Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission
<p>Meteorological data recorded during the 2023 and 2024 cropping season at Godollo (<a href="https://www.meteoblue.com" target="_blank">https://www.meteoblue.com</a>, accessed on 2 November 2024).</p> "> Figure 2
<p>Environmental Gas Monitor 5 (EGM-5), a portable gas analyzer instrument (<a href="https://images.app.goo.gl/KYdJtY5VsNaxdrwj9" target="_blank">https://images.app.goo.gl/KYdJtY5VsNaxdrwj9</a>, accessed on 2 November 2024).</p> "> Figure 3
<p>Response of soil CO<sub>2</sub> at different growth stages of winter barley in different soil tillage treatments. BBCH19-29 = leaf development–tillering stage; BBCH30-49 = stem elongation–booting stage; BBCH51-73 = beginning to heading–early milky stage.</p> "> Figure 4
<p>Mean of relative soil–plant analysis development (SPAD values) of winter barley at different time points across different tillage types.</p> "> Figure 5
<p>Mean of leaf area index (LAI) values of winter barley at various recording time points across different tillage types.</p> "> Figure 6
<p>Interaction effects of nutrient and tillage on grain yield of winter barley in 2023 and 2024 growing seasons.</p> "> Figure 7
<p>Interaction effects of nutrient and tillage treatment on thousand kernel weight of winter barley in 2023 and 2024 growing seasons.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Treatments, Experimental Design, and Procedure
2.3. Data Collection and Measurements
- LAI = leaf area index;
- below canopy PAR = PAR measured below the canopy;
- above canopy PAR = PAR measured above the canopy;
- K = extinction coefficient, which depends on the canopy structure and properties of the vegetation being measured. This coefficient is often determined empirically for specific vegetation types or conditions.
2.4. Statistical Data Analysis
3. Results
3.1. Effect of Soil Tillage on Soil Carbon Dioxide (CO2) Emissions Under Winter Barley Cultivation
3.2. Emissions of Soil CO2 at Different Growth Stages of Winter Barley Within Different Tillage Methods
3.3. Effect of Nutrient and Tillage on Leaf Chlorophyll Content (SPAD Value) of Winter Barley
3.4. Effect of Nutrient and Tillage on Leaf Area Index (LAI) of Winter Barley
3.5. Effect of Nutrient and Tillage on Plant Height and Spike Length of Winter Barley
3.6. Effect of Nutrient and Tillage on Yield and Related Traits of Winter Barley
3.7. Interaction Effects of Nutrient and Tillage on Grain Yield and Thousand Kernel Weight of Winter Barley
4. Discussion
4.1. Response of Soil CO2 Emissions for Different Soil Tillage Treatments at Different Phases of Winter Barley Growth
4.2. Effect of Nutrient Supply and Tillage on Morpho-Physiological Parameters of Winter Barley
4.3. Effect of Nutrient Supply and Tillage on the Growth Parameters of Winter Barley
4.4. Impact of Nutrient Supply and Tillage on Winter Barley Yield and Yield-Related Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture Statistical Yearbook 2023; FAO: Rome, Italy, 2023; p. 384. ISBN 978-92-5-138262-2. [Google Scholar] [CrossRef]
- d’Alpoim Guedes, J.; Manning, S.W.; Bocinsky, R.K. A 5500-year model of changing crop niches on the Tibetan Plateau. Curr. Anthropol. 2016, 57, 517–522. [Google Scholar] [CrossRef]
- Caproni, L.; Lakew, B.F.; Kassaw, S.A.; Miculan, M.; Ahmed, J.S.; Grazioli, S.; Kidane, Y.G.; Fadda, C.; Pè, M.E.; Dell’Acqua, M. The genomic and bioclimatic characterization of Ethiopian barley (Hordeum vulgare L.) unveils challenges and opportunities to adapt to a changing climate. Glob. Change Biol. 2023, 29, 2335–2350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.H.; Yang, C.; Zhang, X.; Jin, G.; Chen, G.; Wang, Y.; Holford, P.; Nevo, E.; Zhang, G.; et al. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proc. Natl. Acad. Sci. USA 2018, 115, 5223–5228. [Google Scholar] [CrossRef] [PubMed]
- Grando, S.; Macpherson, H.G. Food barley: Importance, uses and local knowledge. In Proceedings of the International Workshop on Food Barley Improve, Hammamet, Tunisia, 14–17 January 2005; pp. 14–17. [Google Scholar]
- Shu, X.; Rasmussen, S.K. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front. Plant Sci. 2014, 5, 87907. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Li, M.; Zhang, G.; Ye, L. Barley: A potential cereal for producing healthy and functional foods. Food Qual. Saf. 2022, 6, fyac012. [Google Scholar] [CrossRef]
