Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements
<p>Frequency maps of first (<b>a</b>–<b>d</b>) and last (<b>e</b>–<b>h</b>) detection points of mesoscale eddies per year derived from TOEddies, META3.2, TIAN, and GOMEAD datasets, respectively. The data are aggregated into <math display="inline"><semantics> <mrow> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo>×</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> bins and normalized by the number of observation years for each dataset. The mean dynamic topography (MDT; in cm) is shown by black contours.</p> "> Figure 2
<p>Scatter plot representing the distribution of eddy occurrences for (<b>a</b>) merging and (<b>b</b>) splitting events based on TOEddies atlas for eddies with lifetimes longer than 4 weeks in each <math display="inline"><semantics> <mrow> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo>×</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> region. Bathymetric contours at −500 m, −1000 m, −2000 m, and −4000 m are indicated by gray lines.</p> "> Figure 3
<p>Histograms of eddy lifetimes (weeks) (<b>a</b>,<b>b</b>) and histograms of eddy characteristic radius <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> (km) (<b>c</b>,<b>d</b>) and velocity <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> (m/s) (<b>e</b>,<b>f</b>) of anticyclonic (first column) and cyclonic eddies (second column) for the TOEddies, META3.2, TIAN, and GOMEAD datasets. We consider only mesoscale eddies having lifetimes ≥ 16 weeks, as indicated by the dashed lines in panels (<b>a</b>–<b>d</b>), and characteristic radii larger than <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>≥</mo> </mrow> </semantics></math> 30 km.</p> "> Figure 4
<p>Maps of the speed-based radius scale <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> (km) for eddies with lifetimes ≥ 16 weeks for each <math display="inline"><semantics> <mrow> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo>×</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> region from the (<b>a</b>) TOEddies, (<b>b</b>) META3.2, (<b>c</b>) TIAN, and (<b>d</b>) GOMEAD datasets. Zonal averages of the eddy characteristic radius are illustrated in panel (<b>e</b>). The dashed line indicates the estimated first baroclinic Rossby radius of deformation <math display="inline"><semantics> <msub> <mi>R</mi> <mi>d</mi> </msub> </semantics></math> (km) [<a href="#B10-remotesensing-16-04336" class="html-bibr">10</a>].</p> "> Figure 5
<p>Cyclonic (blue) and anticyclonic (red) eddy trajectories as detected from the TOEddies algorithm having lifetimes of at least (<b>a</b>) ≥52 weeks, (<b>b</b>) ≥78 weeks, and (<b>c</b>) ≥104 weeks. The numbers of detected eddies are labeled at the top of each panel for each polarity.</p> "> Figure 6
<p>Trajectories of long-lived (≥78 weeks) cyclonic (blue) and anticyclonic (red) eddies from the (<b>a</b>) TOEddies, (<b>b</b>) META3.2, (<b>c</b>) TIAN, and (<b>d</b>) GOMEAD datasets. The numbers of eddies are labeled at the top of each panel for each polarity.</p> "> Figure 7
<p>Trajectories of long-propagating (≥1100 km) eddies of both types from the (<b>a</b>) TOEddies, (<b>b</b>) META3.2, (<b>c</b>) TIAN, and (<b>d</b>) GOMEAD datasets tracked for ≥26 weeks.</p> "> Figure 8
<p>Eddy-network example of anticyclonic (first column) and cyclonic (second column) trajectories for the (<b>a</b>,<b>b</b>) California Upwelling System, (<b>c</b>,<b>d</b>) western Australian boundary, and (<b>e</b>,<b>f</b>) extended South Benguela System. Each eddy trajectory is colored according to its assigned order.</p> "> Figure 9
<p>Temporal evolution of dynamical characteristics of anticyclone A0 and cyclone C0, as tracked by all considered datasets. The evolution of the eddy characteristic radius <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> (km) and outermost radius <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </semantics></math> (km) as tracked by TOEddies is shown in panel (<b>a</b>,<b>b</b>) for A0 and C0, respectively in black. The TOEddies network reconstruction composed of all detected trajectories, anticyclonic (red) and cyclonic (blue, that have merged and splitted with the main trajectories is shown in panels (<b>c</b>,<b>d</b>). The evolutions of the eddy radii and characteristic velocity <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> (m/s) from the different datasets are shown in panels (<b>e</b>–<b>h</b>). Panels (<b>i</b>,<b>j</b>) depict the equivalent A0 and C0 trajectories as tracked from the META3.2, TIAN, and GOMEAD datasets. Bathymetric contours at −500 m, −1000 m, −2000 m, and −4000 m are indicated by gray lines.</p> "> Figure 10
