Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations
<p>Solar wind parameters and geomagnetic Kp indices between 1 June and 31 July 2021. Data and the plot were taken from the Space Weather Prediction Center, NOAA (source: <a href="https://www.swpc.noaa.gov/products/real-time-solar-wind" target="_blank">https://www.swpc.noaa.gov/products/real-time-solar-wind</a>, accessed on 29 August 2024).</p> "> Figure 2
<p>Kp index and ap index as a function of time (UTC) covering the period of the “Zyprian” storm extended by 1 day before and after the storm.</p> "> Figure 3
<p>Daily variations in the quiet geomagnetic field (components X, Y, Z, S) observed at the Geomagnetic Observatory Budkov in the Czech Republic between 25 June and 15 July 2021.</p> "> Figure 4
<p>Lightning distribution during 8 July 2021 (<b>left</b>) and 9 July 2021 (<b>right</b>) over central Europe. The colors indicate the time of occurrence of lightning during the day; see the legend at the top with the number of lightning flashes in each hour. Source: Blitzortung.org accessed on 29 August 2024, Lukáš Ronge, Amateur Stormchasing Society.</p> "> Figure 5
<p>Satellite image (sandwich product of the VIS-IR RGB and color-enhanced IR band 4, AVHRR instrument of the NOAA-19 polar-orbiting satellite) shows the situation over central Europe shortly before sunset. At this time, two major convective storm clusters were present, one over NE Italy, and the second one over the Czech Republic. For the evolution of these storms, see the MSG (Meteosat Second Generation) loops in <a href="#app2-remotesensing-16-04338" class="html-app">Appendix A</a>. Data source: NOAA and CHMI, processing M. Setvák, CHMI.</p> "> Figure 6
<p>Meteorological data recorded at the (<b>a</b>) IAP ground stations Prague-Spořilov and (<b>b</b>) Sopron on 8–10 July. The measured values of atmospheric pressure are converted to sea-level pressure.</p> "> Figure 7
<p>(<b>a</b>) Recordings of pulse-shaped signals generated by lightning discharges at three sensors of the PVCI array observed between 01:18:15 and 01:19:45 UTC. The signals are filtered with the passband of 0.6–7 Hz. For better legibility, the signals are offset by 0.1 Pa. (<b>b</b>) Continuous signals were observed from 20:47 to 23:17 UTC on 8 July. The time interval from 21:05:00 to 21:10:00 UTC is shown as an example. The signals are filtered with the passband of 0.16–4 Hz. For better legibility, the signals are offset by 0.1 Pa.</p> "> Figure 8
<p>Infrasound detections (<b>a</b>) on 7–8 July at 22:00–05:00 UTC and (<b>b</b>) on 8–9 July at 19:00–09:00 UTC. The detections in color are signals that follow the motion of the convective storms. The colorbar represents the mean signal frequency.</p> "> Figure 9
<p>(<b>a</b>) Infrasound detections at PSZI on 9 July at 12:00–24:00 UTC. The coloured signals follow the motion of the convective storms from the south-west (the back-azimuth of 236°) of the observatory to the north-east (back-azimuth of 12°). The colorbar represents the mean signal frequency. (<b>b</b>) Infrasound back-azimuths at PSZI and their changes in time. The station PSZI is represented by the green triangle. Lines coming out of PSZI show infrasound back-azimuths; the crosses show positions of lightning bolts from the World Wide Lightning Location Network database. The colorbar represents the time axis and is the same for both infrasound back-azimuths and lightning locations. The circles have radii of 50, 100, and 200 km. An animation is available in the <a href="#app1-remotesensing-16-04338" class="html-app">Supplementary Materials</a>.</p> "> Figure 10
<p>(<b>a</b>) Pressure recorded by each site of the WBCI microbarometer array in western Czechia on 7, 8, and 9 July 2021. (<b>b</b>) Dynamic spectrum of pressure fluctuations recorded averaged over the WBCI sensors. (<b>c</b>) Azimuth of propagating waves displayed as a function of the period and time.</p> "> Figure 11
<p>Aeolus satellite measurement for three consecutive days, one day before (<b>upper panel</b>), the day of cyclone passage (<b>middle panel</b>), and the day after (<b>lower panel</b>) the cyclone passage. Blue line indicates satellite trajectory (source: <a href="http://aeolus-ds.eo.esa.int/socat/L1B_L2_Products" target="_blank">http://aeolus-ds.eo.esa.int/socat/L1B_L2_Products</a>, accessed on 29 August 2024).</p> "> Figure 12
