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Abstract: This study introduces a subclass S∗qs of starlike functions associated with the q-analogue of
the sine function defined in symmetric unit disk. This article comprises the investigation of sharp
coefficient bounds, and the upper bound of the third-order Hankel determinant for this class. It also
includes the findings of Zalcman and generalized Zalcman conjectures for functions of this class.
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1. Introduction and Preliminaries

In the study of analytic and univalent functions, coefficient problems play a vital role
that helps in making many estimations about analytic functions. There is a wide range of
coefficient problems that include coefficient bounds, necessary and sufficient conditions,
covering results, Hankel determinants, Toeplitz determinants, and many coefficient in-
equalities and conjectures. The Hankel matrix was introduced by Hermann Hankel, and
this matrix is a square symmetric matrix having the same entries in its skew diagonal.
To relate the Hankel matrix with analytic functions, it is formed to have elements as the
coefficients of certain power series of analytic functions. If an analytic function f , defined
in the disk E = {z ∈ C : |z| < 1} assumes to satisfy the conditions f (0) = 0 and f ′(0) = 1,
then such functions are comprised in class A and they will have the following form of their
Taylor series

f (z) = z +
∞

∑
n=2

anzn, z ∈ E. (1)

The determinant of a matrix is an important number that helps in characterizing
many properties of that matrix. Based on the coefficients of the series (1), the jth Hankel
determinant for f ∈ A is given by

Hj,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+j−1

an+1 an+2 . . . an+j
...

...
. . .

...
an+j−1 an+j−2 . . . an+2j−2

∣∣∣∣∣∣∣∣∣, j, n ∈ N.
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The main goal in studying the Hankel determinant is to find the upper bound of the
determinant. With certain variations in the values of j and n, the Hankel determinant
Hj,n( f ) takes the following forms

H2,1( f ) =
∣∣∣∣ a1 a2

a2 a3

∣∣∣∣ = a1a3 − a2
2, H2,2( f ) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a2
3.

The determinant H2,1 is the renowned Fekete-Szegö functional, Ref. [1] and H2,2 is the
well-known and extensively studied second Hankel determinant. Also, the third-order
Hankel determinant is written as

H3,1( f ) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
= a5(a3 − a2

2)− a4(a4 − a2a3) + a3(a2a4 − a2
3). (2)

This implies that

|H3,1( f )| ≤ |a5|
∣∣∣a3 − a2

2

∣∣∣+ |a4||a4 − a2a3|+ |a3||H2,2( f )|. (3)

Also, the fourth-order determinant is given by

H4,1( f ) =

∣∣∣∣∣∣∣∣
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7

∣∣∣∣∣∣∣∣
= a4

{
a4(a3a5 − a2

4)− a5(a2a5 − a3a4) + a6(a4 − a2a3)
}

−a5

{
a3(a3a5 − a2

4)− a5(a5 − a2a4) + a6(a4 − a2a3)
}

+a6

{
a3(a2a5 − a3a4)− a4(a5 − a2a4) + a6(a3 − a2

2)
}

−a7

{
a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2)
}

.

In 1966, Pommerenke [2,3] studied the Hankel determinants for univalent functions,
p-valent functions, and starlike functions. In 1976, Noonan and Thomas [4] analyzed the
second Hankel determinants for p-valent functions. In 1983, Noor [5] studied the Hankel
determinants for close-to-convex univalent functions. Then, in 1987, Noor [6] studied the
Hankel determinants for functions with bounded boundary rotations, and she studied
the same for higher-order close-to-convex functions in [7]. Ehrenborg [8] studied the
Hankel determinants for exponential polynomials in 2000. Following his work, in 2001,
Layman [9] thoroughly studied the Hankel transform, along with its properties. In 2007,
Janteng et al. [10] studied the Hankel determinants for starlike and convex functions with
respect to symmetric points. Inspired by the research being performed in this area, many
researchers have contributed in developing some interesting and useful results, which
include some of the following recent developments.

