Cycle Slip Detection during High Ionospheric Activities Based on Combined Triple-Frequency GNSS Signals
<p>Process of eliminating the outliers in the first-order time-differenced ambiguities.</p> "> Figure 2
<p>The changes of the detection value given by the two combined signals proposed in Zhao et al. [<a href="#B13-remotesensing-11-00250" class="html-bibr">13</a>] with the increase in the strength of ionospheric activities. The <b>top</b> panel shows the elevation angle and the S4 value of satellite PRN 25 from GPS, while the <b>middle</b> and <b>bottom</b> panels show the detection value given by the combined signal (1, −6, 5) and (4, 0, −5), respectively.</p> "> Figure 3
<p>Performance of the proposed method for eliminating outliers. The epochs where the outliers are eliminated are highlighted with gray background.</p> "> Figure 4
<p>Performance of the proposed smoothing technique. The <b>top</b> panel shows ionospheric trend given by LOWESS and RLOWESS, while the <b>bottom</b> panel shows the residuals given by RLOWESS.</p> "> Figure 5
<p>Detection value of the combined signal (−3, 1, 3) and the thresholds determined by the sample variation method (<b>A</b>), GARCH (<b>B</b>), GARCH with the partly fixed method (<b>C</b>), local backward method (<b>D</b>) and local backward with the partly fixed method (<b>E</b>).</p> "> Figure 6
<p>Kp index of 8–11 September 2017.</p> "> Figure 7
<p>PPP coordinate errors using the dataset with artificial cycle slips (green dots) and the dataset where the cycle slips are corrected with the proposed method (red dots).</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Selection of Optimally Combined Signals
4. Using the Proposed Combined Signals to Detect Cycle Slips
4.1. Elimination of Outliers
4.2. Estimation of the Smoothed Ionospheric Bias
4.3. Determination of Detection Threshold
- Create a GARCH model. This is to determine the length of the GARCH legs and ARCH legs. The detailed process on how to establish the optimal length can refer to [31,32]. In most cases, the most widely used model GARCH(1, 1) can satisfy the requirement of conditional variance modeling for the detection series [30] because they have a nonzero conditional mean offset and exhibit volatility clustering.
- Use the maximum likelihood method to estimate all the unknown parameters in the proposed GARCH model in step 1.
- Simulate conditional variance from the GARCH model, specified in step 2.
5. Empirical Test Using the Dataset with Strong Scintillation
5.1. Validation of the Proposed Outliers Elimination Method
5.2. Validation of the Proposed Smoothing Technique
5.3. Validation of the Proposed Threshold
6. Extensive Empirical Test Using Observations with Different Kp Indices
6.1. Data Description
6.2. Ability to Detect Cycle Slips of Different Magnitudes
6.3. Application in PPP
7. Conclusions
- The proposed outliers elimination method was effective in removing the outliers, but failed in detecting the cycle slips with a magnitude of one or two cycles.
- RLOWESS could estimate the ionospheric trend in the HMW combinations without the influence by the dispersion value in the detection value.
