On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines
"> Figure 1
<p>Super-Gaussian functions of different orders <span class="html-italic">n</span> and the other parameters of the function are as follows: <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mn>2060.0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>W</mi> <mi>H</mi> <mi>M</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. When <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, the function is identical to a general Gaussian function.</p> "> Figure 2
<p>Positions of 21 typical Fraunhofer lines in solar reference irradiance spectra of the three bands, where the positions of Fraunhofer lines are marked by a red “x”.</p> "> Figure 3
<p>Simulations of the ideal instrumental solar observation values in the WCO<sub>2</sub> band, where the ILS was simulated using a general Gaussian function with FWHM = 0.08 nm: (<b>a</b>) the high-resolution Kurucz solar irradiance spectrum in the WCO<sub>2</sub> band; (<b>b</b>) simulated instrumental solar measurement DN values.</p> "> Figure 4
<p>Flow chart of the simulation to calculate instrumental solar measurement spectrum.</p> "> Figure 5
<p>Simulation spectrum of the instrumental solar observation in the SCO<sub>2</sub> band before (red line) and after (blue line) adding measurement uncertainty, where SNR = 750:1@8.3 × 10<sup>19</sup> <math display="inline"><semantics> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">h</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> <mo>·</mo> <msup> <mrow> <mi mathvariant="normal">s</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>·</mo> <msup> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>·</mo> <msup> <mrow> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">r</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>·</mo> <msup> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math>0.2%.</p> "> Figure 6
<p>Peak-seek using the Gaussian fitting algorithm to the inverted normalized simulated measurement Fraunhofer lines at 1596.446 nm in the WCO<sub>2</sub> band: the blue dots represent the inverted normalized simulated measurement values; the black line is the fitted Gaussian function curve; the red “+” is the peak position of fitted Gaussian function curve; and the blue dashed line marks the actual position of the Fraunhofer absorption peaks in the reference spectrum. The peak-seek position of the measured Fraunhofer line at 1596.446 nm is 1596.4427 nm, and the offset of peak-seek is 0.0033 nm.</p> "> Figure 7
<p>The flow of the on-orbit wavelength calibration method based on the solar Fraunhofer lines.</p> "> Figure 8
<p>The wavelength shifts at the central wavelength of different spectral channels in the three bands caused by the Doppler effect. The Doppler shifts of the starting and ending wavelengths of the three bands are 0.000327 nm, 0.000677 nm, and 0.000910 nm, respectively.</p> "> Figure 9
<p>The average Doppler shift correction error of the three bands caused by ±5% relative velocity calculation when <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>7.0</mn> <mo> </mo> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">m</mi> <mo>·</mo> <msup> <mrow> <mi mathvariant="normal">s</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red “x”).</p> "> Figure 10
<p>Peak-seek algorithm applied to the simulated measurement of Fraunhofer lines at 1612.039 nm and 1613.034 nm in the WCO<sub>2</sub> band: (<b>a</b>) the high-resolution Kurucz solar spectrum at 1612.039 nm and 1613.034 nm; (<b>b</b>) the simulated measurement spectra at the ILS with a general Gaussian function and FWHM = 0.08 nm; (<b>c</b>) peak-seek algorithm using Gaussian fitting to the normalized simulated measurement of Fraunhofer lines.</p> "> Figure 11
<p>The peak-seek errors (blue squares) of Fraunhofer lines at 1612.039 nm and 1613.034 nm fluctuate around the mean value (red dashed line) affected by the shift in the central wavelength position of each sampling point.</p> "> Figure 12
<p>The peak-seek errors at 1612.039 nm when (<b>a</b>) FWHM = 0.10 nm and (<b>b</b>) FWHM = 0.06 nm. The systematic error caused by the asymmetry of the Fraunhofer line decreases from 0.0138 nm to 0.0093 nm as the spectral resolution changes from 0.10 nm to 0.06 nm.</p> "> Figure 13
<p>Variation in the peak-seek error of the 7 Fraunhofer lines in the WCO<sub>2</sub> band with spectral resolution, which changes from 0.06 nm to 0.12 nm.</p> "> Figure 14
<p>Variation in the peak-seek error of the 7 Fraunhofer lines in the WCO<sub>2</sub> band with the super-Gaussian function order of ILS, which changes from 1.5 to 3.5.</p> "> Figure 15
<p>Comparison of the maximum peak-seek errors (“x”) of the 21 Fraunhofer lines (<b>a</b>) before and (<b>b</b>) after removing the average systematic error in three bands.</p> "> Figure 15 Cont.