In 2019, Mahmood et al. [11] found the third-order Hankel determinant for a fam-
ily of q-starlike functions, defined by a q-Ruscheweyh derivative operator, and Srivas-
tava et al. [12] performed the same work for close-to-convex functions associated with
Lemniscate of Bernoulli. Arif et al. [13] found the bound of the third Hankel determinant
for functions connected with the sine function, and Srivastava et al. [14] found the same
bound of Hankel and Toeplitz determinants for q-starlike functions associated with the gen-
eralized conic domain. In 2020, Shafiq et al. [15] investigated the bound of the third Hankel
determinant for q-starlike functions connected with k-Fibonacci numbers. Murugusun-
daramoorthy and Bulboacă [16] found the upper bound of Hankel determinants for certain
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analytic functions connected with the shell-shaped region. In 2021, Guney and Korfeci [17]
studied the fourth-order Hankel determinant for analytic functions, which are defined
by using the modified sigmoid function, Zhang and Tang [18] found the same bound for
functions connected with the sine function, Srivastava et al. [19] investigated third Hankel
for q-starlike functions associated with q-analogue of the exponential function, and Saliu
and Noor [20] studied third Hankel for analytic functions which are defined by using the
Sălăgean differential and Komatu integral operators. Recently, in 2022, Raza et al. [21] stud-
ied Hankel determinants for starlike functions connected with symmetric Booth Lemniscate,
Khan et al. [22] found the bound of third-order Hankel determinants for logarithmic coeffi-
cients of starlike functions connected with Sine function, and Riaz et al. [23–25] studied
the Hankel determinants for starlike and convex functions associated with the sigmoid
function, lune, and cardioid domain.

Now, we intend to find the upper bound of the third-order Hankel determinant for
a subclass of starlike univalent functions, denoted by S∗qs, which is defined below. Also,
certain coefficient inequalities named Zalcman and generalized Zalcman inequalities are
also part of our investigations. Before introducing the class S∗qs, we need to know about
some preliminary concepts, which are stated as follows.

A function f is called univalent in E if there exists a one-to-one correspondence
between E and f (E). That is, for z1, z2 ∈ E, if f (z1) = f (z2) leads to z1 = z2. The class S
consists of functions that are not only analytic, but univalent as well in E, and the conditions
f (0) = 0, f ′(0) = 1 normalize these functions. That means, S = { f ∈ A : f is univalent in
E}. Starlikeness is a very important geometric property. To define a starlike domain, we
join every point of the set with a fixed point through a straight line, and if all such straight
lines lie entirely in that domain, then that domain is called starlike with respect to that
fixed point to say, w0. Geometrically speaking, if every point of the domain is visible from
that fixed point w0, then the domain will be starlike or star-shaped with respect to w0. The
function that maps E onto a domain that is starlike and whose fixed point is the origin is
called the starlike function. Furthermore, all those functions of the class S that satisfy the
condition <

(
z f ′(z)

f (z)

)
> 0, z ∈ E form the class S∗ of starlike univalent functions. The next

important class is the class P whose elements are all those functions p, which is analytic,
and the condition that normalizes these functions is p(0) = 1, such that <p(z) > 0, z ∈ E.
That is,

P = {p : p(0) = 1 and <p(z) > 0, z ∈ E}

and having Taylor series expansion of the form

p(z) = 1 +
∞

∑
n=1

cnzn. (4)

Let w be an analytic function in E, and it is called the Schwarz function, if w(0) = 0,
such that |w(z)| < 1 for z ∈ E. Let f (z) and g(z) be analytic functions in E, and if a Schwarz
function w exists in E such that

f (z) = g(w(z)), z ∈ E, (5)

then f is said to subordinate g and is denoted by f ≺ g. If the function g is univalent in E
and f (0) = g(0), then f (E) ⊂ g(E). For more details, see [26–28]. By using the relation (5),
one can write the formation of classes P and S∗ as follows.

P =

{
p : p(0) = 1 and p(z) ≺ 1 + z

1− z
, z ∈ E

}
,

S∗ =
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + z

1− z
, z ∈ E

}
.
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Quantum calculus, also known as q-calculus, is just the same as classical calculus,
but with a major difference, in that unlike the classical form, we do not use limits in q-
calculus. We define derivatives as differences and antiderivatives as sums. By definition,
the q-derivative of a function f , which is particularly complex-valued and is defined in the
domain D, is given as follows

(Dq f )(z) =

{
f (z)− f (qz)
(1−q)z , z 6= 0,
f ′(0), z = 0,

(6)

where 0 < q < 1. Also, we see that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−

f (z)− f (qz)
(1− q)z

= f ′(z),

provided that the function f is differentiable in domain D. The Maclaurin’s series represen-
tation of the function Dq f given in (1) is given by

Dq f (z) =
∞

∑
n=0

[n]qanzn−1,

where

[n]q =

{
1−qn

1−q , if n ∈ C,

∑n−1
n=0 qn, if n ∈ N.