<p>Snapshots along the temporal evolution of anticyclone A0 (panels <b>a</b>–<b>f</b>) propagating westward in the Southern Ocean. The background colors correspond to the ADT (m) fields while the gray arrows correspond to surface geostrophic velocities. The characteristic and outer contours as detected by TOEddies are shown in the black solid and dashed lines. The Argo floats trapped in the eddies are shown with the magenta diamond points.</p> "> Figure 11
<p>Snapshots along the temporal evolution of cyclone C0 (panels <b>a</b>–<b>f</b>) propagating westward in the Indian Ocean. The background colors correspond to the ADT (m) fields while the gray arrows correspond to surface geostrophic velocities. The characteristic and outer contours as detected by TOEddies are shown in the black solid and dashed lines. The Argo floats trapped in the eddies are shown with magenta diamond points.</p> "> Figure 12
<p>Temporal evolution of anticyclone A0 and cyclone C0 vertical structures as obtained by Argo floats trapped inside the eddy core (<math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>G</mi> <mi>O</mi> </mrow> </msub> <mo>≤</mo> <mi>R</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </semantics></math>) (shown as magenta points in panels (<b>a</b>,<b>b</b>). Vertical profiles of temperature <math display="inline"><semantics> <mrow> <mi>T</mi> <msup> <mo>(</mo> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> <mo>)</mo> </mrow> </semantics></math> and temperature anomalies <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>A</mi> </msub> <mi> </mi> <mrow> <msup> <mo>(</mo> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are shown in panels (<b>c</b>,<b>e</b>) for anticyclone A0, and in panels (<b>d</b>,<b>f</b>) for cyclone C0.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eddy Atlases and Sea Surface Height Data
2.2. Eddy-Amplitude Thresholds and Core Structure Definition
2.3. Eddy Tracking Approaches
2.4. Eddy-Network and Interaction Mapping
2.5. Integration with Argo Data
3. Results
3.1. Statistical Description of Mesoscale Eddies
3.2. Characterization of Main Eddy Pathways
3.3. Characterization of Main Eddy Interactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. TOEddies Eddy Detection
- C is a closed isoline of ADT;
- C contains extremum E;
- C does not contain any extremum of opposite sign;
- C has a minimum area of ;
- The absolute value of the difference between the ADT level of C and the ADT of E is greater than 1 mm; this threshold difference is called the persistence parameter;
- C does not contain any extremum other than E with the same sign as E and with an associated outermost contour;
- No isoline exterior to C has the above properties.
Appendix A.2. TOEddies Eddy Tracking
References
- Schütte, F.; Brandt, P.; Karstensen, J. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean. Sci. 2016, 12, 663–685. [Google Scholar] [CrossRef]
- Schütte, F.; Karstensen, J.; Krahmann, G.; Hauss, H.; Fiedler, B.; Brandt, P.; Visbeck, M.; Körtzinger, A. Characterization of ’dead-zone’ eddies in the eastern tropical North Atlantic. Biogeosciences 2016, 13, 5865–5881. [Google Scholar] [CrossRef]
- Karstensen, J.; Schütte, F.; Pietri, A.; Krahmann, G.; Fiedler, B.; Grundle, D.; Hauss, H.; Körtzinger, A.; Lüscher, C.R.; Testor, P.; et al. Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling. Biogeosciences 2017, 14, 2167–2181. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Blanke, B.; Chaigneau, A.; Pegliasco, C.; Stegner, A. Anticyclonic Eddies Connecting the Western Boundaries of Indian and Atlantic Oceans. J. Geophys. Res. Ocean. 2018, 123, 7651–7677. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Stegner, A. Evolution of the Thermohaline Structure of One Agulhas Ring Reconstructed from Satellite Altimetry and Argo Floats. J. Geophys. Res. 2019, 124, 8969–9003. [Google Scholar] [CrossRef]
