) and (52)
hold for the case n = 2. Therefore let n ≥ 3. We first prove the case kx1 k > kx2 k >
· · · > kxn k. We prove inequality (51) by the induction. Assume that the inequality
holds true for all n − 1 elements in X. Let x1 , x2 , . . . , xn be any n elements in X
with kx1 k > kx2 k > · · · > kxn k > 0. Let
xj
uj = (kxj k − kxn k) ,
kxj k
for all positive j with 1 ≤ j ≤ n. Then
n n n−1
X X xj X
xj = kxn k + uj (53)
j=1 j=1
kxj k j=1
47
and ku1 k > ku2 k > · · · > kun−1 k > 0. By assumption,
!
n−1 n−1 n−1 k
X
X X
X uj
uj
≤ kuj k − k−
(kuk k − kuk+1 k) (54)
kuj k
j=1 j=1 k=2 j=1
holds, where un = 0. Since kuk k − kuk+1 k = kxk k − kxk+1 k, from (53) and (54),
n n n−1
X
X xj X
xj
=
kxn k + uj
kxj k j=1
j=1 j=1
n n−1
X x j
X
≤ kxn k
+ u
j
kxj k
j=1 j=1
n n−1
X xj
X
≤ kxn k
+ kuj k
j=1
kxj k
j=1
n−1
k
!
X
X u
j
− k−
(kuk k − kuk+1 k)
k=2
j=1
kuj k
n
n−1
X x
X
j
= kxn k
+ (kxj k − kxn k)
j=1
kxj k
j=1
!
n−1 k
X
X xj
− k−
(kxk k − kxk+1 k)
k=2
j=1
kxj k
!
n n k
X X
X xj
= kxj k − k−
(kxk k − kxk+1 k)
j=1 k=2
j=1
kxj k
and hence (51). Thus (51) holds true for all finite elements in X.
Next we show inequality (52). Let
xn−j+1
vj = (kx1 k − kxn−j+1 k)
kxn−j+1 k
48
and kv1 k > kv2 k > · · · > kvn−1 k > 0. Applying Inequality (51) to v1 , v2 , . . . , vn−1 ,
n
n
n−1
X
X x
X
j
xj
≥ kx1 k
−
vj
kxj k
j=1
j=1 j=1
n
n−1
X x
X
j
≥ kx1 k
− kvj k
j=1
kx j k
j=1
!
n−1 k
X
X vj
+ k−
(kvk k − kvk+1 k)
k=2
j=1
kvj k
n n−1
X x j
X
= kx1 k
− (kx1 k − kxn−j+1 k)
j=1
kx j k
j=1
!
n−1 k
X
X xn−j+1
+ k−
(kxn−k+1 k − kxn−k k)
k=2
j=1
kxn−j+1 k
n n
n
X X
X x j
= kxj k − k −
(kxn−k+1 k − kxn−k k)
j=1 k=2
kx
j=n−(k−1) j
k
Then kx1,m k > kx2,m k > · · · > kxn,m k > 0. Applying inequalities (51) and (52) to
x1,m , x2,m , . . . , xn,m ,
!
n n k
X
X
X xj,m
xj,m
+ k−
(kxk,m k − kxk+1,m k)
kxj,m k
j=1 k=2 j=1
n
X
≤ kxj,m k
j=1
n n
n
X
X
X xj,m
≤
xj,m
− k−
(kxn−k,m k − kxn−(k−1),m k)
j=1
k=2
kxj,m k
j=n−(k−1)
hold, where x0,m = xn+1,m = 0 for all positive numbers m with m > n. As m → +∞,
we have Inequalities (51) and (52) for the case of kx1 k ≥ kx2 k ≥ · · · ≥ kxn k > 0.
This completes the proof.
49
2.3 Characterization of the intermediate values of the tri-
angle inequality
2.3.1 A simple proof of the preceding result
In [24], Mineno et al. characterised the intermediate values of the triangle inequality
in normed spaces as follows. For positive integer n ≥ 2, let Mn ([0, 1]) be the set of
all n × n matrices whose all elements belong to the interval [0, 1], and Ln denote the
set of all lower triangular matrices of Mn ([0, 1]), i.e.,
n o
Ln = a = (aij ) ∈ Mn ([0, 1]) : aij = 0, i < j .
Lemma 2.3.1 (cf. [24, Lemma 3.1]). Keep the notation as above. Let a = (aij ), b =
(bij ) in Ln . Then the following statements hold.