- The sample variation method was not suitable to be adopted under strong ionospheric scintillation, as cycle slips could still be detected after one detection process. Both GARCH and the local backward method can correctly repair all the detected slips, but they might lose the sensitivity to the cycle slips with the magnitude of one or two cycles under strong ionospheric scintillation. All the cycle slips can be detected and correctly repaired using either the GARCH with the partly fixed method or the local backward with the partly fixed method. Compared to the threshold determined by the local backward method, that given by GARCH has a quicker response to the changes of the ionosphere. Thus, the GARCH with the partly fixed threshold determination method is optimal.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wernik, A.; Liu, C. Ionospheric irregularities causing scintillation of GHz frequency radio signals. J. Atmos. Terr. Phys. 1974, 36, 871–879. [Google Scholar] [CrossRef]
- Sreeja, V.V.; Aquino, M.; Forte, B.; Elmas, Z.; Hancock, C.; De Franceschi, G.; Alfonsi, L.; Spogli, L.; Romano, V.; Bougard, B.; et al. Tackling ionospheric scintillation threat to GNSS in Latin America. J. Space Weather Space Clim. 2011, 1, A05. [Google Scholar] [CrossRef]
- Romano, V.; Pau, S.; Pezzopane, M.; Spogli, L.; Zuccheretti, E.; Aquino, M.; Hancock, C.M. eSWua: A tool to manage and access GNSS ionospheric data from mid-to-high latitudes. Ann. Geophys. 2013. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Z.; Lou, Y.; Gu, S.; Chen, B. A study of multi-GNSS ionospheric scintillation and cycle-slip over Hong Kong region for moderate solar flux conditions. Adv. Space Res. 2017, 60, 1039–1053. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Jayachandran, P.; Mushini, S.; Pokhotelov, D.; MacDougall, J.; Donovan, E.; Spanswick, E.; St-Maurice, J.P. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 2010, 28, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Richardson, I.G. High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: A superposed epoch analysis. Earth Planets Space 2014, 66, 62. [Google Scholar] [CrossRef]
- Jiao, Y.; Morton, Y.T. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci. 2015, 50, 886–903. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Moraes, A.; Costa, E.; Abdu, M.A.; Rodrigues, F.S.; de Paula, E.R.; Oliveira, K.; Perrella, W.J. The variability of low-latitude ionospheric amplitude and phase scintillation detected by a triple-frequency GPS receiver. Radio Sci. 2017, 52, 439–460. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System: Theory and Practice; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Dai, Z. MATLAB software for GPS cycle-slip processing. GPS Solut. 2012, 16, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Lu, Z.; Zhai, G.; Ouyang, Y.; Huang, M.; Lu, X.; Wu, T.; Li, K. A new triple-frequency cycle slip detecting algorithm validated with BDS data. GPS Solut. 2016, 20, 761–769. [Google Scholar] [CrossRef]
- de Lacy, M.C.; Reguzzoni, M.; Sansò, F. Real-time cycle slip detection in triple-frequency GNSS. GPS Solut. 2012, 16, 353–362. [Google Scholar] [CrossRef]
- Zhao, D.; Roberts, G.W.; Hancock, C.M.; Lau, L.; Bai, R. A triple-frequency cycle slip detection and correction method based on modified HMW combinations applied on GPS and BDS. GPS Solut. 2019, 22. [Google Scholar] [CrossRef]
