Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model
<p>The Gongzhuling experimental station of the Chinese Academy of Agricultural Sciences.</p> "> Figure 2
<p>A comparison of the changes in mean annual precipitation (<b>A</b>) and mean annual temperature (<b>B</b>) under two typical concentration paths based on future climate models. The dashed line is the fitted linear trend line.</p> "> Figure 3
<p>The variation in maize yield over time under different tillage practices and straw return methods under two climate scenarios (RCP4.5 and RCP8.5). The dashed line is the fitted linear trend line.</p> "> Figure 4
<p>Effects of three tillage practices (PT, NT, RT) and two straw return practices (SN, SR) and their interactions on maize yield under RCP4.5 (<b>A</b>) and RCP8.5 (<b>B</b>) climate scenarios. ns: <span class="html-italic">p</span> > 0.05.</p> "> Figure 5
<p>The variation in SOC content within the 0–20 cm soil tillage layer over time under different tillage practices and straw return methods under two climate scenarios (RCP4.5 and RCP8.5). The dashed line is the fitted linear trend line.</p> "> Figure 6
<p>The variation in SOC content within the 20–40 cm soil tillage layer over time under different tillage practices and straw return methods under two climate scenarios (RCP4.5 and RCP8.5). The dashed line is the fitted linear trend line.</p> "> Figure 7
<p>The effects of different tillage practices and different straw return methods on SOC in different tillage layers of the soil. Among them, (<b>A</b>,<b>C</b>) indicate the changes in SOC content of straw under RCP4.5 climate scenario with different return methods and different tillage methods, respectively, and (<b>B</b>,<b>D</b>) indicate the changes in SOC content of straw under RCP8.5 climate scenario with different return methods and different tillage methods, respectively. *** indicates the significant correlation at <span class="html-italic">p</span> < 0.01. ns: <span class="html-italic">p</span> > 0.05.</p> "> Figure 8
<p>Changes in SOCD in 0–40 cm of farmland soils from 1980 to 2100 at Gongzhuling Experimental Station.</p> "> Figure 9
<p>PLS-PM analysis of the combined effects of tillage and straw returning on yield under future climate scenarios. Single-headed arrows indicate the hypothesized direction of causation. The indicated values are the path coefficients. Red arrows indicate a positive effect, whereas blue arrows indicate a negative effect. The arrow width is proportional to the strength of the relationship. R<sup>2</sup> on the parameters indicates the percentage of the variance explained by other variables. *, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001. L1 is the first soil layer (0–20 cm), and the L2 is the second soil layer (20–40 cm). (<b>A</b>) Path analysis in RCP4.5 scenario; (<b>B</b>) Path analysis in RCP8.5 scenario.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Experimental Design and Field Management
2.4. Model Descriptions
2.5. Data Analysis
3. Results
3.1. Agreement Between Observed and Simulated Values
3.2. Characteristics of Future Climate Change Under Different Climate Scenarios
3.3. Effects of Straw Returning Methods and Tillage Practices on Crop Yields Under Future Climate Scenarios
3.4. Effects of Straw-Returning Methods and Tillage Practices on SOC in Different Tillage Layers Under Future Climate Scenarios
3.5. Changes in SOCD Under Different Straw Return Methods and Tillage Practices Under Future Climate Scenarios
3.6. PLS-PM Analysis
4. Discussion
4.1. Maize Yield Under Climate Change
4.2. Relations of Conservation Practices, Soil Quality, and the Maize Yield
