Abstract
Infrasound is inaudible sound as it consists of frequencies lower than 20 Hz, i.e. the human hearing threshold. Low frequency acoustic signals were first discovered after the eruption of the Krakatoa (Indonesia) in 1883. Owing to its low frequency content, this infrasound traveled up to four times around the globe while reaching altitudes over 100 k. The ability to detect explosions with infrasound resulted in substantial scientific and societal interest during World War I and the era of atmospheric nuclear testing. This interest diminished as nuclear tests were confined to the underground under the Limited Test Ban Treaty in 1963. Recently, with the signature of the Comprehensive Nuclear-Test-Ban Treaty, infrasound gained renewed attention as it is being used as a verification technique. This chapter describes the physical characteristics of infrasound, in relation to other atmospheric waves. The propagation through the highly dynamic atmosphere is addressed with an introduction to the characteristics of the medium. Next, some highlights of the remarkable history of infrasound are given, and early instrumental developments are shown. This chapter aims at establishing the framework for the study of infrasound and its application to atmospheric sciences.
Similar content being viewed by others
References
A.D. (1912) S. Fujiwhara über die abnormale Verbreitung von Schallwellen in der Atmosphäre. Meteorologische Zeitschrift November:543–544
Balachandran NK (1968) Acoustic-gravity wave propagation in a temperature- and wind-stratified atmosphere. J Atmos Sci 25:818–826
Balachandran NK (1970) Effects of winds on the dispersion of acoustic-gravity waves. J Acoust Soc Am 48:211–220
Balachandran NK (1979) Infrasound signals from thunder. J Geophys Res 84:1735–1745
Balachandran NK, Donn WL, Rind D (1977) Concorde sonic booms as an atmospheric probe. Science 197:47–49
Bass HE (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc Am 52:821–825
Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Am Meteorol Soc 20:421–426
Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658
Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring and earth’s atmosphere with the global IMS infrasound network, this volume, pp. 73–114
Campus P, Christie Dr (2010) Worldwide observations of infrasonic waves. This volume, pp. 181–230
Carpenter EW, Harwood G, Whiteside T (1961) Microbarograph records from the Russian large nuclear explosions. Nature 98:857
Cook RK, Bedard AJ Jr (1971) On the measurement of infrasound. Geophys J R Astr Soc 26:5–11
Cox EF (1947) Microbarometric pressures from large high explosives blasts. J Acoust Soc Am 19:832–846
Cox EF (1949) Abnormal audibility zones in long distance propagation through the atmosphere. J Acoust Soc Am 21:6–16
Daniels FB (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31:529–531
Davison C (1917) Sound-areas of great explosion. Nature 98:438–439
Donn WL, Balachandran NK (1974) Meteors and meteorites detected by infrasound. Science 185:707–709
Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541
Donn WL, Posmentier ES (1964) Ground-coupled air waves from the great Alaskan earthquake. J Geophys Res 69:5357–5361
Donn WL, Posmentier ES (1967) Infrasonic waves for the marine storm of April 7, 1966. J Geophys Res 72:2053–2061
Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astr Soc 26:111–133
Donn WL, Rind D (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172
Donn WL, Rind D (1979) Monitoring stratospheric winds with Concorde generated infrasound. J Appl Meteorol 18:945–952
Donn WL, Pfeffer RL, Ewing M (1963) Propagation of air waves from nuclear explosions. Science 139:307–317
Donn WL, Balachandran NK, Kaschak G (1974) Atmospheric infrasound radiated by bridges. J Acoust Soc Am 56:1367–1370
Donn WL, Balachadran NK, Rind D (1975) Tidal wind control of long-range rocket infrasound. J Geophys Res 80:1162–1164
Dörr JN (1915) Über die Hörbarkeit von Kanonendonner, Explosionen u. dgl. Meteorologische Zeitschrift Mai:207–215
Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. 108:4680
de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, PP. 469–504
Gainville O, Blanc-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. This volume, pp. 569–592
Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263
Georges TM, Beasley WH (1977) Refractions of infrasound by upper-atmospheric winds. J Acoust Soc Am 61:28–34
Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier Amsterdam
Grover FH (1971) Experimental noise reducers for an active microbarograph array. Geophys J R Astr Soc 26:41–52
Grover FH (1977) A survey of atmospheric waves recording at Blacknest. AWRE Report No. O 51/77, UK
Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere above Southern California. Bull Am Meteorol Soc 20:192–201
Hunt JN, Palmer R, Penney W (1960) Atmospheric waves caused by large explosions. Phil Trans Roy Soc London A 252:275–315
Holton JR (1979) An introduction to dynamic meteorology. Academic Press, London
Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. This volume, pp. 505–534
Lamb H (1932) Hydrodynamics. Dover, New York
Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640
Lindemann FRS, Dobson GMB (1922) A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc Roy Soc 102:411–437
Liszka L (1978) Long-distance focusing of concorde sonic boom. J Acoust Soc Am 64:631–635
Lott F, Millet C (2010) The representation of gravity waves in atmospheric general circulation models (GCMs). This volume, pp. 679–694
Meinardus W (1915) Die Hörweite des Kanonendonners bei der Belagerung von Antwerpen. Meteorologische Zeitschrift Mai: 199–206
Meteorological Office (1956) Handbook of meteorological instruments. Her Majesty’s Stationary Office, London
McAdie AG (1912) Taal, Asama-Yama and Katmai. Bull Seism Soc Am 2:233–242
Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes, This volume pp. 449–468
NOAA, NASA, USAF (1976) US Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, DC.
Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. This volume, pp. 535–568
Pain HJ (1983) The physics of vibrations and waves. Wiley, Great Britain
Pierce AD (1963) Propagation of acoustic-gravity waves from a small source above the ground in an isothermal atmosphere. J Acoust Soc Am 35:1798–1807
Pierce AD, Posey JW (1971) Theory of the excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions. Geophys J R Astr Soc 26:341–368
Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. This volume, pp. 115–136
Posmentier (1967) A theory of microbaroms. Geophys J R Astr Soc 13:487–501
Rind DH, Donn WL (1978) Infrasound observations of variability during stratospheric warmings. J Atmos Sci 35:546–553
Salby ML (1996) Fundamentals of atmospheric physics. Academic Press, San Diego
Shaw WN, Dines WH (1904) The study of the minor fluctuations of atmospheric pressure. Q J R Meteorol Soc 31:39–52
Steel D (2008) Tunguska at 100. Nature 453:1157–1159
Symons GJ (1888) The eruption of Krakatoa and subsequent phenomena, Trübner, London
Rothwell P (1947) Calculation of sound rays in the atmosphere. J Acoust Soc Am 19:205–221
Thomas JE, Pierce AD, Flinn EA, Craine LB (1971) Bibliography on infrasonic waves. Geophys J R Astr Soc 26:399–426.
Van Everdingen E (1914) De hoorbaarheid in Nederland van het kanongebulder bij Antwerpen op 7–9 October 1914. Hemel en Dampkring 6:81–85
Verbeek RDM (1885) Krakatau (Uitgegeven op last van zijne excellentie den Gouverneur-Generaal van Nederlandsch-Indië). Landsdrukkerij, Batavia
Von dem Borne G (1910) Über die schallverbreitung bei Explosionskatastrophen. Physikalische Zeitschrift XI:483–488
Walker KT, Hedlin MAH (2010) A review of wind-noise reduction methodologies. This volume, pp. 137–180
Wegener A (1925) Die äußere Hörbarkeitzone. Zeitsch Geophys I:297–314
Whipple FJW (1923) The high temperature of the upper atmosphere as an explanation of zones of audibility. Nature 111:187
Whipple FJW (1930) The great Siberian meteor and the waves, seismic and arial, which it produced. Q J R Meteorol Soc 56:287–304
Whipple FJW (1935) The propagation of sound to great distances. Q J R Meteorol Soc 61:285–308
Whipple FJW (1939) The upper atmosphere, density and temperature, direct measurements and sound evidence. Q J R Meteorol Soc 65:319–323
Whitehouse W (1870) On a new instrument for recording minute variations of atmospheric pressure. Proc Roy Soc 19:491–493
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Evers, L.G., Haak, H.W. (2010). The Characteristics of Infrasound, its Propagation and Some Early History. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_1
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9508-5_1
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9507-8
Online ISBN: 978-1-4020-9508-5
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)