- Sieradzki, R.; Paziewski, J. Study on reliable GNSS positioning with intense TEC fluctuations at high latitudes. GPS Solut. 2016, 20, 553–563. [Google Scholar] [CrossRef]
- Sieradzki, R.; Paziewski, J. MSTIDs impact on GNSS observations and its mitigation in rapid static positioning at medium baselines. Ann. Geophys. 2016, 58, 0661. [Google Scholar]
- Tang, L.; Zheng, K.; Li, X. Analysis of geometry-free residuals in case of traveling ionosphere disturbances and their impact cycle slip detection. GPS Solut. 2017, 21, 1221–1226. [Google Scholar] [CrossRef]
- Ji, S.; Chen, W.; Weng, D.; Wang, Z.; Ding, X. A study on cycle slip detection and correction in case of ionospheric scintillation. Adv. Space Res. 2013, 51, 742–753. [Google Scholar] [CrossRef]
- Liu, Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J. Geod. 2011, 85, 171–183. [Google Scholar] [CrossRef]
- Cai, C.; Liu, Z.; Xia, P.; Dai, W. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solut. 2013, 17, 247–260. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. Instantaneous re-initialization in real-time kinematic PPP with cycle slip fixing. GPS Solut. 2012, 16, 315–327. [Google Scholar]
- Banville, S.; Langley, R.B. Mitigating the impact of ionospheric cycle slips in GNSS observations. J. Geod. 2013, 87, 179–193. [Google Scholar] [CrossRef]
- Richert, T.; El-Sheimy, N. Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solut. 2007, 11, 11–19. [Google Scholar] [CrossRef]
- Zhao, D.; Roberts, G.W.; Lau, L.; Hancock, C.M.; Bai, R. A theoretical and empirical integrated method to select the optimal combined signals for geometry-free and geometry-based three-carrier ambiguity resolution. Sensors 2016, 16, 1929. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Dai, Z.; Hu, Z.; Sun, B.; Shi, C.; Liu, J. Three-carrier ambiguity resolution using the modified TCAR method. GPS Solut. 2015, 19, 589–599. [Google Scholar] [CrossRef]
- Yao, Y.F.; Gao, J.X.; Wang, J.; Hu, H.; Li, Z.K. Real-time cycle-slip detection and repair for BeiDou triple-frequency undifferenced observations. Sur. Rev. 2016, 48, 367–375. [Google Scholar] [CrossRef]
- Li, B.; Qin, Y.; Li, Z.; Lou, L. Undifferenced cycle slip estimation of triple-frequency BeiDou signals with ionosphere prediction. Mar. Geod. 2016, 39, 348–365. [Google Scholar] [CrossRef]
- Liu, W.; Jin, X.; Wu, M.; Hu, J.; Wu, Y. A new real-time cycle slip detection and repair method under high ionospheric activity for a triple-frequency GPS/BDS receiver. Sensors 2018, 18, 427. [Google Scholar] [CrossRef] [PubMed]
- Blewitt, G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990, 17, 199–202. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Ju, B.; Gu, D.; Chang, X.; Herring, T.A.; Duan, X.; Wang, Z. Enhanced cycle slip detection method for dual-frequency BeiDou GEO carrier phase observations. GPS Solut. 2017, 21, 1227–1238. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econ. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- SBAS-IONO Working Group. Ionospheric scintillations: How irregularities in electron density perturb satellite navigation systems. GPS World 2012, 23, 44–50. [Google Scholar]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Le, G.M.; Cai, Z.Y.; Wang, H.N.; Yin, Z.Q.; Li, P. Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys. 2013, 13, 739. [Google Scholar] [CrossRef]
- Kintner, P.; Humphreys, T.; Hinks, J. GNSS and ionospheric scintillation. Inside GNSS 2009, 4, 22–30. [Google Scholar]