<p>Comparison of the maximum peak-seek errors (“x”) of the 21 Fraunhofer lines (<b>a</b>) before and (<b>b</b>) after removing the average systematic error in three bands.</p> "> Figure 16
<p>The peak-seek obtained by Gaussian fitting (<b>a</b>) before and (<b>b</b>) after adding noise at the 2045.000 nm Fraunhofer line. The peak-seek error increases from 0.0008 nm to 0.0027 nm due to the influence of the noise signal (SNR = 750), and thus the random error due to noise is 0.0019 nm.</p> "> Figure 17
<p>Peak-seek errors of the Fraunhofer lines at (<b>a</b>) 2056.96 nm and (<b>b</b>) 2063.533 nm before (left figure) and after (right figure) removing the systematic error. The blue data points denote the peak-seek position error values of 400 experiments.</p> "> Figure 18
<p>Peak-seek errors of the Fraunhofer lines at (<b>a</b>) 2045.0 nm, (<b>b</b>) 2054.431 nm, and (<b>c</b>) 2074.254 nm when the SNR is 800, 650, and 500, where the red line is the boundary of FWHM/10.</p> "> Figure 19
<p>Variation in the peak-seek error of the 7 Fraunhofer lines in the SCO<sub>2</sub> band with SNR changing from 500 to 850.</p> "> Figure 20
<p>Variation in the peak-seek error of the Fraunhofer lines in the SCO<sub>2</sub> band with the inter-channel relative radiometric calibration uncertainty changing from 0.05% to 0.3%.</p> "> Figure 21
<p>Peak-seek obtained using the (<b>a</b>) center-of-mass algorithm and (<b>b</b>) cubic spline fitting algorithm to the normalized simulated measurement Fraunhofer lines at 1596.446 nm in the WCO<sub>2</sub> band.</p> "> Figure 22
<p>The peak-seek errors of the Fraunhofer lines (<b>a</b>) before and (<b>b</b>) after removing the systematic error in three bands using the Gaussian fitting (red “x”), center-of-mass (blue “x”), and cubic spline fitting (green “x”) algorithms.</p> "> Figure 23
<p>The peak-seek errors of Fraunhofer lines at 1612.039 nm and 1613.034 nm affected by the shift in the center wavelength position of each sampling point using the cubic spline fitting algorithm. The red dashed line is the reference line of the average value of peak-seek errors (blue squares).</p> "> Figure 24
<p>The peak-seek errors of the Fraunhofer lines in three bands using the super-Gaussian function fitting algorithm with the corresponding order of ILS: (<b>a</b>) the order of the super-Gaussian function is 2.5; (<b>b</b>) the order of the super-Gaussian function is 3.0. The peak-seek errors are after removing the systematic error.</p> "> Figure 25
<p>Selection of Fraunhofer lines in the three bands according to the systematic error: the black “x” marks indicate that the peak-seek systematic error of the Fraunhofer line is >FWHM/10; the blue triangle marks indicate that the systematic error is <FWHM/10 and >FWHM/20; the red five-pointed star marks indicate that the systematic error is <FWHM/20.</p> "> Figure 26
<p>The random errors of peak-seek positions of 19 Fraunhofer lines in the SCO<sub>2</sub> band (SNR = 700, uncertainty = 0.2%): the blue dashed line is the reference line of FWHM/10, and the position of Fraunhofer line is marked by a green “x” if the random error is less than FWHM/10, while it is marked by a red “x” if the random error is greater than FWHM/10.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument Design Parameters
2.2. Solar Reference Spectrum