4.3. Limitation and Outlooks
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.J.; Zhang, J.; Pan, T.; Chen, Q.M.; Qin, Y.; Ge, Q.S. Climate-associated major food crops production change under multi-scenario in China. Sci. Total Environ. 2022, 811, 151393. [Google Scholar] [CrossRef] [PubMed]
- Nabila, K.; Emaan, A. Unraveling the complexity! Exploring asymmetries in climate change, political globalization, and food security in the case of Pakistan. Res. Glob. 2024, 8, 100220. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.Q.; Li, K.W.; Aru, H.; Feng, Z.; Liu, X.P.; Tong, Z.J. Quantifying hazard of drought and heat compound extreme events during maize (Zea mays L.) growing season using Magnitude Index and Copula. Weather Clim. Extrem. 2023, 40, 100566. [Google Scholar] [CrossRef]
- Hou, M.; Li, Y.; Biswas, A.; Chen, X.G.; Xie, L.L.; Liu, D.L.; Li, L.C.; Feng, H.; Wu, S.F.; Satoh, Y.; et al. Concurrent drought threatens wheat and maize production and will widen crop yield gaps in the future. Agric. Syst. 2024, 220, 104056. [Google Scholar] [CrossRef]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 Framework for Hazard-Specific Vulnerability Assessment under Climate Change. Environ. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Waters, C. Designing High-Yielding Maize Ideotypes to Adapt Changing Climate in the North China Plain. Agric. Syst. 2020, 181, 102805. [Google Scholar] [CrossRef]
- Gao, Y.K.; Zhao, H.F.; Zhao, C.; Hu, G.H.; Zhang, H.; Liu, X.; Li, N.; Hou, H.Y.; Li, X. Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China. Agric. Water Manag. 2022, 270, 107714. [Google Scholar] [CrossRef]
- Guga, S.; Bole, Y.; Riao, D.; Bilige, S.; Wei, S.C.; Li, K.W.; Zhang, J.Q.; Tong, Z.J.; Liu, X.P. The challenge of chilling injury amid shifting maize planting boundaries: A case study of Northeast China. Agric. Syst. 2025, 222, 104166. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Hou, L.; Keske, C.; Hoag, D.; Balezentis, T.; Wang, X. Abatement Costs of Emissions from Burning Maize Straw in Major Maize Regions of China: Balancing Food Security with the Environment. J. Clean. Prod. 2019, 208, 178–187. [Google Scholar] [CrossRef]
- Lin, H.; Duan, X.; Li, Y.; Zhang, L.; Rong, L.; Li, R. Simulating the Effects of Erosion on Organic Carbon Dynamics in Agricultural Soils. CATENA 2022, 208, 105753. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recycl. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Mo, F.; Yang, D.Y.; Wang, X.K.; Crowther, T.W.; Vinay, N.; Luo, Z.K.; Yu, K.L.; Sun, S.K.; Zhang, F.; Xiong, Y.C.; et al. Nutrient limitation of soil organic carbon stocks under straw return. Soil Biol. Biochem. 2024, 192, 109360. [Google Scholar] [CrossRef]
- He, J.; Yu, Z.; Shi, Y. Effects of Strip Rotary Tillage with Subsoiling on Soil Enzyme Activity, Soil Fertility, and Wheat Yield. Plant Soil Environ. 2019, 65, 449–455. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, Z.; Gao, P.; Chen, W.; Qiang, S. Intra- and Cross-Field Dispersal of Beckmannia Syzigachne Seed by a Combine Harvester. Pest Manag. Sci. 2021, 77, 4109–4116. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A Cover Crop and No-Tillage System for Enhancing Soil Health by Increasing Soil Organic Matter in Soybean Cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Xue, J.; Lin, W.; Sun, M. Subsoiling during Summer Fallow in Rainfed Winter-Wheat Fields Enhances Soil Organic Carbon Sequestration on the Loess Plateau in China. PLoS ONE 2021, 16, e0245484. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, S.; Wu, Y.; Islam, M.U.; Dong, F.; Cao, Z.; Chen, G.; Guo, Y. A Large-Scale Dataset of Conservation and Deep Tillage in Mollisols, Northeast Plain, China. Data 2022, 8, 6. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, L.D.C.M.D.; Melo, L.B.B.D.; Azevedo, R.P.; Araújo, B.C.L.; Carvalho, T.S.D.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional Tillage in No-Tillage Systems: A Global Meta-Analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2023, 12, 121. [Google Scholar] [CrossRef]
