Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain
<p>Grain yields of winter wheat and summer maize in a double cropping system with four tillage treatments during the period 2004 to 2018 (means ± standard deviations; bars represent standard deviations of the mean of six replicates). Colored lines between means are only meant to make differences between treatments more clear. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> "> Figure 2
<p>Organic carbon input (t/ha) into the soil from aboveground residues of winter wheat and summer maize in a double cropping system with four tillage treatments during the period 2004 to 2018. Bars represent standard deviations of the mean of six replicates. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> "> Figure 3
<p>Soil organic carbon content (SOC, g kg<sup>−1</sup>) of the 0–5 cm (<b>a</b>), 5–10 cm (<b>b</b>), 10–20 cm (<b>c</b>) and 20–30 cm (<b>d</b>) soil layers in a double cropping system with four tillage treatments, during the period 2004 to 2018 (means ± standard deviations; bars represent standard deviations of the mean of six replicates. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> "> Figure 4
<p>Changes in soil carbon stocks (t ha<sup>−1</sup>) in the topsoil (0–30 cm) of four tillage treatments during the period 2004 to 2018. Dotted lines represent trend lines. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> "> Figure 5
<p>Available soil nitrogen ((<b>a</b>). AN, g kg<sup>−1</sup>), soil phosphorus ((<b>b</b>). AP, mg kg<sup>−1</sup>) and soil potassium ((<b>c</b>). AK, g kg<sup>−1</sup>) in the 0–5, 5–10, 10–20 and 20–30 cm soil layers in a double cropping system with four tillage treatments during the period 2004 to 2018. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> "> Figure 6
<p>Soil bulk density (g cm<sup>−3</sup>) of the 0–5, 5–10, 10–20 and 20–30 cm soil layers of a double cropping system with four tillage treatments in 2005, 2006, 2012, 2015, and 2017. Line bars represent the standard deviation of the mean of six replicates. See <a href="#agronomy-12-00176-t001" class="html-table">Table 1</a> for the tillage treatments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
2.3. Data Collection and Monitoring
2.3.1. Grain Yield
2.3.2. Soil Sampling and Analyses
2.3.3. Carbon Input via Straw Return
2.3.4. Weather Data
2.4. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Wheat and Maize Yields
3.3. Total Carbon Input from Straw Return
3.4. Soil Carbon Content and Sequestration Rates
3.5. Available Soil Nutrients
3.6. Soil Bulk Density
4. Discussion
4.1. Depth-Distributions of Carbon and Nutrients in Soil
4.2. Responses of Maize and Wheat Grain Yields to Tillage Treatments
4.3. Carbon Stock and Sequestration Rate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, Z.; Cui, S.; Zhang, Q. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma 2020, 361, 114099. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Madejón, E.; Murillo, J.M.; Moreno, F.; López, M.V.; Arrúe, J.L.; Álvaro-Fuentes, J.; Cantero-Martinez, C. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 2009, 105, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Chimsah, F.A.; Cai, L.; Wu, J.; Zhang, R. Outcomes of long-term conservation tillage research in Northern China. Sustainability 2020, 12, 1062. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- Piazza, G.; Pellegrino, E.; Moscatelli, M.C.; Ercoli, L. Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil Tillage Res. 2020, 196, 104482. [Google Scholar] [CrossRef]