<p>Stratospheric specific humidity from ERA5 reanalysis for the period 8–9 July 2021, at two grid points 50°N, 15°E (<b>upper panel</b>) and 50°N, 20°E (<b>bottom panel</b>). The black line indicates the position of the tropopause.</p> "> Figure 13
<p>(<b>a</b>–<b>e</b>) Doppler sounding at 4.65 MHz; (<b>f</b>–<b>j</b>) Doppler sounding at 3.59 MHz. On both sounding frequencies there is spread echo after the frontal passage, noise is caused by lightning.</p> "> Figure 14
<p>Statistical description of the “Zyprian” cyclone situation at station Průhonice PQ052 (left panels—blue) and at station Sopron SO148 (right panels—green). Both station measurements are described using boxplot graphs during the “Zyprian” cyclone situation 6–10 July 2021. Boxplot panels are organized in groups by days. A box-and-whiskers plot displays the mean (dot signs), median (horizontal lines in boxes), quartiles (color boxes), outliers (squares), and minimum and maximum observations (whiskers) for data groups.</p> "> Figure 15
<p>Recorded ionograms during the afternoon and evening hours after the frontal passage above the observation site Průhonice. (<b>a</b>) Digisonde records noise at lower frequencies from the north and south direction. The reflection trace from the F2 layer is attenuated. (<b>b</b>) Wide noise, split echo on the F2 layer trace, faint sporadic E. (<b>c</b>) Noise recorded from the north (blue) and vertical (red) direction, F2 layer split echo, sporadic E. (<b>d</b>) Noise from the north direction, spread F echo, sporadic E.</p> "> Figure 16
<p>Recorded ionograms during the afternoon and evening after the frontal passage above the observation site Sopron. (<b>a</b>) Digisonde records double cusps and Y-form end of the F layer trace, well developed sporadic E structure. (<b>b</b>) noise from the north-northwest direction based on lower frequencies, sporadic E. (<b>c</b>) Spread F echo, sporadic E. (<b>d</b>) Spread F echo, strong sporadic E.</p> "> Figure 17
<p>The changes in the electron density profiles during 6–10 July 2021, at the stations Průhonice (<b>a</b>) and Sopron (<b>b</b>). Some profiles are missing because of the presence of blanketing sporadic E. Depletion of electron concentration is well seen in both station data.</p> "> Figure 18
<p>(<b>a</b>,<b>b</b>) Ionospheric directogram measurement (plasma motion derived from ionograms) for five consequent days, 6–10 July 2021. A significant increase in the echo is seen in the central part corresponding to the evening when the cyclone boundary crossed the observation site. Stronger amplitudes are recorded at Průhonice compared to Sopron. Wind shear is seen well on measurements obtained at both observatories. The horizontal line indicates the start of the frontal passage.</p> "> Figure 19
<p>SKYmaps recorded after the passage of cyclone “Zyprian” show substantial changes in the properties of plasma flow. (<b>a</b>) SKYmaps recorded at 18.49 UT, horizontal velocity v<sub>h</sub> = 262 ± 141 m.s<sup>−1</sup>, north direction. (<b>b</b>) SKYmap at 19.49 UT, horizontal velocity v<sub>h</sub> = 21 ± 2 m.s<sup>−1</sup>. (<b>c</b>) SKYmap at 21.04 UT, horizontal velocity v<sub>h</sub> = 154 ± 116 m.s<sup>−1</sup>, north-east direction. (<b>d</b>) SKYmap at 21.34 UT, horizontal velocity v<sub>h</sub> = 82 ± 57 m.s<sup>−1</sup>.</p> "> Figure 20
<p>Amplitudes from the German VLF transmitter (DHO) detected at the TGO in Hungary between 7 and 10 July 2021 (upper panel), as well as the continuous wavelet transform of the nighttime signals (bottom panel). (Jet colorbar—yellow and red color indicate increased power spectrum).</p> "> Figure 21
<p>VLF amplitudes from the German VLF transmitter (DHO) detected at the TGO in Hungary on the night of 8 July (upper panel), as well as the continuous wavelet transform of the signal (bottom panel). In the top panel, the black curve shows the original signal, while the orange curve shows the filtered one from which a 12 min running average has been removed. The lower panel was obtained from the latter one. Significant parts (sig95) of the wavelet spectrogram are enclosed by black lines, and hatched areas mark those parts of the wavelet spectrogram that are inside the cone of influence (Jet colorbar—yellow and red color indicate increased power spectrum).</p> "> Figure A1
