Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A proof of the Bieberbach conjecture for the fifth coefficient

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Bieberbach, L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 1916, p. 940–955.

  2. Bombieri, E., On the local maximum of the Koebe Function. Invent. Math. 4, 26–67 (1967).

    Google Scholar 

  3. Charzynski, Z., & M. Schiffer, A new proof of the Bieberbach conjecture for the fourth coefficient. Arch. Rational Mech. Anal. 5, 187–193 (1960).

    Google Scholar 

  4. Garabedian, P. R., Inequalities for the fifth coefficient. Comm. Pure. Appl. Math. 19, 199–214 (1966).

    Google Scholar 

  5. Garabedian, P. R., & M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 4, 427–465 (1955).

    Google Scholar 

  6. Garabedian, P. R., G. G. Ross, & M. Schiffer, On the Bieberbach conjecture for even n. J. Math. Mech. 14, 975–989 (1965).

    Google Scholar 

  7. Garabedian, P. R., & M. Schiffer, The local maximum theorem for the coefficients of univalent functions. Arch. Rational Mech. Anal. 26, 1–32 (1967).

    Google Scholar 

  8. Grunsky, H., Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Z. 45, 29–61 (1939).

    Google Scholar 

  9. Jenkins, J. A., Some area theorems and a special coefficient theorem. Illinois J. Math. 8, 88–99 (1964).

    Google Scholar 

  10. Loewner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923).

    Google Scholar 

  11. Milin, I. M., The area method in the theory of univalent functions. Dokl. Acad. Nauk SSSR 154, 264–267 (1964).

    Google Scholar 

  12. Ozawa, M., On the Bieberbach conjecture for the sixth coefficient. Kodai Math. Sem. Rep. 21, 97–128 (1969).

    Google Scholar 

  13. Pederson, R., On unitary properties of Grunsky's matrix. Arch. Rational Mech. Anal. 29, 370–377 (1968).

    Google Scholar 

  14. Pederson, R., A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Rational Mech. Anal. 31, 331–351 (1968).

    Google Scholar 

  15. Pederson, R., & M. Schiffer, Further generalizations of the Grunsky inequalities. J. Analyse Math. 23, 353–380 (1970).

    Google Scholar 

  16. Pommerenke, Ch., Über die Faberschen Polynome schlichter Funktionen. Math. Z. 85, 197–208 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pederson, R., Schiffer, M. A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Rational Mech. Anal. 45, 161–193 (1972). https://doi.org/10.1007/BF00281531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281531

Keywords

Navigation