(7)

For more details, see [29,30]. To take a brief overview of the applications of q-calculus,
we observe mainly that the q-derivative operator Dq is an important tool that is used
to define and to thoroughly investigate the numerous subclasses of analytic functions.
Similarly, using this derivative operator, a q-extension of the class of starlike functions was
firstly given in [31]. However, the development that provided a strong foundation for the
application of the q-calculus in the context of Geometric Function Theory was presented by
Srivastava, and he achieved this by introducing the basic (or q-) hypergeometric functions;
for details, see [32]. To access the recent work on q-derivative, we refer to the following
recent developments.

Mahmood et al. [33] studied the coefficient problems of q-starlike functions associated
with conic domains. Mahmood et al. [34] studied the geometric properties of certain
analytic functions that are defined by using the q-integral operator. Raza et al. [35] studied
the q-analogue of differential subordinations by considering the Janowski functions and
Lemniscate of Bernoulli. Zainab et al. [36] studied q-starlike functions defined by the
q-version of the Ruscheweyh differential operator. Riaz et al. [37] studied the q-starlike
functions of negative order, and Saliu et al. [38] studied q-symmetric starlike functions of
Janowski type. Moreover, to access the fractional version of certain derivatives like the
Caputo fractional derivative, and the conformable fractional derivative, see [39,40] and
the references therein. Motivated by this referred work, we now introduce the class S∗qs of
q-starlike functions associated with the q-analogue of the function 1 + sin(qz), as follows.

Definition 1. A function f ∈ S is said to be in the class S∗qs, if it satisfies the following condition

zDq f (z)
f (z)

≺ 1 + sin(qz), z ∈ E. (8)

That is,

S∗qs =

{
f ∈ S :

zDq f (z)
f (z)

≺ 1 + sin(qz), z ∈ E
}

. (9)
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The class S∗qs generalizes the class S∗s of starlike functions associated with the function
1 + sin(z) and lim

q−→1−
S∗qs ≡ S∗s . The class S∗s was introduced and studied by Cho et al. [41].

Now, we proceed to discuss certain coefficient problems for the class S∗qs, for which
we need the following lemmas.

Lemma 1 ([42,43]). If p(z) = 1 + ∑∞
n=1 cnzn ∈ P, then

2c2 = c2
1 + x(4− c2

1)

for some x (|x| ≤ 1) and

4c3 = c3
1 + 2(4− c2

1)c1x− (4− c2
1)c1x2 + 2(4− c2

1)
(

1− |x|2
)

z

for some z (|z| ≤ 1).

Lemma 2. Let the function p ∈ P be given by (4). Then,
∣∣c3 − 2Bc1c2 + Dc3

1

∣∣ ≤ 2 if 0 ≤ B ≤ 1
and B(2B− 1) ≤ D ≤ B.

Lemma 3 ([43]). Let the function p ∈ P be given by (4). Then,

|cn| ≤ 2 (n ∈ N). (10)

and the inequality is sharp. Also,

|cn − µckcn−k| ≤ 2, n > k, µ ∈ [0, 1]. (11)

Lemma 4 ([44]). Let the function p ∈ P be given by (4), 0 < a < 1, 0 < α < 1 and

8a(1− a){(αβ− 2λ)2 + (α(a + α)− β)2}+ α(1− α)(β− 2aα)2 ≤ 4α2a(1− α)2(1− a).

Then, ∣∣∣∣λc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣ ≤ 2. (12)

Lemma 5 ([45]). Let E := {z ∈ C : |z| ≤ 1}, and for real numbers A, B, C, let

Y(A, B, C) := max
{
|A + Bx + Cx2|+ 1− |x|2 : x ∈ E

}
. (13)

If AC ≥ 0, then

Y(A, B, C) =


|A|+ |B|+ |C|, |B| ≥ 2(1− |C|),

1 + |A|+ B2

4(1− |C|) , |B| < 2(1− |C|).

By making use of the above lemmas, we contribute to the study of coefficient problems
by investigating the following for the class S∗qs.