- De Santis, M.A.; Cammarano, D. Agronomic management factors impacting yield, quality stability, and environmental footprints of barley in a mediterranean environment. Field Crops Res. 2024, 309, 109334. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Koo, J.; Cenacchi, N.; Ringler, C.; Robertson, R.D.; Fisher, M.; Cox, C.M.; Garrett, K.; Perez, N.D.; Sabbagh, P. Food Security in a World of Natural Resource Scarcity: The Role of Agricultural Technologies; International Food Policy Research Institute: Washington, DC, USA, 2014; ISBN 978-0-89629-847-7. [Google Scholar]
- Musker, R.; Schaap, B. Global Open Data in Agriculture and Nutrition (GODAN) initiative partner network analysis. F1000Research 2018, 7, 47. [Google Scholar] [CrossRef]
- Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna. Soil Biol. Biochem. 2011, 43, 1474–1481. [Google Scholar] [CrossRef]
- Bakucs, Z.; Fertő, I.; Vígh, E. Crop productivity and climatic conditions: Evidence from Hungary. Agriculture 2020, 10, 421. [Google Scholar] [CrossRef]
- Jolankai, M.; Birkás, M. Global climate change impacts on crop production in Hungary. Agric. Conspec. Sci. 2007, 72, 17–20. [Google Scholar]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage in temperate organic farming: Effects on soil nutrients, nutrient content and yield of barley, rye and associated weeds. Renew. Agric. Food Syst. 2015, 30, 270–279. [Google Scholar] [CrossRef]
- Gupta, G.S. Land degradation and challenges of food security. Rev. Eur. Stud. 2019, 11, 63. [Google Scholar] [CrossRef]
- Alam, M.K.; Salahin, N. Changes in soil physical properties and crop productivity as influenced by different tillage depths and cropping patterns. Bangladesh J. Agric. Res. 2013, 38, 289–299. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H.; de Vries, W.; Melchor-Martínez, E.M.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 2022, 826, 154161. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Dhiman, S.; Dubey, Y.P. Studies on impact of nutrient management and tillage practices on yield attributes and yield on gram-maize cropping sequence. Indian J. Agric. Res. 2017, 51, 305–312. [Google Scholar] [CrossRef]
- Kidane, G.; Makonnen, B. Dryland Agriculture and Climate Change Adaptation in Sub-Saharan Africa: A Case of Policies, Technologies, and Strategies in Ethiopia; AICCRA Working Paper; Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA): Addis Ababa, Ethiopia, 2024; Available online: https://hdl.handle.net/10568/141481 (accessed on 2 November 2024).
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; El-Shershaby, N.A. Algae as Bio-fertilizers: Between current situation and future prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Rupawalla, Z.; Robinson, N.; Schmidt, S.; Li, S.; Carruthers, S.; Buisset, E.; Roles, J.; Hankamer, B.; Wolf, J. Algae biofertilisers promote sustainable food production and a circular nutrient economy–An integrated empirical-modelling study. Sci. Total Environ. 2021, 796, 148913. [Google Scholar] [CrossRef] [PubMed]
- PP Sytems. EGM-5 Portable CO2 Gas Analyzer Operation Manual; PP Systems: Amesbury, MA, USA, 2018. [Google Scholar]
- Hay, R.; Walker, A. An Introduction to the Physiology of Crop Yield; Longmans: London, UK, 1989. [Google Scholar]
- Cooper, J.P. Photosynthetic efficiency of the whole plant. In Food Production and Consumption: The Efficiency of Human Food Chains and Nutrient Cycles; North-Holland Publishing Company: Amsterdam, The Netherlands, 1976; pp. 107–126. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; McKnight, J.; Skinner, L.S.; Sherfy, A.; Tyler, D.D.; English, B.; Kim, Y. Soil carbon dioxide respiration in switchgrass fields: Assessing annual, seasonal and daily flux patterns. Soil Syst. 2018, 2, 13. [Google Scholar] [CrossRef]
- Galic, M.; Bilandzija, D.; Percin, A.; Sestak, I.; Mesic, M.; Blazinkov, M.; Zgorelec, Z. Effects of agricultural practices on carbon emission and soil health. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 539–552. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R. CO2 emissions from soils under different tillage practices and weather conditions. Agronomy 2023, 13, 3084. [Google Scholar] [CrossRef]
- Hořák, J.; Igaz, D.; Kondrlová, E. Short-term soil carbon dioxide (CO2) emission after application of conventional and reduced tillage for red clover in western slovakia. Eurasian J. Soil Sci. 2014, 3, 206. [Google Scholar] [CrossRef]
- Munjonji, L.; Ayisi, K.K.; Mafeo, T.P.; Maphanga, T.; Mabitsela, K.E. Seasonal variation in soil CO2 emission and leaf gas exchange of well-managed commercial Citrus sinensis (L.) orchards. Plant Soil 2021, 465, 65–81. [Google Scholar] [CrossRef]