- Ioannou, A.; Stegner, A.; Le Vu, B.; Taupier-Letage, I.; Speich, S. Dynamical Evolution of Intense Ierapetra Eddies on a 22 Year Long Period. J. Geophys. Res. Ocean. 2017, 122, 9276–9298. [Google Scholar] [CrossRef]
- Ioannou, A.; Speich, S.; Laxenaire, R. Characterizing Mesoscale Eddies of Eastern Upwelling Origins in the Atlantic Ocean and Their Role in Offshore Transport. Front. Mar. Sci. 2022, 9, 835260. [Google Scholar] [CrossRef]
- Nencioli, F.; Olmo, G.D.; Quartly, G.D. Agulhas Ring Transport Efficiency from Combined Satellite Altimetry and Argo Profiles. J. Geophys. Res. Ocean. 2018, 123, 5874–5888. [Google Scholar] [CrossRef]
- Flierl, G.R. Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn. 1981, 18, 39–74. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Sato, O.T.; Polito, P.S. Observation of South Atlantic subtropical mode waters with Argo profiling float data. J. Geophys. Res. Ocean. 2014, 119, 2860–2881. [Google Scholar] [CrossRef]
- McGillicuddy, D.J.; Anderson, L.A.; Bates, N.R.; Bibby, T.; Buesseler, K.O.; Carlson, C.A.; Davis, C.S.; Ewart, C.; Falkowski, P.G.; Goldthwait, S.A.; et al. Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 2007, 316, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Villar, E.; Farrant, G.K.; Follows, M.; Garczarek, L.; Speich, S.; Audic, S.; Bittner, L.; Blanke, B.; Brum, J.R.; Brunet, C.; et al. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 2015, 348, 1261447. [Google Scholar] [CrossRef] [PubMed]
- Dufois, F.; Hardman-Mountford, N.J.; Greenwood, J.; Richardson, A.J.; Feng, M.; Matear, R.J. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2016, 2, e1600282. [Google Scholar] [CrossRef]
- Cornec, M.; Laxenaire, R.; Speich, S.; Claustre, H. Impact of Mesoscale Eddies on Deep Chlorophyll Maxima. Geophys. Res. Lett. 2021, 48, e2021GL093470. [Google Scholar] [CrossRef]
- Cornec, M.; Claustre, H.; Mignot, A.; Guidi, L.; Lacour, L.; Poteau, A.; D’Ortenzio, F.; Gentili, B.; Schmechtig, C. Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics. Glob. Biogeochem. Cycles 2021, 35, e2020GB006759. [Google Scholar] [CrossRef]
- LeTraon, P.Y.; Nadal, F.; Ducet, N. An Improved Mapping Method of Multisatellite Altimeter Data. J. Atmos. Ocean. Technol. 1998, 15, 522–533. [Google Scholar] [CrossRef]
- Amores, A.; Jordà, G.; Arsouze, T.; Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products? J. Geophys. Res. Ocean. 2018, 123, 7220–7236. [Google Scholar] [CrossRef]
- Khachatrian, E.; Sandalyuk, N.; Lozou, P. Eddy Detection in the Marginal Ice Zone with Sentinel-1 Data Using YOLOv5. Remote. Sens. 2023, 15, 2244. [Google Scholar] [CrossRef]
- Kozlov, I.E.; Atadzhanova, O.A. Eddies in the Marginal Ice Zone of Fram Strait and Svalbard from Spaceborne SAR Observations in Winter. Remote Sens. 2022, 14, 134. [Google Scholar] [CrossRef]
- Xia, L.; Chen, G.; Chen, X.; Ge, L.; Huang, B. Submesoscale oceanic eddy detection in SAR images using context and edge association network. Front. Mar. Sci. 2019, 9, 1023624. [Google Scholar] [CrossRef]
- Manta, G.; Speich, S.; Karstensen, J.; Hummels, R.; Kersalé, M.; Laxenaire, R.; Piola, A.; Chidichimo, M.P.; Sato, O.T.; da Cunha, L.C.; et al. The South Atlantic Meridional Overturning Circulation and Mesoscale Eddies in the First GO-SHIP Section at 34.5°S. J. Geophys. Res. Ocean. 2021, 126, e2020JC016962. [Google Scholar] [CrossRef]
- Stevens, B.; Bony, S.; Farrell, D.; Ament, F.; Blyth, A.; Fairall, C.; Karstensen, J.; Quinn, P.K.; Speich, S.; Acquistapace, C.; et al. EUREC4A. Earth Syst. Sci. Data 2021, 13, 4067–4119. [Google Scholar] [CrossRef]
- Subirade, C.; L’Hégaret, P.; Speich, S.; Laxenaire, R.; Karstensen, J.; Carton, X. Combining an Eddy Detection Algorithm with In-Situ Measurements to Study North Brazil Current Rings. Remote Sens. 2023, 15, 1897. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. [Google Scholar] [CrossRef]
- Schlax, M.G.; Chelton, D.B. The “Growing Method” of Eddy Identification and Tracking in Two and Three Dimensions. 2016. Available online: https://api.semanticscholar.org/CorpusID:53683135 (accessed on 1 March 2022).