1. First, four coefficient bounds |an|, n = 2, 3, 4, 5.
2. The Zalcman inequality

∣∣a2
n − a2n−1

∣∣ ≤ (n− 1)2 for n = 2.
3. The generalized Zalcman inequality |anam − an+m−1| ≤ (n− 1)(m− 1) for certain

values of m and n.
4. The upper bounds of the second Hankel |H2,2( f )| and the third Hankel determinant

|H3,1( f )|.
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2. Main Results

Theorem 1. If f ∈ S∗qs has the series form as given in (1), then

|an| ≤
1

∑n−2
j=0 qj

, 0 < q < 1, n = 2, 3, 4 (14)

and
|a5| ≤

1

∑3
j=0 qj

, 0 < q ≤ 0.8651682397.

The result is sharp.

Proof. If f ∈ S∗qs, then from (5) and (8)

zDq f (z)
f (z)

= 1 + sin(qw(z)), z ∈ E, (15)

where w(z) = p(z)−1
1+p(z) . If p follows the form of (4), then

w(z) =
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

Using this, one can have

1 + sin(qw(z)) = 1 + sin
(

q
(

c1z + c2z2 + c3z3 + . . .
2 + c1z + c2z2 + c3z3 + . . .

))
= 1 + q

c1

2
z + q

(
c2

2
−

c2
1

4

)
z2 +

(
−q3c3

1
48

+ q

(
− c1c2

4
+

c3

2
− c1c2

4
+

c3
1

8

))
z3

+

(
q

(
−

c2
2

4
+

c2
1c2

8
− c1c3

2
+

c4

2
+

c2
1c2

4
−

c4
1

8

)
− q3

8

(
c2

1c2

8
−

c4
1

8

))
z4 + · · · . (16)

Now, from (1) and (6), we consider

zDq f (z)
f (z)

=
z
{(

z + a2z2 + a3z3 + ...
)
−
(
qz + qa2z2 + qa3z3 + · · ·

)}
z(1− q)(z + a2z2 + a3z3 + ...)

= 1 + a2qz +
{

q(q + 1)a3 − qa2
2

}
z2 +

{
q

(
2

∑
j=0

qj

)
a4−q(2 + q)a2a3 + qa3

2

}
z3

+q
{

a5q3 + (−a2a4 + a5)q2 + (−a2
3 + a3a2

2 − a2a4 + a5)q

+3a3a2
2 − 2a2a4 − a4

2 − a2
3 + a5

}
z4 + · · · (17)

Thus, by using the above series, (15) takes the form
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1 + a2qz +
{

q(q + 1)a3 − qa2
2

}
z2 +

{
q

(
2

∑
j=0

qj

)
a4−q(2 + q)a2a3 + qa3

2

}
z3 +

+q
{

a5q3 + (−a2a4 + a5)q2 + (−a2
3 + a3a2

2 − a2a4 + a5)q + 3a3a2
2

−2a2a4 − a4
2 − a2

3 + a5

}
z4 + · · ·

= 1 + q
c1

2
z + q

(
c2

2
−

c2
1

4

)
z2 +

(
−q3c3

1
48

+ q

(
− c1c2

4
+

c3

2
− c1c2

4
+

c3
1

8

))
z3 +(

q

(
−

c2
2

4
+

c2
1c2

8
− c1c3

4
+

c4

2
+

c2
1c2

4
− c1c3

4
−

c4
1

8

)
− q3

8

(
c2

1c2

8
−

c4
1

8

))
z4

+ · · · . (18)

The comparison of coefficients of z, z2, z3, and z4, together with precise computation, yields
the following:

a2 =
c1

2
, (19)

a3 =
c2

2(q + 1)
, (20)

a4 = −
q2c3

1

48
(

∑2
j=0 qj

) +
c3

2
(

∑2
j=0 qj

) − q

4(q + 1)
(

∑2
j=0 qj

) c1c2, (21)

and

a5 =
−1

2(∑3
j=0 qj)

−2q4 + 2q3 + q2

48
(

∑2
j=0 qj

) c4
1 +

qc2
2

2(q + 1)
+

q(q + 1)c1c3

2
(

∑2
j=0 qj

)
−

q2(1− q− q2)c2
1c2

8
(

∑2
j=0 qj

) − c4

. (22)