- Nichols, V.; Miguez, F.; Sauer, T.; Dietzel, R. Maize and prairie root contributions to soil CO2 emissions in the field. Crop Sci. 2016, 56, 2791–2801. [Google Scholar] [CrossRef]
- Yang, N.; Zou, D.; Yang, M.; Lin, Z. Variations in soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation of hilly slopes with purple soil. PLoS ONE 2016, 11, e0166536. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montes, E.; Escalona, J.M.; Tomás, M.; Medrano, H. Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration. Aust. J. Grape Wine Res. 2017, 23, 273–279. [Google Scholar] [CrossRef]
- Wang, X.; Ren, T. Spatial and temporal variability of soil respiration between soybean crop rows as measured continuously over a growing season. Sustainability 2017, 9, 436. [Google Scholar] [CrossRef]
- Vishwakarma, M.; Kulhare, P.S.; Tagore, G.S. Chlorophyll Content in Leaves of Wheat as Influenced by Inorganic, Organic and Integrated Sources of Nutrient Application. Int. J. Plant Soil Sci. 2021, 33, 31–45. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef]
- Narayan, S.; Javeed, I.; Hussain, K.; Khan, F.A.; Mir, S.A.; Bangroo, S.A.; Malik, A.A. Response of okra (Abelmoschus esculentus) to foliar application of micronutrients. Indian J. Agric. Sci. 2021, 91, 749–752. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, S.; Chen, J.; Cai, X. Effects of different nutrient solutions on the acclimatization of in vitro caladium plantlets using a simplified hydroponic system. Sains Malays. 2019, 48, 1627–1633. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Sun, Z. Effects of different tillage management on the growth and yield of maize (Zea mays L.). Bangladesh J. Bot. 2023, 52, 451–458. [Google Scholar] [CrossRef]
- Hamed, L.M.M.; Fouda, S.F.; Emara, E.I.R. Conserving soil fertility and sustaining crop performance via soil tillage systems and crop rotation. Alex. Sci. Exch. J. 2019, 40, 256–262. [Google Scholar] [CrossRef]
- Ghosh, D.; Xu, J. Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Sci. 2014, 5, 6. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Papakosta, D.K.; Doitsinis, A. Nitrogen utilization efficiency of safflower hybrids and open-pollinated varieties under Mediterranean conditions. Field Crops Res. 2008, 107, 56–61. [Google Scholar] [CrossRef]
- Aisha, M.; Ameena, M.; Sheeba, R.I. Standardization of Growth Media and Organic Nutrient Schedule for Container Cultivation of Spinach Beet (Beta vulgaris var. bengalensis). Int. J. Chem. Stud. 2020, 8, 1567–1572. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, H.; Christie, P. Changes in Peanut Canopy Structure and Photosynthetic Behavior Resulting from Arbuscular Mycorrhizal Association in a Nutrient-Poor Environment. 2021. Available online: https://www.researchsquare.com/article/rs-38568/v1 (accessed on 20 August 2024).
- Matsuda, R.; Suzuki, K.; Nakano, Y.; Sasaki, H.; Takaichi, M. Nutrient supply and fruit yields in tomato rockwool hydroponics under daily quantitative nutrient management: Analysis and evaluation based on leaf area index. J. Agric. Meteorol. 2011, 67, 117–126. [Google Scholar] [CrossRef]
- McGlinch, G.J.; Jacquemin, S.J.; Lindsey, L.E. Evaluating winter malting barley grain yield with fractional green canopy cover. Crop Forage Turfgrass Manag. 2022, 7, e20079. [Google Scholar] [CrossRef]
- Akram, M.I.; Akhtar, L.H.; Minhas, R.; Zubair, M.; Bukhari, M.S.J.; Ullah, R.; Ikhlaq, M.; Hussain, S.; Aslam, M.Z.; Ali, B.; et al. Enhancing Seed and Fodder Yield Potential of Berseem (Trifolium alexandrinum L.) with Combined Application Phosphorous and Potassium under Irrigated Conditions of Bahawalpur, Pakistan. Egypt. J. Agron. 2022, 44, 1–9. [Google Scholar] [CrossRef]
- Garg, A.K.; Kaushal, R.; Rana, V.S. Impact of vermicompost, poultry manure and jeevaamrit on growth parameters of kiwifruit (Actinidia deliciosa) cv. Allison. Int. J. Plant Soil Sci. 2020, 32, 31–40. [Google Scholar] [CrossRef]
- Zahra, A.M.; Sinaga, A.N.K.; Nugroho, B.D.A.; Masithoh, R.E. Effect of plant bio stimulants on red and green romaine lettuce (Lactuca sativa) growth in indoor farming. IOP Conf. Ser. Earth Environ. Sci. 2024, 1297, 012008. [Google Scholar] [CrossRef]
- Adnan, M.; Abbas, B.; Asif, M.; Hayyat, M.S.; Raza, A.; Khan, B.A.; Hassan, H.; Khan, M.A.B.; Toor, M.D.; Khalid, M. Role of micro nutrients bio-fortification in agriculture: A review. Int. J. Environ. Sci. Nat. Resour. 2020, 24, 209–213. [Google Scholar] [CrossRef]
