Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds
<p>Intensity of weeding in the observed tillage variants, in the cultivated crops, and in the observed years. The results represent the mean of 25 biological replicates ± SE. Identical letters express statistical non-significance between the variants, different letters express statistical significance at a significance level <span class="html-italic">p</span> = 0.05 (Fisher LSD test). The plot shows the mean, whiskers represent the standard error, values with different letters (a, b, c, d) differ significantly. Variants of tillage technologies: CT—conventional tillage; MT—minimum tillage; NT—no tillage.</p> "> Figure 2
<p>Relationship between identified weed taxa and tillage–result of CCA analysis (total explained variability = 11.8%; F-ratio = 15.9; <span class="html-italic">p</span>-value = 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American Soil Degradation: Processes, Practices, and Mitigating Strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soils and Food Sufficiency: A Review. Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 25–49. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.P.; Carter, L.M.; Reicosky, D.C.; Shrestha, A.; Pettygrove, G.S.; Klonsky, K.M.; Marcum, D.B.; Chessman, D.; Roy, R.; Hogan, P.; et al. A history of tillage in California’s Central Valley. Soil Tillage Res. 2016, 157, 52–64. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crop. Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- El Titi, A. Soil Tillage in Agroecosystems; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Vogeler, I.; Horn, R.; Wetzel, H.; Kruemmelbein, J. Tillage effects on soil strength and solute transport. Soil Tillage Res. 2006, 88, 193–204. [Google Scholar] [CrossRef]
- Derpsch, R. The extent of conservation agriculture worldwide.Implications and impact. In Proceedings of the III World Congress on Conservation Agriculture, Nairobi, Kenya, 4–8 October 2005. [Google Scholar]
- NASS. 2017 Census of Agriculture; United States Department of Agriculture, National Agricultural Statistics Service: Phoenix, AZ, USA, 2019. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the worldwide spread of conservation agriculture. Field actions science reports. J. Field Actions 2015, 8, 1–11. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Findlater, K.M.; Kandlikar, M.; Satterfield, T. Misunderstanding conservation agriculture: Challenges in promoting, monitoring and evaluating sustainable farming. Environ. Sci. Policy 2019, 100, 47–54. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. Notill in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G.J. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Murphy, S.D.; Clements, D.R.; Belaoussoff, S.; Kevan, P.G.; Swanton, C.J. Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Sci. 2006, 54, 69–77. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow noninversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef] [Green Version]
- Barberi, P.; Lo Cascio, B. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res. 2001, 41, 325–340. [Google Scholar] [CrossRef]
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; Di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Mashingaidze, N.; Madakadze, C.; Twomlow, S.; Nyamangara, J.; Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 2012, 124, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Blaix, C.; Moonen, A.C.; Dostatny, D.F.; Izquierdo, J.; Le Corff, J.; Morrison, J.; Von Redwitz, C.; Schumacher, M.; Westerman, P.R. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach. Weed Res. 2018, 58, 151–164. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Lutgen, E.R.; Rillig, M.C. Influence of spotted knapweed (Centaurea maculosa) managementtreatments on arbuscular mycorrhizae and soil aggregation. Weed Sci. 2004, 52, 172–177. Available online: https://www.jstor.org/stable/4046808 (accessed on 1 November 2022). [CrossRef]
- Marler, M.J.; Zabinski, C.A.; Callaway, R.M. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 1999, 80, 1180–1186. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; McAndrew, D.W. Effect of Tillage on Weed Populations in Continuous Barley (Hordeum vulgare). Weed Technol. 2000, 14, 726–733. Available online: http://www.jstor.org/stable/3988661 (accessed on 1 November 2022). [CrossRef]
- Froud-Williams, R.J.; Chancellor, R.J.; Drennan, D.S.H. Influence of Cultivation Regime Upon Buried Weed Seeds in Arable Cropping Systems. J. Appl. Ecol. 1983, 20, 199–208. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Martinez-Ghersa, M.A.; Ghersa, C.M.; Benech-Arnold, R.L.; Donough, R.M.; Sanchez, R.A. Adaptive traits regulating dormancy and germination of invasive species. Plant Species Biol. 2000, 15, 127–137. [Google Scholar] [CrossRef]
- Drijber, R.A.; Doran, J.W.; Parkhurst, A.M.; Lyon, D.J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 2000, 32, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, C.; Stryhn, H.; Streibig, J. Decline of the flora in Danish arable fields. J. Appl. Ecol. 1996, 33, 619–626. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. 2022. Available online: http://www.fao.org/conservation-agriculture/en/ (accessed on 1 November 2022).