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef]
- Mkhinini, N.; Coimbra, A.L.S.; Stegner, A.; Arsouze, T.; Taupier-Letage, I.; Béranger, K. Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities. J. Geophys. Res. Ocean. 2014, 119, 8603–8626. [Google Scholar] [CrossRef]
- Halo, I.; Backeberg, B.; Penven, P.; Ansorge, I.; Reason, C.; Ullgren, J. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models. Deep-Sea Res. II 2014, 100, 38–53. [Google Scholar] [CrossRef]
- Le Vu, B.; Stegner, A.; Arsouze, T. Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation. J. Atmos. Ocean. Technol. 2018, 35, 739–762. [Google Scholar] [CrossRef]
- Doglioli, A.; Blanke, B.; Speich, S.; Lapeyre, G. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin Eddies. J. Geophys. Res. 2007, 112, C05043. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A New Sea Surface Height Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Pegliasco, C.; Delepoulle, A.; Mason, E.; Morrow, R.; Faugère, Y.; Dibarboure, G. META3.1exp: A new global mesoscale eddy trajectory atlas derived from altimetry. Earth Syst. Sci. Data 2022, 14, 1087–1107. [Google Scholar] [CrossRef]
- Du, Y.; Yi, J.; Wu, D.; He, Z.; Wang, D.; Fuyuan, L. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: Evolution processes and statistical analysis. Acta Oceanol. Sin. 2014, 33, 36–47. [Google Scholar] [CrossRef]
- Cui, W.; Wang, W.; Zhang, J.; Yang, J. Multicore structures and the splitting and merging of eddies in global oceans from satellite altimeter data. Ocean Sci. 2019, 15, 413–430. [Google Scholar] [CrossRef]
- Laxenaire, R.; Guez, L.; Chaigneau, A.; Isic, M.; Ioannou, A.; Speich, S. TOEddies Global Mesoscale Eddy Atlas Colocated with Argo Float Profiles; SEANOE: Brest, France, 2024. [Google Scholar] [CrossRef]
- Tian, F.; Wu, D.; Yuan, L.; Chen, G. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data. Int. J. Remote. Sens. 2019, 41, 2835–2860. [Google Scholar] [CrossRef]
- Dong, C.; Liu, L.; Nencioli, F.; Bethel, B.J.; Liu, Y.; Xu, G.; Ma, J.; Ji, J.; Sun, W.; Shan, H.; et al. The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset. Sci. Data 2022, 9, 436. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Stegner, A. Agulhas Ring Heat Content and Transport in the South Atlantic Estimated by Combining Satellite Altimetry and Argo Profiling Floats Data. J. Geophys. Res. Ocean. 2020, 125, e2019JC015511. [Google Scholar] [CrossRef]
- Kersalé, M.; Lamont, T.; Speich, S.; Terre, T.; Laxenaire, R.; Roberts, M.J.; van den Berg, M.A.; Ansorge, I.J. Moored observations of mesoscale features in the Cape Basin: Characteristics and local impacts on water mass distributions. Ocean Sci. 2018, 14, 923–945. [Google Scholar] [CrossRef]
- Capuano, T.A.; Speich, S.; Carton, X.; Laxenaire, R. Indo-Atlantic Exchange, Mesoscale Dynamics, and Antarctic Intermediate Water. J. Geophys. Res. Ocean. 2018, 123, 1–22. [Google Scholar] [CrossRef]
- Foltz, G.R.; Brandt, P.; Richter, I.; Rodríguez-Fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R.R.; Schmidt, J.O.; Yu, L.; Lefevre, N.; et al. The Tropical Atlantic Observing System. Front. Mar. Sci. 2019, 6, 206. [Google Scholar] [CrossRef]
- Shropshire, T.A.; Morey, S.L.; Chassignet, E.P.; Bozec, A.; Coles, V.J.; Landry, M.R.; Swalethorp, R.; Zapfe, G.; Stukel, M.R. Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model. Biogeosciences 2020, 17, 3385–3407. [Google Scholar] [CrossRef]
- Stephan, C.C.; Schnitt, S.; Schulz, H.; Bellenger, H.; de Szoeke, S.P.; Acquistapace, C.; Baier, K.; Dauhut, T.; Laxenaire, R.; Morfa-Avalos, Y.; et al. Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign. Earth Syst. Sci. Data 2021, 13, 491–514. [Google Scholar] [CrossRef]
- Chen, Y.; Speich, S.; Laxenaire, R. Formation and Transport of the South Atlantic Subtropical Mode Water in Eddy-Permitting Observations. J. Geophys. Res. Ocean. 2021, 127, e2021JC017767. [Google Scholar] [CrossRef]
