Sea Surface Monostatic and Bistatic EM Scattering Using SSA-1 and UAVSAR Data: Numerical Evaluation and Comparison Using Different Sea Spectra
<p>Omnidirectional sea spectra for <span class="html-italic">U</span><sub>10</sub> = 5 m/s. (<b>a</b>) Full range. (<b>b</b>) Bragg scattering wavenumber range in the C band with an incident angle <span class="html-italic">θ<sub>i</sub></span> = 20°~60°.</p> "> Figure 2
<p>Omnidirectional sea spectra for <span class="html-italic">U</span><sub>10</sub> = 10 m/s. (<b>a</b>) Full range. (<b>b</b>) Bragg scattering wavenumber range in the C band with <span class="html-italic">θ<sub>i</sub></span> = 20°~60°.</p> "> Figure 3
<p>Omnidirectional sea spectra for <span class="html-italic">U</span><sub>10</sub> = 15 m/s. (<b>a</b>) Full range. (<b>b</b>) Bragg scattering wavenumber range in the C band with <span class="html-italic">θ<sub>i</sub></span> = 20°~60°.</p> "> Figure 4
<p>Δ(<span class="html-italic">k</span>) ratios given by different authors: (<b>a</b>) <span class="html-italic">U</span><sub>10</sub> = 5 m/s; (<b>b</b>) <span class="html-italic">U</span><sub>10</sub> = 10 m/s; and (<b>c</b>) <span class="html-italic">U</span><sub>10</sub> = 15 m/s.</p> "> Figure 5
<p>Angular spreading functions given by different authors, <span class="html-italic">k</span> = 135 rad/m: (<b>a</b>) <span class="html-italic">U</span><sub>10</sub> = 5 m/s; (<b>b</b>) <span class="html-italic">U</span><sub>10</sub> = 10 m/s; and (<b>c</b>) <span class="html-italic">U</span><sub>10</sub> = 15 m/s.</p> "> Figure 6
<p>RMS slopes inferred from spectral and models Cox and Munk model. (<b>a</b>) In the upwind direction. (<b>b</b>) In the crosswind direction.</p> "> Figure 7
<p>Omnidirectional normalized autocorrelation functions. (<b>a</b>) <span class="html-italic">U</span><sub>10</sub> = 5 m/s; (<b>b</b>) <span class="html-italic">U</span><sub>10</sub> = 10 m/s; and (<b>c</b>) <span class="html-italic">U</span><sub>10</sub> = 15 m/s.</p> "> Figure 8
<p>UAVSAR data. (<b>a</b>) Case (a); and (<b>b</b>) Case (b).</p> "> Figure 9
<p>Comparisons between SSA-1 and UAVSAR data. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 10
<p>NRCSs estimated in relationships to incident angle. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 11
<p>NRCSs estimated in relationships to incident angle. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>90</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 12
<p>NRCSs estimated in relationship to the wind speed. <span class="html-italic">θ<sub>i</sub></span> = 18°, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 13
<p>NRCSs estimated in relationship to the wind speed. <span class="html-italic">θ<sub>i</sub></span> = 40°, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 14
<p>NRCSs estimated in relationship to the wind speed. <span class="html-italic">θ<sub>i</sub></span> = 58°, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 15
<p>NRCSs estimated in relationship to the wind speed. <span class="html-italic">θ<sub>i</sub></span> = 18°, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>90</mn> <mo>°</mo> </mrow> </semantics></math>. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 16
<p>NRCSs estimated in relationship to the wind direction. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, <span class="html-italic">θ<sub>i</sub></span> = 18°. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 17
<p>NRCSs estimated in relationship to the wind direction. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, <span class="html-italic">θ<sub>i</sub></span> = 40°. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 18
<p>NRCSs estimated in relationship to the wind direction. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, <span class="html-italic">θ<sub>i</sub></span> = 58°. (<b>a</b>) VV polarization. (<b>b</b>) HH polarization.</p> "> Figure 19
<p>Geometrical configuration for the bistatic scattering from sea surface.</p> "> Figure 20
<p>NRCSs estimated based on different sea spectra as a function of the scattering angle. <span class="html-italic">U</span><sub>10</sub> = 10 m/s, upwind. (<b>a</b>) VV polarization; (<b>b</b>) HH polarization.</p> "> Figure 21