2.3. Simulation of Measurement Spectrum
2.4. Wavelength Calibration Method
3. Results and Discussions
3.1. Doppler Shift Correction Error
3.2. Systematic Error
3.3. Random Error
3.4. Peak-Seek Algorithm Error
3.5. Results of Screening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Zhu, S.H.; Parker, R.J.; Liu, Y. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nat. Commun. 2022, 13, 1378. [Google Scholar] [CrossRef]
- Bruhwiler, L.; Basu, S.; Butler, J.H.; Chatterjee, A.; Dlugokencky, E.; Kenney, M.A.; McComiskey, A.; Montzka, S.A.; Stanitski, D. Observations of greenhouse gases as climate indicators. Clim. Chang. 2021, 165, 12. [Google Scholar] [CrossRef] [PubMed]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Ambedkar, A.K.; Chaudhary, M.; Singh, B.P. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324. [Google Scholar] [CrossRef]
- Chatterjee, A.; Gierach, M.M.; Sutton, A.J.; Feely, R.A.; Crisp, D.; Eldering, A.; Gunson, M.R.; O’Dell, C.W.; Stephens, B.B.; Schimel, D.S. Influence of El Nino on atmospheric CO over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 2017, 358, eaam5776. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Che, K.; Cai, Z.; Yang, D.; Wu, L. Satellite remote sensing of greenhouse gases: Progress and trends. Natl. Remote Sens. Bull. 2021, 25, 53–64. [Google Scholar] [CrossRef]
- Liu, J.J.; Baskaran, L.; Bowman, K.; Schimel, D.; Bloom, A.A.; Parazoo, N.C.; Oda, T.; Carroll, D.; Menemenlis, D.; Joiner, J.; et al. Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data 2021, 13, 299–330. [Google Scholar] [CrossRef]
- Cai, B.; Zhu, S.; Yu, S.; Dong, H.; Zhang, C.; Wang, C.; Zhu, J.; Gao, Q.; Fang, S.; Pan, X.; et al. The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory. Environ. Eng. 2019, 37, 1–11. [Google Scholar]
- Buchwitz, M.; Schneising, O.; Burrows, J.P.; Bovensmann, H.; Reuter, M.; Notholt, J. First direct observation of the atmospheric CO year-to-year increase from space. Atmos. Chem. Phys. 2007, 7, 5341–5342. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Frankenberg, C.; Pollock, R.; Lee, R.A.M.; Rosenberg, R.; Blavier, J.F.; Crisp, D.; O’Dell, C.W.; Osterman, G.B.; Roehl, C.; Wennberg, P.O.; et al. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 2015, 8, 301–313. [Google Scholar] [CrossRef]
- Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R.O.; Butz, A.; Haun, M.; Buijs, H.; Shiomi, K.; Imai, H.; Kuze, A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmos. Meas. Tech. 2021, 14, 2013–2039. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.N.; Yang, D.X.; Yin, Z.S.; Gu, S.Y.; Tian, L.F.; Lu, N.M.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Jervis, D.; McKeever, J.; Durak, B.O.A.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D imaging spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Xiong, W. Greenhouse gases Monitoring Instrument (GMI) on GF-5 satellite (invited). Infrared Laser Eng. 2019, 48, 0303002. [Google Scholar] [CrossRef]
- Shao, C.; Gu, M.; Qi, C.; Wu, C. Detection of zero path difference position for FY-3D hyper-spectral infrared atmospheric sounder. Opt. Precis. Eng. 2020, 28, 2573–2580. [Google Scholar] [CrossRef]
- Crisp, D.; Fisher, B.M.; O’Dell, C.; Frankenberg, C.; Basilio, R.; Bösch, H.; Brown, L.R.; Castano, R.; Connor, B.; Deutscher, N.M.; et al. The ACOS CO2 retrieval algorithm—Part II: Global XCO2 data characterization. Atmos. Meas. Tech. 2012, 5, 687–707. [Google Scholar] [CrossRef]
