Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Coefficient Bounds
4. Logarithmic Coefficient
5. Inverse Coefficient
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- Jenkins, J.A. On certain coefficients of univalent functions II. Trans. Am. Math. Soc. 1960, 96, 534–545. [Google Scholar] [CrossRef]
- Garabedian, P.R.; Schiffer, M. A proof of the Bieberbach conjecture for the fourth coefficient. J. Ration. Mech. Anal. 1955, 4, 428–465. [Google Scholar] [CrossRef]
- Pederson, R.N.; Schiffer, M. A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Ration. Mech. Anal. 1972, 45, 161–193. [Google Scholar] [CrossRef]
- Ozawa, M. An elementary proof of the Bieberbach conjecture for the sixth coefficient. Kodai Math. Sem. Rep. 1969, 21, 129–132. [Google Scholar] [CrossRef]
- De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Li, L.; Ponnusamy, S.; Qiao, J. Generalized Zalcman conjecture for convex functions of order α. Acta Math. Hung. 2016, 150, 234–246. [Google Scholar] [CrossRef]
- Ma, W.C. The Zalcman conjecture for close-to-convex functions. Proc. Amer. Math. Soc. 1988, 104, 741–744. [Google Scholar] [CrossRef]
- Krushkal, S.L. Proof of the Zalcman conjecture for initial coefficients. Georgian Math. J. 2010, 17, 663–681. [Google Scholar] [CrossRef]
- Krushkal, S.L. A short geometric proof of the Zalcman and Bieberbach conjectures. arXiv 2014, arXiv:1408.1948. [Google Scholar]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subfamily of Schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Goel, P.; Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2019, 43, 957–991. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Dienes, P. The Taylor Series; Dover: New York, NY, USA, 1957. [Google Scholar]
- Cantor, D.G. Power series with integral coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Edrei, A. Sur les determinants recurrents et less singularities díune fonction donee por son developpement de Taylor. Compos. Math. 1940, 7, 20–88. [Google Scholar]
- Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hankel determinants of second and third order for the class S of univalent functions. Math. Slovaca 2021, 71, 649–654. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 2016, 13, 4081–4090. [Google Scholar] [CrossRef]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Çaglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel determinant for the subclass of bi-univalent functions using q-Chebyshev polynomial and Hohlov operator. Fractals Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions. Fractals Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Gong, J.; Shaba, T.G. Coefficients inequalities for the bi-nnivalent functions related to q-Babalola convolution operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Cătaş, A.; Srivastava, H.M.; Aloraini, N. Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials. Axioms 2023, 14, 52. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-symmetric starlike functions of Janowski type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and differential subordination results for starlikeness associated with Limaçon class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Banga, S.; Sivaprasad Kumar, S. The sharp bounds of the second and third Hankel determinants for the class . Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2020, 114, 128. [Google Scholar] [CrossRef]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 281, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.J.; Thomas, D.K.; Zaprawa, P. The second Hankel determinant for starlike and convex functions of order alpha. Complex Var. Elliptic Equ. 2020, 67, 2423–2443. [Google Scholar] [CrossRef]
- Răducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. Comptes Rendus Math. 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Ullah, K.; Al-Shbeil, I.; Faisal, M.I.; Arif, M.; Alsaud, H. Results on second-Order Hankel determinants for convex functions with symmetric points. Symmetry 2023, 15, 939. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of beta negative Binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms 2022, 11, 451. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β) -convex functions. Ann. Univ. Mariae Curie-SkłOdowska Sect. A 1981, 35, 125–143. [Google Scholar]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A MatemáTicas 2021, 115, 1–6. [Google Scholar] [CrossRef]
- Carlson, F. Sur les Coefficients D’une Fonction Bornée Dans Le Cercle Unité; Almqvist Wiksell: Stockholm, Sweden, 1940. [Google Scholar]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. BoletíN Soc. Matemática Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Wirths, K.J. Schwarz-Pick Type Inequalities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- FitzGerald, C.H.; Pommerenke, C. The de-Branges theorem on univalent functions. Trans. Am. Math. Soc. 1985, 290, 683–690. [Google Scholar] [CrossRef]
- FitzGerald, C.H.; Pommerenke, C. A theorem of de-Branges on univalent functions. Serdica 1987, 13, 21–25. [Google Scholar] [CrossRef]
- Kayumov, I.P. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Analouei Adegani, E.; Bulboaca, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Deng, Q. On the logarithmic coefficients of Bazilevic functions. Appl. Math. Comput. 2011, 217, 5889–5894. [Google Scholar] [CrossRef]
- Roth, O. A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 2007, 135, 2051–2054. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel Determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp bounds for the second Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Iqbal, N.; Naeem, M.; Jawarneh, Y.; Samura, S.K. The sharp upper bounds of the Hankel determinant on logarithmic coefficients for certain analytic functions Connected with Eight-Shaped Domains. J. Funct. Spaces 2022, 2022, 2229960. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Analouei Adegani, E.; Bulboacă, T.; Hameed Mohammed, N.; Zaprawa, P. Solution of logarithmic coefficients conjectures for some classes of convex functions. Math. Slovaca 2023, 73, 79–88. [Google Scholar] [CrossRef]
- Krzyz, J.G.; Libera, R.J.; Zlotkiewicz, E. Coefficients of inverse of regular starlike functions. Ann. Univ. Mariae. Curie-Skłodowska 1979, 33, 103–109. [Google Scholar]
- Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
- Shi, L.; Arif, M.; Abbas, M.; Ihsan, M. Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions. Mediterr. J. Math. 2023, 20, 156. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.I.; Al-Shbeil, I.; Abbas, M.; Arif, M.; Alhefthi, R.K. Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function. Symmetry 2023, 15, 1292. https://doi.org/10.3390/sym15071292
Faisal MI, Al-Shbeil I, Abbas M, Arif M, Alhefthi RK. Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function. Symmetry. 2023; 15(7):1292. https://doi.org/10.3390/sym15071292
Chicago/Turabian StyleFaisal, Muhammad Imran, Isra Al-Shbeil, Muhammad Abbas, Muhammad Arif, and Reem K. Alhefthi. 2023. "Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function" Symmetry 15, no. 7: 1292. https://doi.org/10.3390/sym15071292
APA StyleFaisal, M. I., Al-Shbeil, I., Abbas, M., Arif, M., & Alhefthi, R. K. (2023). Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function. Symmetry, 15(7), 1292. https://doi.org/10.3390/sym15071292