- Henry, J.; McClain, W.E.; Remley, M. Phosphorus improves leaf nutrient concentrations in wheat, oat, and cereal rye. Agrosys. Geosci. Environ. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Kaur, G.; Goyal, M. Effect of growth stages and fertility levels on growth, yield and quality of fodder oats (Avena sativa L.). J. Appl. Nat. Sci. 2017, 9, 1287–1296. [Google Scholar] [CrossRef]
- Regnier, E.E.; Bakelana, K.B. Crop planting pattern effects on early growth and canopy shape of cultivated and wild oats (Avena fatua). Weed Sci. 1995, 43, 88–94. [Google Scholar] [CrossRef]
- Ayodele, V.O.; Olowe, O.M. Morphological traits and Nastism of Mango ginger (Curcuma amada Roxb.). Agric. Sci. Dig. A Res. J. 2019, 39, 177–183. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Jia, P.; Xu, J.; Wang, G.; Xiao, S. Effects of size variation and spatial structure on plastic response of plant height to light competition. Chin. Sci. Bull. 2010, 55, 1135–1141. [Google Scholar] [CrossRef]
- Boudiar, R.; Alshallash, K.S.; Alharbi, K.; Okasha, S.A.; Fenni, M.; Mekhlouf, A.; Fortas, B.; Hamsi, K.; Nadjem, K.; Belagrouz, A.; et al. Influence of tillage and cropping systems on soil properties and crop performance under semi-arid conditions. Sustainability 2022, 14, 11651. [Google Scholar] [CrossRef]
- Aikins, S.H.M.; Afuakwa, J.J. Effect of four different tillage practices on maize performance under rainfed conditions. Agric. Biol. J. N. Am. 2012, 3, 25–30. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2012, 5, 202–214. [Google Scholar] [CrossRef]
- Surányi, S.; Izsáki, Z. The impact of N and P supply on the performance of yield components of winter barley (Hordeum vulgare L.). J. Agric. Environ. Sci. 2016, 3, 37–43. [Google Scholar] [CrossRef]
- Kaduwal, S.; Karki, T.B.; Neupane, R.; Battarai, R.K.; Chaulagain, B.; Ghimire, P.; Gyawaly, P.; Acharya, R.; Paneru, P.; Gyawali, C.; et al. Residue management and nutrient dynamics in conservation agriculture: A Review. Agron. J. Nepal 2023, 7, 139–148. [Google Scholar] [CrossRef]
- Boincean, B.; Dent, D.; Boincean, B.; Dent, D. Tillage and conservation agriculture. In Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils; Springer Nature: Berlin, Germany, 2019; pp. 125–149. [Google Scholar]
- Singh, U.; Choudhary, A.K.; Sharma, S. Agricultural practices modulate the bacterial communities, and nitrogen cycling bacterial guild in rhizosphere: Field experiment with soybean. J. Sci. Food Agric. 2020, 101, 2687–2695. [Google Scholar] [CrossRef] [PubMed]
- Zhenming, L.I.U.; Haitao, L.I.U.; Yang, D. Effects of Tillage on Soil Nutrients and Yield of Winter Wheat in Dry Loess Tableland. Bangladesh J. Bot. 2022, 51, 931–936. [Google Scholar] [CrossRef]
- Thyagaraj, C.R.; Srinivas, I.; Reddy, B.S.; Rao, K.V.; Vittal, K.P.R.; Rao, B.V. Influence of Tillage time, Implement and Rainfall on Soil moisture retention and Bulk density in Alfisols. Indian J. Dryland Agric. Res. Dev. 2009, 24, 59–65. [Google Scholar]
- Sharma, P.; Abrol, V. Crop Production Technologies; Intech open: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Molla, A.; Skoufogianni, E.; Lolas, A.; Skordas, K. The impact of different cultivation practices on surface runoff, soil and nutrient losses in a rotational system of legume–cereal and sunflower. Plants 2022, 11, 3513. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; von Wirén, N. Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms. Sci. Rep. 2020, 10, 20504. [Google Scholar] [CrossRef] [PubMed]
- Lecarpentier, C.; Barillot, R.; Blanc, E.; Abichou, M.; Goldringer, I.; Barbillon, P.; Enjalbert, J.; Andrieu, B. WALTer: A three-dimensional wheat model to study competition for light through the prediction of tillering dynamics. Ann. Bot. 2019, 123, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, L.; Chen, J.; Qiu, Z.; He, Y. Gain TKW: A measurement system of thousand kernel weight based on the android platform. Agronomy 2018, 8, 178. [Google Scholar] [CrossRef]
- Afa, L.O.; Ansi, A.; Zulfikar, Z.; Muhidin, M.; Al Qadri, A. The Growth and Yield of Local Upland Rice (Oryza sativa L.) Wakawondu Cultivar in Various Plant Populations and Balanced Fertilization. Bul. Penelit. Sos. Ekon. Pertan. Fak. Pertan. Univ. Haluoleo 2023, 24, 88–98. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Hu, W.; Zhou, Y.; Wang, X.; Zhao, H.; Zhou, S.; Liu, Z.; Cao, T. Characterization of a Major QTL for Tiller Number at the Seedling Stage in Wheat Landrace Yanda 1817. 2022. Available online: https://www.researchsquare.com/article/rs-2063007/v1 (accessed on 5 May 2024).
