Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function
Abstract
:1. Introduction
- 1.
- If we let
- 2.
- 3.
- If we put
- 4.
- Moreover, if we take
- 5.
- Furthermore, if we pick we obtain the class which was introduced and studied by Mendiratta et al. [6].
- 6.
- If we put , then we have the class of starlike functions associated with the crescent-shaped region as discussed in [7].
2. A Set of Lemmas
3. Main Results
4. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; p. 157169. [Google Scholar]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Sokól, J.; Kanas, S. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afrika Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On Coefficient estimates for a certain class of starlike functions. Hacettepe. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Tang, H.; Arif, M.; Haq, M.; Khan, N.; Khan, M.; Ahmad, K.; Khan, B. Fourth Hankel Determinant Problem Based on Certain Analytic Functions. Symmetry 2022, 14, 663. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Raina, R.K.; Sokól, R.K.J. On certain subclasses of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some classes of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vanderhoeck & Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Fekete, M.; Szego, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math.Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Keopf, W. On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar]
- Khan, M.G.; Ahmad, B.; Moorthy, G.M.; Chinram, R.; Mashwani, W.K. Applications of modified Sigmoid functions to a class of starlike functions. J. Funct. Spaces 2020, 8, 8844814. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the Second Hankel determinant of a really mean p-valent functions. Trans. Amer. Math. Soc. 1976, 22, 337–346. [Google Scholar]
- Hayman, W.K. On the second Hankel determinant of mean univalent functions. Proc. London Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Orhan, H.; Magesh, N.; Yamini, J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turkish J. Math. 2016, 40, 679–687. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator. Symmetry 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory. Appl. 2007, 6, 1–7. [Google Scholar]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain coefficient estimate problems for three-leaf-type starlike functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third hankel determinant for a subclass of q-starlike functions associated with the q-exponentional function. Bull. Sci. Math. 2021, 2021, 102942. [Google Scholar] [CrossRef]
- Ullah, N.; Ali, I.; Hussain, S.M.; Ro, J.-S.; Khan, N.; Khan, B. Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli. Fractal Fract. 2022, 6, 48. [Google Scholar] [CrossRef]
- Milin, I.M. Univalent Functions and Orthonormal Systems (Nauka, Moscow, 1971); English Translation, Translations of Mathematical Monographs, 49; American Mathematical Society: Providence, RI, USA, 1977. (In Russian) [Google Scholar]
- Duren, P.T. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Ali, M.F.; Vasudevarao, A. On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 2018, 146, 1131–1142. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 2020, 114, 52. [Google Scholar] [CrossRef] [Green Version]
- Girela, D. Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. Math. 2000, 25, 337–350. [Google Scholar]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2021, 1–10. [Google Scholar] [CrossRef]
- Ali, M.F.; Vasudevarao, A.; Thomas, D.K. On the third logarithmic coefficients of close-to-convex functions. In Current Research in Mathematical and Computer Sciences II; Lecko, A., Ed.; UWM: Olsztyn, Poland, 2018; pp. 271–278. [Google Scholar]
- Kumar, U.P.; Vasudevarao, A. Logarithmic coefficients for certain subclasses of close-to-convex functions. Monatsh. Math. 2018, 187, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K. On logarithmic coefficients of close to convex functions. Proc. Am. Math. Soc. 2016, 144, 1681–1687. [Google Scholar] [CrossRef] [Green Version]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Hu, Q.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Rehman, M.S.; Ahmad, Q.Z.; Khan, B.; Tahir, M.; Khan, N. Generalisation of certain subclasses of analytic and univalent functions, Maejo Internat. J. Sci. Technol. 2019, 13, 1–9. [Google Scholar]
- Islam, S.; Khan, M.G.; Ahmad, B.; Arif, M.; Chinram, R. q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function. Mathematics 2020, 8, 1676. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Khan, M.G.; Khan, N.; Ahmad, B.; Khan, B.; Mashwani, W.K. Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain. Axioms 2021, 10, 291. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. https://doi.org/10.3390/fractalfract6050261
Khan B, Aldawish I, Araci S, Khan MG. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal and Fractional. 2022; 6(5):261. https://doi.org/10.3390/fractalfract6050261
Chicago/Turabian StyleKhan, Bilal, Ibtisam Aldawish, Serkan Araci, and Muhammad Ghaffar Khan. 2022. "Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function" Fractal and Fractional 6, no. 5: 261. https://doi.org/10.3390/fractalfract6050261
APA StyleKhan, B., Aldawish, I., Araci, S., & Khan, M. G. (2022). Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal and Fractional, 6(5), 261. https://doi.org/10.3390/fractalfract6050261