Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we obtained the second Hankel determinant with a different method for a certain class of analytic bi-univalent function which is defined by subordinations in the open unit disk. Moreover, the presented results in this work improve or generalize the recent works of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, R.M., Lee, S.K., Ravichandran, V., Subramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25, 344–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altinkaya, Ş., Yalçın, S.: Upper bound of Second Hankel determinant for Bi-Bazilevic̆ functions. Mediterr. J. Math. 13, 4081–4090 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altinkaya, Ş., Yalçın, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris Ser. I(353), 1075–1080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brannan, D.A., Clunie, J.: Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute Held at University of Durham. Academic, New York (1979)

  5. Cantor, D.G.: Power series with integral coefficients. Bull. Am. Math. Soc. 69, 362–366 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deniz, E.: Çağlar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order \(\beta \). Appl. Math. Comput. 271, 301–307 (2015)

    MathSciNet  Google Scholar 

  7. Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficients of bi-subordinate functions. C. R. Math. Acad. Sci. Paris. 354, 365–370 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fekete, M., Szegö, G.: Eine Bemerkung Uber Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 8, 85–89 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, New York (1983)

    Google Scholar 

  11. Grenander, U., Szegö, G.: Toeplitz forms and their applications. California Monographs in Mathematical Sciences Univ, California Press, Berkeley (1958)

  12. Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions. C. R. Math. Acad. Sci. Paris, Ser. I. 351, 349–352 (2013)

    Article  MATH  Google Scholar 

  13. Jahangiri, J. M., Hamidi, S. G.: Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. Article ID 190560, 4 (2013)

  14. Jahangiri, J.M., Hamidi, S.G., Halim, S.A.: Coefficients of bi-univalent functions with positive real part derivatives. Bull. Malays. Math. Sci. Soc. 37, 633–640 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Kanas, S.: An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 218, 8453–8461 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Kanas, S., Kim, S.-A., Sivasubramanian, S.: Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function. Ann. Polonici Mathematici. 113, 295–304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanas, S., Darwish, H.E.: Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. Lett. 23, 777–782 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kedzierawski, A.W.: Some remarks on bi-univalent functions. Ann. Univ. Mariae Curie-Sk lodowska Sect. A. 39, 77–81 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions. Int. Math. Forum. 7, 1495–1504 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Noonan, J.W., Thomas, D.K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 223, 337–346 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Orhan, H., Magesh, N., Yamini, J.: Bounds for the second Hankel determinant of certain bi-univalent functions. Turk. J. Math. 40, 679–687 (2016)

    Article  MathSciNet  Google Scholar 

  23. Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pommerenke, C.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)

  25. Zaprawa, P.: On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin. 21, 169–178 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Zaprawa, P.: Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. Art. ID 357480, 1–6 (2014)

  27. Zireh, A., Analouei Adegani, E.: Coefficient estimates for a subclass of analytic and bi-univalent functions. Bull. Iran. Math. Soc. 42, 881–889 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Zireh, A., Analouei Adegani, E., Bulut, S.: Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull. Belg. Math. Soc. Simon Stevin. 23, 487–504 (2016)

  29. Zireh, A., Analouei Adegani, E., Bidkham, M.: Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Mathematica Slovaca (in Press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zireh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanas, S., Analouei Adegani, E. & Zireh, A. An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions. Mediterr. J. Math. 14, 233 (2017). https://doi.org/10.1007/s00009-017-1031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1031-6

Keywords

Mathematics Subject Classification

Navigation