Nothing Special   »   [go: up one dir, main page]

Insulated Gate Bipolar Transistor With Ultrafast Soft Recovery Diode

Download as pdf or txt
Download as pdf or txt
You are on page 1of 16

PD - 94382D

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


C

IRGB10B60KD IRGS10B60KD IRGSL10B60KD


VCES = 600V IC = 12A, TC=100C

Features
Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. 10s Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse Recovery Characteristics. Positive VCE (on) Temperature Coefficient.

G E

tsc > 10s, TJ=150C

Benefits
Benchmark Efficiency for Motor Control. Rugged Transient Performance. Low EMI. Excellent Current Sharing in Parallel Operation.

n-channel

VCE(on) typ. = 1.8V

TO-220AB IRGB10B60KD

D2Pak IRGS10B60KD Max.


600 22 12 44 44 22 10 44 20 156 62 -55 to +150

TO-262 IRGSL10B60KD Units


V

Absolute Maximum Ratings


Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.

V W

C 300 (0.063 in. (1.6mm) from case)

Thermal Resistance
Parameter
RJC RJC RCS RJA RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight

Min.

Typ.
0.50 1.44

Max.
0.8 3.4 62 40

Units

C/W

www.irf.com

1
8/18/04

IRG/B/S/SL10B60KD
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES
V(BR)CES/TJ

VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES

Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage -10 Forward Transconductance 7.0 Zero Gate Voltage Collector Current 3.0 300 Diode Forward Voltage Drop 1.30 1.30 Gate-to-Emitter Leakage Current

Max. Units Conditions V VGE = 0V, IC = 500A V/C VGE = 0V, IC = 1.0mA, (25C-150C) 2.20 IC = 10A, VGE = 15V 2.50 V IC = 10A, VGE = 15V TJ = 150C 5.5 V VCE = VGE, IC = 250A mV/C VCE = VGE, IC = 1.0mA, (25C-150C) S VCE = 50V, IC = 10A, PW=80s 150 A VGE = 0V, VCE = 600V 700 VGE = 0V, VCE = 600V, TJ = 150C 1.45 IC = 10A 1.45 V IC = 10A TJ = 150C 100 nA VGE = 20V

Ref.Fig.

5, 6,7 9,10,11 9,10,11 12

Switching Characteristics @ TJ = 25C (unless otherwise specified)


Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min.
Ref.Fig. Max. Units Conditions IC = 10A nC VCC = 400V CT1 VGE = 15V CT4 247 J IC = 10A, VCC = 400V 360 VGE = 15V,RG = 47, L = 200H 607 Ls = 150nH TJ = 25C 39 IC = 10A, VCC = 400V 29 VGE = 15V, RG = 47, L = 200H CT4 262 ns Ls = 150nH, TJ = 25C 32 CT4 340 IC = 10A, VCC = 400V 13,15 464 J VGE = 15V,RG = 47, L = 200H WF1WF2 804 Ls = 150nH TJ = 150C 14, 16 39 IC = 10A, VCC = 400V CT4 28 VGE = 15V, RG = 47, L = 200H 274 ns Ls = 150nH, TJ = 150C WF1 34 WF2 VGE = 0V pF VCC = 30V f = 1.0MHz 4 TJ = 150C, IC = 44A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 47 CT2 CT3 s TJ = 150C, Vp =600V,RG = 47 10 WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 245 330 J TJ = 150C 20, 21 90 105 ns VCC = 400V, IF = 10A, L = 200H CT4,WF3 19 22 A VGE = 15V,RG = 47, Ls = 150nH

Typ. 38 4.3 16.3 140 250 390 30 20 230 23 230 350 580 30 20 250 26 620 62 22

Note to are on page 15

www.irf.com

IRG/B/S/SL10B60KD
25 180 160 20 140 120
Ptot (W)

15
IC (A)

100 80 60

10

40 20

0 0 20 40 60 80 100 120 140 160 T C (C)

0 0 20 40 60 80 100 120 140 160 T C (C)

Fig. 1 - Maximum DC Collector Current vs. Case Temperature

Fig. 2 - Power Dissipation vs. Case Temperature

100

100

10
IC (A)

10 s

10

DC

100 s 1ms

IC A)
1

20 s

0.1 1 10 100 VCE (V) 1000 10000


0 10 100 1000

VCE (V)

Fig. 3 - Forward SOA TC = 25C; TJ 150C

Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V

www.irf.com

IRG/B/S/SL10B60KD
40 35 30 25
ICE (A)

40 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
ICE (A)