- Baker, C.; Justice, S.; Saxton, K.; Hobbs, P.; Ritchie, W.; Chamen, W.; Reicosky, D.; Ribeiro, F. No Tillage Seeding in Conservation Agriculture, 2nd ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006; ISBN 978-1-84593-116-2. [Google Scholar]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Wang, H.; Hao, M. No-Tillage with Mulching Improves Maize Yield in Dryland Farming through Regulating Soil Temperature, Water and Nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Liu, W.S.; Liu, W.X.; Kan, Z.R.; Chen, J.S.; Zhao, X.; Zhang, H.L. Effects of tillage and straw management on grain yield and SOC storage in a wheat-maize cropping system. Eur. J. Agron. 2022, 137, 126530. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Lü, J.; Wang, L.; Li, G.; Ning, T. Climate-Smart Tillage Practices with Straw Return to Sustain Crop Productivity. Agronomy 2022, 12, 2452. [Google Scholar] [CrossRef]
- Hao, X.Y.; He, W.; Lam, S.K.; Li, P.; Zong, Y.Z.; Zhang, D.S.; Li, F.Y.H. Enhancement of no-tillage, crop straw return and manure application on field organic matter content overweigh the adverse effects of climate change in the arid and semi-arid Northwest China. Agric. For. Meteorol. 2020, 295, 108199. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B.Z.; Zhou, R.; Ullah, A.; Zhao, Z.Y.; Wang, P.Y.; Su, Y.Z.; Xiong, Y.C. Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment. Agric. Water Manag. 2022, 270, 107742. [Google Scholar] [CrossRef]
- Song, Z.; Guo, J.; Zhang, Z.; Kou, T.; Deng, A.; Zheng, C.; Ren, J.; Zhang, W. Impacts of Planting Systems on Soil Moisture, Soil Temperature and Corn Yield in Rainfed Area of Northeast China. Eur. J. Agron. 2013, 50, 66–74. [Google Scholar] [CrossRef]
- Song, Z.; Gao, H.; Zhu, P.; Peng, C.; Deng, A.; Zheng, C.; Mannaf, M.A.; Islam, M.N.; Zhang, W. Organic Amendments Increase Corn Yield by Enhancing Soil Resilience to Climate Change. Crop J. 2015, 3, 110–117. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Hojatollah, L.; Feng, X.; Cao, T.; Qian, C.; Deng, A.; Song, Z.; Zhang, W. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? J. Integr. Agric. 2018, 17, 1745–1757. [Google Scholar] [CrossRef]
- Ilhan, A.; Ünal, Y.S. Climate Projections over Mediterranean Basin under RCP8.5 and RCP4.5 Emission Scenarios. EGU Gen. Assem. 2017, 19, 7436. [Google Scholar]
- Vanli, Ö.; Ustundag, B.B.; Ahmad, I.; Hernandez-Ochoa, I.M.; Hoogenboom, G. Using Crop Modeling to Evaluate the Impacts of Climate Change on Wheat in Southeastern Turkey. Environ. Sci. Pollut. Res. 2019, 26, 29397–29408. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Etedali, H.R.; Elbeltagi, A. Evaluation of the Effect of Climate Change on Maize Water Footprint under RCPs Scenarios in Qazvin Plain, Iran. Agric. Water Manag. 2021, 254, 106969. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Asseng, S.; Anderson, G.C.; Dunin, F.X.; Fillery, I.R.P.; Dolling, P.J.; Keating, B.A. Use of the APSIM Wheat Model to Predict Yield, Drainage, and NO3- Leaching for a Deep Sand. Aust. J. Agric. Res. 1998, 49, 363–378. [Google Scholar] [CrossRef]