50
Thus we have
a
`ij (m) − `bij (m)
m
Y Ym
= aij (1 − akj ) − bij (1 − bkj )
k=i+1 k=i+1
m m
Y Y
≤ aij (1 − akj ) − aij (1 − bkj )
k=i+1 k=i+1
Ym Ym
+ aij (1 − bkj ) − bij (1 − bkj )
k=i+1 k=i+1
Ym Ym
≤ (1 − akj ) − (1 − bkj ) + |aij − bij |
k=i+1 k=i+1
m
X
≤ |akj − bkj | + |aij − bij |
k=i+1
Xm
≤ |aij − bij |.
k=i
Theorem 2.3.2 (cf. [24, Lemma 3.2]). Let n ≥ 2. With the above notation, take
any a = (aij ) in Ln . For any elements x1 , x2 , · · · , xn in a normed space X, the
following inequalities hold:
n i
i
! n
n
X X
X
X
X
0≤ k`aij (n)xj k −
`aij (n)xj
≤ kxj k −
xj
. (55)
i=1 j=1 j=1 j=1 j=1
In [24], the above theorem was established for `a1j (m) = a1j , 1 ≤ j ≤ m, which
values do not influence (55). We made a modification in order to consider the
equality attainability in (55) in a particular space.
Take any a = (aij ) ∈ Ln and fix it. Considering `aij (n) as the matrix acting on
| ⊕X ⊕
a Banach space X {z· · · ⊕ X} , we have
n times
`a11 (n) x `a (n)x1
1 P2 11
0
`a (n) `a (n) x2 a
j=1 `2j (n)xj
21 22
. = ,
.
.. .
.. . .. .. ..
P .
a a a n a
`n1 (n) ... `nn−1 (n) `nn (n) x n `
j=1 nj (n)x j
51
where x1 , x2 , . . . , xn ∈ X. For each entries, we have the triangle inequalities
X i
X i
a
`ij (n)xj
≤ k`aij (n)xj k (1 ≤ i ≤ n). (56)
j=1 j=1
Theorem 2.3.2 means that the sum of all differences of (56) is less than the difference
of the triangle inequality
Xn
X n
xj
≤ kxj k.
j=1 j=1
To present a simple proof of Theorem 2.3.2, we would need the following lemma.
52
then we have
Yn n
X
(1 − ai m ) + `aim (n)
i=j−1 i=j−1
n
Y n
X
= (1 − ai m ) + `aj−1 m (n) + `aj m (n)
i=j−1 i=j
Yn n
Y n
X
= (1 − ai m ) + aj−1 m (1 − ai m ) + `aj m (n)
i=j−1 i=j i=j
Yn n
Y n
X
= (1 − ai m ) + {1 − (1 − aj−1 m )} (1 − ai m ) + `aj m (n)
i=j−1 i=j i=j
Yn n
X
= (1 − ai m ) + `aj m (n)
i=j i=j
= 1.
Moreover, 0 ≤ `aij (n) ≤ 1 for all i, j ∈ {1, . . . , n}. Thus, applying the triangle
inequality, we have
n
n n
! n X i
X
X X X
a a
x = 1 − ` (n) x + ` (n)x
j
ij j ij j
j=1 j=1 i=j i=1 j=1
!
Xn
X n
X n
X i
≤
1− `aij (n) xj
+ `aij (n)xj
(57)
j=1 i=j i=1 j=1
!
Xn Xn X n
X i
= 1− `aij (n) kxj k + `a
(n)x
ij j
j=1 i=j i=1 j=1
53
n n
!
i
n
X
X X
a
X
= kxj k −
`ij (n)xj
+ `aij (n)xj
j=1 i=j i=1 j=1
Xn Xn X n n
X i
a
X a
= kxj k − `ij (n)xj + `ij (n)xj
j=1 j=1 i=j i=1 j=1
Xn Xn X i n
X i
a
X
= kxj k − `ij (n)xj + `aij (n)xj
j=1 i=1 j=1 i=1 j=1
n n i
i
!
X X X
a
X a
= kxj k − `ij (n)xj −
`ij (n)xj
.
j=1 i=1 j=1 j=1
where a0 , a1 ∈ Ln with
a11 0 ··· ··· 0
.. .. ..
0 ··· 0 a21 a22 . . .
. .
.. . . ... ,
.. .. .. ..
a0 =
a1 = . . . 0 . .
0 ··· 0 an−11 an−12 · · ·
an−1n−1 0
1 1 ··· 1 1
Qn(n+1)/2 Qn(n+1)/2
Thus, considering f to a function on i=1 [0, 1], f is continuous on i=1 [0, 1].