- Kadhim, Z.K.; Mohammed, A.S.; Hakim, R.A. Effect of algae extract and Bio-fertilizer on vegetative growth and flowering of Freesia hybrid L. J. Kerbala Agric. Sci. 2019, 6, 16–23. [Google Scholar] [CrossRef]
- Thomas, J.; Kumar, A.; Bhople, B.S.; Singh, V.K.; Sahu, S.K.K.; Jayanthi, J.; Singh, O.; Mahmoud, E.A.; Ullah, F.; Moussa, I.M.; et al. Synergistic Effects of Zeolite-Sewage Sludge Blends and Reduced Nitrogen Doses on Soil Carbon Fractions, Nutrient Index, and Plant Growth of Rice in Controlled Environment. 2023. Available online: https://www.preprints.org/manuscript/202312.0043/v1 (accessed on 2 November 2024).
- Guan, D.; Al-Kaisi, M.M.; Zhang, Y.; Duan, L.; Tan, W.; Zhang, M.; Li, Z. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Res. 2014, 157, 89–97. [Google Scholar] [CrossRef]
- Moraes, E.R.D.; Mageste, J.G.; Lana, R.M.Q.; Torres, J.L.R.; Domingues, L.A.D.S.; Lemes, E.M.; Lima, L.C.D. Sugarcane root development and yield under different soil tillage practices. Rev. Bras. Ciência Solo 2019, 43, e0180090. [Google Scholar] [CrossRef]
- Wasaya, A.; Yasir, T.A.; Ijaz, M.; Ahmad, S. Tillage effects on agronomic crop production. Agron. Crops Manag. Pract. 2019, 73–99. [Google Scholar] [CrossRef]
- Leghari, N.; Mirjat, M.S.; Mughal, A.Q.; Rajpar, I.; Magsi, H. Effect of different tillage methods on the growth, development, yield and yield components of bread wheat. Int. J. Agron. Agric. Res. 2015, 6, 36–46. [Google Scholar]
- Hlísníkovský, L.; Vach, M.; Abrham, Z.; Menšík, L.; Kunzová, E. The effect of mineral fertilisers and farmyard manure on grain and straw yield, quality and economical parameters of winter wheat. Plant Soil Environ. 2020, 66, 249–256. [Google Scholar] [CrossRef]
- Lopes, R.R.; Ost, H.J.; Souza, C.H.L.; Franke, L.B. Management of consecutive cuts in the production and quality of wintergreen paspalum seeds. Rev. Bras. Zootec. 2016, 45, 587–595. [Google Scholar] [CrossRef]
- Liu, D.Y.; Zhang, W.; Liu, Y.M.; Chen, X.P.; Zou, C.Q. Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Front. Plant Sci. 2020, 11, 506596. [Google Scholar] [CrossRef] [PubMed]
- Moitazedi, S.; Sayfzadeh, S.; Haghparast, R.; Zakerin, H.R.; Jabari, H. Mitigation of drought stress effects on wheat yield via the foliar application of boron, zinc, and manganese nano-chelates and supplementary irrigation. J. Plant Nutr. 2023, 46, 1988–2002. [Google Scholar] [CrossRef]
- Yan, H.; Harrison, M.T.; Liu, K.; Wang, B.; Feng, P.; Fahad, S.; Meinke, H.; Yang, R.; Li Liu, D.; Archontoulis, S.; et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 2022, 808, 152170. [Google Scholar] [CrossRef] [PubMed]
- Alzueta, I.; Abeledo, L.G.; Mignone, C.M.; Miralles, D.J. Differences between wheat and barley in leaf and tillering coordination under contrasting nitrogen and sulfur conditions. Eur. J. Agron. 2012, 41, 92–102. [Google Scholar] [CrossRef]
- Gouda, H.S.; Singh, Y.V.; Shivay, Y.S.; Manu, S.M. Effect of enriched composts and establishment methods on crop growth and nutrient concentration of rice (Oryza sativa) in trans-genetic plains of India. Indian J. Agron. 2023, 68, 126–132. [Google Scholar] [CrossRef]
