BeiDou Code Pseudorange Precision Estimation and Time Correlation Analysis from Trimble Net-R9 and ComNav 708 Receivers
<p>Elevation angle change in a single day.</p> "> Figure 2
<p>ComNav statistical results of the C/A and B1 code precision of different types of observations. GPS = global positioning system; GEO = geostationary orbit; IGSO = inclined geosynchronous orbit; MEO = medium-altitude Earth orbit; STD = standard deviation; DOY = day of the year.</p> "> Figure 3
<p>Trimble statistical results of the C/A and B1 code precision of different types of observations.</p> "> Figure 4
<p>Trimble C/A code measurement precision deviations for GPS, BeiDou GEO, IGSO, and MEO satellites.</p> "> Figure 5
<p>ComNav C/A code measurement precision deviations for GPS, BeiDou GEO, IGSO, and MEO satellites.</p> "> Figure 6
<p>Four-day multipath series of IGSO observations with the Trimble receiver.</p> "> Figure 7
<p>Trimble code measurement time correlations for GPS, and BeiDou GEO and IGSO satellites with a sampling interval of 10 s.</p> "> Figure 8
<p>ComNav code measurement time correlations for GPS, and BeiDou GEO and IGSO satellites with a sampling interval of 10 s.</p> "> Figure 9
<p>Relationship between precision and elevation angle of GPS and BeiDou Navigation Satellite System (BDS) code measurements.</p> "> Figure 10
<p>Positioning residuals of single-point positioning (SPP) with GPS code measurements.</p> "> Figure 11
<p>Positioning residuals of SPP with BDS code measurements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Difference Observation Model and Pseudorange Precision Estimation
2.2. Precision Estimation for Observation Types
2.3. Time Correlation Estimation
3. Results and Analysis
3.1. Pseudorange Precision and Variation
3.2. Time Correlation and Its Characteristics
3.3. Relationship between the Elevation Angle and Precision
3.4. Relationship between the Time Correlation and Positioning Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Deng, C.; Shi, C.; Liu, J. Triple-frequency carrier ambiguity resolution for BeiDou navigation satellite system. GPS Solut. 2014, 18, 335–344. [Google Scholar] [CrossRef]
- Teunissen, P.; Joosten, P.; Tiberius, C. A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In Proceeding of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS-2002), Portland, OR, USA, 24–27 September 2002; pp. 2799–2808. [Google Scholar]
- Gao, G.X.; Chen, A.; Lo, S.; De Lorenzo, D.; Walter, T.; Enge, P. Compass-M1 broadcast codes in E2, E5b, and E6 frequency bands. IEEE J. Sel. Top. Signal Process. 2009, 3, 599–612. [Google Scholar] [CrossRef]
- Liu, J.; Geng, T.; Zhao, Q. Enhancing precise orbit determination of compass with inter-satellite observations. Surv. Rev. 2011, 43, 333–342. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O.; Sleewaegen, J.M.; Huisman, L.; Teunissen, P.J.G. Characterization of Compass M-1 signals. GPS Solut. 2012, 16, 117–126. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.L.; Hu, Z.G.; Liu, J.N. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut. 2013, 17, 103–119. [Google Scholar] [CrossRef]
- Verhagen, S.; Teunissen, P.J.G. Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. Adv. Space Res. 2014, 54, 830–839. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geodesy 2015, 89, 607–635. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.D.; Gong, X.P.; Gu, S.F.; Zheng, F.; Feng, Y.M. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS Solut. 2017, 21, 177–186. [Google Scholar] [CrossRef]
- Li, B. Stochastic modeling of triple-frequency BeiDou signals: Estimation, assessment and impact analysis. J. Geodesy 2016, 90, 593–610. [Google Scholar] [CrossRef]
- Eueler, H.-J.; Goad, C.C. On Optimal Filter of GPS dual frequency observations without using orbit information. Bull. Géodésique 1991, 65, 130–143. [Google Scholar] [CrossRef]
- Li, B.; Lou, L.; Shen, Y. GNSS elevation-dependent stochastic modeling and its impacts on the statistic testing. J. Surv. Eng. 2015, 142. [Google Scholar] [CrossRef]
- Brunner, F.K.; Hartinger, H.; Troyer, L. GPS signal diffraction modelling: The stochastic SIGMA-δ model. J. Geodesy 1999, 73, 259–267. [Google Scholar] [CrossRef]
- Han, S. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J. Geodesy 1997, 71, 351–361. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Verhagen, S. Impacts of BeiDou stochastic model on reliability: Overall test, w-test and minimal detectable bias. GPS Solut. 2017, 21, 1095–1112. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.F.; Li, H.J.; Rizos, C.; Shen, Y.Z. The influence of improper stochastic modeling of Beidou pseudoranges on system reliability. Adv. Space Res. 2017, 60, 2680–2690. [Google Scholar] [CrossRef]