<p>Surface pressure maps provided by Wetterkontor, available at <a href="https://www.wetterkontor.de/de/wetterlage.asp" target="_blank">https://www.wetterkontor.de/de/wetterlage.asp</a>, accessed on 3 September 2024. Surface pressure is plotted with solid lines with a 5 hPa step. Atmospheric fronts (red curved lines with red semi-circles that point in the direction of warm front, blue curved line with blue triangles that point in the direction of cold front, and a purple line with alternating triangles and semi-circles pointing in the direction in the occluded front is moving), the location of the centers of high (H)- and low (T)-pressure systems are also presented.</p> "> Figure A2
<p>Distribution of the geopotential height of the 500 hPa level (black lines, 4 decameter spacing), the temperature at the 500 hPa level (gray dashed lines, 5 °C spacing), the surface pressure field (white lines, 2 hPa spacing), and the relative topography between 500 and 1000 hPa (color scale), 4 decameters)—represents the vertical distance between the 1000 hPa level (surface) and the 500 hPa level (middle troposphere, about 5.5 km) and varies with temperature and humidity—orange/red values indicate tropical air masses, and yellow/green indicate polar air masses. (<b>a</b>) on 8 July 2021 at 12 UTC, (<b>b</b>) on 9 July 2021 at 12 UTC. Available at <a href="https://www.wetter3.de/archiv_gfs_dt.html" target="_blank">https://www.wetter3.de/archiv_gfs_dt.html</a>, accessed on 3 September 2024.</p> "> Figure A3
<p>The jet stream (color scale) and wind speed and direction (grey contours with arrows) at the 200 hPa level (~1200 m) over Europe on 8 July 2021, 12 UTC. Available at <a href="https://www.firenzemeteo.it/en/maps/archive-gfs-weather-forecast-and-analysis-maps.php" target="_blank">https://www.firenzemeteo.it/en/maps/archive-gfs-weather-forecast-and-analysis-maps.php</a>, accessed on 3 September 2024.</p> ">
Abstract
:1. Introduction
2. Method
2.1. Processing of Observation Data
2.1.1. Meteorological Data
2.1.2. Infrasound Stations and Data Processing
2.1.3. Stratospheric Data
2.1.4. Ionospheric Data
2.1.5. Narrowband VLF Data
2.2. Spectral Analyses
3. Results
3.1. Effects Observed in Troposphere
3.1.1. Tropospheric Observation
3.1.2. Ground Infrasound Observations on 7–9 July 2021
3.2. Effects Observed in the Stratosphere
3.3. Ionospheric Observation
4. Discussion
- Extratropical cyclone “Zyprian” was formed under stable solar and low geomagnetic activity;
- Extratropical cyclone “Zyprian” dominated weather above (Central) Europe;
- A severe convective environment was formed with updrafts and overshooting tops of clouds;
- Excessive lightning activity, hails, wind gusts, and floods were observed;
- The stratosphere was dumped by humidity above clouds overshooting the tropopause;
- Lightning and motion of the convective storm were detected by infrasound arrays;
- The gravity wave structure with periods around 20–60 min propagating first eastward after the cyclone passage and later to northward were observed in the troposphere;
- The position of the polar jet is significantly shifted after the cyclone passage;
- The undulation of equidensity planes is manifested by specific type ionograms recorded by DPS 4D;
- Irregular stratification is recorded on ionograms (spread F, splits, cusps, etc.);
- Departures from the regular daily course of foE, foF2, hmE, and hmF2 are observed;
- Depletion of electron concentration in the entire profile during the day of cyclone passage followed by a substantial increase the day after;
- The horizontal component of the plasma drift velocity changes rapidly in both the direction and value;
- Directograms show a substantial increase in values of horizontal flow at the hmF2 height;
- No prevailing plasma motion in the horizontal plane can be identified;
- Gravity wave activity is observed in the lower ionosphere in two domains of about 5–15 min and 20–25 min period ranges.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Hargreaves, J.K. The Solar-Terrestrial Environment: An Introduction to Geospace—The Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-32748-2. [Google Scholar]
- Davies, K. Ionospheric Radio Wave Propagation; Peregrinus: London, UK, 1990; ISBN 086341186X. [Google Scholar]
- Stauning, P. Solar Activity–Climate Relations: A Different Approach. J. Atmos. Sol. Terr. Phys. 2011, 73, 1999–2012. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-Region Storms. In Handbook of Atmospheric Electrodynamics; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Volume II, pp. 195–248. [Google Scholar]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Pedatella, N.; Coster, A. Variation in Thermosphere Composition and Ionosphere Total Electron Content Under „Geomagnetically Quiet“ Conditions at Solar-Minimum. Geophys. Res. Lett. 2021, 48, e2021GL093300. [Google Scholar] [CrossRef]
