Integration by Parts
Integration by Parts
Integration by Parts
1)
Step 2: = =
( )
( ) *9 +
= =
u=? du = ? u = x2 du = 2x dx
= ? v=?
3)
u = ex du = ex dx
= sin x dx v = - cos x
Step 2: Arrange the equation into correct order as below = Step 3: If still in form of two functions, repeat the
Step 2: = = -
dx
Step 3:
Step 1 again. = u1 = 2x du1 = 2 dx = cos x dx v1 = sin x Step 4: Arrange the equation properly and solve the integration part. = = = [ EXERCISE ] Step 4: = =
u1 = du1 =
= cos x dx v1 = sin x
2I
; :
6 3
2)
5
4
(4)
31
INTEGRATION USING PARTIAL FRACTION 2) There are 4 types of partial fraction: o Linear function o Repeated factor function o Quadratic term function o Improper fraction
: ; :
Integrate
; :
; :
5 5 4 4 3
1)
Integrate
3
Step 2: Multiply the equation 3 3 Step 3: Solve for the unknowns x=0 x=1 x = -3 When x = 0, 0 + 1 = A (0 + 0 3) + 0 + 0 A= When x = 1, ( B= When x = -3, 3 C= (
6
3 3
Step 4:
; :
; :
3 ) 3 3 3) Integrate
( )
Step 1:
: :
: ; :
Step 3:
; 6
Compare power of x, x2 1 = A + B 1= B=
4
+B
x 0 = -2B + C = ( )
5
C=
32
Step 4:
4 5
4
4 ;
: :
: ;
4)
Integrate
:6 ;
; 8
Step 1: 3
x-2
4
4
5
3 3
6 ddd i -18
x 3x
6 3
Step 2: 18 = A(x2-3x) + B(x-3) + C(x2) Step 3: When x = 0, B = -6 Compare power of x, x2 0 = A + C A = -2 Step 4: When x = 3, C=2
6 ;
+
3
;7 ; ; ; ;;
b)
c)
:; ; : ; : :
d)
33