Therefor, we obtain the following.
54
Corollary 2.3.4 (cf. [24, Corollary 3.3]). Let n
≥ 2 and x
1 , x2 , · · · , xn in a Banach
Pn
Pn
space X. For each ω with 0 ≤ ω ≤ j=1 kxj k −
j=1 xj
, there exists a ∈ Ln such
that
!
n i i
X X
a
X
a
ω= `ij (n)xj −
`ij (n)xj
.
i=1 j=1 j=1
Theorem 2.3.5 (cf. [24, Corollary 3.4]). Let n ≥ 2. For all elements x1 , x2 , · · · , xn
in a Banach space X, the following inequalities hold
!
n n n
X x
j
X
X
0≤ n−
min kxj k ≤ kxj k −
xj
.
kxj k
1≤j≤n
j=1
j=1
j=1
55
Theorem 2.3.6 (cf. [24, Corollary 3.5]). Let n ≥ 2. For all elements x1 , x2 , · · · , xn
in a Banach space X, the following inequalities hold
n
i
! n
n
X
X x∗
X
X
j
0≤ i−
(kx∗i k − kx∗i+1 k) ≤ kxj k −
xj
,
∗
i=2
kxj k
j=1
j=1 j=1
where x∗1 , x∗2 , . . . , x∗n are the rearrangement of x1 , x2 , . . . , xn which satisfies kx∗1 k ≥
kx∗2 k ≥ · · · ≥ kx∗n k and x∗n+1 = 0.
Proof. Let us first show in the case kx∗1 k > kx∗2 k > · · · > kx∗n k. If we take a =
(aij ) ∈ Ln as
kx∗i k − kx∗i+1 k
aij = (1 ≤ j ≤ i ≤ n),
kx∗j k − kx∗i+1 k
then, for all j ≤ i with 2 ≤ i ≤ n, we have `aij (n) = (kx∗i k − kx∗i+1 k)/kx∗j k. Indeed,
when 2 ≤ j ≤ n − 1, for all i with 1 ≤ j ≤ i, we have
n
Y
`aij (n) = aij (1 − akj )
k=i+1
n
kx∗i k − kx∗i+1 k Y kx∗k k − kx∗k+1 k
= ∗ · 1− ∗
kxj k − kx∗i+1 k k=i+1 kxj k − kx∗k+1 k
n
kx∗i k − kx∗i+1 k Y kx∗j k − kx∗k k
= ∗ ·
kxj k − kx∗i+1 k k=i+1 kx∗j k − kx∗k+1 k
kx∗i k − kx∗i+1 k kx∗j k − kx∗i+1 k kx∗j k − kx∗i+2 k kx∗j k − kx∗n k
= · · · · ·
kx∗j k − kx∗i+1 k kx∗j k − kx∗i+2 k kx∗j k − kx∗i+3 k kx∗j k − kx∗n+1 k
kx∗ k − kx∗i+1 k
= i .
kx∗j k
Moreover, when j = n, we see that `ain (n) = kx∗n k/kx∗j k = (kx∗n k − kx∗n+1 k)/kx∗j k. In
this case, we see that
!
n
X i
X
X i
f (a) = k`aij (n)x∗j k −
`aij (n)x∗j
i=1 j=1 j=1
n i
i
!
X X
kx∗i k − kx∗i+1 k ∗
X kx∗i k − kx∗i+1 k
= xj
−
x∗j
∗ ∗
j=2 j=1
kxj k
j=1
kxj k
n
( i
i
)
x∗j
∗
X X
∗ ∗
X x j
=
kx∗ k
(kxi k − kxi+1 k) −
(kx∗i k − kx∗i+1 k)
∗
i=2 j
j=1
kx j k
j=1
56
n
( i
i
)
X X
X x∗
j
= (kx∗i k − kx∗i+1 k) −
(kx∗i k − kx∗i+1 k)
∗
i=2 j=1
j=1
kx j k
!
n i
X
X x∗j
= i−
(kx∗i k − kx∗i+1 k).
∗
i=1
j=1
kxj k
We next prove a general case by using a technique in the proof of Theorem 2.2.3.
Let kx∗1 k ≥ kx∗2 k ≥ · · · ≥ kx∗n k. For each fixed integer m with m > n, we set
∗ i
xi,m = 1 − x∗i (1 ≤ i ≤ n).
m
Then we see that kx∗1,m k > kx∗2,m k > · · · > kx∗n,m k > 0, and so we have
!
n i ∗ n n
X
X x j,m
∗ ∗
X
∗
X
∗
0≤ i−
(kxi,m k − kxi+1,m k) ≤ kxj,m k −
xj,m
,
i=2
kx∗j,m k
j=1 j=1
j=1
where x∗n+1,m = 0. Since x∗i,m → x∗i (m → ∞), we have the conclusion. This
completes the proof.