Applying (10) to (19) and (20), we obtain |a2| ≤ 1 and |a3| ≤ 1
q+1 . Now consider,

|a4| =
1

2
(

∑2
j=0 qj

) ∣∣∣∣∣c3 −
q

2(q + 1)
c1c2 −

q2c3
1

24

∣∣∣∣∣.
Assuming the values B = q

4(q+1) and D = − q2

24 , which satisfy B(2B− 1) ≤ D ≤ B for the
application of Lemma 2, we get

|a4| ≤
1

q2 + q + 1
=

1

∑2
j=0 qj

.
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Now, from (22), consider,

|a5| =

∣∣∣∣∣∣ 1

∑3
j=0 qj

2q4 + 2q3 + q2

96
(

∑2
j=0 qj

) c4
1 −

qc2
2

4(q + 1)
− q(q + 1)c1c3

4
(

∑2
j=0 qj

)
−
(−q5 − 2q4 + q2)c2

1c2

8q(q + 1)
(

∑2
j=0 qj

) +
c4

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣− 1

2
(

∑3
j=0 qj

)
∣∣∣∣∣∣
∣∣∣∣∣∣−2q4 + 2q3 + q2

48
(

∑2
j=0 qj

) c4
1 +

qc2
2

2(q + 1)

+
q(q + 1)c1c3

2
(

∑2
j=0 qj

) − (q5 + 2q4 − q2)c2
1c2

4q(q + 1)
(

∑2
j=0 qj

) − c4

∣∣∣∣∣∣
=

1

2
(

∑3
j=0 qj

) ∣∣∣∣λc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
where

λ : = −2q4 + 2q3 + q2

48
(

∑2
j=0 qj

) , a :=
q

2(q + 1)
,

α : =
q(q + 1)

4
(

∑2
j=0 qj

) , β :=
q2(1− q− q2)

12
(

∑2
j=0 qj

) .

We see that 0 < a < 1, 0 < α < 1. Now,

8a(1− a){(αβ− 2λ)2 + (α(a + α)− β)2}+ α(1− α)(β− 2aα)2 − 4α2a(1− α)2(1− a) =

(53q11 + 318q10 + 589q9 + 2128q8 + 3210q7 + 3304q6

+1867q5 − 452q4 − 2091q3 − 2118q2 − 1152q− 288)q3

2304(q + 1)2
(

∑2
j=0 qj

)4 = Ψ(q)

A calculation shows that the equation Ψ(q) ≤ 0 when 0 < q ≤ 0.8651682397.
Hence, Ψ(q) ≤ 0. Now, by using Lemma 4, we can have

|a5| ≤
1

∑3
j=0 qj

.

For sharpness, consider the function fn : E → C, defined by

zDq fn(z)
fn(z)

= 1 + sin(qzn), n = 2, 3, 4, 5. (23)

Then, it is easy to see that the function fn ∈ S∗qs. A simple calculations shows that

f2(z) = z +
q

[2]q − 1
z2 + · · ·,

f3(z) = z +
q

[3]q − 1
z3 +

q2

−[3]q + [5]q[3]q + 1− [5]q
z5 + · · ·,

f4(z) = z +
q

[4]q − 1
z4 + · · ·,

f5(z) = z +
q

[5]q − 1
z5 + · · ·.
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Hence, by using (7), the result is sharp.

Considering q −→ 1− in the above result, we obtain the following improved result
than the one proven in [46].

Corollary 1. If f ∈ S∗s has the series form as given in (1), then,

|an| ≤
1

n− 1
, n = 2, 3, 4.

3. Zalcman and Generalized Zalcman Conjecture

In 1960, Zalcman proposed a remarkable conjecture for univalent functions whose
generalized version were given by Ma [47] in 1999. These conjectures are still open but
have been proven for certain subclasses of univalent functions. Zalcman’s conjecture states
that every f ∈ S having the form of (1) satisfies the following sharp inequality.∣∣∣a2

n − a2n−1

∣∣∣ ≤ (n− 1)2, n ≥ 2. (24)

Whereas, the generalized Zalcman conjecture states that the Taylor series coefficients
from (1) of univalent functions f ∈ S satisfy the following inequality.

|anam − an+m−1| ≤ (n− 1)(m− 1), ∀ m, n ∈ N, n ≥ 2, m ≥ 2. (25)

We intend to find these inequalities for the considered class S∗qs for certain values of n
and m. For n = 2, the inequality (24) takes the form

∣∣a2
2 − a3

∣∣ ≤ 1.