- Fitzmaurice, A.; Kuznetsova, M.; Shim, J.S.; Uritsky, V. Impact of Solar Activity on the Ionosphere/Thermosphere during Geomagnetic Quiet Time for CTIPe and TIE-GCM. arXiv 2017. [Google Scholar] [CrossRef]
- Forbes, J.M.; Palo, S.E.; Zhang, X.L. Variability of the Ionosphere. J. Atmos. Sol. Terr. Phys. 2000, 62, 685–693. [Google Scholar] [CrossRef]
- Park, J.; Heelis, R.; Chao, C.K. Ion Velocity and Temperature Variation Around Topside Nighttime Irregularities: Contrast Between Low- and Mid-Latitude Regions. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028810. [Google Scholar] [CrossRef]
- Labitzke, K.; van Loon, H. Total Ozone and the 11-Yr Sunspot Cycle. J. Atmos. Sol. Terr. Phys. 1997, 59, 9–19. [Google Scholar] [CrossRef]
- Labitzke, K.; Austin, J.; Butchart, N.; Knight, J.; Takahashi, M.; Nakamoto, M.; Nagashima, T.; Haigh, J.D.; Williams, V. The Global Signal of the 11-Year Solar Cycle in the Stratosphere: Observations and Models. J. Atmos. Sol. Terr. Phys. 2002, 64, 203–210. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Georgieva, K.; Mošna, Z.; Kozubek, M.; Kouba, D.; Kirov, B.; Potužníková, K.; Boška, J. Solar Signals Detected Within Neutral Atmospheric and Ionospheric Parameters. J. Atmos. Sol. Terr. Phys. 2018, 171, 147–156. [Google Scholar] [CrossRef]
- Salby, M.; Callagan, P. Connection Between the Solar Cycle and the QBO: The Missing Link. J. Clim. 2000, 13, 328–338. [Google Scholar] [CrossRef]
- Salby, M.; Callaghan, P. Evidence of the Solar Cycle in the General Circulation of the Stratosphere. J. Clim. 2004, 17, 34–46. [Google Scholar] [CrossRef]
- Roux, S.G.; Knížová, P.; Mošna, Z.; Abry, P. Ionosphere Fluctuations and Global Indices: A Scale Dependent Wavelet-Based Cross-Correlation Analysis. J. Atmos. Sol. Terr. Phys. 2012, 90–91, 186–197. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Mošna, Z.; Kouba, D.; Potužníková, K.; Boška, J. Influence of Meteorological Systems on the Ionosphere Over Europe. J. Atmos. Sol. Terr. Phys. 2015, 136, 244–250. [Google Scholar] [CrossRef]
- Podolská, K.; Koucká Knížová, P.; Chum, J.; Kozubek, M.; Burešová, D. Analysis of Relationship Between Ionospheric and Solar Parameters Using Graphical Models. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029063. [Google Scholar] [CrossRef]
- Yiğit, E.; Koucká Knížová, P.; Georgieva, K.; Ward, W.A. A Review of Vertical Coupling in the Atmosphere-Ionosphere System: Effects of Waves, Sudden Stratospheric Warmings, Space Weather, and Solar Activity. J. Atmos. Sol. Terr. Phys. 2016, 141, 1–12. [Google Scholar] [CrossRef]
- Oyama, S.; Watkins, B.J. Generation of Atmospheric Gravity Waves in the Polar Thermosphere in Response to Auroral Activity. Space Sci. Rev. 2012, 168, 463–473. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M. Gravity Wave Dynamics and Effects in the Middle Atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Hines, C.O. Internal Atmospheric Gravity Waves at Ionospheric Heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Hooke, W. Ionospheric Response to Internal Gravity Waves, 3. Changes in the Densities of the Different Ion Species. J. Geophys. Res. Space Phys. 1970, 75, 34. [Google Scholar] [CrossRef]
- Hooke, W. The Ionospheric Response to Internal Gravity Waves, 1. The F2 Region Response. J. Geophys. Res. Space Phys. 1970, 75, 5535–5544. [Google Scholar] [CrossRef]
- Hooke, W. Quasi-Stagnation Levels in the Ion Motion Induced by Internal, Atmospheric Gravity Waves at Ionospheric Heights. J. Geophys. Res. 1971, 76, 248–249. [Google Scholar] [CrossRef]
- Hoffmann, L.; Xue, X.; Alexander, M.J. A Global View of Stratospheric Gravity Wave Hotspots Located with Atmospheric Infrared Sounder Observations. J. Geophys. Res. Atmos. 2013, 118, 416–434. [Google Scholar] [CrossRef]
- Blumen, W. Geostrophic Adjustment. Rev. Geophys. Space Phys. 1972, 10, 485–528. [Google Scholar] [CrossRef]
- Fritts, D.C.; Nastrom, G.D. Sources of Mesoscale Variability of Gravity Waves, II, Frontal, Convective, and Jetstream Excitation. J. Atmos. Sci. 1992, 49, 111–127. [Google Scholar] [CrossRef]
- Eckermann, S.; Vincent, R. VHF Radar Observations of Gravity-Wave Production by Cold Fronts Over Southern Australia. J. Atmos. Sci. 1993, 50, 785–806. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Gavrilov, N.M. The Nonlinear Mechanism of Gravity Wave Generation by Meteorological Motions in the Atmosphere. J. Atmos. Sol. Terr. Phys. 1995, 57, 1221–1231. [Google Scholar] [CrossRef]