- Ferdous, S.A.; Miah, M.N.H.; Hoque, M.; Hossain, S.; Hasan, A.K. Enhancing rice yield in acidic soil through liming and fertilizer management. J. Bangladesh Agric. Univ. 2018, 16, 357–365. [Google Scholar] [CrossRef]
- Šíp, V.; Vavera, R.; Chrpová, J.; Kusá, H.; Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Paré, M.C.; Lafond, J.; Pageau, D. Best management practices in Northern agriculture: A twelve-year rotation and soil tillage study in Saguenay–Lac-Saint-Jean. Soil Tillage Res. 2015, 150, 83–92. [Google Scholar] [CrossRef]
No. | Nutrient Type | Compositions | Recomandation Rate | Remarks |
---|---|---|---|---|
1 | Bio-cereal | Composition (w/v%) | 5 L/ha | |
Fe 0.5 | Have modern chelating agent (EDDHSA) | |||
Mn 1 | ||||
Cu 1.8 | ||||
Zn 0.3 | ||||
B 0.3 | ||||
Mo 0.03 | ||||
2 | Bio- algae | Composition | 30 L/ha | |
Total Chlorella vulgaris algae 2.5 × 107 db/cm3 | ||||
N 600 mg/L | ||||
P2O5 2000 mg/L | ||||
K2O 5000 mg/L | ||||
Mg 300 mg/L | ||||
S 400 mg/L | ||||
B 1000 Mg/L | ||||
Zn 300 mg/L and Organic Matter content 0.4 m/m% | ||||
3 | Mix of MgSMnZn | Composition | 3 L/ha for S, Mn, and Zn nutrients and 5 L/ha for Mg nutrient | |
6.6% of FitoHorm 24 Mg solution | ||||
60% of FitoHorm Turbo sulfur solution | ||||
4% of FitoHorm 54 Mn solution | ||||
10% of FitoHorm Turbo Zn solution |
Tillage Treatment | Soil CO2 Emission (g/m2/h) | |||
---|---|---|---|---|
2023 | 2024 | |||
Mean and Standard Deviation | Min/Max Value | Mean and Standard Deviation | Min/Max Value | |
Plowing | 0.2621 ± 0.13713 a | 0.04/0.55 | 0.3114 ± 0.23232 a | 0.3/1.35 |
Cultivator | 0.2631 ± 0.15292 a | 0.05/0.67 | 0.3415 ± 0.23224 a | 0.05/1.30 |
SEM± | 0.01475 | 0.1499 | ||
Sig. at 0.05 | ns | ns |
Source | Dependent Variables | Df | Mean Square | F-Value | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | ||
Tillage | SPAD | 1 | 1 | 75.713 | 9.989 | 1.906 | 0.855 | 0.169 ns | 0.356 ns |
LAI | 1 | 1 | 1.004 | 14.805 | 2.334 | 30.060 | 0.128 ns | <001 ** | |
Nutrient | SPAD | 3 | 3 | 63.866 | 9.078 | 1.608 | 0.777 | 0.188 ns | 0.507 ns |
LAI | 3 | 3 | 2.098 | 4.253 | 4.879 | 8.635 | 0.003 ** | <001 ** | |
Tillage × Nutrient | SPAD | 3 | 3 | 63.321 | 37.370 | 1.594 | 3.197 | 0.192 ns | 0.023 * |
LAI | 3 | 3 | 1.344 | 2.877 | 3.126 | 5.842 | 0.27 ns | <001 ** | |
Error | SPAD | 232 | 856 | 39.729 | 11.689 | ||||
LAI | 232 | 856 | 0.430 | 0.493 | |||||
Total | SPAD | 240 | 864 | ||||||
LAI | 240 | 864 |
Nutrient Treatment | Studied Parameters | |||
---|---|---|---|---|
Leaf Chlorophyll (SPAD Values) | Leaf Area Index (LAI) | |||
2023 | 2024 | 2023 | 2024 | |
Control | 39.93 ± 6.6719 a | 49.062 ± 3.3871 a | 2.1047 ± 0.6155 a | 3.0238 ± 0.6616 a |
Bio-cereal | 42.1267 ± 5.9639 a | 48.782 ± 3.5149 a | 2.4403 ± 0.6597 b | 3.3372 ± 0.7887 b |
Bio-algae | 40.6967 ± 6.0519 a | 48.863 ± 3.1402 a | 2.2832 ± 0.7651 a | 3.2939 ± 0.63267 b |
MgSMnZn blend | 39.9467 ± 6.6342 a | 49.238 ± 3.6631 a | 2.0218 ± 0.6135 a | 3.1757 ± 0.78090 a |
SEM± | 0.410 | 0.116 | 0.044 | 0.024 |
CV | 15.6 | 7.0 | 30.8 | 22.7 |
Tillage Treatment | Studied Parameters | |||
---|---|---|---|---|
Leaf Chlorophyll (SPAD Values) | Leaf Area Index (LAI) | |||
2023 | 2024 | 2023 | 2024 | |
Plowing | 41.2367 ± 6.2212 a | 48.879 ± 3.4255 a | 2.2772 ± 0.5450 a | 3.3385 ± 0.81815 a |
Cultivator | 40.1133 ± 6.4773 a | 49.094 ± 3.4357 a | 2.1478 ± 0.7924 a | 3.0767 ± 0.59869 b |