- Gathala, M.K.; Timsina, J.; Islam, S.; Rahman, M.; Hossain, I.; Rashid, H.A.; Ghosh, A.K.; Krupnik, T.J.; Tiwari, T.P.; McDonald, A. Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice–maize systems: Evidence from Bangladesh. Field Crop. Res. 2015, 172, 85–98. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Sinaj, S.; Charles, R. Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland. Soil Tillage Res. 2017, 174, 120–129. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Cai, L.; Carberry, P.; Whitbread, A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Kumara, T.K.; Kandpal, A.; Pal, S. A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia. J. Environ. Manag. 2020, 269, 110773. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q.P. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Yield stability in winter wheat production: A survey on German farmers’ and advisors’ views. Agronomy 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Lampurlanes, J.; Angás, P.; Cantero-Martinez, C. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crop. Res. 2001, 69, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Zhang, J.; Wu, W.; Cai, D.; Lv, J.; Jiang, G.; Huang, J.; Gao, J.; Hartmann, R.; Gabriels, D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manag. 2007, 87, 307–314. [Google Scholar] [CrossRef]
- Taner, A.; Arisoy, R.Z.; Kaya, Y.; Gültekin, I.; Partigöç, F. The effects of various tillage systems on grain yield, quality parameters and energy indices in winter wheat production under the rainfed conditions. Fresenius Environ. Bull. 2015, 24, 1463–1473. [Google Scholar]
- Martínez, E.; Fuentes, J.-P.; Silva, P.; Valle, S.; Acevedo, E. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Tillage Res. 2008, 99, 232–244. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.d.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Ussiri, D.A.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef] [PubMed]
- Pedrotti, A.; Filho, R.N.D.A.; Assunção, S.J.R.; Filho, R.R.G.; de Oliveira, F.C.C.; Holanda, F.S.R.; Piscoya, V.C.; Filho, M.C. Soil Mechanical Resistance Penetration after Fifteen Years with Previous Crops and Tillage Systems and Productivity of Green Corn Cob in Northeast Brazil. J. Exp. Agric. Int. 2019, 1–9. [Google Scholar] [CrossRef]
- Dong, W.; Hu, C.; Chen, S.; Zhang, Y. Tillage and residue management effects on soil carbon and CO2 emission in a wheat–corn double-cropping system. Nutr. Cycl. Agroecosyst. 2009, 83, 27–37. [Google Scholar] [CrossRef]
- Qin, S.; Hu, C.; Clough, T.J.; Luo, J.; Oenema, O.; Zhou, S. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0–2 m soil profile. Soil Biol. Biochem. 2017, 106, 1–8. [Google Scholar] [CrossRef]
- Du, Z.; Ren, T.; Hu, C. Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Sci. Soc. Am. J. 2010, 74, 196–202. [Google Scholar] [CrossRef]
- Liu, X.; Feike, T.; Shao, L.; Sun, H.; Chen, S.; Zhang, X. Effects of different irrigation regimes on soil compaction in a winter wheat–summer maize cropping system in the North China Plain. Catena 2016, 137, 70–76. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, L.; Sun, H.; Chen, S.; Wang, Y. Incorporation of soil bulk density in simulating root distribution of winter wheat and maize in two contrasting soils. Soil Sci. Soc. Am. J. 2012, 76, 638–647. [Google Scholar] [CrossRef]
- Drosos, M.; Vinci, G.; Spaccini, R.; Piccolo, A. Molecular dynamics of organic matter in a tilled soil under short term wheat cultivation. Soil Tillage Res. 2020, 196, 104448. [Google Scholar] [CrossRef]
- Staff, S. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Han, D.; Wiesmeier, M.; Conant, R.T.; Kühnel, A.; Sun, Z.; Kögel-Knabner, I.; Hou, R.; Cong, P.; Liang, R.; Ouyang, Z. Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s. Glob. Chang. Biol. 2018, 24, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Jaggard, K.W.; Qi, A.; Ober, E. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2835–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin-sheng, N.; Zhang, H.-Y.; Ling-an, N. Crop straw resources and utilization in typical agricultural region of north China plain. J. Anhui Agric. Sci. 2011, 39, 1710–1712. (In Chinese) [Google Scholar] [CrossRef]