- Komissarov, M.A.; Klik, A. The Impact of no-Till, conservation, and conventional tillage systems on erosion and soil properties in lower Austria. Eurasian Soil Sci. 2020, 53, 503–511. [Google Scholar] [CrossRef]
- Carretta, L.; Tarolli, P.; Cardinali, A.; Nasta, P.; Romano, N.; Masin, R. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 2021, 197, 104972. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Baveye, P.C.; Rangel, D.; Jacobson, A.R.; Laba, M.; Darnault, C.; Otten, W.; Radulovich, R.; Camargo, F.A.O. From Dust Bowl to Dust Bowl: Soils are Still Very Much a Frontier of Science. Soil Sci. Soc. Am. J. 2011, 75, 2037–2048. [Google Scholar] [CrossRef] [Green Version]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- CGS. Map of Soil Types of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2017; Available online: https://mapy.geology.cz/pudy/ (accessed on 8 November 2022).
- CGS. Geological Map of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2018; Available online: https://mapy.geology.cz/geocr50/ (accessed on 8 November 2022).
- Culek, M.; Grulich, V.; Povolný, D. Biogeographical Division of the Czech Republic; Enigma: Prague, Czech Republic, 1996; 347p. (In Czech) [Google Scholar]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Štech, M.; Štěpánek, J. (Eds.) Key to the Flora of the Czech Republic; Academia: Prague, Czech Republic, 2019; (In Czech). 1168p. [Google Scholar]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the Effect of Perennial Energy Crops and Agricultural Crops on Weed Flora Diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage Systém. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture 2022, 12, 563. [Google Scholar] [CrossRef]
- Chovancová, S.; Neudert, L.; Winkler, J. The efect of three soil tillage treatments on weed infestation in forage maize. Acta Agrobot. 2019, 72, 1756. [Google Scholar] [CrossRef] [Green Version]
- Sebayang, H.T.; Fatimah, S. The effect of tillage systems and dosages of cow manure on weed and soybeans yield (Glycine max Merrill). J. Degrade. Min. Land Manag. 2019, 7, 1959–1963. [Google Scholar] [CrossRef]
- Torreson, R.Z.; Cabello, C.; Conde, D.M.; Brenelli, H.B. Impact of the Preservation of the Intercostobrachial Nerve in Axillary Lymphadenectomy due to Breast Cancer. Breast J. 2003, 9, 389–392. [Google Scholar] [CrossRef]
- Armengot, L.; Berner, A.; Blanco-Moreno, J.M.; Mader, P.; Sans, F.X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Dev. 2015, 35, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J.; Kopta, T.; Ferby, V.; Neudert, L.; Vaverková, M.D. Effect of Tillage Technology Systems for Seed Germination Rate in a Laboratory Tests. Environments 2022, 9, 13. [Google Scholar] [CrossRef]
- Chovancová, S.; Illek, F.; Winkler, J. The effect of three tillage treatments on weed infestation in maize monoculture. Pak. J. Bot. 2020, 52, 697–701. [Google Scholar] [CrossRef]
- Winkler, J.; Trojan, V.; Hrubešová, V. Effects of the tillage technology and the forecrop on weeds in stands of winter wheat. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Bhullar, M.S.; Chauhan, B.S. Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct-seeded rice. Crop Protect. 2015, 67, 168–177. [Google Scholar] [CrossRef]