35 30 25 20 15 10 5 0

VGE VGE VGE VGE VGE

= 18V = 15V = 12V = 10V = 8.0V

20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6

3 VCE (V)

Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s

Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s

40 35 30 25
ICE (A)

40

VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)

35 30 25 20 15 10 5 0

-40C 25C 150C

20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6

0.0

0.5

1.0

1.5 VF (V)

2.0

2.5

3.0

Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s

Fig. 8 - Typ. Diode Forward Characteristics tp = 80s

www.irf.com

IRG/B/S/SL10B60KD
20 18 16 14
VCE (V) VCE (V)

20 18 16 14 ICE = 5.0A ICE = 10A ICE = 15A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 5.0A ICE = 10A ICE = 15A

12 10 8 6 4 2 0

Fig. 9 - Typical VCE vs. VGE TJ = -40C

Fig. 10 - Typical VCE vs. VGE TJ = 25C

20 18 16

80 70 60 T J = 25C T J = 150C

14
VCE (V)
ICE (A)

12 10 8 6

ICE = 5.0A ICE = 10A ICE = 15A

50 40 30 20 T J = 150C T J = 25C 0 5 10 VGE (V) 15 20

4 2 0 5 10 VGE (V) 15 20
10 0

Fig. 11 - Typical VCE vs. VGE TJ = 150C

Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s

www.irf.com

IRG/B/S/SL10B60KD
800 700 600
Energy (J)
1000

tdOFF
EOFF

500 400 300 200 100 0 0 5

Swiching Time (ns)

100

EON

tdON tF
10 0

tR
5 10 15 20 25

10 IC (A)

15

20

25

IC (A)

Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L=200H; VCE= 400V RG= 47; VGE= 15V

Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L=200H; VCE= 400V RG= 47; VGE= 15V

500 450 400

1000

EOFF

tdOFF

300 250 200 150 100 50 0 0 50

EON

Swiching Time (ns)

350

Energy (J)

100

tdON tR tF
10

100

150

50

100

150

R G ()

RG ()

Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L=200H; VCE= 400V ICE= 10A; VGE= 15V

Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L=200H; VCE= 400V ICE= 10A; VGE= 15V

www.irf.com

IRG/B/S/SL10B60KD
25

RG = 10 RG = 22 RG = 47

25

20

20

IRR (A)

10

RG = 100

IRR (A)

15

15

10

0 0 5 10 15 20 25

0 0 50 100 150

IF (A)

RG ()

Fig. 17 - Typical Diode IRR vs. IF TJ = 150C

Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 10A

25

1200 10 1100 22 47 100 800 700 600 20A 10A

20

1000
Q RR (C)

IRR (A)

15

900

10

500 400
0 500 1000 1500

5.0A

500

1000

1500

diF /dt (A/s)

diF /dt (A/s)

Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150C

Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C

www.irf.com

IRG/B/S/SL10B60KD
450 400 350 300

10 22

Energy (J)

250 200 150 100 50 0 0 5 10 15 20

47 100

25

IF (A)

Fig. 21 - Typical Diode ERR vs. IF TJ = 150C

1000

16

Cies
14 300V 12 400V

Capacitance (pF)

10
VGE (V)
100

Coes

8 6

Cres

4 2 0

10 1 10 100

10

20

30

40

VCE (V)

Q G , Total Gate Charge (nC)

Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz

Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 600H

www.irf.com

IRG/B/S/SL10B60KD
1

D = 0.50
Thermal Response ( Z thJC )

0.20
0.1

0.10 0.05 0.01 0.02


J J 1

R1 R1 2

R2 R2

R3 R3 3 C 3

Ri (C/W) 0.285 0.241 0.288

i (sec) 0.000134 0.000565 0.0083

0.01

Ci= i/Ri Ci= i/Ri

SINGLE PULSE ( THERMAL RESPONSE )


0.001 1E-6 1E-5 1E-4 1E-3 1E-2

Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc


1E-1 1E+0

t1 , Rectangular Pulse Duration (sec)

Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

10

Thermal Response ( Z thJC )

D = 0.50
1

0.20 0.10 0.05 0.01 0.02


R1 R1 J 1 2 R2 R2 R3 R3 3 C 3

0.1

Ri (C/W) i (sec) 0.846 0.000149 1.830 1.143 0.001575 0.027005

Ci= i/Ri Ci= i/Ri

0.01

SINGLE PULSE ( THERMAL RESPONSE )

Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc


1E-3 1E-2 1E-1 1E+0

0.001 1E-6 1E-5 1E-4

t1 , Rectangular Pulse Duration (sec)

Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

www.irf.com

IRG/B/S/SL10B60KD
L

L DUT
0

VCC

80 V

+ -

DUT
480V

1K

Rg

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

diode clamp / DUT

Driver
DC

360V

- 5V DUT / DRIVER
Rg

VCC

DUT

Fig.C.T.3 - S.C.SOA Circuit

Fig.C.T.4 - Switching Loss Circuit

R=

VCC ICM

DUT
Rg

VCC

Fig.C.T.5 - Resistive Load Circuit

10

www.irf.com

IRG/B/S/SL10B60KD
600 500 400 300 tf 200
5% V CE

12 10 8 6 4 2 0
Eoff Loss

600 500 400


TEST CURRENT

30 25 20 15
90% test current 10% test current

90% ICE

V CE (V)

VCE (V)

ICE (A)

200 100 0 tr

10 5 0

100 0 -100 -0.20

5% ICE

5% V CE

Eon Loss

0.00

0.20

0.40

0.60

-2 0.80

-100 15.90

16.00

16.10

-5 16.20

time(s)

time (s)

Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4
100 QR R 0 tR R -100 -200 -300 -400 -500 -600 -0.15
Peak IRR 10% Peak IRR

Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4
400 V CE 350 300 250 V CE (V) ICE ICE (A) 100

15 10 5 0 IF (A) -5 -10 -15 -20 0.25

VF (V)

200 150 100 50 0 -5.00

50

-0.05

0.05 time (S)

0.15

0.00

5.00 time (S)

10.00

0 15.00

Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4

Fig. WF4- Typ. S.C Waveform @ TJ = 150C using Fig. CT.3

www.irf.com

11

I CE (A)

300

IRG/B/S/SL10B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)

2.87 (.113) 2.62 (.103)

10.54 (.415) 10.29 (.405)

3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)

-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)

4 15.24 (.600) 14.84 (.584)

1.15 (.045) MIN 1 2 3

LEAD ASSIGNMENTS HEXFET GATE 11234LEAD ASSIGNMENTS

IGBTs, CoPACK GATE COLLECTOR EMITTER COLLECTOR

14.09 (.555) 13.47 (.530)

2GATE DRAIN 3DRAINSOURCE SOURCE 4 - DRAIN DRAIN

1234-

4.06 (.160) 3.55 (.140)

3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100)

0.93 (.037) 0.69 (.027) M B A M

3X

0.55 (.022) 0.46 (.018)

0.36 (.014)

2.92 (.115) 2.64 (.104)

2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH

3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information


E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R

Note: "P" in assembly line position indicates "Lead-Free"

DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C

12

www.irf.com

IRG/B/S/SL10B60KD
D2Pak Package Outline
Dimensions are shown in millimeters (inches)

D2Pak Part Marking Information


T HIS IS AN IRF 530S WITH L OT CODE 8024 AS S E MBLE D ON WW 02, 2000 IN THE AS S E MB LY L INE "L " Note: "P" in as s embly line pos ition indicates "Lead-F ree" INTE RNAT IONAL RE CT IFIE R LOGO AS S E MBL Y L OT CODE PAR T NU MBER F 530S DAT E CODE YEAR 0 = 2000 WE EK 02 L INE L

OR
INT ERNAT IONAL RECT IF IER L OGO AS S EMB LY LOT CODE PART NUMB ER F 530S DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMB LY S IT E CODE

www.irf.com

13

IRG/B/S/SL10B60KD
TO-262 Package Outline
Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information


E XAMPLE : T HIS IS AN IRL3103L LOT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T HE AS S E MB LY LINE "C" Note: "P" in as sembly line pos ition indicates "Lead-F ree" INT E RNAT IONAL RECT IFIER LOGO AS S E MB LY LOT CODE PART NUMBER

DATE CODE YE AR 7 = 1997 WEE K 19 LINE C

OR
INT E RNAT IONAL RECT IFIER LOGO PART NUMBER DATE CODE P = DE S IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S E MB LY S IT E CODE

AS S E MB LY LOT CODE

14

www.irf.com

IRG/B/S/SL10B60KD
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)

FEED DIRECTION 1.85 (.073)


1.65 (.065)

11.60 (.457) 11.40 (.449)

15.42 (.609) 15.22 (.601)

24.30 (.957) 23.90 (.941)

TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)

FEED DIRECTION

13.50 (.532) 12.80 (.504)

27.40 (1.079) 23.90 (.941)


4

330.00 (14.173) MAX.

60.00 (2.362) MIN.

NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

26.40 (1.039) 24.40 (.961) 3

30.40 (1.197) MAX. 4

Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.

Energy losses include "tail" and diode reverse recovery.


VCC = 80% (VCES), VGE = 20V, L = 100H, RG = 47.

TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IRs Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04

www.irf.com

15

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

You might also like