- Satirapod, C.; Wang, J. Comparing the Quality Indicators of GPS Carrier Phase Observations. Geomat. Res. Australas. 2001, 73, 75–92. [Google Scholar]
- Bona, P. Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut. 2000, 4, 3–13. [Google Scholar] [CrossRef]
- Tiberius, C.; Kenselaar, F. Variance component estimation and precise GPS positioning: Case study. J. Surv. Eng. 2003, 129, 11–18. [Google Scholar] [CrossRef]
- Foucras, M.; Leclère, J.; Botteron, C.; Julien, O.; Macabiau, C.; Farine, P.-A.; Ekambi, B. Study on the cross-correlation of GNSS signals and typical approximations. GPS Solut. 2017, 21, 293–306. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Amiri-Simkooei, A.R. Least-squares variance component estimation. J. Geodesy 2008, 82, 65–82. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X.; Wang, J.; Ren, X. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geodesy 2016, 90, 1223–1235. [Google Scholar] [CrossRef]
- Jonkman, N.F. Integer GPS-Ambiguity Estimation without the Receiver-Satellite Geometry; TU Delft: Delft, The Netherlands, 1998. [Google Scholar]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2015, 19, 639–648. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Liu, W. Mitigating BeiDou Satellite-Induced Code Bias: Taking into Account the Stochastic Model of Corrections. Sensors 2016, 16, 909. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xiaohong, Z.; Fei, G. Ambiguity resolved precise point positioning with GPS and BeiDou. J. Geodesy 2017, 91, 25–40. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, S.; Kuang, K.; Liu, T.; Gao, K. The impact of eclipsing GNSS satellites on the precise point positioning. Remote Sens. 2018, 10, 94. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Montenbruck, O. Springer Handbook of Global Navigation Satellite Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Teunissen, P.J.G. On the sensitivity of the location, size and shape of the GPS ambiguity search space to certain changes in the stochastic model. J. Geodesy 1997, 71, 541–551. [Google Scholar] [CrossRef]
- Li, B.; Shen, Y.; Xu, P. Assessment of stochastic models for GPS measurements with different types of receivers. Chin. Sci. Bull. 2008, 53, 3219–3225. [Google Scholar] [CrossRef]
- Wang, G.; de Jong, K.; Zhao, Q.; Hu, Z.; Guo, J. Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut. 2015, 19, 129–139. [Google Scholar] [CrossRef]
- Wang, J.; Satirapod, C.; Rizos, C. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J. Geodesy 2002, 76, 95–104. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.R.; Teunissen, P.J.G.; Tiberius, C. Application of least-squares variance component estimation to GPS observables. J. Surv. Eng. 2009, 135, 149–160. [Google Scholar] [CrossRef]
Receiver | Deviation | GPS | GEO | IGSO | MEO |
---|---|---|---|---|---|
ComNav 708 | mean | 0.07 | 0.09 | 0.11 | 0.10 |
STD | 0.03 | 0.05 | 0.07 | 0.08 | |
Trimble Net-R9 | mean | 0.17 | 0.15 | 0.14 | 0.15 |
STD | 0.05 | 0.08 | 0.07 | 0.10 |
DOY | GPS | BDS | ||||
---|---|---|---|---|---|---|
RMSE | RMSN | RMSU | RMSE | RMSN | RMSU | |
143 | 0.567 | 1.498 | 1.982 | 1.022 | 1.199 | 1.760 |
144 | 0.589 | 1.316 | 1.242 | 1.385 | 2.107 | 1.996 |
145 | 0.829 | 0.746 | 1.292 | 0.867 | 1.193 | 2.132 |
146 | 1.652 | 1.749 | 2.681 | 0.917 | 1.301 | 3.193 |
147 | 0.758 | 0.934 | 2.174 | 0.859 | 1.135 | 4.514 |
148 | 1.165 | 0.737 | 2.302 | 0.869 | 0.923 | 3.095 |
149 | 0.573 | 0.616 | 1.474 | 0.889 | 1.250 | 3.442 |
150 | 0.688 | 0.749 | 1.985 | 1.265 | 1.594 | 3.552 |
151 | 1.143 | 0.988 | 1.712 | 0.700 | 1.785 | 3.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Jin, S.; Kang, R.; Cao, X. BeiDou Code Pseudorange Precision Estimation and Time Correlation Analysis from Trimble Net-R9 and ComNav 708 Receivers. Remote Sens. 2018, 10, 1083. https://doi.org/10.3390/rs10071083
Hu H, Jin S, Kang R, Cao X. BeiDou Code Pseudorange Precision Estimation and Time Correlation Analysis from Trimble Net-R9 and ComNav 708 Receivers. Remote Sensing. 2018; 10(7):1083. https://doi.org/10.3390/rs10071083
Chicago/Turabian StyleHu, Hong, Shuanggen Jin, Ruihong Kang, and Xinyun Cao. 2018. "BeiDou Code Pseudorange Precision Estimation and Time Correlation Analysis from Trimble Net-R9 and ComNav 708 Receivers" Remote Sensing 10, no. 7: 1083. https://doi.org/10.3390/rs10071083