- Jin, X.; Bai, Z.; Oenema, O.; Winiwarter, W.; Velthof, G.L.; Chen, X.; Ma, L. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture. Environ. Sci. Technol. 2020, 54, 11894–11904. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Li, B.; Wu, H.; Giesy, J.P. Controlling Air Pollution from Straw Burning in China Calls for Efficient Recycling. Environ. Sci. Technol. 2012, 46, 7934–7936. [Google Scholar] [CrossRef]
- Wang, X.; He, C.; Liu, B.; Zhao, X.; Liu, Y.; Wang, Q.; Zhang, H. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy 2020, 10, 691. [Google Scholar] [CrossRef]
- Kong, L. Maize residues, soil quality, and wheat growth in China. A review. Agron. Sustain. Dev. 2014, 34, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.X.; Ouy, Z.; Wu, L.F. Agro-ecosystems in Huang Huai Hai Plian. In The Ecosystems in China; Sun, H.L., Ed.; Science Press: Beijing, China, 2005; pp. 1098–1099. [Google Scholar]
- Coppens, F.; Garnier, P.; De Gryze, S.; Merckx, R.; Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur. J. Soil Sci. 2006, 57, 894–905. [Google Scholar] [CrossRef]
- Giacomini, S.J.; Recous, S.; Mary, B.; Aita, C. Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization. Plant Soil 2007, 301, 289–301. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Carter, M.R.; James, D.C.; Liu, C.W. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: A phosphorus-31 nuclear magnetic resonance study. J. Environ. Qual. 2010, 39, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.T.; Tang, C.; Armstrong, R.D. Tillage system affects phosphorus form and depth distribution in three contrasting Victorian soils. Soil Res. 2009, 47, 33–45. [Google Scholar] [CrossRef]
- Weil, R.R.; Benedetto, P.W.; Sikora, L.J.; Bandel, V.A. Influence of tillage practices on phosphorus distribution and forms in three ultisols. Agron. J. 1988, 80, 503–509. [Google Scholar] [CrossRef]
- Zibilske, L.; Bradford, J.; Smart, J. Conservation tillage induced changes in organic carbon, total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil. Soil Tillage Res. 2002, 66, 153–163. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 2015, 107, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Matowo, P.R.; Pierzynski, G.M.; Whitney, D.; Lamond, R.E. Soil chemical properties as influenced by tillage and nitrogen source, placement, and rates after 10 years of continuous sorghum. Soil Tillage Res. 1999, 50, 11–19. [Google Scholar] [CrossRef]
- Martinrueda, I.; Munozguerra, L.; Yunta, F.; Esteban, E.; Tenorio, J.L.; Lucena, J.J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 2007, 92, 1–9. [Google Scholar] [CrossRef]
- García, B.L.; Parras-Alcántara, L. Changes in soil properties and soil solution nutrients due to conservation versus conventional tillage in Vertisols. Arch. Agron. Soil Sci. 2014, 60, 1429–1444. [Google Scholar] [CrossRef]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric. Water Manag. 2015, 153, 71–76. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Liu, Q.-Y.; He, C.; Jing, Z.-H.; Virk, A.L.; Qi, J.-Y.; Zhao, X.; Zhang, H.-L. Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain. Field Crop. Res. 2020, 249, 107760. [Google Scholar] [CrossRef]
- Känkänen, H.; Alakukku, L.; Salo, Y.; Pitkänen, T. Growth and yield of spring cereals during transition to zero tillage on clay soils. Eur. J. Agron. 2011, 34, 35–45. [Google Scholar] [CrossRef]
- Amato, G.; Ruisi, P.; Frenda, A.S.; Di Miceli, G.; Saia, S.; Plaia, A.; Giambalvo, D. Long-Term Tillage and Crop Sequence Effects on Wheat Grain Yield and Quality. Agron. J. 2013, 105, 1317–1327. [Google Scholar] [CrossRef]
- Eckert, D.J. Tillage System × Planting Date Interactions in Corn Production 1. Agron. J. 1984, 76, 580–582. [Google Scholar] [CrossRef]