Lemma 2.3.7 (cf. [1, Problem 11.1]). Let (X, k · k) be a strictly convex Banach
space. For x1 , . . . , xn ∈ X, the following assertions are equivalent:
Xn
X n
(i)
xj
= kxj k;
j=1 j=1
57
In [19] and [27], Kato et al. consider equality attainedness for the inequality
(45) and (49). For each m with 1 ≤ m ≤ n, we put Im = {1, 2, . . . , m}. For
α = (α1 , α2 , . . . , αn ) ∈ Rn and 1 ≤ m ≤ n, we define
+
Im (α) = {k ∈ Im : αk > 0},
−
Im (α) = {k ∈ Im : αk < 0}.
+ − + −
|Im (α)| and |Im (α)| are the cardinal numbers of Im (α) and Im (α) respectively.
Theorem 2.3.8 (cf. [27, Theorem 3.7]). Let X be a strictly convex Banach space
and x1 , x2 , . . . , xn nonzero elements in X with kx1 k > kx2 k > · · · > kxn k. Then the
equality
!
n n k n
X
X
X x j
X
x + k − (kx k − kx k) = kxj k
j
k k+1
kxj k
j=1 k=2 j=1 j=1
holds if and only if there exists α = (α1 , α2 , . . . , αn ) ∈ Rn with 1 = α1 > |α2 | >
|α3 | > · · · > |αn | such that
xm = αm x1 ,
+ −
|Im (α)| ≥ |Im (α)|
Theorem 2.3.9 (cf. [27, Theorem 3.4]). Let X be a strictly convex Banach space
and x, y nonzero elements in X with kxk > kyk. Then the equality
x y
kx + yk + 2 −
kxk kyk
kyk = kxk + kyk
+
holds if and only if there exists a real number α with 0 < α < 1 satisfying y = ±αx.
Theorem 2.3.10 (cf. [27, Theorem 3.5]). Let X be a strictly convex Banach space
and x, y, z nonzero elements in X with kxk > kyk > kzk. Then the equality
x y z
kx + y + zk + 3 −
kxk kyk kzk
kzk
+ +
x y
+ 2−
+
(kyk − kzk) = kxk + kyk + kzk
kxk kyk
holds if and only if there exist α, β with 0 < β < α < 1 satisfying one of the following
conditions:
58
(a) y = αx, z = ±βx,
(i) J = {1, . . . , n} if and only if aij ∈ [0, 1) for all i, j ∈ {1, . . . , n}; and
(ii) J = ∅ if and only if, for each j ∈ {1, . . . , n}, there exists i with j ≤ i ≤ n
such that aij = 1
holds if and only if either I = ∅ and J = ∅ or, for each g, h, k, m ∈ {1, . . . , n}, the
following assertions hold:
(i) if J 6= ∅, then, for each g, h, k ∈ J and m ∈ {1, . . . , n},
59
Proof. Let I = ∅ and J = ∅. In this case, for each i, j ∈ {1, . . . , n},
i
X n
X
`aij (n)xj = 0 and `aij (n) = 1.
j=1 i=j
Hence
n X
X i n X
X n n
X n
X n
X
0= `aij (n)xj = `aij (n)xj = xj `aij (n) = xj .
i=1 j=1 j=1 i=j j=1 i=j j=1
Therefore we have
!
Xn Xi
Xi
n X
X i
k`aij (n)xj k −
`aij (n)xj
= `aij (n)kxj k
i=1 j=1 j=1 i=1 j=1
Xn X n
= `aij (n)kxj k
j=1 i=j
Xn n
X
= kxj k `aij (n)
j=1 i=j
Xn
= kxj k
j=1
n
X
Xn
= kxj k −
xj
.
j=1 j=1
Next let J 6= ∅. If (58) holds, then the equality (57) also holds. Thus, by Lemma
2.3.7, the following equalities hold for any g, h, k, m ∈ {1, . . . , n}:
!
!
X n
X n
1− `aih (n) xh
1 − `aig (n) xg
i=h i=g
!
!
Xn
Xn
a a
=
1− `ig (n) xg
1 − `ih (n) xh ,
i=g i=h
!