<p>NRCSs estimated based on the different sea spectra as functions of the scattering azimuth angle. <span class="html-italic">U</span><sub>10</sub> = 10 m/s. (<b>a</b>) VV polarization; and (<b>b</b>) HH polarization.</p> ">
Abstract
:1. Introduction
2. Sea Spectrum
2.1. Omnidirectional Part of Sea Spectra
2.2. Angular Spreading Function
2.3. Slope Variation
2.4. Autocorrelation Function
3. Models for Scattering Coefficient Estimation
3.1. The First-Order Small Slope Approximation (SSA-1)
3.2. Empirical Model CMOD5 and PR (Polarization Ratio) Model
4. Numerical Simulation and Discussion
4.1. Scattering from the Sea Surface in the Monostatic Configuration
4.1.1. Evaluation with UAVSAR Data in the L Band
4.1.2. Evaluation with CMOD5
Incident Angle Variations
Wind Speed and Direction Variations
4.2. Scattering from Sea Surface Observed in Bistatic Configuration
4.2.1. Scattering Angle Variation
4.2.2. Scattering Azimuth Angle Variation
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Chapter 12 Introduction to random surface scattering. In Microwave Remote Sensing Active and Passive-Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Norwood, UK, 1982; Volume 2, pp. 922–982. ISBN 0890061912. [Google Scholar]
- Rice, S.O. Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 1951, 4, 351–378. [Google Scholar] [CrossRef]
- Ogilvy, J.A.; Merklinger, H.M. Theory of wave scattering from random rough surfaces. J. Acoust. Soc. Am. 1991, 90, 3382. [Google Scholar] [CrossRef]
- Voronovich, A.G. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Wave Random Media 1994, 4, 337–367. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V. Theoretical model for scattering of radar signals in Ku-and C-bands from a rough sea surface with breaking waves. Wave Random Media 2001, 11, 247–269. [Google Scholar] [CrossRef]
- Voronovich, A.G. Chapter 6 “Nonclassical” Approaches to Wave Scattering at Rough Surfaces. In Wave Scattering from Rough Surfaces, 2nd ed.; Brekhovskikh, L.M., Felsen, L.B., Haus, H.A., Lotsch, H.K.Y., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; pp. 154–196. ISBN 3642599362. [Google Scholar]
- Mouche, A.A.; Chapron, B.; Reul, N.; Hauser, D.; Quilfen, Y. Importance of the sea surface curvature to interpret the normalized radar cross section. J. Geophys. Res. Oceans 2007, 112, C10002. [Google Scholar] [CrossRef]
- Pierson, W.J., Jr.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Pierson, W.J., Jr.; Stacy, R.A. The Elevation, Slope, and Curvature Spectra of a Wind Roughened Sea Surface; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Bjerkaas, A.; Riedel, F. Proposed Model for the Elevation Spectrum of a Wind-Roughened Sea Surface; Johns Hopkins University Applied Physics Lab: Laurel, MD, USA, 1979. [Google Scholar] [CrossRef]
- Fung, A.; Lee, K. A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE J. Ocean. Eng. 1982, 7, 166–176. [Google Scholar] [CrossRef]
- Donelan, M.A.; Hamilton, J.; Hui, W.H. Directional spectra of wind-generated waves. Philos. Trans. R. Soc. Lond. A 1985, 315, 509–562. [Google Scholar] [CrossRef]
- Apel, J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res. Oceans 1994, 99, 16269–16291. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W.; Wismann, V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data. J. Geophys. Res. Oceans 1997, 102, 25237–25250. [Google Scholar] [CrossRef] [Green Version]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Oceans 1997, 102, 15781–15796. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A. Observations of swell influence on ocean surface roughness. J. Geophys. Res. Oceans 2008, 113, C12024. [Google Scholar] [CrossRef]
- Hwang, P.A. A note on the ocean surface roughness spectrum. J. Atmos. Ocean. Technol. 2011, 28, 436–443. [Google Scholar] [CrossRef]
- Hwang, P.A.; Burrage, D.M.; Wang, D.W.; Wesson, J.C. Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J. Atmos. Ocean. Technol. 2013, 30, 2168–2188. [Google Scholar] [CrossRef]
- Hwang, P.A.; Fois, F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res. Oceans 2015, 120, 3640–3657. [Google Scholar] [CrossRef] [Green Version]
- Awada, A.; Ayari, M.; Khenchaf, A.; Coatanhay, A. Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models. Wave Random Media 2006, 16, 383–394. [Google Scholar] [CrossRef]