Theorem 2. If f ∈ S∗qs has the series form as given in (1), Then,∣∣∣a3 − a2
2

∣∣∣ ≤ 1
q + 1

. (26)

The above inequality is sharp, which can be obtained with the function f3, given in (23).

Proof. From (19) and (20), consider

∣∣∣a3 − a2
2

∣∣∣ = 1
2(q + 1)

∣∣∣∣∣c2 −
(q + 1)c2

1
2

∣∣∣∣∣ = 1
2(q + 1)

∣∣∣c2 − vc2
1

∣∣∣,
where v = (q + 1)/2. Since q ∈ (0, 1), therefore, 0 < v < 1. Now, by using (11) for n = 2
and k = 1, we obtain (26).

Upon letting q −→ 1−, the above result reduces to the following, proven in [46].

Corollary 2. If f ∈ S∗s has the series form as given in (1), then,∣∣∣a3 − a2
2

∣∣∣ ≤ 1
2

.

For n = 3, m = 2, the inequality (25) reduces to |a2a3 − a4| ≤ 2. We discuss it as
follows:

Theorem 3. If f ∈ S∗qs has the series form as given in (1), then,

|a4 − a3a2| ≤
1

q2 + q + 1
, q ∈

(
0,

√
3

2

)
. (27)

The result is sharp for the function f4, given in (23).
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Proof. From (19), (20), and (21), consider

a4 − a3a2 = −
q2c3

1

48
(

∑2
j=0 qj

) +
c3

2
(

∑2
j=0 qj

) − q

4(q + 1)
(

∑2
j=0 qj

) c1c2 −
c1c2

4(q + 1)
,

= −
q2c3

1

48
(

∑2
j=0 qj

) +
c3

2
(

∑2
j=0 qj

) − (q2 + 2q + 1)

4(q + 1)
(

∑2
j=0 qj

) c1c2.

Taking the modulus, we get

|a4 − a3a2| =

∣∣∣∣∣∣− q2c3
1

48
(

∑2
j=0 qj

) +
c3

2
(

∑2
j=0 qj

) − (q2 + 2q + 1)

4(q + 1)
(

∑2
j=0 qj

) c1c2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2
(

∑2
j=0 qj

)
∣∣∣∣∣∣
∣∣∣∣∣c3 −

(q2 + 2q + 1)
2(q + 1)

c1c2 −
q2c3

1
24

∣∣∣∣∣.
Assuming the values B = (q2+2q+1)

2(q+1) and D = − q2

24 , we see that

B(2B− 1)− D =
1

24

(
4q2 − 3

)
< 0, for q ∈

(
0,

√
3

2

)

which shows that B(2B− 1) ≤ D ≤ B. Thus, the application of Lemma 2 gives that

|a4 − a3a2| ≤
1

q2 + q + 1
.

Now, the following results investigate the inequality (24) for m = n = 3.

Theorem 4. If f ∈ S∗qs has the series form as given in (1), then,∣∣∣a2
3 − a5

∣∣∣ ≤ 1

∑3
j=0 qj

, q ∈ (0, 0.3898584501).

The result is sharp for the function f5, given in (23).

Proof. From (20) and (22), consider∣∣∣a2
3 − a5

∣∣∣ =

∣∣∣∣∣∣
(

c2

2(q + 1)

)2
−
(

1

∑3
j=0 qj

)2q4 + 2q3 + q2

96
(

∑2
j=0 qj

) c4
1−

−
qc2

2
4(q + 1)

− q(q + 1)c1c3

4
(

∑2
j=0 qj

) − (q5 + 2q4 + q2)c2
1c2

8q(q + 1)
(

∑2
j=0 qj

) +
c4

2

∣∣∣∣∣∣
=

1

2
(

∑3
j=0 qj

)
∣∣∣∣∣∣
− q2(1 + 2q + 2q2)

48
(

∑2
j=0 qj

) c4
1 +

q2 + q + 1
2(q + 1)

c2
2

+
q(q + 1)

2
(

∑2
j=0 qj

) c1c3 +
q2(q2 + q− 1)

8
(

∑2
j=0 qj

) c2
1c2 − c4

∣∣∣∣∣∣
=

1

2
(

∑3
j=0 qj

) ∣∣∣∣λc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
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where

λ : = −
q2(1 + 2q + 2q2)

48
(

∑2
j=0 qj

) , a :=
q2 + q + 1
2(q + 1)

,

α : =
q(q + 1)

4
(

∑2
j=0 qj

) , β := − q2(q2 + q− 1)

8
(

∑2
j=0 qj

) .