X m
X n
`amj (n)xj
1 − `aik (n) xk
j=1 i=k
!
m
Xn
X
=
1− `aik (n) xk
`amj (n)xj .
i=k j=1
Pn a
By Lemma 2.3.3, we see that 0 < 1 − i=j `ij (n) for all j ∈ J. Thus the above
equalities equivalent to kxh kxg = kxg kxh , g, h ∈ J, and
X m
m
X
a
`mj (n)xj
xk = kxk k `amj (n)xj , k ∈ J, m ∈ {1, . . . , n},
j=1 j=1
60
respectively. The converse is clear. Finally let J = ∅ and I 6= ∅. In this case if
(58) holds, then, for each k, m ∈ I, we have
m
k
k
m
X
X
X
X
a a a
`mj (n)xj
`kj (n)xj =
`kj (n)xj
`amj (n)xj .
j=1 j=1 j=1 j=1
Proof. (⇒) Assume that (58) holds. By Proposition 2.3.12 (i), if we put αj =
kxj k/kxj0 k, j ∈ J, then αj > 0 and xj = αj xj0 , j ∈ J. Moreover, for each i ∈
{1, . . . , n},
i
X
Xi
x
j0
`aij (n)xj =
`aij (n)xj
.
kxj0 k
j=1 j=1
Since
i
X X X
`aij (n)xj = `aij (n)xj + `aij (n)xj
j=1 j∈Ji j∈Jic
X X
= αj `aij (n)xj0 + `aij (n)xj , i ∈ {1, . . . , n},
j∈Ji j∈Jic
we have
i
!
X 1
X a
X
`aij (n)xj = ` (n)xj
− αj `aij (n) xj0 .
kxj0 k
j=1 ij
j∈Jic
j∈J i
Put
i
1
X a
X
βi = `ij (n)xj
− αj `aij (n).
kxj0 k
j=1
j∈J i
61
αj `aij (n) + βi and
P
Then we see that 0 ≤ j∈Ji
X
`aij (n)xj = βi xj0 , i ∈ {1, . . . , n}. (62)
j∈Jic
(⇐) Assume that there exist positive real numbers αj and real numbers βi such that
xj = αj xj0 , j ∈ J, 0 ≤ j∈Ji αj `aij (n) + βi and (62) holds. Since kxj k = αj kxj0 k for
P
all j ∈ J, it is clear that (59) is valid. So, by Proposition 2.3.12 (i), we need only to
prove (60). Since
i
!
X X
`aij (n)xj = αj `aij (n) + βi xj 0 , i ∈ {1, . . . , n},
j=1 j∈Ji
we have
!
Xi
X
a
`ij (n)xj
= αj `aij (n) + βi kxj0 k, i ∈ {1, . . . , n}.
j=1 j∈Ji
Thus
i i
X
a 1
X
a
`ij (n)xj = `ij (n)xj
xj0 , i ∈ {1, . . . , n},
kxj0 k
j=1 j=1
By Lemma 2.3.11, for a = (aij ) ∈ Ln , recall that aij ∈ [0, 1), i, j ∈ {1, . . . , n}, is
equivalent to J = {1, . . . , n}. Thus we immediately have the following corollary.
Next, we consider the case J = ∅ for a = (aij ) ∈ Ln . In this case we note that
ann = 1. Take a = (aij ) ∈ Ln with anj = 1 for all j ∈ {1, . . . , n}. Then we see that
0 ... ... 0
. .. ..
. ...
. . .
(`aij (n)) = .
0 . . . 0 0
1 ... 1 1
Thus it is clear that, for each x1 , . . . , xn in a normed space X, (58) always holds.
Thus we are interested in the case anj 6= 1 for some j ∈ {1, . . . , n − 1}. However,
generally it is complicated. We give the following special case.
62
Theorem 2.3.15. Let n ≥ 2 and a = (aij ) in Ln . For nonzero elements x1 , . . . , xn
in a strictly convex Banach space X, if aij ∈ [0, 1) for all i > j and aii = 1 for all
i ∈ {1, . . . , n}, then the equality (58) holds if and only if there exist real numbers
αj , j ∈ {1, . . . , n}, such that xj = αj x1 and ij=1 αj `aij (n) ≥ 0, i ∈ {1, . . . , n}.