- Plougonven, R.; Teitelbaum, H.; Zeitlin, V. Inertia Gravity Wave Generation by the Tropospheric Midlatitude Jet as Given by the Fronts and Atlantic Storm-Track Experiment Radio Soundings. J. Geophys. Res. 2003, 108, 4686. [Google Scholar] [CrossRef]
- Plougonven, R.; Zhang, F. Internal Gravity Waves from Atmospheric Jets and Fronts. Rev. Geophys. 2014, 52, 33–76. [Google Scholar] [CrossRef]
- Zhang, F. Generation of Mesoscale Gravity Waves in Upper-Tropospheric Jet-Front Systems. J. Atmos. Sci. 2003, 61, 440–456. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Kshevetskii, S.P. Dynamical and Thermal Effects of Nonsteady Nonlinear Acoustic-Gravity Waves Propagating from Tropospheric Sources to the Upper Atmosphere. Adv. Space Res. 2015, 56, 1833–1843. [Google Scholar] [CrossRef]
- Sharman, R.D.; Trier, S.B. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review. Pure Appl. Geophys. 2019, 176, 1923–1958. [Google Scholar] [CrossRef]
- Uccellini, L.W.; Koch, S.E. The Synoptic Setting and Possible Energy Sources for Mesoscale Wave Disturbances. Mon. Weather Rev. 1987, 115, 721–729. [Google Scholar] [CrossRef]
- Fovell, R.; Durran, D.; Holton, J.R. Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci. 1992, 49, 1427–1442. [Google Scholar] [CrossRef]
- Trier, S.B.; Sharman, R.D.; Muñoz-Esparza, D.; Lane, T.P. Environment and Mechanisms of Severe Turbulence in a Midlatitude Cyclone. J. Atmos. Sci. 2020, 77, 3869–3889. [Google Scholar] [CrossRef]
- Trier, S.B.; Sharman, R.D. Mechanisms Influencing Cirrus Banding and Aviation Turbulence Near a Convectively Enhanced Upper-Level Jet Stream. Mon. Weather Rev. 2016, 144, 3003–3027. [Google Scholar] [CrossRef]
- Yang, S.-S.; Pan, C.J.; Das, U.; Lai, H.C. Analysis of synoptic scale controlling factors in the distribution of gravity wave potential energy. J. Atmos. Sol. Terr. Phys. 2015, 135, 126–135. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extratropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Nastrom, G.D.; Fritts, D.C. Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci. 1992, 49, 101–110. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Podolská, K.; Potužníková, K.; Kouba, D.; Mošna, Z.; Boška, J.; Kozubek, M. Evidence of vertical coupling: Meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Ann. Geophys. 2020, 38, 73–93. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Potužníková, K.; Podolská, K.; Hannawald, P.; Mošna, Z.; Kouba, D.; Chum, J.; Wüst, S.; Bittner, M.; Kerum, J. Multi-instrumental observation of mesoscale tropospheric systems in July 2021 with a potential impact on ionospheric variability in midlatitudes. Front. Astron. Space Sci. 2023, 10, 1197157. [Google Scholar] [CrossRef]
- Potužníková, K.; Koucká Knížová, P.; Chum, J.; Podolská, K.; Kouba, D.; Mošna, Z.; Georgieva, K.; Bojilova, R.; Kirov, B.; Asenovski, A. Summer Tropospheric Mesoscale Situations with Impact on the Ionospheric Plasma. In Proceedings of the Fifteenth Workshop Solar Influences on the Magnetosphere, Ionosphere and Atmosphere, Primorsko, Bulgaria, 5–9 June 2023. [Google Scholar]
- Plougonven, R.; Hertzog, A.; Alexander, M.J. Case studies of non-orographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. Atmos. 2015, 120, 1278–1299. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, F.; Richter, J. An Analysis of Gravity Wave Spectral Characteristics in Moist Baroclinic Jet-Front Systems. J. Atmos. Sci. 2016, 73, 3133–3155. [Google Scholar] [CrossRef]
- Waite, M.L.; Snyder, C. Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci. 2013, 70, 1242–1256. [Google Scholar] [CrossRef]
- Jewett, B.F.; Ramamurthy, M.K.; Rauber, R.M. Origin, Evolution, and Finescale Structure of the St. Valentine’s Day Mesoscale Gravity Wave Observed during STORM-FEST. Part III: Gravity Wave Genesis and the Role of Evaporation. Mon. Wea. Rev. 2003, 131, 617–633. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, N.; Rotunno, R.; Snyder, C.; Epifanio, C.C. Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics. J. Atmos. Sci. 2007, 64, 3579–3594. [Google Scholar] [CrossRef]
- Hoffmann, L.; Alexander, M.J. Occurrence frequency of convective gravity waves during the North American thunderstorm season. J. Geophys. Res. 2010, 115, D20111. [Google Scholar] [CrossRef]