We see that 0 < a < 1, 0 < α < 1. Now,

8a(1− a){(αβ− 2λ)2 + (α(a + α)− β)2}+ α(1− α)(β− 2aα)2 − 4α2a(1− α)2(1− a) =

q2(−770q3 − 4011q4 − 8430q5 − 11127q6 − 10282q7 − 6180q8

−1810q9 + 845q10 + 72 + 1340q11 + 835q12 + 296q13 + 50q14 + 348q + 416q2)

2304(q + 1)2
(

∑2
j=0 qj

)4 = Ψ1(q)

A calculation shows that the equation Ψ1(q) ≤ 0 when 0 < q ≤ 0.3898584501. Hence,
Ψ1(q) ≤ 0. Now by using Lemma 4, we can have∣∣∣a2

3 − a5

∣∣∣ ≤ 1

∑3
j=0 qj

and 1
∑3

j=0 qj , for q ∈ (0, 0.3898584501). This shows that the inequality (24) is satisfied for

n = 3.

The following result investigates the inequality (25) for n = 4, m = 2.

Theorem 5. If the function f ∈ S∗qs has the form (1), then,

|a4a2 − a5| ≤
1

∑3
j=0 qj

, q ∈ (0, 0.1889972572].

Proof. From (19), (21), and (22), consider

|a5 − a2a4| =
1

2
(

∑3
j=0 qj

) ∣∣∣∣∣−q2(q + 2)
48

c4
1 +

qc2
2

2(q + 1)
+

(q + 1)c1c3

2
+

q(q− 2)c2
1c2

8
− c4

∣∣∣∣∣
=

1

2
(

∑3
j=0 qj

) ∣∣∣∣λc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
where

λ : =
−q2(q + 2)

48
, a :=

q
2(q + 1)

,

α : =
(q + 1)

4
, β :=

q(2− q)
12

.

We see that 0 < a < 1, 0 < α < 1. Now,

8a(1− a){(αβ− 2λ)2 + (α(a + α)− β)2}+ α(1− α)(β− 2aα)2 − 4α2a(1− α)2(1− a) =

q(40q5 − 146q4 + 82q6 + 751q3 + 17q7 + 1930q2 + 276q− 126)
2304(q + 1)2 = Ψ2(q)
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A calculation shows that the equation Ψ2(q) ≤ 0 when 0 < q ≤ 0.1889972572. For the
application of (12), we have

|a5 − a2a4| ≤
1

∑3
j=0 qj

,

which completes the proof.

4. Hankel Determinants

Theorem 6. If f ∈ S∗qs has the series form as given in (1), then,

|H2,2( f )| ≤ 1
(q + 1)2 . (28)

The result is sharp for the function f3 given in (23).

Proof. From (19), (20), and (21), consider

H2,2( f ) = a2a4 − a2
3 = −

q2c4
1

96
(

∑2
j=0 qj

) − q

8(q + 1)
(

∑2
j=0 qj

) c2
1c2 +

c1c3

4
(

∑2
j=0 qj

) − c2
2

4(q + 1)2 .

Since the class S∗qs and the functional H2,2 are rotationally invariant, we can consider
that c := c1 ∈ [0, 2]. Then, using Lemma 1 and after simplification, we obtain

H2,2( f ) =
1

8
(

∑2
j=0 qj

)
 − q2(q2+2q+7)c4

12(q+1)2 + q(4−c2)(1−q)xc2

2(q+1)2

−
(

qc2+4
(

∑2
j=0 qj

))
(4−c2)x2

2(q+1)2 + c(4− c2)
(

1− |x|2
)

z


where x and z are such that |x| ≤ 1, |z| ≤ 1.

(1) Suppose first that c = 2. Then, |H2,2( f )| = q2(q2+2q+7)
6(q+1)2

(
∑2

j=0 qj
) < 1

(q+1)2 .