P
Pn a
Proof. (⇒) Since aii = 1 for all i ∈ {1, . . . , n}, by Lemma 2.3.3, i=k `ik (n) =
1, k ∈ {1, . . . , n}, and we note that `a11 (n) > 0. If (58) holds, then, by Proposition
2.3.12, for all i ∈ {1, . . . , n},
Xi
i
X
a
a a
`ij (n)xj
`11 (n)x1 = k`11 (n)x1 k `aij (n)xj . (63)
j=1 j=1
P2 a
Let i = 2 and assume that = 0. Since `a22 (n) > 0, if we put
j=1 `2j (n)xj
α2 = −`a21 (n)/`a22 (n), then x2 = α2 x1 and 2j=1 αj `a2j (n) = 0. Next assume that
P
P2 a
j=1 `2j (n)xj 6= 0. By (63), we have
!
2
1 1
X a
def
x2 = a `2j (n)xj
− α1 `a21 (n) x1 = α2 x1 .
`22 (n) kx1 k
j=1
We see that
!
X2
X2
x 2 2
a a
1 X X
αj `2j (n) x1 =
`2j (n)xj
= `a2j (n)xj = αj `a2j (n) x1 .
kx1 k
j=1 j=1 j=1 j=1
P2
Thus j=1 αj `a2j (n) > 0, and hence in any case we have
2
X
αj `a2j (n) ≥ 0.
j=1
Now we assume that, for each i = m with 2 ≤ m ≤ n − 1, (58) holds. Then there
exist real numbers αj , j ∈ {1, . . . , m}, such that xj = αj x1 , j ∈ {1, . . . , m}, and
Pi a
j=1 αj `ij (n) ≥ 0, i ∈ {1, . . . , m}.
If j=1 `m+1 j (n)xj = 0, then we see that xm+1 = αm+1 x1 and m+1
Pm+1 a P a
j=1 αj `m+1 j (n) =
0 for αm+1 = − j=1 αj `am+1 j (n)/`am+1 m+1 (n). In the case that m+1
Pm P a
j=1 `m+1 j (n)xj 6=
0, if we put
m+1
!
1 1
X
αm+1 = `a (n)xj
− α1 `am+1 1 (n) ,
`am+1 m+1 (n) kx1 k
j=1 m+1 j
63
then we see that xm+1 = αm+1 x1 and, by (63),
m+1
m+1
X
X
x
a a
1
α ` (n) x = ` (n)x
j m+1 j 1
m+1 j j
kx1 k
j=1 j=1
m+1
X
= `am+1 j (n)xj
j=1
m+1
!
X
= αj `am+1 j (n) x1 .
j=1
Pm+1
Thus j=1 αj `am+1 j (n) > 0, and hence we have
m+1
X
αj `am+1 j (n) ≥ 0.
j=1
Corollary 2.3.16 (cf. [27, Theorem 3.7]). For all nonzero elements x1 , . . . , xn in a
strictly convex Banach space X with kx1 k > kx2 k > . . . > kxn k, the equality
i
!
n
Xn
X x
n
X
j
X
i−
(kxi k − kxi+1 k) = kxj k −
xj
(64)
i=1
j=1
kxj k
j=1
j=1
64
holds if and only if there exist real numbers αj , j ∈ {1, . . . , n}, with 1 = α1 > |α2 | >
+ −
. . . > |αn | such that xj = αj x1 , j ∈ {1, . . . , n}, and |Im (α)| ≥ |Im (α)| for every m
+ − +
with 1 ≤ m ≤ n, where |Im (α)| and |Im (α)| are the cardinal numbers of Im (α) =
−
{j ∈ {1, . . . , m} : αj > 0} and Im (α) = {j ∈ {1, . . . , m} : αj < 0}, respectively.
Proof. As in the proof of [24, Corollary 3.5] or the proof of Theorem 2.3.6, if we
put
kxi k − kxi+1 k
aij = , i, j ∈ {1, . . . , n},
kxj k − kxi+1 k
then a = (aij ) ∈ Ln and
kxi k − kxi+1 k
`aij (n) = , i, j ∈ {1, . . . , n}.
kxj k
In this case, (63) is equivalent to (64). Thus, by (61), if (64) holds, then there exists
αj ∈ R such that
m
X
xj = αj x1 and αj `amj (n) ≥ 0, j, m ∈ {1, . . . , n}.
j=1
Since
kxm k − kxm+1 k |αm | − |αm+1 |
`amj (n) = = ,
kxj k |αj |
we see that m m
X X αj
0≤ αj `amj (n) = (|αm | − |αm+1 |) .
j=1 j=1
|αj |
Thus we have
m
X αj
0≤
j=1
|αj |
m m
X αj X αj
= +
+
|αj | −
|αj |
j∈Im (α) j∈Im (α)
Xm m
X
= 1+ (−1)
+ −
j∈Im (α) j∈Im (α)
+ −
= |Im (α)| − |Im (α)|,
65
2.4 Applications of sharp triangle inequalities
By using sharp triangle inequalities, we can characterize some geometrical properties
of Banach spaces. In this section, for a Banach space X, SX is a unit sphere in X:
SX = {x ∈ X : kxk = 1}, and BX is a unit ball in X: BX = {x ∈ X : kxk ≤ 1}.