- Humphreys, T.E.; Psiaki, M.L.; Ledvina, B.M.; Cerruti, A.P.; Kintner, P.M. Data-Driven Testbed for Evaluating GPS Carrier Tracking Loops in Ionospheric Scintillation. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1609–1623. [Google Scholar] [CrossRef]
- Béniguel, Y.; Romano, V.; Alfonsi, L.; Aquino, M.; Bourdillon, A.; Cannon, P.; De Franceschi, G.; Dubey, S.; Forte, B.; Gherm, V.; et al. Ionospheric scintillation monitoring and modelling. Ann. Geophys. 2009, 52, 391–416. [Google Scholar]
- Jiao, Y.; Morton, Y.; Taylor, S.; Pelgrum, W. On the correlation between ionospheric scintillation and geomagnetic field activities. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 77–83. [Google Scholar]
- Li, G.; Ning, B.; Zhao, B.; Liu, L.; Liu, J.; Yumoto, K. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1034–1045. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, Jeju, Korea, 4–6 November 2009; pp. 1–6. [Google Scholar]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geod. 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Noll, C.E. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, F.; Zhou, P. Improved precise point positioning in the presence of ionospheric scintillation. GPS Solut. 2014, 18, 51–60. [Google Scholar] [CrossRef]
Combined Signals | ISF | |||||
---|---|---|---|---|---|---|
GPS | Galileo | BDS | GPS | Galileo | BDS | |
(−3, 1, 3) or (−3, 4, 0) | 0.057 | 0.057 | 0.072 | 119.81 | 359.32 | 24.91 |
(4, −5, 0) or (−4, 0, 5) | 0.096 | 0.130 | 0.087 | −21.55 | −13.30 | 35.78 |
SAT Type | Interval | a | b | c | d |
---|---|---|---|---|---|
GPS | 1 | 0.0304 | 0.0475 | 0.0621 | 0.8600 |
2 | 0.0271 | 0.0469 | 0.0540 | 0.8720 | |
3 | 0.0243 | 0.0461 | 0.0474 | 0.8822 | |
4 | 0.0219 | 0.0454 | 0.0419 | 0.8908 | |
5 | 0.0198 | 0.0445 | 0.0373 | 0.8983 | |
6 | 0.0180 | 0.0437 | 0.0335 | 0.9048 | |
7 | 0.0164 | 0.0429 | 0.0302 | 0.9106 | |
8 | 0.0151 | 0.0420 | 0.0273 | 0.9156 | |
9 | 0.0138 | 0.0412 | 0.0248 | 0.9201 | |
≥10 | 0.0128 | 0.0403 | 0.0227 | 0.9242 | |
Galileo | 1 | 0.1536 | 0.2945 | 0.3456 | 0.2062 |
2 | 0.1554 | 0.2635 | 0.3207 | 0.2604 | |
3 | 0.1534 | 0.2367 | 0.2959 | 0.3139 | |
4 | 0.1490 | 0.2133 | 0.2722 | 0.3655 | |
5 | 0.1430 | 0.1927 | 0.2500 | 0.4143 | |
6 | 0.1361 | 0.1745 | 0.2294 | 0.4600 | |
7 | 0.1289 | 0.1584 | 0.2104 | 0.5023 | |
8 | 0.1216 | 0.1440 | 0.1932 | 0.5412 | |
9 | 0.1143 | 0.1313 | 0.1775 | 0.5768 | |
≥10 | 0.1074 | 0.1200 | 0.1634 | 0.6092 | |
BDS GEO | 1∼30 | 0.0344 | 0.0611 | 0.2208 | 0.6837 |
BDS IGSO | 1 | 0.0461 | 0.0720 | 0.2453 | 0.6367 |
2 | 0.0432 | 0.0698 | 0.2249 | 0.6620 | |
3 | 0.0406 | 0.0676 | 0.2068 | 0.6850 | |
4 | 0.0381 | 0.0653 | 0.1907 | 0.7059 | |
5 | 0.0358 | 0.0630 | 0.1762 | 0.7250 | |
6 | 0.0337 | 0.0607 | 0.1632 | 0.7424 | |
7 | 0.0317 | 0.0585 | 0.1515 | 0.7583 | |
8 | 0.0299 | 0.0561 | 0.1409 | 0.7731 | |
9 | 0.0282 | 0.0542 | 0.1313 | 0.7864 | |
10 | 0.0266 | 0.0523 | 0.1224 | 0.7988 | |
11 | 0.0251 | 0.0503 | 0.1146 | 0.8100 | |
12 | 0.0238 | 0.0483 | 0.1077 | 0.8202 | |
13 | 0.0226 | 0.0465 | 0.1012 | 0.8298 | |
14 | 0.0214 | 0.0447 | 0.0952 | 0.8387 | |
15 | 0.0203 | 0.0431 | 0.0897 | 0.8469 | |
16 | 0.0193 | 0.0415 | 0.0847 | 0.8545 | |
17 | 0.0184 | 0.0400 | 0.0800 | 0.8616 | |
18 | 0.0175 | 0.0385 | 0.0758 | 0.8682 | |
19 | 0.0167 | 0.0371 | 0.0717 | 0.8745 | |
≥20 | 0.0159 | 0.0358 | 0.0680 | 0.8802 | |
BDS MEO | 1 | 0.0284 | 0.0726 | 0.2018 | 0.6972 |
2 | 0.0250 | 0.0614 | 0.1560 | 0.7576 | |
3 | 0.0219 | 0.0522 | 0.1236 | 0.8024 | |
