Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials
Abstract
:1. Introduction and Preliminaries
2. Coefficient Estimates for the Class
3. Coefficient Estimates for the Class
4. Fekete–Szego Inequalities for the Function Class
5. Fekete–Szego Inequalities for the Function Class
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspect of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T. On some classes of bi-univalent functions. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Babalola, K.O. New subclasses of analytic and univalent functions involving certain convolution operator. Math. Tome 2008, 50, 3–12. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-definite integrals on q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multlivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1490. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Araci, S.; Khan, N.; Ahmad, Z. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions. Adv. Diff. Equ. 2021, 440, 1–15. [Google Scholar] [CrossRef]
- Hu, Q.-X.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator. Symmetry 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Khan, M.G.; Ahmad, B.; Arif, M.; Chinram, R. q-extension of starlike functions subordinated with a trigonometric sine function. Mathematics 2020, 8, 1676. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ismail, E.H.; Stanton, D.; Viennot, G. The combinatorics of q-Hermite polynomial and the Askey-Wilson Integral. Eur. J. Combinatorics 1987, 8, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Chavda, N.D. Average-fluctuation separation in energy levels in quantum many-particle systems with k-body interactions using q-Hermite polynomials. arXiv 2021, arXiv:2111.12087v1. [Google Scholar] [CrossRef]
- Rao, P.; Vyas, M.; Chavda, N.D. Eigenstate structure in many-body bosonic system: Analysis using random matrices and q-Hermite polynomial. arXiv 1933, arXiv:2111.08820v1. [Google Scholar]
- Ruscheweyh, S.T. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Magesh, N.; Yamini, J. Fekete-Szego problem and second Hankel determinant for a class of bi-univalent functions. arXiv 2015, arXiv:1508.07462v2. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szego functional problems for some classes of m-fold symmetric bi-univalent functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehrender Mathematischer Wissencchaffer; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Al-Shbeil, I.; Shaba, T.G.; Catas, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Catas, A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms 2022, 11, 451. [Google Scholar] [CrossRef]
- Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry 2022, 14, 2188. [Google Scholar] [CrossRef]
- A Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and Differential Subordination Results for Starlikeness Associated with Limaçon Class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Ur Rehman, M.S.; Ahmad, Q.Z.; Al-Shbeil, I.; Ahmad, S.; Khan, A.; Khan, B.; Gong, J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms 2022, 11, 494. [Google Scholar] [CrossRef]
- Srivastava, H.E. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shbeil, I.; Cătaş, A.; Srivastava, H.M.; Aloraini, N. Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials. Axioms 2023, 12, 52. https://doi.org/10.3390/axioms12010052
Al-Shbeil I, Cătaş A, Srivastava HM, Aloraini N. Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials. Axioms. 2023; 12(1):52. https://doi.org/10.3390/axioms12010052
Chicago/Turabian StyleAl-Shbeil, Isra, Adriana Cătaş, Hari Mohan Srivastava, and Najla Aloraini. 2023. "Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials" Axioms 12, no. 1: 52. https://doi.org/10.3390/axioms12010052
APA StyleAl-Shbeil, I., Cătaş, A., Srivastava, H. M., & Aloraini, N. (2023). Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials. Axioms, 12(1), 52. https://doi.org/10.3390/axioms12010052