Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function
Abstract
:1. Introduction and Preliminaries
- First, four coefficient bounds
- The Zalcman inequality for
- The generalized Zalcman inequality for certain values of m and n.
- The upper bounds of the second Hankel and the third Hankel determinant
2. Main Results
3. Zalcman and Generalized Zalcman Conjecture
4. Hankel Determinants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichten funktionene. J. Lond. Math. Soc. 1993, 8, 85–89. [Google Scholar]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Pommerenke, C. On starlike and close-to-convex functions. Proc. Lond. Math. Soc. 1963, 3, 290–304. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the Hankel determinants of a really mean p-valent functions. Proc. Lond. Math. 1972, 3, 503–524. [Google Scholar] [CrossRef]
- Noor, K.I. On subclasses of close-to-convex functionsof higher order. Int. J. Math. Math. Sci. 1983, 6, 327–334. [Google Scholar] [CrossRef]
- Noor, K.I. On quasi-convex univalent functions and related topics. Internat. J. Math. Sci. 1987, 2, 241–258. [Google Scholar] [CrossRef]
- Noor, K.I. Higher order close-to-convex functions. Math Jpn. 1992, 37, 1–8. [Google Scholar]
- Ehrenborg, R. The Hankel determinant of exponential polynomials. Am. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
- Layman, J.W. The Hankel transform and some of its properties. J. Integer Seq 2001, 4, 1–11. [Google Scholar]
- Janteng, A.; Suzeini, A.H.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel Determinants for New Subclasses of Analytic Functions Related to a Shell Shaped Region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Guney, H.O.; Korfeci, B. Fourth Hankel Determinant for a subclass of analytic functions related to modified sigmoid functions. Int. J. Open Probl. Comput. Sci. Math. 2021, 14, 41–49. [Google Scholar]
- Zhang, H.-Y.; Tang, H. A study of fourth-order Hankel determinants for starlike functions connected with the sine function. J. Funct. Spaces 2021, 2021, 9991460. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I. On Coefficients Problems for Certain Classes of Analytic Functions. J. Math. Anal. 2021, 12, 13–22. [Google Scholar]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. The Third Hankel determinant for starlike functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M. Hankel determinants for starlike and convex functions associated with lune. submitted.
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with a cardioid domain. submitted.
- Afis, S.; Khalida, I.N. On Quantum Differential Subordination Related with Certain Family of Analytic Functions. J. Math. 2020, 2020, 6675732. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and Differential Subordination Results for Starlikeness Associated with Limaçon Class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; Cătaş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Mahmood, M.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric Properties of Certain Classes of Analytic Functions Associated with a q-Integral Operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Naz, H.; Malik, S.N.; Islam, S. On q-ANALOGUE of Differential Subordination Associated with Lemniscate of Bernoulli. J. Math. 2021, 2021, 5353372. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Naifar, O.; Hammami, M.A.; Wu, B. FTS and FTB of Conformable Fractional Order Linear Systems. Math. Probl. Eng. 2018, 2018, 2572986. [Google Scholar] [CrossRef]
- Naifar, O.; Jmal, A.; Nagy, A.M.; Makhlouf, A.B. Improved Quasiuniform Stability for Fractional Order Neural Nets with Mixed Delay. Math. Probl. Eng. 2020, 2020, 8811226. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S. Radius Problems for Starlike Functions Associated with the Sine Function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Iapan, 1983; Volume 259. [Google Scholar]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. Acad. Sci. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Srivastava, R.; Tang, H. Third-Order Hankel and Toeplitz Determinants for Starlike Functions Connected with the Sine Function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, F.M.O.; Raza, M.; Malik, S.N. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry 2022, 14, 2200. https://doi.org/10.3390/sym14102200
Taj Y, Zainab S, Xin Q, Tawfiq FMO, Raza M, Malik SN. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry. 2022; 14(10):2200. https://doi.org/10.3390/sym14102200
Chicago/Turabian StyleTaj, Yusra, Saira Zainab, Qin Xin, Ferdous M. O. Tawfiq, Mohsan Raza, and Sarfraz Nawaz Malik. 2022. "Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function" Symmetry 14, no. 10: 2200. https://doi.org/10.3390/sym14102200
APA StyleTaj, Y., Zainab, S., Xin, Q., Tawfiq, F. M. O., Raza, M., & Malik, S. N. (2022). Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry, 14(10), 2200. https://doi.org/10.3390/sym14102200