- Peake, A.S.; Robertson, M.J.; Bidstrup, R.J. Optimising Maize Plant Population and Irrigation Strategies on the Darling Downs Using the APSIM Crop Simulation Model. Aust. J. Exp. Agric. 2008, 48, 313–325. [Google Scholar] [CrossRef]
- Zhu, G.X.; Liu, Z.J.; Qiao, S.L.; Zhang, Z.T.; Huang, Q.W.; Su, Z.G.; Yang, X.G. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. Eur. J. Agron. 2022, 136, 126511. [Google Scholar] [CrossRef]
- He, W.; Dutta, B.; Grant, B.B.; Chantigny, M.H.; Hunt, D.; Bittman, S.; Tenuta, M.; Worth, D.; VanderZaag, A.; Desjardins, R.L.; et al. Assessing the Effects of Manure Application Rate and Timing on Nitrous Oxide Emissions from Managed Grasslands under Contrasting Climate in Canada. Sci. Total Environ. 2020, 716, 135374. [Google Scholar] [CrossRef] [PubMed]
- Feleke, H.G.; Savage, M.; Tesfaye, K. Calibration and Validation of APSIM-Maize, DSSAT CERES-Maize and AquaCrop Models for Ethiopian Tropical Environments. S. Afr. J. Plant Soil 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Zhou, J.; Li, W.; Xiao, W.; Chen, Y.; Chang, X.; Zhou, J.; Li, W.; Xiao, W.; Chen, Y.; Chang, X. Calibration and Validation of APSIM for Maize Grown in Different Seasons in Southwest Tropic of China. Chil. J. Agric. Res. 2022, 82, 586–594. [Google Scholar] [CrossRef]
- Hu, P.; Liu, S.-J.; Ye, Y.; Zhang, W.; Wang, K.-L.; Su, Y.-R. Effects of Environmental Factors on Soil Organic Carbon under Natural or Managed Vegetation Restoration. Land Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U. Factors Controlling Soil Organic Carbon Sequestration of Highland Agricultural Areas in the Mae Chaem Basin, Northern Thailand. Agronomy 2020, 10, 305. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Meng, C.; Zhang, L.; Wang, C. Analysis on the Changes of Agro-Meteorological Thermal Indices in Northeast China under RCP4.5 Scenario Using the PRECIS2.1. Atmosphere 2018, 9, 323. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, G.; Liu, D.L.; Wang, B.; Xiao, D.; He, L. Climate-Associated Rice Yield Change in the Northeast China Plain: A Simulation Analysis Based on CMIP5 Multi-Model Ensemble Projection. Sci. Total Environ. 2019, 666, 126–138. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, P.; Duan, C.; Wu, S.; Feng, H.; Zou, Y. Black Plastic Film Combined with Straw Mulching Delays Senescence and Increases Summer Maize Yield in Northwest China. Agric. Water Manag. 2020, 231, 106031. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Global Warming and Increasing Maize Cultivation Demand Comprehensive Efforts in Disease and Insect Resistance Breeding in North-Western Europe. Plant Pathol. 2021, 70, 1032–1046. [Google Scholar] [CrossRef]
- Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Azher Nawaz, M.; Farooq, M. Thermal Stresses in Maize: Effects and Management Strategies. Plants 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Wang, F.; Ren, W.; Hao, Z. Climate Change Impacts on Winter Wheat Yield in Northern China. Adv. Meteorol. 2019, 2019, 2767018. [Google Scholar] [CrossRef]
- Li, E.; Zhao, J.; Pullens, J.W.M.; Yang, X. The Compound Effects of Drought and High Temperature Stresses Will Be the Main Constraints on Maize Yield in Northeast China. Sci. Total Environ. 2022, 812, 152461. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Singh, G.; Bhattacharyya, R.; Das, T.K.; Sharma, A.R.; Ghosh, A.; Das, S.; Jha, P. Crop Rotation and Residue Management Effects on Soil Enzyme Activities, Glomalin and Aggregate Stability under Zero Tillage in the Indo-Gangetic Plains. Soil Tillage Res. 2018, 184, 291–300. [Google Scholar] [CrossRef]