We first consider the strict convexity. A Banach space X is strictly convex if for all
x, y ∈ SX with x 6= y, kx + yk < 2 holds (cf. [23]).
Theorem 2.4.1 (cf. [37, Proposition 8]). Let X be a Banach space. The following
conditions are equivalent:
(ii) Let x, y ∈ X such that kx + yk = kxk + kyk and x, y 6= 0. Then there exists
α > 0 such that x = αy.
Proof. Assume (i). Suppose that kx + yk = kxk + kyk and x, y 6= 0. By the shape
triangle inequality (47):
x y
kx + yk + 2 −
kxk + kyk
min{kxk, kyk} ≤ kxk + kyk,
we have
x y
kxk + kyk
= 2.
Theorem 2.4.2 (cf. [37, Proposition 9]). Let X be a Banach space. The following
conditions are equivalent:
(ii) For all {xn }, {yn } in SX such that kxn + yn k → 2, we have kxn − yn k → 0.
66
(iii) For all {xn }, {yn } in BX such that kxn + yn k → 2, we have kxn − yn k → 0.
Proof. We only show the implication (ii) ⇒ (iii). Take {xn }, {yn } in BX such that
kxn +yn k → 2. Since kxn +yn k ≤ kxn k+kyn k ≤ 2, we have kxn k → 1 and kyn k → 1.
Hence we may suppose that xn 6= 0 and yn 6= 0 for all n. Then, since
xn yn
kxn + yn k + 2 −
kxn k + kyn k
min{kxn k, kyn k} ≤ kxn k + kyn k ≤ 2,
we have
xn y n
kxn k + kyn k
→ 2.
By the assumption,
xn yn
kxn k − kyn k
→ 0.
Since
x n
xn yn
yn
kxn − yn k ≤
x n −
+
−
+
− yn
,
kxn k
kxn k kyn k
kyn k
we have kxn − yn k → 0 as n → ∞.
Theorem 2.4.3 (cf. [37, Proposition 10]). Let X be a Banach space. The following
conditions are equivalent:
(ii) There exists ε > 0 such that for all x, y ∈ BX , we have min{kx+yk, kx−yk} ≤
2(1 − ε).
Proof. Assume (i). Then there exists ε > 0 such that for all x, y ∈ SX , we have
min{kx + yk, kx − yk} ≤ 2(1 − ε). Take any x, y ∈ BX . If min{kxk, kyk} ≤ 1/2,
then
1 3 1
kx ± yk ≤ kxk + kyk ≤ 1 + = = 2 1 − .
2 2 4
67
If min{kxk, kyk} ≥ 1/2, then
x y
x y
min
+
,
−
≤ 2(1 − ε).
kxk kyk
kxk kyk
Let
x y
x y
kxk + kyk
≤
kxk − kyk
.
2ε ε
≤2− =2 1− .
2 2
Similarly, if
x y
x y
kxk + kyk
≥
kxk − kyk
,
then
x y
kx − yk ≤ kxk + kyk − 2 −
−
min{kxk, kyk}
kxk kyk
2ε ε
≤2− =2 1− .
2 2
Hence min{kx + yk, kx − yk} ≤ 2(1 − ε/2). Put ε0 = min{ε/2, 1/4}, then we have
(ii). The opposite implication is clear.
Theorem 2.4.4 (cf. [19, Corollary 4]). For a Banach space X the following condi-
tions are equivalent:
68
(ii) There exists ε (0 < ε < 1) such that for any x1 , . . . , xn ∈ BX , there exists
θ = (θj ) of n signs ±1 for which (65) holds true.
Proof. Assume (i). Then there exists ε (0 < ε < 1) such that for any x1 , . . . , xn ∈
SX , there exists θ = (θj ) of n signs ±1 for which (65) is valid. Take x1 , . . . , xn ∈ BX .
If kxj0 k := min{kx1 k, . . . , kxn k} ≤ 1/2, we have
n
X
X 1 1
θj xj
≤ kxj k + kxj0 k ≤ (n − 1) + ≤ n 1 − .