- Hoffmann, L.; Alexander, M.J.; Clerbaux, C.; Grimsdell, A.W.; Meyer, C.I.; Rößler, T.; Tournier, B. Intercomparison of stratospheric gravity wave observations with AIRS and IASI. Atmos. Meas. Tech. 2014, 7, 4517–4537. [Google Scholar] [CrossRef]
- Gong, J.; Yue, J.; Wu, D.L. Global survey of concentric gravity waves in AIRS images and ECMWF analysis. J. Geophys. Res. Atmos. 2020, 120, 2210–2228. [Google Scholar] [CrossRef]
- Smith, S.M.; Setvák, M.; Beletsky, Y.; Baumgardner, J.; Mendillo, M. Mesospheric gravity wave momentum flux associated with a large thunderstorm complex. J. Geophys. Res. Atmos. 2020, 125, e2020JD033381. [Google Scholar] [CrossRef]
- Gumbel, J.; Megner, L.; Christensen, O.M.; Ivchenko, N.; Murtagh, D.P.; Chang, S.; Dillner, J.; Ekebrand, T.; Giono, G.; Hammar, A.; et al. The MATS satellite mission—Gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy. Atmos. Chem. Phys. 2020, 20, 431–455. [Google Scholar] [CrossRef]
- Assink, J.D.; Evers, L.G.; Holleman, I.; Paulssen, H. Characterization of Infrasound from Lightning. Geophys. Res. Lett. 2008, 35, L15802. [Google Scholar] [CrossRef]
- Farges, T.; Blanc, E. Characteristics of Infrasound from Lightning and Sprites Near Thunderstorm Areas. J. Geophys. Res. Atmos. 2010, 115, A00E31. [Google Scholar] [CrossRef]
- Chum, J.; Diendorfer, G.; Šindelářová, T.; Baše, J.; Hruška, F. Infrasound Pulses from Lightning and Electrostatic Field Changes: Observation and Discussion. J. Geophys. Res. Atmos. 2013, 118, 10653–10664. [Google Scholar] [CrossRef]
- Šindelářová, T.; de Carlo, M.; Czanik, C.; Ghica, D.; Kozubek, M.; Podolská, K.; Baše, J.; Chum, J.; Mitterbauer, U. Infrasound signature of the post-tropical storm Ophelia at the Central and Eastern European Infrasound Network. J. Atmos. Sol. Terr. Phys. 2021, 217, 105603. [Google Scholar] [CrossRef]
- Campus, P.; Christie, D.R. Worldwide Observations of Infrasonic Waves. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2010; pp. 185–234. [Google Scholar] [CrossRef]
- Schecter, D.A. A Method for Diagnosing the Sources of Infrasound in Convective Storm Simulations. J. Appl. Meteorol. Climatol. 2011, 50, 2526–2542. [Google Scholar] [CrossRef]
- Georges, T.M. Infrasound from Convective Storms: Examining the Evidence. Rev. Geophys. Space Phys. 1973, 11, 571–594. [Google Scholar] [CrossRef]
- Chum, J.; Liu, J.Y.; Podolská, K.; Šindelářová, T. Infrasound in the Ionosphere from Earthquakes and Typhoons. J. Atmos. Sol. Terr. Phys. 2018, 171, 72–82. [Google Scholar] [CrossRef]
- Laštovička, J.; Chum, J. A Review of Results of the International Ionospheric Doppler Sounder Network. Adv. Space Res. 2017, 60, 1629–1643. [Google Scholar] [CrossRef]
- Evers, L.G.; Haak, H.W. The Characteristics of Infrasound, its Propagation and Some Early History. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2010; pp. 77–118. [Google Scholar] [CrossRef]
- Baker, D.M.; Davies, K. F2-Region Acoustic Waves from Severe Weather. J. Atmos. Terr. Phys. 1969, 31, 1345–1352. [Google Scholar] [CrossRef]
- Laštovička, J. Forcing of the Ionosphere by Waves from Below. J. Atmos. Sol. Terr. Phys. 2006, 68, 479–497. [Google Scholar] [CrossRef]
- Sutherland, L.C.; Bass, H.E. Atmospheric Absorption in the Atmosphere Up to 160 km. J. Acoust. Soc. Am. 2004, 115, 1012–1032. [Google Scholar] [CrossRef]
- Blanc, E. Observations in the Upper Atmosphere of Infrasonic Waves from Natural or Artificial Sources: A Summary. Ann. Geophys. 1985, 3, 673–688. [Google Scholar]
- Novák, P. The Czech Hydrometeorological Institute’s Severe Storm Nowcasting System. Atmos. Res. 2007, 83, 450–457. [Google Scholar] [CrossRef]
- Saltikoff, E.; Haase, G.; Delobbe, L.; Gaussiat, N.; Martet, M.; Idziorek, D.; Leijnse, H.; Novák, P.; Lukach, M.; Stephan, K. OPERA the Radar Project. Atmosphere 2019, 10, 320. [Google Scholar] [CrossRef]
- Setvák, M.; Lindsey, D.T.; Novák, P.; Wang, P.K.; Radová, M.; Kerkmann, J.; Grasso, L.; Su, S.-H.; Rabin, R.M.; Šťástka, J.; et al. Satellite-Observed Cold-Ring-Shaped Features A top Deep Convective Clouds. Atmos. Res. 2010, 97, 80–96. [Google Scholar] [CrossRef]
- Setvák, M.; Bedka, K.; Lindsey, D.T.; Sokol, A.; Charvát, Z.; Šťástka, J.; Wang, P.K. A-Train Observations of Deep Convective Storm Tops. Atmos. Res. 2013, 123, 229–248. [Google Scholar] [CrossRef]
- Wanke, E. Blitzortung.org—A Low Cost Time of Arrival Lightning Detection and Lightning Location Network; Universität Düsseldorf: Düsseldorf, Germany, 2011; p. 75. Available online: http://www.blitzortung.org/Documents/TOA_Blitzortung.pdf (accessed on 29 August 2024).
