5.3 Definite Integrals: A F B F DX X F
5.3 Definite Integrals: A F B F DX X F
5.3 Definite Integrals: A F B F DX X F
3 Definite Integrals
Definite Integrals
a
f ( x) dx F (b) F (a)
Properties of Definite Integrals
2. b b
cf x dx c f x dx
a a
b c b
f x dx f x dx f x dx
3.
a a c
for a c b
a
f x dx 0
4
a
b a
5.
f x dx f x dx
a b
Example 1
b
2
x dx
a
Solution
b
b 2 x3
a
x dx
3 a
3 3
b a
3 3
Example 2
5 2
Given ∫ 2 f(x)dx = 4, find ∫ 5 f(x)dx
Solution
2
∫ 5 f(x)dx = -4
b a
∫ a f(x)dx = - ∫ b f(x)dx
Example 3
2
Find ∫ 2x dx
0
Solution
2
∫ 0 2 dx 2
∫ 0 2 dx
2
= [ 2x ] 0 =2(2+0)
= (2)(2) – (2)(0) =4
=4
b
∫ a c dx = c ( b + a ),
where c is any constant.
Example 4
2
Find ∫ 2 7 dx
Solution
2
∫ 2 7 dx
2
= [ 7x ] 2
= 7(2) – 7(2)
=0
a
∫ a f(x)dx = 0
Example 5
1 dx
2
x
1
Solution
2
x3
x
3 1
8 1
2 1
3 3
10
3
Example 6
Evaluate 3
( x 1 ) dx
3
1
Solution
3
x4
x
4
1
81 1
( 3) ( 1) = 24
4 4
Example 7
1
Evaluate 2x
e dx
0
Solution
1
e
2x
1 2
= e 1
2 0 2
Example 8
1
1 dx
2 3
Evaluate 3 x x
1
Solution
Let u = x3 + 1 , du = 3x2 dx
When x = -1 , u = ( -1 ) 3 + 1 = 0
When x = 1 , u = ( 1 )3 + 1 = 2
1 2
3 x 2
x 3
1 dx u du
1 0
2
2 3
u 2
3 0
2 32 3 4 2
2 0 2
3
3
Exercise
1
3x
Evaluate xe dx
0
Answer : 3
2e 1
9 9
i. Area (between the curve and the x-axis)
Formula :
f(x)
b
1. A y dx
a
a b
b c
2. A f ( x)dx f ( x)dx
a b
a b c
Example 1
Find the area of the region between the curve of y = 8x – 2x 2, x = 2,
x = 3 and the x-axis.
Solution
y = 8x – 2x 2, x = 2, x = 3
3
2 8x 2 x
2
dx
4x 2 2
3
3 3
x 2
22
3
Example 2
Find the area of the region between the curve of y = x 2 – 4x, the x-axis
and the lines x = 0 and x = 4
Solution
y = x 2 – 4x
So, the area of the region is
4 2
0
x 4 x dx
2 4
x 4x
3
3 2 0
64
unit 2
3
ii. Area (Between the curve and the y-axis)
• Formula :
d
d
A x dy
c c
Example 4
Solution
Area
4
1
= (y
0
2
2) dy
4
2 3
= y 2
2 y
3 0
2 32
= 3 4 24 0 = 40
unit 2
3
iii. Area (Between two curves)
y2
y1
a b
b
A y 2 - y1 dx
a
Example 5
2
(9 x ) ( x 3) dx
0
5
x 2 5 x dx
0
5
x 5x
3 2
3 2
0
125 125 125
units 2
3 2 6
Example 6
x = 8 – y2 x = y2
Solution
2y2 8 0
( y 2)( y 2) 0
y 2 or y 2
[(8 y ) y ] dy
2 2
2
2
(8 2 y 2 ) dy
2
8y y 2
3
3 2
2
16 16 64
16 16 units 2
3 3 3
Exercise
1. Find the area enclosed by the lines 13
x = 1, x = 2, y = 3x and the curve y = x 2 answer : unit 2
6
b
Volume 2
( radius function ) dx
a y
b y =f(x)
V 2
( y ) dx
a
b a b x
V f ( x)
2
dx
a
Definition :
(b) Volume of a solid of revolution (Revolve about the y-axis)
The volume of the solid generated by revolving the region about the
y axis between the graph of the continuous function x = g (y ) and
the y - axis from y = c to y = d is
b
Volume 2
( radius function ) dy
a
b y x =g(y)
V 2 d
( x ) dy
a
c
b
V g ( y ) 2
dy x
a
Example 1
Find the volume of the solid of revolution formed by revolving the graph
of f(x) = 4 – x 2 about the x -axis in the first quadrant.
Solution
2
V ( f ( x)) 2 dx
0
4 x
2
2 2
dx
0
2
0
( 16 - 8x 2 x 4 ) dx
2
8x x 3 5
16x -
3 5 0
256
unit3
15
Example 2
The curve y x , the line x = 2 , and the x – axis form the sides of a
bounded region R . Find the volume of the solid generated by
revolving R about the x- axis .
