Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Enhanced cycle slip detection method for dual-frequency BeiDou GEO carrier phase observations

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Cycle slip detection is one of the essential steps for high-precision GNSS data processing when carrier phase observations are involved, such as in precise point positioning (PPP) and precise orbit determination (POD). A number of algorithms have been developed since the 1980s and are effective for processing dual-frequency GPS. However, the emerging BeiDou navigation satellite system in China brings some new challenges for these existing algorithms, especially when small cycle slips occur more frequently. In this study, a large number of 1-cycle slips have been found in low-elevation BeiDou GEO carrier phase observations, which are collected by receivers of the IGS multi-GNSS experiment. Such small cycle slips should be identified and repaired, if possible, before PPP and POD processing. We propose an enhanced cycle slip detection method based on the series of dual-frequency phase geometry-free combinations. A robust polynomial fit algorithm and a general autoregressive conditional heteroskedastic modeling technique is employed to provide an adaptive detection threshold, which allows identification of such small cycle slips with high reliability. Simulated and real data tests reveal that the proposed method has both high sensitivity and low false-alarm rate even in the case of ionospheric scintillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Banville S, Langley RB (2013) Mitigating the impact of ionospheric cycle slips in GNSS. J Geod 87(2):179–193. doi:10.1007/s00190-012-0604-1

    Article  Google Scholar 

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202. doi:10.1029/GL017i003p00199

    Article  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327

    Article  Google Scholar 

  • Cai C, Liu Z, Xia P, Dai W (2013) Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solut 17(2):247–260. doi:10.1007/s10291-012-0275-7

    Article  Google Scholar 

  • Chen D, Ye S, Zhou W et al (2016) A double-differenced cycle slip detection and repair method for GNSS CORS network. GPS Solut 20(3):439–450. doi:10.1007/s10291-015-0452-6

    Article  Google Scholar 

  • CSNO (2013) BeiDou navigation satellite system signal in space interface control document, Open Service Signal (Version 2.0). China Satellite Navigation Office (CSNO), December 2013

  • de Lacy MC, Reguzzoni M, Sansò F, Venuti G (2008) The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem. J Geod 82:527–542. doi:10.1007/s00190-007-0203-8

    Article  Google Scholar 

  • de Lacy MC, Reguzzoni M, Sansò F (2012) Real-time cycle slip detection in triple-frequency GNSS. GPS Solut 16(3):353–362. doi:10.1007/s10291-011-0237-5

    Article  Google Scholar 

  • Goad C (1985) Precise positioning with the global position system. In: Proceedings of 3rd international symposium on inertial technology for surveying and geodesy, pp 745–756

  • Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90(2):1–17. doi:10.1007/s00190-015-0862-9

    Article  Google Scholar 

  • Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite Doppler positioning at Physical Sciences Laboratory of New Mexico State University, 8–12 Feb, vol 2, pp 1213–1231

  • Huang L, Lu Z, Zhai G et al (2016) A new triple-frequency cycle slip detecting algorithm validated with BDS data. GPS Solut 20(4):761–769. doi:10.1007/s10291-015-0487-8

    Article  Google Scholar 

  • Ji S, Chen W, Weng D, Wang Z, Ding X (2013) A study on cycle slip detection and correction in case of ionospheric scintillation. Adv Space Res 51(2013):742–753. doi:10.1016/j.asr.2012.10.012

    Article  Google Scholar 

  • Kleusberg A, Georgiadou Y, van den Heuvel F, Heroux P (1993) GPS data preprocessing with DIPOP 3.0. Internal technical memorandum, Department of Surveying Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada

  • Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3):171–183. doi:10.1007/s00190-010-0426-y

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49

    Google Scholar 

  • Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283. doi:10.1080/01621459.1993.10476408

    Article  Google Scholar 

  • Wu Y, Jin S, Wang Z, Liu J (2010) Cycle slip detection using multi-frequency GPS carrier phase observations: a simulation study. Adv Space Res 46(2):144–149. doi:10.1016/j.asr.2009.11.007

    Article  Google Scholar 

  • Xu PL (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79:146–159. doi:10.1007/s00190-005-0454-1

    Article  Google Scholar 

  • Zhang X, Li P (2016) Benefits of the third frequency signal on cycle slip correction. GPS Solut 20(3):451–460. doi:10.1007/s10291-015-0456-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 61573367, 61370013, and 91438202) and the international GNSS Monitoring & Assessment System (iGMAS) data center. The authors would like to thank the IGS Multi-GNSS Experiment (MGEX) project for providing the GNSS data used in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Ju or Defeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, B., Gu, D., Chang, X. et al. Enhanced cycle slip detection method for dual-frequency BeiDou GEO carrier phase observations. GPS Solut 21, 1227–1238 (2017). https://doi.org/10.1007/s10291-017-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0607-8

Keywords

Navigation