- Vakali, C.; Zaller, J.G.; Kopke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Siegrist, S.; Schaub, D.; Pfiffner, L.; Mäder, P. Does organic agriculture reduce soil erodibility? The results of a long-term study on loess in Switzerland. Agric. Ecosyst. Environ. 1998, 69, 253–264. [Google Scholar] [CrossRef]
- Farmer, J.A.; Bradley, K.W.; Young, B.G.; Steckel, L.E.; Johnson, W.G.; Norsworthy, J.K.; Davis, V.M.; Loux, M.M. Influence of tillage method on management of Amaranthus species in Soybean. Weed Technol. 2017, 31, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Bilalis, D.; Efthimiadis, P.; Sidiras, N. Effect of Three Tillage Systems on Weed Flora in a 3-Year Rotation with Four Crops. J. Agron. Crop Sci. 2001, 186, 135–141. [Google Scholar] [CrossRef]
- Wilson, J.D.; Morris, A.J.; Arroyo, B.E.; Clark, S.C.; Bradbury, R.B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 1999, 75, 13–30. [Google Scholar] [CrossRef]
- Petit, S.; Boursault, A.; Le Guilloux, M.; Munier-Jolain, N.; Reboud, X. Weeds in agricultural landscapes: A review. Agron. Sustainable Dev. 2011, 31, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Requier, F.; Odoux, J.; Tamic, T.; Moreau, N.; Henry, M.; Decourtye, A.; Bretagnolle, V. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 2015, 25, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. Dev. 2015, 35, 891–909. [Google Scholar] [CrossRef] [Green Version]
- Tylianakis, J.M.; Didham, R.K.; Wratten, S.D. Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 2004, 85, 658–666. [Google Scholar] [CrossRef] [Green Version]
- DiTommaso, A.; Averill, K.M.; Hoffmann, M.P.; Fuchsberg, J.R.; Losey, J.E. Integrating insect resistance and floral resource management in weed control decision-making. Weed Sci. 2016, 64, 743–756. [Google Scholar] [CrossRef]
- Nakamoto, T.; Yamagishi, J.; Miura, F. Efect of reduced tillage on weeds and soil organisms in winter wheat and summer maize cropping on humic andosols in central Japan. Soil Tillage Res. 2006, 85, 94–106. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Ventereae, R.T.; Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, D.S.; da Silva, L.d.C.M.; de Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; Carvalho, T.S.; de Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in notillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Ali, S.; Malik, M.A.; Ansar, M.; Qureshi, R. Weed growth dynamics associated with rainfed wheat (Triticum aestivum L.) establishment under diferent tillage systems in pothwar. Int. J. Plant Anim. Environ. Sci. 2014, 4, 146–154. [Google Scholar]
- Deike, S.; Pallutt, B.; Melander, B.; Strassemeyer, J.; Christen, O. Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage and strategy of pesticide use: A case-study of two long-term field experiments in Germany and Denmark. Eur. J. Agron. 2008, 29, 191–199. [Google Scholar] [CrossRef]
- Raup, D.M. Extinction: Bad Genes or Bad Luck? WW Norton & Company: New York, NY, USA, 1991; 355p. [Google Scholar]
Crop | After Harvesting the Pre-Crops | Crops Prior to Sowing | After Sowing and Crop Emergence |
---|---|---|---|