- Zi, H.B.; Hu, L.; Wang, C.T.; Wang, G.X.; Wu, P.F.; Lerdau, M.; Ade, L.J. Responses of Soil Bacterial Community and Enzyme Activity to Experimental Warming of an Alpine Meadow. Eur. J. Soil Sci. 2018, 69, 429–438. [Google Scholar] [CrossRef]
- Sun, S.; Wu, Y.; Zhang, J.; Wang, G.; DeLuca, T.H.; Zhu, W.; Li, A.; Duan, M.; He, L. Soil Warming and Nitrogen Deposition Alter Soil Respiration, Microbial Community Structure and Organic Carbon Composition in a Coniferous Forest on Eastern Tibetan Plateau. Geoderma 2019, 353, 283–292. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Wang, S.; Wang, Z. Soil pH and C/N Ratio Determines Spatial Variations in Soil Microbial Communities and Enzymatic Activities of the Agricultural Ecosystems in Northeast China: Jilin Province Case. Appl. Soil Ecol. 2020, 155, 103629. [Google Scholar] [CrossRef]
- Du, Y.; Yu, A.L.; Chi, Y.; Wang, Z.L.; Han, X.R.; Liu, K.F.; Fan, Q.P.; Hu, X.; Che, R.X.; Liu, D. Organic carbon decomposition temperature sensitivity positively correlates with the relative abundance of copiotrophic microbial taxa in cropland soils. Appl. Soil Ecol. 2024, 204, 105712. [Google Scholar] [CrossRef]
- Islam, M.U.; Jiang, F.H.; Guo, Z.C.; Liu, S.; Peng, X.H. Impacts of straw return coupled with tillage practices on soil organic carbon stock in upland wheat and maize croplands in China: A meta-analysis. Soil Tillage Res. 2023, 232, 105786. [Google Scholar] [CrossRef]
- Cheng, J.; Lin, B.J.; Chen, J.S.; Duan, H.X.; Sun, Y.F.; Zhao, X.; Dang, Y.P.; Xu, Z.Y.; Zhang, H.L. Strategies for crop straw management in China’s major grain regions: Yield-driven conditions and factors influencing the effectiveness of straw return. Resour. Conserv. Recycl. 2025, 212, 107941. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Kreiselmeier, J.; Chandrasekhar, P.; Weninger, T.; Schwen, A.; Julich, S.; Feger, K.H.; Schwärzel, K. Quantification of Soil Pore Dynamics during a Winter Wheat Cropping Cycle under Different Tillage Regimes. Soil Tillage Res. 2019, 192, 222–232. [Google Scholar] [CrossRef]
- Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A. Impact of Tillage Intensity on Planosol Bulk Density, Pore Size Distribution, and Water Capacity in Faba Bean Cultivation. Agronomy 2022, 12, 2311. [Google Scholar] [CrossRef]
- Teng, J.L.; Hou, R.X.; Dungait, J.A.J.; Zhou, G.Y.; Kuzyakov, Y.K.; Zhang, J.B.; Tian, J.; Cui, Z.L.; Zhang, F.S.; Manuel, D.B. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef]
Year | Simulated Yield (kg/ha) | Measured Yield (kg/ha) | R2 | D-Value | Nrmse (%) | |
---|---|---|---|---|---|---|
Calibration | 2009–2011 | 9761 | 10,022 | 1.00 | 0.99 | 3 |
Validation | 2012–2013, 2015 | 10,633 | 10,352 | 0.94 | 0.80 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Su, B.; Liu, R.; Wang, J.; Wang, T.; Lian, Y.; Lu, Z.; Yuan, X.; Song, Z.; Li, R. Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model. Agronomy 2025, 15, 1. https://doi.org/10.3390/agronomy15010001
Liu H, Su B, Liu R, Wang J, Wang T, Lian Y, Lu Z, Yuan X, Song Z, Li R. Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model. Agronomy. 2025; 15(1):1. https://doi.org/10.3390/agronomy15010001
Chicago/Turabian StyleLiu, Hongrun, Baocai Su, Rui Liu, Jiajie Wang, Ting Wang, Yijia Lian, Zhenzong Lu, Xue Yuan, Zhenwei Song, and Runzhi Li. 2025. "Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model" Agronomy 15, no. 1: 1. https://doi.org/10.3390/agronomy15010001
APA StyleLiu, H., Su, B., Liu, R., Wang, J., Wang, T., Lian, Y., Lu, Z., Yuan, X., Song, Z., & Li, R. (2025). Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model. Agronomy, 15(1), 1. https://doi.org/10.3390/agronomy15010001