- Graven, L.; Carter, P. Seed Quality effect on corn performance under conventional and no-tillage systems. J. Prod. Agric. 1991, 4, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Herbek, J.H.; Murdock, L.W.; Blevins, R.L. Tillage System and Date of Planting Effects on Yield of Corn on Soils with Restricted Drainage 1. Agron. J. 1986, 78, 824–826. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Lundy, M.E.; Pittelkow, C.; Linquist, B.A.; Liang, X.; van Groenigen, K.J.; Lee, J.; Six, J.; Venterea, R.T.; van Kessel, C. Nitrogen fertilization reduces yield declines following no-till adoption. Field Crop. Res. 2015, 183, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657. [Google Scholar] [CrossRef] [Green Version]
- Toliver, D.K.; Larson, J.A.; Roberts, R.K.; English, B.C.; Ugarte, D.G.D.L.T.; West, T.O. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors. Agron. J. 2012, 104, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.-L.; Wu, Y.-C.; Wang, Z.-M.; Lu, L.-Q.; Wang, R.-Z. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat–summer maize rotation in the North China Plain. Environ. Pollut. 2008, 152, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Hu, C.; Zhang, Y.; Wu, D. Gross mineralization, nitrification and N2O emission under different tillage in the North China Plain. Nutr. Cycl. Agroecosyst. 2012, 94, 237–247. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Corbeels, M.; Marchao, R.; Neto, M.S.; Ferreira, E.G.; Madari, B.; Scopel, E.; Brito, O.R. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci. Rep. 2016, 6, 21450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
Treatment | Tillage before Wheat | Tillage before Maize | Wheat Seeding Pattern | Maize Straw Management | Wheat Straw Management |
---|---|---|---|---|---|
CK | Moldboard ploughing, tillage depth of 20 cm | No tillage | 15 cm between rows, 3–5 cm seeding depth | Maize straw removed, root and stubble incorporated in the soil | Wheat straw chopped (5–10 cm) and spread on soil surface |
CT | Moldboard plough, tillage depth of 20 cm | No tillage | The same as CK | Maize straw chopped (5–10 cm) and incorporated in the soil | The same as CK |
RT | Rotary tillage, tillage depth of 10 cm | No tillage | The same as CK | The same as CT | The same as CK |
NT | No tillage | No tillage | 20 cm between rows, 10 cm inner row, 5 cm seeding depth | Maize straw chopped (5–10 cm) and spread on the soil surface | The same as CK |
Treatments | Wheat Yield * t ha−1 a−1 | Maize Yield * t ha−1 a−1 | Returned Residues * t C ha−1 a−1 | |||
---|---|---|---|---|---|---|
CK | 6.2 ± 0.3 ab | 7.4 ± 0.2 a | 1.25 ± 0.09 c | |||
CT | 6.3 ± 0.2 a | 7.7 ± 0.4 a | 2.83 ± 0.16 a | |||
RT | 5.9 ± 0.1 b | 7.7 ± 0.4 a | 2.68 ± 0.19 b | |||
NT | 5.2 ± 0.1 c | 7.7 ± 0.3 a | 2.64 ± 0.20 b | |||
F | P | F | P | F | P | |
---------------------- | ------------------------ | ---------------- | ||||
Tillage | 36.0 | 0.00 | 0.8 | 0.45 | 24.5 | 0.00 |
Year | 53.7 | 0.00 | 26.7 | 0.00 | 631.4 | 0.00 |
Soil x Year | 3.5 | 0.03 | 4.2 | 0.02 | 2.39 | 0.19 |
CK | CT | RT | NT | |
---|---|---|---|---|
C stock in 0–30 cm soil layer, t ha−1 * | ||||
2001 | 38.1 | 37.1 | 36.4 | 36.9 |
2006 | 38.0 bc | 39.9 abc | 41.1 ab | 41.8 a |
2011 | 42.3 ab | 45.8 a | 44.2 b | 41.9 ab |
2018 | 41.5 c | 48.9 a | 44.7 b | 43.0 b |
C sequestration rate, kg C ha−1 a−1 * | ||||
2001–2006 | −0.01 c | 0.56 b | 0.94 a | 0.99 a |
2001–2011 | 0.43 b | 0.87 a | 0.78 ab | 0.50 b |
2001–2018 | 0.25 c | 0.69 a | 0.49 b | 0.36 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. https://doi.org/10.3390/agronomy12010176
Chen S, Yang P, Zhang Y, Dong W, Hu C, Oenema O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy. 2022; 12(1):176. https://doi.org/10.3390/agronomy12010176
Chicago/Turabian StyleChen, Suying, Peipei Yang, Yuming Zhang, Wenxu Dong, Chunsheng Hu, and Oene Oenema. 2022. "Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain" Agronomy 12, no. 1: 176. https://doi.org/10.3390/agronomy12010176
APA StyleChen, S., Yang, P., Zhang, Y., Dong, W., Hu, C., & Oenema, O. (2022). Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy, 12(1), 176. https://doi.org/10.3390/agronomy12010176