Winter wheat (pre-crop: winter rapeseed) | Roundup Forte (glyphosate) | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Winter wheat (pre-crop: winter wheat) | Roundup Forte (glyphosate) | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Corn for grain | Roundup Forte (glyphosate) | Guardian (acetochlor, furilazole), Atrazin (Metolachlor) | Cobra (lactofen), Granstar (tribenuron methyl) |
Spring barley | - | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Labeling | Number of Species Dependent on Plants |
---|---|
BR1 | <6 |
BR2 | 6–12 |
BR3 | 13–24 |
BR4 | 25–50 |
BR5 | 51–100 |
BR6 | 101–200 |
Title 1 | Soil Tillage Variant (Pieces.m−2) | ||
---|---|---|---|
CT | MT | NT | |
BR1 | 0.0 | 0.0 | 0.0 |
BR2 | 0.1 | 0.1 | 0.3 |
BR3 | 5.6 | 3.3 | 5.4 |
BR4 | 1.3 | 1.1 | 5.0 |
BR5 | 1.8 | 2.0 | 1.0 |
BR6 | 0.0 | 0.0 | 0.0 |
BR unknown values | 0.5 | 1.2 | 0.6 |
Soil Tillage | Weed Groups | Weed Taxa |
---|---|---|
CT | Spring weeds | Anagallis arvensis (AnaArve); Fallopia convolvulus (FalConv); Silene noctiflora (SilNoct); Sinapis arvensis (SinArve) |
Summer weeds | Euphorbia helioscopia (EupHeli); Kickxia elatine (KicElat); Persicaria lapathifolia (PerLapa); Sonchus oleraceus (SonOler) | |
Winter weeds | Brassica napus (BraNapu); Consolida hispanica (ConHisp); Fumaria officinalis (FumOffi), Veronica persica (VerPers); Viola arvensis (VioArve) | |
Perennial weed | Medicago sativa (MedSati) | |
MT | Spring weeds | Polygonum aviculare (PolAvic) |
Summer weeds | Amaranthus retroflexus (AmaRetr); Chenopodium album (CheAlbu); Chenopodium hybridum (CheHybr); Persicaria maculosa (PerMacu); Stachys annuam (StaAnnu) | |
Winter weeds | Galium aparine (GalApar); Lamium purpureum (LamPurp) | |
Perennial weed | Arctium tomentosum (ArcTome); Lathyrus tuberosus (LatTube); Sambucus nigra (SamNigr); Sonchus asper (SonAspe) | |
NT | Spring weeds | Anagallis foemina (AnaFoem) |
Summer weeds | Echinochloa crus-galli (EchCrus); Microrrhinum minus (MicMinu); Setaria pumila (SetPumi) | |
Winter weeds | Apera spica-venti (ApeSpic); Bromus sterilis (BroSter); Capsella bursa-pastoris (CapBurs); Conyza canadensis (ConCana); Descurainia sophia (DesSoph); Lactuca serriola (LacSerr); Lamium amplexicaule (LamAmpl); Myosotis arvensis (MyoArve); Papaver rhoeas (PapRhoe); Stellaria media (SteMedi); Thlaspi arvense (ThlArve); Tripleurospermum inodorum (TriInod); Veronica agrestis (VerAgre); Veronica hederifolia (VerHede); Veronica polita (VerPoli) | |
Perennial weed | Carduus acanthoides (CarAcan); Cirsium arvense (CirArve); Convolvulus arvensis (ConArve); Plantago major (PlaMajo); Taraxacum sect. Taraxacum (TarSect); Urtica dioica (UrtDioi) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2023, 12, 121. https://doi.org/10.3390/land12010121
Winkler J, Dvořák J, Hosa J, Martínez Barroso P, Vaverková MD. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land. 2023; 12(1):121. https://doi.org/10.3390/land12010121
Chicago/Turabian StyleWinkler, Jan, Jiří Dvořák, Jiří Hosa, Petra Martínez Barroso, and Magdalena Daria Vaverková. 2023. "Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds" Land 12, no. 1: 121. https://doi.org/10.3390/land12010121
APA StyleWinkler, J., Dvořák, J., Hosa, J., Martínez Barroso, P., & Vaverková, M. D. (2023). Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land, 12(1), 121. https://doi.org/10.3390/land12010121