- Brachet, N.; Brown, D.; Le Bras, R.; Cansi, Y.; Mialle, P.; Coyne, J. Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2010; pp. 77–118. [Google Scholar] [CrossRef]
- Cansi, Y. An Automatic Seismic Event Processing for Detection and Location: The P.M.C.C. Method. Geophys. Res. Lett. 1995, 22, 1021–1024. [Google Scholar] [CrossRef]
- Le Pichon, A.; Cansi, Y. PMCC for Infrasound Data Processing. InfraMatics 2003, 02, 1–9. [Google Scholar]
- Christie, D.R.; Campus, P. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2010; pp. 77–118. [Google Scholar] [CrossRef]
- Marty, J. The IMS Infrasound Network: Current Status and Technological Developments. In Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 3–62. [Google Scholar] [CrossRef]
- Garcès, M.A. On Infrasound Standards, Part 1: Time, Frequency, and Energy Scaling. InfraMatics 2013, 2, 13–35. [Google Scholar] [CrossRef]
- Szuberla, C.A.L.; Olson, J.V. Uncertainties Associated with Parameter Estimation in Atmospheric Infrasound Rays. J. Acoust. Soc. Am. 2004, 115, 253–258. [Google Scholar] [CrossRef]
- Rusz, J.; Chum, J.; Baše, J. Locating Thunder Source Using a Large-Aperture Micro-Barometer Array. Front. Earth Sci. 2021, 9, 614820. [Google Scholar] [CrossRef]
- Chum, J.; Šindelářová, T.; Koucká Knížová, P.; Podolská, K.; Rusz, J.; Baše, J.; Nakata, H.; Hosokawa, K.; Danielides, M.; Schmidt, C.; et al. Atmospheric and ionospheric waves induced by the Hunga eruption on 15 January 2022; Doppler sounding and infrasound. Geophys. J. Int. 2023, 233, 1429–1443. [Google Scholar] [CrossRef]
- Chum, J.; Podolská, K. 3D Analysis of GW Propagation in the Ionosphere. Geophys. Res. Lett. 2018, 45, 11562–11571. [Google Scholar] [CrossRef]
- Chum, J.; Podolská, K.; Rusz, J.; Baše, J.; Tedoradze, N. Statistical Investigation of Gravity Wave Characteristics in the Ionosphere. Earth Planets Space 2021, 73, 60. [Google Scholar] [CrossRef]
- Reinisch, B.W. New Techniques in Ground-Based Ionospheric Sounding and Studies. Radio Sci. 1987, 21, 331–341. [Google Scholar] [CrossRef]
- Huang, X.; Reinisch, B.W. Vertical Electron Density Profiles from the Digisonde Network. Adv. Space Res. 1996, 18, 121–129. [Google Scholar] [CrossRef]
- Kouba, D.; Koucká Knížová, P. Analysis of Digisonde Drift Measurements Quality. J. Atmos. Sol. Terr. Phys. 2012, 90–91, 212–221. [Google Scholar] [CrossRef]
- Kouba, D.; Koucká Knížová, P. Ionospheric Vertical Drift Response at a Mid-Latitude Station. Adv. Space Res. 2016, 58, 108–116. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics & Electrodynamics; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Pavlov, A.V. Photochemistry of Ions at D-Region Altitudes of the Ionosphere: A Review. Surv. Geophys. 2014, 35, 259–334. [Google Scholar] [CrossRef]
- Silber, I.; Price, C. On the Use of VLF Narrowband Measurements to Study the Lower Ionosphere and the Mesosphere–Lower Thermosphere. Surv. Geophys. 2017, 38, 407–441. [Google Scholar] [CrossRef]
- Cheremnykh, O.; Fedorenko, A.; Voitsekhovska, A.; Selivanov, Y.; Ballai, I.; Verth, G.; Fedun, V. Atmospheric Waves Disturbances from the Solar Terminator According to the VLF Radio Stations Data. Adv. Space Res. 2023, 72, 4825–4835. [Google Scholar] [CrossRef]
- Nina, A.; Čadež, V.M. Detection of Acoustic-Gravity Waves in Lower Ionosphere by VLF Radio Waves. Geophys. Res. Lett. 2013, 40, 4803–4807. [Google Scholar] [CrossRef]
- Kumar, S.; NaitAmor, S.; Chanrion, O.; Neubert, T. Perturbations to the Lower Ionosphere by Tropical Cyclone Evan in the South Pacific Region. J. Geophys. Res. Space Phys. 2017, 122, 8720–8732. [Google Scholar] [CrossRef]
- NaitAmor, S.; Cohen, M.B.; Kumar, S.; Chanrion, O.; Neubert, T. VLF Signal Anomalies During Cyclone Activity in the Atlantic Ocean. Geophys. Res. Lett. 2018, 45, 10185–10192. [Google Scholar] [CrossRef]
- Pal, S.; Sarkar, S.; Midya, S.K.; Mondal, S.K.; Hobara, Y. Low-Latitude VLF Radio Signal Disturbances Due to the Extremely Severe Cyclone Fani of May 2019 and Associated Mesospheric Response. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027288. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Solovieva, M.; Levin, B.; Hayakawa, M.; Fedun, V. Meteorological Effects in the Lower Ionosphere as Based on VLF/LF Signal Observations. Nat. Hazards Earth Syst. Sci. 2014, 14, 2671–2679. [Google Scholar] [CrossRef]