SEM± | 0.410 | 0.116 | 0.044 | 0.024 |
CV | 15.6 | 7.0 | 30.8 | 22.7 |
Source | Dependent Variables | Df | Mean Square | F-Value | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | ||
Tillage | Plant Height (cm) | 1 | 1 | 201.667 | 1027.042 | 3.819 | 71.959 | 0.52 ns | <0.001 ** |
Spike Length (cm) | 1 | 1 | 4.167 × 10 −5 | 27.449 | 0.000 | 31.101 | 0.995 ns | <0.001 ** | |
Nutrient | Plant Height (cm) | 3 | 3 | 320.619 | 250.486 | 6.072 | 17.550 | <0.001 ** | <0.001 ** |
Spike Length (cm) | 3 | 3 | 0.282 | 6.955 | 0.244 | 7.881 | 0.865 ns | <0.001 ** | |
Tillage * Nutrient | Plant Height (cm) | 3 | 3 | 133.342 | 649.869 | 2.525 | 45.533 | 0.58 ns | <0.001 ** |
Spike Length (cm) | 3 | 3 | 0.129 | 3.029 | 0.112 | 3.432 | 0.953 ns | 0.017 * | |
Error | Plant Height (cm) | 232 | 856 | 52.807 | 14.273 | ||||
Spike Length (cm) | 232 | 856 | 1.152 | 0.883 | |||||
Total | Plant Height (cm) | 240 | 864 | ||||||
Spike Length (cm) | 240 | 864 |
Nutrient Treatment | Studied Parameters | |||
---|---|---|---|---|
Plant Height (cm) | Spike Length (cm) | |||
2023 | 2024 | 2023 | 2024 | |
Control | 77.3583 ± 7.0729 a | 76.676 ± 5.0173 a | 7.4083 ± 1.1552 a | 8.333 ± 0.835 a |
Bio-cereal | 82.7333 ± 6.7217 b | 77.528 ± 4.525 b | 7.4333 ± 0.9849 a | 8.333 ± 0.978 a |
Bio-algae | 79.725 ± 8.0766 a | 78.583 ± 2.978 c | 7.5517 ± 0.9475 a | 8.630 ± 0.890 b |
MgSMnZn blend | 78.5167 ± 7.5767 a | 76.111 ± 4.0182 a | 7.4083 ± 1.1552 a | 8.657 ± 1.111 b |
SEM± | 0.490 | 0.146 | 0.068 | 0.033 |
CV | 9.5 | 5.56 | 14.2 | 11.43 |
Tillage Treatment | Studied Parameters | |||
---|---|---|---|---|
Plant Height (cm) | Spike Length (cm) | |||
2023 | 2024 | 2023 | 2024 | |
Plowing | 80.500 ± 6.2375 a | 78.315 ± 4.2533 a | 7.4500 ± 0.9860 a | 8.310 ± 0.950 a |
Cultivator | 78.666 ± 8.6884 a | 76.134 ± 4.0648 b | 7.4508 ± 1.1333 a | 8.667 ± 0.958 b |
SEM± | 0.490 | 0.146 | 0.068 | 0.033 |
CV | 9.5 | 5.56 | 14.2 | 11.43 |
Source | Dependent Variable | Df | Mean Square | F-Value | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | ||
Tillage | ETN | 1 | 1 | 41.667 | 7.223 | 33.356 | 6.820 | <0.001 ** | 0.009 ** |
TKW | 1 | 1 | 31.320 | 388.815 | 5.871 | 232.368 | 0.1454 ns | <0.001 ** | |
Grain Yield | 1 | 1 | 10.617 | 76.274 | 8.191 | 459.406 | 0.0413 * | <0.001 ** | |
Nutrient | ETN | 3 | 3 | 12.317 | 9.372 | 9.860 | 8.848 | <0.001 ** | <0.001 ** |
TKW | 3 | 3 | 281.727 | 23.535 | 52.809 | 14.065 | <0.001 ** | <0.001 ** | |
Grain Yield | 3 | 3 | 8.711 | 1.550 | 6.7200 | 9.335 | <0.001 ** | <0.001 ** | |
Tillage * Nutrient | ETN | 3 | 3 | 4.656 | 5.304 | 3.727 | 5.007 | 0.108 ns | 0.002 ** |
TKW | 3 | 3 | 75.567 | 71.415 | 14.165 | 42.680 | <0.001 ** | <0.001 ** | |
Grain Yield | 3 | 3 | 9.353 | 3.195 | 7.215 | 19.246 | <0.001 ** | <0.001 ** | |
Error | ETN | 232 | 856 | 1.249 | 1.059 | ||||
TKW | 232 | 856 | 5.335 | 1.673 | |||||
Grain Yield | 232 | 856 | 1.296 | 0.166 | |||||
Total | ETN | 240 | 864 | ||||||
TKW | 240 | 864 | |||||||
Grain Yield | 240 | 864 |
Nutrient Treatment | Studied Parameters | |||||
---|---|---|---|---|---|---|
Effective Tiller Number | TKW (g) | Grain Yield (t/ha) | ||||
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