4 | 0.0191 | 0.0445 | 0.1000 | 0.8364 | |
5 | 0.0168 | 0.0382 | 0.0824 | 0.8626 | |
6 | 0.0148 | 0.0331 | 0.0687 | 0.8833 | |
7 | 0.0131 | 0.0289 | 0.0583 | 0.8996 | |
8 | 0.0117 | 0.0254 | 0.0500 | 0.9129 | |
9 | 0.0105 | 0.0226 | 0.0433 | 0.9237 | |
≥10 | 0.0095 | 0.0201 | 0.0378 | 0.9326 |
Dataset | Site | City | Lat. (Deg.) | Long. (Deg.) | Receiver | Antenna | Collection Date | Kp Index |
---|---|---|---|---|---|---|---|---|
1 | CUT0 | Perth, Australia | −32.0039 | 115.8948 | TRIMBLE NETR9 | TRM59800.00 | 9 September 2017 | 0.625 |
2 | CUT0 | Perth, Australia | −32.0039 | 115.8948 | TRIMBLE NETR9 | TRM59800.00 | 11 September 2017 | 2.625 |
3 | CUT0 | Perth, Australia | −32.0039 | 115.8948 | TRIMBLE NETR9 | TRM59800.00 | 8 September 2017 | 6 |
4 | PNGM | Lombrum, Papua New Guinea | −2.0432 | 147.3660 | TRIMBLE NETR9 | TRM59800.00 | 9 September 2017 | 0.625 |
5 | PNGM | Lombrum, Papua New Guinea | −2.0432 | 147.3660 | TRIMBLE NETR9 | TRM59800.00 | 11 September 2017 | 2.625 |
6 | PNGM | Lombrum, Papua New Guinea | −2.0432 | 147.3660 | TRIMBLE NETR9 | TRM59800.00 | 8 September 2017 | 6 |
7 | METG | Metsahovi, Finland | 60.2419 | 24.3841 | TRIMBLE NETR9 | TRM59800.00 | 9 September 2017 | 0.625 |
8 | METG | Metsahovi, Finland | 60.2419 | 24.3841 | TRIMBLE NETR9 | TRM59800.00 | 11 September 2017 | 2.625 |
9 | METG | Metsahovi, Finland | 60.2419 | 24.3841 | TRIMBLE NETR9 | TRM59800.00 | 8 September 2017 | 6 |
10 | UNNC | Ningbo, China | 29.8030 | 121.5568 | JAVAD TR_VS | LEIAR20 | 9 September 2017 | 0.625 |
11 | UNNC | Ningbo, China | 29.8030 | 121.5568 | JAVAD TR_VS | LEIAR20 | 11 September 2017 | 2.625 |
12 | UNNC | Ningbo, China | 29.8030 | 121.5568 | JAVAD TR_VS | LEIAR20 | 8 September 2017 | 6 |
0 | 0 | 1 |
0 | 1 | 0 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
1 | 1 | 1 |
Dataset | Kp Index | GPS | Galileo | BDS | |||
---|---|---|---|---|---|---|---|
No. of Simulations | SR (%) | No. of Simulations | SR (%) | No. of Simulations | SR (%) | ||
1 | 0.625 | 84 | 100 | 112 | 100 | 98 | 100 |
2 | 2.625 | 84 | 100 | 105 | 100 | 98 | 100 |
3 | 6 | 84 | 100 | 105 | 100 | 98 | 100 |
4 | 0.625 | 70 | 100 | 105 | 99.05 | 77 | 100 |
5 | 2.625 | 77 | 100 | 105 | 99.05 | 84 | 98.81 |
6 | 6 | 84 | 98.81 | 98 | 100 | 84 | 98.81 |
7 | 0.625 | 84 | 100 | 112 | 100 | 70 | 98.57 |
8 | 2.625 | 84 | 100 | 105 | 100 | 70 | 98.57 |
9 | 6 | 77 | 94.81 | 84 | 97.62 | 56 | 100 |
10 | 0.625 | 77 | 100 | 91 | 100 | N/A | N/A |
11 | 2.625 | 77 | 100 | 77 | 100 | N/A | N/A |
12 | 6 | 84 | 100 | 84 | 100 | N/A | N/A |
Simulated Cycle Slip Set | Start Time | ||
---|---|---|---|
1 | 1 | 0 | 02:45 |
1 | 0 | 0 | 05:45 |
0 | 2 | 0 | 08:45 |
77 | 60 | 0 | 11:45 |
9 | 7 | 0 | 14:45 |
3 | 4 | 0 | 20:45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Hancock, C.M.; Roberts, G.W.; Jin, S. Cycle Slip Detection during High Ionospheric Activities Based on Combined Triple-Frequency GNSS Signals. Remote Sens. 2019, 11, 250. https://doi.org/10.3390/rs11030250
Zhao D, Hancock CM, Roberts GW, Jin S. Cycle Slip Detection during High Ionospheric Activities Based on Combined Triple-Frequency GNSS Signals. Remote Sensing. 2019; 11(3):250. https://doi.org/10.3390/rs11030250
Chicago/Turabian StyleZhao, Dongsheng, Craig M. Hancock, Gethin Wyn Roberts, and Shuanggen Jin. 2019. "Cycle Slip Detection during High Ionospheric Activities Based on Combined Triple-Frequency GNSS Signals" Remote Sensing 11, no. 3: 250. https://doi.org/10.3390/rs11030250