(2) When c = 0,

|H2,2( f )| ≤ |x|
(q + 1)2 ≤

1

(q + 1)2 .

(3) Next, assume that c ∈ (0, 2) and the application of the triangle inequality gives

|H2,2( f )| ≤ c(4− c2)

8
(

∑2
j=0 qj

)Ψ(A, B, C),

where
Ψ(A, B, C) := |A + Bx + Cx2|+ 1− |x|2, |x| ≤ 1,

with

A := −
q2(q2 + 2q + 7

)
c3

12(q + 1)2(4− c2)
, B :=

q(1− q)c

2(q + 1)2 , C := −

(
qc2 + 4

(
∑2

j=0 qj
))

2c(q + 1)2 .

Clearly,

AC =
q2
(

qc2 + 4
(

∑2
j=0 qj

))(
q2 + 2q + 7

)
c2

24(q + 1)4(4− c2)
> 0, c ∈ (0, 2), q ∈ (0, 1).
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We now show that |B| ≥ 2(1− |C|). For this, we define the function

ϕ(c) = 2(q + 1)2c(|B| − 2(1− |C|)) = q(3− q)c2 − 4(q2 + 2q + 1)c + 8

(
2

∑
j=0

qj

)
.

Now,

ϕ′(c) = 2q(3− q)c− 4(q2 + 2q + 1),

ϕ′′(c) = 2q(3− q) > 0, q ∈ (0, 1).

This shows that the function ϕ′ is increasing and

max ϕ′(c) = ϕ′(2) = −8q2 + 4q− 4 < 0, q ∈ (0, 1).

This implies that
ϕ′(c) < 0, c ∈ (0, 2), q ∈ (0, 1).

Hence, ϕ is a decreasing function and

min ϕ(c) = ϕ(2) = 4q(1− q) > 0, q ∈ (0, 1).

We conclude that (|B| − 2(1− |C|)) > 0. Then, by Lemma 5,

|H2,2( f )| ≤ c(4− c2)

8
(

∑2
j=0 qj

) (|A|+ |B|+ |C|) = g(c), (29)

where

g(c) := − 1

96(q + 1)2
(

∑2
j=0 qj

) ( (
−7 q2 − 2 q3 + 6 q(1− q) + 6 q− q4)c4

+
(
−24 q(1− q) + 24 q2 + 24

)
c2 − 96

(
1 + q + q2) ).

Now,

g′(c) =
1

96(q + 1)2
(

∑2
j=0 qj

)(Lc3 + Mc
)

,

where

L = −
(
−28 q2 − 8 q3 + 24 q(1− q) + 24 q− 4 q4

)
< 0, q ∈ (0, 1),

M = −
(

48− 48 q(1− q) + 48 q2
)
< 0, q ∈ (0, 1).

We conclude that g is a decreasing function and

g(c) ≤ g(0) =
1

(q + 1)2 , q ∈ (0, 1).

Hence,

|H2,2( f )| ≤ 1

(q + 1)2 .

The result is sharp, which can be obtained with the function f3, given in (23).

Upon letting q −→ 1−, the above result reduces to the following, proven in [46].

Corollary 3. If f ∈ S∗s has the series form as given in (1), then,∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
4

.
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Theorem 7. If f ∈ S∗qs has the series form as given in (1), then,

|H3,1( f )| ≤ 1(
∑3

j=0 qj
)
(q + 1)

+
1(

∑2
j=0 qj

)2 +
1

(q + 1)3 , q ∈ (0, 0.86). (30)

The proof follows easily by using the inequalities of Theorem 1, Theorem 6, Theorem 3,
and Theorem 2 in (3).

5. Conclusions

This work has introduced a new class S∗qs of q-starlike functions linked with the q-
analogue of the sine function through subordination relation. This class generalizes the
class S∗s of starlike functions. The investigations of certain coefficient inequalities like
sharp coefficient bounds, the upper bound of the third-order Hankel determinant, Zalcman
inequalities, and generalized Zalcman inequalities for the class S∗qs have been included in
this work. It also improves the coefficient bounds and the upper bound of the third-order
Hankel determinant for the class S∗s . Moreover, for future work, the defined class S∗qs can
be further investigated for finding the upper bounds of higher-order Hankel and Toeplitz
determinants. Meanwhile, the obtained coefficient bounds may be used for studying many
other unaddressed coefficient problems for this class.
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