Control | 5.80 ± 0.7657 a | 4.56 ± 0.918 a | 39.1633 ± 2.2484 a | 50.483 ± 2.2107 a | 3.47600 ± 0.7937 a | 5.37429 ± 0.5073 a |
Bio-cereal | 6.55± 1.2845 b | 4.92 ± 1.065 b | 44.2383 ± 2.1518 b | 50.833 ± 1.2806 b | 4.20933 ± 1.3792 b | 5.53493 ± 0.5954 b |
Bio-algae | 6.40 ± 1.5092 b | 5.05 ± 1.215 b | 40.6150 ± 3.0770 c | 50.783 ± 0.4269 a | 3.90267 ±1.6029 a | 5.43088 ± 0.4529 a |
MgSMnZn blend | 5.61 ± 1.1577 a | 4.85 ± 0.933 b | 40.5883 ±2.4892 c | 51.283 ± 1.6606 b | 3.39467± 0.8069 a | 5.55157 ± 0.4932 b |
SEM± | 0.081 | 0.036 | 0.202 | 0.053 | 0.079 | 0.017 |
CV | 20.7 | 21.7 | 7.6 | 3.07 | 13 | 9.48 |
Tillage Treatment | Studied Parameters | |||||
---|---|---|---|---|---|---|
Effective Tiller Number | TKW (g) | Grain Yield (t/ha) | ||||
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
Plowing | 6.508 ± 0.8285 a | 4.94 ± 0.994 a | 40.79 ± 2.64875 a | 50.175 ± 1.6196 a | 3.956 ± 0.5925 a | 5.77 ± 0.4793 a |
Cultivator | 5.675 ± 1.4753 b | 4.75 ± 1.103 b | 41.5125 ± 3.52026 a | 51.517 ± 1.1667 b | 3.535 ± 1.6221 b | 5.17 ± 0.3646 b |
SEM± | 0.081 | 0.036 | 0.202 | 0.053 | 0.079 | 0.017 |
CV | 20.7 | 21.7 | 7.6 | 3.07 | 13 | 9.48 |
Studied Variables | Statistical Test | Purpose of Statistical Test | Conclusions |
---|---|---|---|
Soil CO2 emission (g/m2/h) | Independent samples T-test | To compare the means of the two tillage treatments | No significant difference found between treatment groups |
RMANOVA | To test within-subject effect | Significant difference found at different growth stages | |
Leaf chlorophyll content (SPAD) values | MANOVA | To test between-subject effect | No significant difference found between treatment groups |
RMANOVA | To test within-subject effect | Significant difference found at different recording time points | |
Leaf area index (LAI) | MANOVA | To test between-subject effect | Significant difference found between treatment groups |
RMANOVA | To compare within-subject effect | Significant difference found at different recording time points | |
Plant height (cm) | MANOVA | To test between-subject effects | Significant differences found between treatments groups |
Spike length (cm) | |||
Effective tiller number | |||
Thousand kernel weights (g) | |||
Grain yield (t/ha) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogale, A.A.; Kende, Z.; Tarnawa, A.; Miko, P.; Birkás, M.; Kovács, G.P.; Percze, A. Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission. Agronomy 2025, 15, 2. https://doi.org/10.3390/agronomy15010002
Bogale AA, Kende Z, Tarnawa A, Miko P, Birkás M, Kovács GP, Percze A. Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission. Agronomy. 2025; 15(1):2. https://doi.org/10.3390/agronomy15010002
Chicago/Turabian StyleBogale, Amare Assefa, Zoltan Kende, Akos Tarnawa, Peter Miko, Marta Birkás, Gergő Péter Kovács, and Attila Percze. 2025. "Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission" Agronomy 15, no. 1: 2. https://doi.org/10.3390/agronomy15010002
APA StyleBogale, A. A., Kende, Z., Tarnawa, A., Miko, P., Birkás, M., Kovács, G. P., & Percze, A. (2025). Precision Nutrient and Soil Tillage Management for Sustainable Winter Barley Production (Hordeum vulgare L.) and Tillage Impact on Soil CO2 Emission. Agronomy, 15(1), 2. https://doi.org/10.3390/agronomy15010002