- Pal, S.; Chakraborty, S.; Chakrabarti, S.K. On the Use of Very Low Frequency Transmitter Data for Remote Sensing of Atmospheric Gravity and Planetary Waves. Adv. Space Res. 2015, 55, 1190–1200. [Google Scholar] [CrossRef]
- Maurya, A.K.; Cohen, M.B.; Niranjan Kumar, K.; Phanikumar, D.V.; Singh, R.; Vineeth, P.K.; Kishore Kumar, K. Observation of Very Short Period Atmospheric Gravity Waves in the Lower Ionosphere Using Very Low Frequency Waves. J. Geophys. Res. Space Phys. 2019, 124, 9448–9461. [Google Scholar] [CrossRef]
- Marshall, R.A.; Snively, J.B. Very Low Frequency Subionospheric Remote Sensing of Thunderstorm-Driven Acoustic Waves in the Lower Ionosphere. J. Geophys. Res. Atmos. 2014, 119, 5037–5045. [Google Scholar] [CrossRef]
- Silber, I.; Price, C. Short-Term Variability of the Lower Ionosphere from VLF Narrowband Radio Observations. In Proceedings of the 32nd URSI GASS, Montreal, QC, Canada, 19–26 August 2017. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, MA, USA, 2009; ISBN 9780123743701. [Google Scholar] [CrossRef]
- Setvák, M.; Charvát, Z.; Valachová, M.; Bedka, K. Blended “Sandwich” Image Products in Nowcasting. In Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference, Sopot, Poland, 3–7 September 2012. [Google Scholar] [CrossRef]
- Bedka, K.M. Overshooting Cloud Top Detections Using MSG SEVIRI Infrared Brightness Temperatures and Their Relationship to Severe Weather Over Europe. Atmos. Res. 2011, 99, 175–189. [Google Scholar] [CrossRef]
- Setvák, M.; Miller, S.M.; Calbet, X. A Satellite Perspective on Interactions Between Convective Storms and the Upper Atmosphere. In Proceedings of the 2019 European Conference on Severe Storms, Krakow, Poland, 4–8 November 2019. [Google Scholar] [CrossRef]
- Pásztor, M.; Czanik, C.; Bondár, I. A Single Array Approach for Infrasound Signal Discrimination from Quarry Blasts via Machine Learning. Remote Sens. 2023, 15, 1657. [Google Scholar] [CrossRef]
- Gompf, B.; Pecha, R. Mie Scattering from a Sonoluminescing Bubble with High Spatial and Temporal Resolution. Phys. Rev. E 2000, 61, 5253–5256. [Google Scholar] [CrossRef] [PubMed]
- Durand, Y.; Meynart, R.; Morançais, D.; Fabre, F.; Schillinger, M. Results of the Pre-Development of Aladin, the Direct Detection Doppler Wind LIDAR for ADM/Aeolus. In Proceedings of the 22nd International Laser Radar Conference, Matera, Italy, 12–16 July 2004; p. 247. [Google Scholar] [CrossRef]
- European Space Agency (ESA). ALADIN, Doppler Lidar Working Group Report; ESA SP-1112; European Space Agency: Paris, France, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koucká Knížová, P.; Potužníková, K.; Podolská, K.; Šindelářová, T.; Bozóki, T.; Setvák, M.; Pásztor, M.; Szárnya, C.; Mošna, Z.; Kouba, D.; et al. Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations. Remote Sens. 2024, 16, 4338. https://doi.org/10.3390/rs16224338
Koucká Knížová P, Potužníková K, Podolská K, Šindelářová T, Bozóki T, Setvák M, Pásztor M, Szárnya C, Mošna Z, Kouba D, et al. Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations. Remote Sensing. 2024; 16(22):4338. https://doi.org/10.3390/rs16224338
Chicago/Turabian StyleKoucká Knížová, Petra, Kateřina Potužníková, Kateřina Podolská, Tereza Šindelářová, Tamás Bozóki, Martin Setvák, Marcell Pásztor, Csilla Szárnya, Zbyšek Mošna, Daniel Kouba, and et al. 2024. "Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations" Remote Sensing 16, no. 22: 4338. https://doi.org/10.3390/rs16224338
APA StyleKoucká Knížová, P., Potužníková, K., Podolská, K., Šindelářová, T., Bozóki, T., Setvák, M., Pásztor, M., Szárnya, C., Mošna, Z., Kouba, D., Chum, J., Zacharov, P., Buzás, A., Hanzlíková, H., Kozubek, M., Burešová, D., Bozsó, I., Berényi, K. A., & Barta, V. (2024). Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations. Remote Sensing, 16(22), 4338. https://doi.org/10.3390/rs16224338