2 2n
j=1 j6=j
0
Let kxj0 k ≥ 1/2. According to our assumption there exists n signs (θj ) for which
(65) is valid for x1 /kx1 k, . . . , xn /kxn k. Therefore by the first inequality of Theorem
2.2.1,
!
n n n
X
X
X x j
θ x ≤ kxj k − n−
θj
kxj0 k
j j
kxj k
j=1 j=1 j=1
nε
≤2−
2 ε
=n 1− .
2
Consequently by letting ε0 = min{ε/2, 1/(2n)} we have the conclusion.
69
References
[1] Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory. Graduate
Studies in Mathematics, 51. AMS, Providence, RI, (2002).
[5] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed.,
North-Holland, Amsterdam-New York-Oxford, 1985.
[6] H. Belbachir, M. Mirzavaziri and S. Moslehian, q-norms are really norms, The
Australian Journal of Mathematical Analysis and Applications, vol. 3, no. 1
(2006), article 2, 1–3.
[8] F. F. Bonsall, and J. Duncan, Numerical Ranges II, Lecture Note Series, Vol.
10, London Math. Soc., London, 1973.
70
[12] M. Fujii, M. Kato, K.-S. Saito and T. Tamura, Sharp mean triangle inequality,
Math. Inequal. Appl. 13 (2010), 743–752.
[13] C.-Y. Hsu, S.-Y. Shaw and H.-J. Wong, Refinements of generalized triangle
inequalities, J. Math. Anal. Appl. 344 (2008), 17–31.
[15] T. Izumida, K.-I. Mitani and K.-S. Saito, On generalized triangle inequalities
in normed spaces, RIMS Kokyuroku, 1893 (2014), 20–27.
[16] T. Izumida, K.-I. Mitani and K.-S. Saito, Another approach to characteriza-
tions of generalized triangle inequalities in normed spaces, Cent. Eur. J. Math.,
12(11) (2014), 1615–1623.
[18] M. Kato, K.-S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and
convexity, J. Aust. Math. Soc., 75 (2003), 413–422.
[19] M. Kato, K.-S. Saito and T. Tamura, Sharp triangle inequality and its reverse
in Banach spaces, Math. Inequal. Appl., 10(2) (2007), 451–460.
[20] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly, 113 (2006),
256–260.
[21] L. Maligranda, Some remarks on the triangle inequality for norms, Banach J.
Math. Anal., 2(2) (2008), 31–41.
71
[25] K.-I. Mitani and K.-S. Saito, On generalized `p -spaces, Hiroshima Math. J., 37
(2007), 1–12.
[26] K.-I. Mitani and K.-S. Saito, Dual of two dimensional Lorentz sequence spaces,
Nonlinear Analysis, 71 (2009), 5238–5247.
[27] K.-I. Mitani and K.-S. Saito, On sharp triangle inequalities in Banach spaces
II, J. Inequal. Appl., 2010, Art. ID 323609, 17pp.
[28] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach
spaces, Math. Ineq. Appl., 8 (2005), 147–157.
[29] K.-I. Mitani, K.-S. Saito, M. Kato and T. Tamura, On sharp triangle Inequali-
ties in Banach spaces, J. Math. Anal. Appl. 10 (2007), 451–460.
[34] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of ab-
solute normalized norms on C2 , J. Math. Anal. Appl., 244 (2000), 515–532.
[35] K.-S. Saito, M. Kato and Y. Takahashi, Absolute norms on Cn , J. Math. Anal.
Appl., 252 (2000), 879–905.
[36] K.-S. Saito, R. An, H. Mizuguchi and K.-I. Mitani, Another aspect of triangle
inequality, ISRN Math. Anal., 2011, Art. ID 514184, 5pp.
72
[37] K.-S. Saito and K.-I. Mitani, On sharp triangle inequalities in Banach spaces
and their applications, Banach and Function Spaces III, Yokohama Publ., Yoko-
hama, (2009), 295–304.
[39] H. Sano, T. Izumida, K.-I. Mitani, T. Ohwada and K.-S. Saito, Characterization
of the intermediate values of the triangle inequality II, Cent. Eur. J. Math.,
12(5) (2014), 778–786.
[40] S.-E. Takahasi, J.M. Rassias, S. Saitoh and Y. Takahashi, Refined generaliza-
tions of the triangle inequality on Banach spaces, Math. Ineq. Appl., 13 (2010),
733–741.
[41] T. Zachariades, On `p -spaces and ψ-direct sums of Banach space, Rocky Moun-
tain J. M., 41 (2011), 971–997.
[42] L. Zhang, T. Ohwada and M. Chō, Reverses of the triangle inequality in inner
product spaces, Math. Ineq. Appl., 17 (2014), 539–555.
73