- Manta, G.; Speich, S.; Barreiro, M.; Trinchin, R.; de Mello, C.; Laxenaire, R.; Piola, A.R. Shelf Water Export at the Brazil-Malvinas Confluence Evidenced from Combined in situ and Satellite Observations. Front. Mar. Sci. 2022, 9, 857594. [Google Scholar] [CrossRef]
- Olivier, L.; Boutin, J.; Reverdin, G.; Lefèvre, N.; Landschützer, P.; Speich, S.; Karstensen, J.; Labaste, M.; Noisel, C.; Ritschel, M.; et al. Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected. Biogeosciences 2022, 19, 2969–2988. [Google Scholar] [CrossRef]
- Baudena, A.; Laxenaire, R.; Catalano, C.; Claustre, H.; Ioannou, A.; Leymarie, E.; Picheral, M.; Poteau, A.; Speich, S.; Stemmann, L.; et al. A Lagrangian perspective on the carbon and oxygen budget of an oceanic eddy. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Speich, S. The Embarked Science Team. EUREC4A-OA. Cruise Report. 19 January—19 February 2020. Vessel: L’ATALANTE. Mission Report. 2021. [Google Scholar] [CrossRef]
- Olivier, L.; Reverdin, G.; Boutin, J.; Laxenaire, R.; Iudicone, D.; Pesant, S.; Calil, P.H.; Horstmann, J.; Couet, D.; Erta, J.; et al. Late summer northwestward Amazon plume pathway under the action of the North Brazil Current rings. Remote. Sens. Environ. 2024, 307, 114165. [Google Scholar] [CrossRef]
- Lumpkin, R. Global characteristics of coherent vortices from surface drifter trajectories. J. Geophys. Res. Ocean. 2016, 121, 1306–1321. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Ocean. 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Chelton, D.B.; deSzoeke, R.A.; Schlax, M.G.; Naggar, K.E.; Siwertz, N. Geographical Variability of the First Baroclinic Rossby Radius of Deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Tang, B.; Chassignet, E.P. Westward Motion of Mesoscale Eddies. J. Phys. Oceanogr. 1990, 20, 758–768. [Google Scholar] [CrossRef]
- Morrow, R. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett. 2004, 31, L24311. [Google Scholar] [CrossRef]
- Lehahn, Y.; d’Ovidio, F.; Lévy, M.; Amitai, Y.; Heifetz, E. Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring. Geophys. Res. Lett. 2011, 38, L16610. [Google Scholar] [CrossRef]
- Arhan, M.; Speich, S.; Messager, C.; Dencausse, G.; Fine, R.; Boye, M. Anticyclonic and cyclonic eddies of subtropical origin in the subantarctic zone south of Africa. J. Geophys. Res. Ocean. 2011, 116, C11004. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Poulin, F.; Flierl, G. The Nonlinear Evolution of Barotropically Unstable Jets. J. Phys. Oceanogr. 2003, 33, 2173–2192. [Google Scholar] [CrossRef]
- Perret, G.; Dubos, T.; Stegner, A. How Large-Scale and Cyclogeostrophic Barotropic Instabilities Favor the Formation of Anticyclonic Vortices in the Ocean. J. Phys. Oceanogr. 2011, 41, 303–328. [Google Scholar] [CrossRef]
- Ioannou, A.; Stegner, A.; Dubos, T.; Le Vu, B.; Speich, S. Generation and Intensification of Mesoscale Anticyclones by Orographic Wind Jets: The Case of Ierapetra Eddies Forced by the Etesians. J. Geophys. Res. Ocean. 2020, 125, e2019JC015810. [Google Scholar] [CrossRef]
Dataset | SSH (All-Sat) | Threshold | Period |
---|---|---|---|
TOEddies | ADT | 0.1 cm | Janurary 1993–May 2023 |
META3.2 | ADT | 0.4 cm | Janurary 1993–September 2022 |
TIAN | SLA | 0.25 cm | Janurary 1993–December 2016 |
GOMEAD | SLA | - | Janurary 1993–December 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, A.; Guez, L.; Laxenaire, R.; Speich, S. Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements. Remote Sens. 2024, 16, 4336. https://doi.org/10.3390/rs16224336
Ioannou A, Guez L, Laxenaire R, Speich S. Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements. Remote Sensing. 2024; 16(22):4336. https://doi.org/10.3390/rs16224336
Chicago/Turabian StyleIoannou, Artemis, Lionel Guez, Rémi Laxenaire, and Sabrina Speich. 2024. "Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements" Remote Sensing 16, no. 22: 4336. https://doi.org/10.3390/rs16224336
APA StyleIoannou, A., Guez, L., Laxenaire, R., & Speich, S. (2024). Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements. Remote Sensing, 16(22), 4336. https://doi.org/10.3390/rs16224336