Solution
2
V
0
y 2 dx
2
0
( x ) 2 dx
2
x 2
2 0
4
0
2
2 unit3
Example 3
Find the volume of the solid obtained by rotating the region bounded
by y = x 3 , y = 8 and x = 0 around the y – axis .
Solution
y
y=8
8
x=0
y = x 3 or x = 3 y
0 x 0 x
x3= y
x 3 y g (y) 3 y
b
V g ( y) 2 dy
a
8
( 3
y )2 dy
0
8 2
y 3
dy
0
3y 3 5 8
5
0
96
unit3
5
More general solids of revolution
Volume of solids generated by revolving the region
between two curves
a) Revolve about x –axis
Suppose that y 1 = f (x ) and y 2 = g (x ) are nonnegative continuous
function such that , f (x ) ≥ g (x ) for a ≤ x ≤ b and let R be the
region enclosed between the graphs of these functions and the lines
x = a and x = b .
The volume of the solid generated by revolving R about the x- axis is
b
V ( y 1 y 2 ) dx
2 2
a
f (x) g ( x) dx
b
V 2 2
a
y
y = f (x)
x=b
R
x =a y=g(x)
a b
Example 4
Find the volume of the solid generated by revolving the region bounded
by the line y = x + 2 and the parabola y = x2.
Solution
x + 2 = x2 y
x2 – x – 2 = 0
(x – 2)(x + 1) = 0
x = 2 , x = -1
-1 2 x
2
V ( y1 y 2 ) dx
2
π b
a
2
π [(x2) 2
(x 2 ) 2 ] dx
-1
2
(x 2 ) 3
x 5
π
3 5 1
64 32 1 1
3 5 3 5
72
units3
5
b) Revolve about y - axis
Suppose that x 1 = f (y ) and x 2 = g ( y) are nonnegative continuous
function such that , f (y ) ≥ g ( y) for c ≤ y ≤ d and let R be
the region enclosed between the graphs of these functions and the
lines y = c and y = d.
dy
d
V x1 x 2
2 2
f y g y dy
d
V 2 2
c
Example 5
Find the volume of the solid generated when the region bounded by
y 2 = 4x and y = 2x - 4 is revolved about the y - axis.
Solution
y2 = 4x , y = 2x - 4
y2 y4 y
x x
4 2
y2 y 4 4
4 2
y2 – 2y – 8 = 0 x
-2
(y – 4)(y + 2) = 0
y = 4 , y = -2
4 y 4 2 2
V
2
2
dy
4
1 1 4
4
y 4 2
y dy
2 4 16
1 1 5
4
y4
3
y
12 80 2
128 64 2 2
3 5 3 5
144
units3
5
Example 6
Find the volume of the solid generated by revolving the region enclosed
by y2 = x and y = - x + 2 about the indicated line :
(a) y – axis (b) x = -2
Solution
(a) y2 = x ; y = -x + 2 , y-axis
y y2 = 2 - y
y2 + y – 2 = 0
(y + 2)(y – 1) = 0
1
y = -2 , y = 1
x
-2
The volume of the solid generated
1
V (2 y ) 2 ( y 2 ) 2 dy
2
4 4 y y
1
2
( y ) dy
4
2
1
y y 3 5
4 y 2 y
2
3 5 2
72
units 3
5
(b) y2 = x ; y = -x + 2 , x = -2
R(y) = (2 – y) + 2 = 4 - y
1 r (y) = y2 – (-2) = y2 + 2
r(y) x
-2
R(y)
1
The volume of the solid genetared 12 8 y 3 y 2 y 4 dy
1
2
V (4 y ) ( y 2) dy
2 2 2
y 5
1
2 12 y 4 y y
2 3
5 2
1
16 8 y y 2 ( y 4 4 y 2 4) dy 162
2
unit 3
5
Example 7
Find the volume of the solid generated by revolving the region enclosed
by y = x2 + 1 and y = x + 3 about the indicated line :
(a) x – axis (b) y = 7
Solution
(a) y = x2 + 1 ; y = x + 3 , x - axis
x2 + 1 = x + 3
y
x2 - x – 2 = 0
(x -2)(x + 1) = 0
x=2 ; y=5
x = -1 ; y = 2
-1 2 x
The volume of the solid genetared
2
( x 3) 2 ( x 2 1) 2 dx
1
2
( x 4 x 2 6 x 8)dx
1
2
x x 5 3
3x 8 x
2
5 3 1
67
units 3
5
(b) y = x2 + 1 ; y = x + 3 , y=7
y
y=7
R(y)
r(y)
R(y)= 7 – (x2 + 1) = 6 – x2
r(y) = 7 – (x + 3) = 4 - x
-1 2
2
2
(6 x ) (4 x) dx
2
x
2 2 2 3 5
13x
20 x 4 x
2
1
3 5 1
2
36 12 x 2 x 4 (16 8 x x 2 ) dx 198 3
5
units
1
Exercise
1. Prove that the area enclosed by the curve
1
y
( x 1)(3 x)
1
the line x = 2 and the x- and y-axes is ln 3 unit2
2