Abstract
In this work, we obtained the second Hankel determinant with a different method for a certain class of analytic bi-univalent function which is defined by subordinations in the open unit disk. Moreover, the presented results in this work improve or generalize the recent works of other authors.
Similar content being viewed by others
References
Ali, R.M., Lee, S.K., Ravichandran, V., Subramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25, 344–351 (2012)
Altinkaya, Ş., Yalçın, S.: Upper bound of Second Hankel determinant for Bi-Bazilevic̆ functions. Mediterr. J. Math. 13, 4081–4090 (2016)
Altinkaya, Ş., Yalçın, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris Ser. I(353), 1075–1080 (2015)
Brannan, D.A., Clunie, J.: Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute Held at University of Durham. Academic, New York (1979)
Cantor, D.G.: Power series with integral coefficients. Bull. Am. Math. Soc. 69, 362–366 (1963)
Deniz, E.: Çağlar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order \(\beta \). Appl. Math. Comput. 271, 301–307 (2015)
Hamidi, S.G., Jahangiri, J.M.: Faber polynomial coefficients of bi-subordinate functions. C. R. Math. Acad. Sci. Paris. 354, 365–370 (2016)
Fekete, M., Szegö, G.: Eine Bemerkung Uber Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 8, 85–89 (1933)
Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)
Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, New York (1983)
Grenander, U., Szegö, G.: Toeplitz forms and their applications. California Monographs in Mathematical Sciences Univ, California Press, Berkeley (1958)
Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions. C. R. Math. Acad. Sci. Paris, Ser. I. 351, 349–352 (2013)
Jahangiri, J. M., Hamidi, S. G.: Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. Article ID 190560, 4 (2013)
Jahangiri, J.M., Hamidi, S.G., Halim, S.A.: Coefficients of bi-univalent functions with positive real part derivatives. Bull. Malays. Math. Sci. Soc. 37, 633–640 (2014)
Kanas, S.: An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 218, 8453–8461 (2012)
Kanas, S., Kim, S.-A., Sivasubramanian, S.: Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function. Ann. Polonici Mathematici. 113, 295–304 (2015)
Kanas, S., Darwish, H.E.: Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. Lett. 23, 777–782 (2010)
Kedzierawski, A.W.: Some remarks on bi-univalent functions. Ann. Univ. Mariae Curie-Sk lodowska Sect. A. 39, 77–81 (1985)
Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)
Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions. Int. Math. Forum. 7, 1495–1504 (2012)
Noonan, J.W., Thomas, D.K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 223, 337–346 (1976)
Orhan, H., Magesh, N., Yamini, J.: Bounds for the second Hankel determinant of certain bi-univalent functions. Turk. J. Math. 40, 679–687 (2016)
Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)
Pommerenke, C.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)
Zaprawa, P.: On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin. 21, 169–178 (2014)
Zaprawa, P.: Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. Art. ID 357480, 1–6 (2014)
Zireh, A., Analouei Adegani, E.: Coefficient estimates for a subclass of analytic and bi-univalent functions. Bull. Iran. Math. Soc. 42, 881–889 (2016)
Zireh, A., Analouei Adegani, E., Bulut, S.: Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull. Belg. Math. Soc. Simon Stevin. 23, 487–504 (2016)
Zireh, A., Analouei Adegani, E., Bidkham, M.: Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Mathematica Slovaca (in Press)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kanas, S., Analouei Adegani, E. & Zireh, A. An Unified Approach to Second Hankel Determinant of Bi-Subordinate Functions. Mediterr. J. Math. 14, 233 (2017). https://doi.org/10.1007/s00009-017-1031-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-017-1031-6