- Ayari, M.Y.; Khenchaf, A.; Coatanhay, A. Simulations of the bistatic scattering using two-scale model and the unified sea spectrum. J. Appl. Remote Sens. 2007, 1, 013532. [Google Scholar] [CrossRef]
- Du, Y.; Yang, X.; Chen, K.-S.; Ma, W.; Li, Z. An improved spectrum model for sea surface radar backscattering at L-band. Remote Sens. 2017, 9, 776. [Google Scholar] [CrossRef]
- Pugliese Carratelli, E.; Dentale, F.; Reale, F. Numerical PSEUDO—Random Simulation of SAR Sea and Wind Response. In Advances in SAR Oceanography from ENVISAT and ERS Missions, Proceedings of the SEASAR 2006 (ESA SP-613), Frascati, Italy, 23–26 January 2006; Lacoste, H., Ed.; ESA Publications Division: Noordwijk, The Netherlands, 2006. [Google Scholar]
- Pugliese Carratelli, E.; Dentale, F.; Reale, F. Reconstruction of SAR Wave Image Effects through Pseudo Random Simulation. In Proceedings of the Envisat Symposium 2007 (ESA SP-636), Montreux, Switzerland, 23–27 April 2007; Lacoste, H., Ouwehand, L., Eds.; ESA Communication Production Office: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Bourlier, C.; Saillard, J.; Berginc, G. Intrinsic infrared radiation of the sea surface. J. Electromagn. Wave Appl. 2000, 14, 551–561. [Google Scholar] [CrossRef]
- Cox, C.S.; Munk, W.H. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Zribi, M.; Gorrab, A.; Baghdadi, N. A new soil roughness parameter for the modelling of radar backscattering over bare soil. Remote Sens. Environ. 2014, 152, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Bourlier, C. Azimuthal harmonic coefficients of the microwave backscattering from a non-gaussian ocean surface with the first-order SSA model. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2600–2611. [Google Scholar] [CrossRef]
- Khenchaf, A. Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band. Wave Random Media 2001, 11, 61–90. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Oceans 2007, 112, C03006. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Pichel, W.G.; Li, Z. Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; He, Y. Wind speed retrieval from Radarsat-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res. Oceans 2011, 116, C08008. [Google Scholar] [CrossRef]
- Verspeek, J.; Stoffelen, A.; Portabella, M.; Bonekamp, H.; Anderson, C.; Saldaña, J.F. Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens. 2010, 48, 386–395. [Google Scholar] [CrossRef]
- Liu, G.; Yang, X.; Li, X.; Zhang, B.; Pichel, W.; Li, Z.; Zhou, X. A systematic comparison of the effect of polarization ratio models on sea surface wind retrieval from C-band synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1100–1108. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; He, Y.; Wu, J.; Luo, X. Analysis of the polarimetric sar scattering properties of oil-covered waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3751–3759. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Gommenginger, C.; Di Bisceglie, M.; Galdi, C.; Srokosz, M.A. Simulation of L-band bistatic returns from the ocean surface: A facet approach with application to ocean GNSS reflectometry. IEEE Trans. Geosci. Remote Sens. 2012, 50, 960–971. [Google Scholar] [CrossRef]
Case | Data ID | Time of Acquisition | Incident Angle (°) | Wind Speed U10 (m/s) | Wind Direction (°) |
---|---|---|---|---|---|
(a) | 14010 | 20:42 UTC 23 June 2010 | 22–65 | 2.5–5 | 115–126 |
(b) | 32010 | 21:08 UTC 23 June 2010 | 22–65 | 2.5–5 | 115–126 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Khenchaf, A.; Wang, Y.; Ghanmi, H.; Zhang, Y.; Zhao, C. Sea Surface Monostatic and Bistatic EM Scattering Using SSA-1 and UAVSAR Data: Numerical Evaluation and Comparison Using Different Sea Spectra. Remote Sens. 2018, 10, 1084. https://doi.org/10.3390/rs10071084
Zheng H, Khenchaf A, Wang Y, Ghanmi H, Zhang Y, Zhao C. Sea Surface Monostatic and Bistatic EM Scattering Using SSA-1 and UAVSAR Data: Numerical Evaluation and Comparison Using Different Sea Spectra. Remote Sensing. 2018; 10(7):1084. https://doi.org/10.3390/rs10071084
Chicago/Turabian StyleZheng, Honglei, Ali Khenchaf, Yunhua Wang, Helmi Ghanmi, Yanmin Zhang, and Chaofang Zhao. 2018. "Sea Surface Monostatic and Bistatic EM Scattering Using SSA-1 and UAVSAR Data: Numerical Evaluation and Comparison Using Different Sea Spectra" Remote Sensing 10, no. 7: 1084. https://doi.org/10.3390/rs10071084