- Green, R.O. Spectral calibration requirement for earth-looking imaging spectrometers in the solar-reflected spectrum. Appl. Opt. 1998, 37, 683–690. [Google Scholar] [CrossRef]
- Li, S.Z.; Cheng, L.; Yang, H.C.; Wang, Z.W.; Ding, L. Assessment of the Influence of Instrument Parameters on the Detection Accuracy of Greenhouse-Gases Absorption Spectrometer-2 (GAS-2). Atmosphere 2023, 14, 1418. [Google Scholar] [CrossRef]
- Crisp, D.; Pollock, H.R.; Rosenberg, R.; Chapsky, L.; Lee, R.A.M.; Oyafuso, F.A.; Frankenberg, C.; O’Dell, C.W.; Bruegge, C.J.; Doran, G.B.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, Q.; Yang, Z.; Liu, C.; Lin, C.; Tian, L.; Zhang, N.; Wang, Y. TanSat ACGS On-orbit Wavelength Calibration Using the Solar Fraunhofer Lines. Chin. J. Atmos. Sci. 2022, 46, 645–652. [Google Scholar]
- Voors, R.; Dobber, M.; Dirksen, R.; Levelt, P. Method of calibration to correct for cloud-induced wavelength shifts in the Aura satellite’s Ozone Monitoring Instrument. Appl. Opt. 2006, 45, 3652–3658. [Google Scholar] [CrossRef]
- Xian, G.; Yan, C.; Wu, C.; Zhang, J. Effect of temperature on airborne imaging spectrometer optical properties. Infrared Laser Eng. 2015, 44, 1647–1653. [Google Scholar]
- Santantonio, N.; Bartoloni, A.; Bini, A.; Esposito, P.G.; Lorenzini, S. A Multi Parameter Retrieval Approach to HypSEO Spectral and Radiometric Calibration. In IEEE International Geoscience and Remote Sensing Symposium, Proceedings of IGARSS 2002, Toronto, ON, Canada, 24–28 June 2002; IEEE: New York, NY, USA, 2002; pp. 2735–2737. [Google Scholar]
- Mao, Y.L.; He, T.; Ren, F.; Huang, J. The On-orbit Calibration Method of Hyper-Spectral Fluorescence Imaging Spectrometer. In Fifth Symposium on Novel Optoelectronic Detection Technology and Application, Xi’an, China, 24–26 October 2018; SPIE: Bellingham, WA, USA, 2019; p. 11023. [Google Scholar]
- Li, B.; Li, M.; Xu, P. High Precision On-board Calibration for Spaceborne Atmospheric Monitoring Spectrometer. Spacecr. Recovery Remote Sens. 2018, 39, 60–69. [Google Scholar]
- Wang, T.X.; Yan, G.J.; Ren, H.Z.; Mu, X.H. Improved Methods for Spectral Calibration of On-Orbit Imaging Spectrometers. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3924–3931. [Google Scholar] [CrossRef]
- Sornig, M.; Fischer, S.; Chlebek, C.; Muecke, M.; Honold, H.P.; Heider, B. The Hyperspectral Instrument Onboard EnMAP, Overview and Current Status. In International Conference on Space Optics-Icso 2018, Chiania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA, 2018; p. 11180. [Google Scholar]
- Wang, Y.; Shi, E.; Wang, H. Method of in-flight wavelength calibration for wide band hyper-spectral imager. Infrared Laser Eng. 2019, 48, 303006. [Google Scholar] [CrossRef]
- Mori, S.; Cho, Y.C.R.; Tabata, H.; Yumoto, K.; Böttger, U.; Buder, M.; Dietz, E.; Hagelschuer, T.; Hübers, H.W.; Kameda, S.; et al. Fraunhofer line-based wavelength-calibration method without calibration targets for planetary lander instruments. Planet. Space Sci. 2024, 240, 105835. [Google Scholar] [CrossRef]
- Delwart, S.; Preusker, R.; Bourg, L.; Santer, R.; Ramon, D.; Fischer, J. MERIS in-flight spectral calibration. Int. J. Remote Sens. 2007, 28, 479–496. [Google Scholar] [CrossRef]
- Kuli-Zade, D.M.; Mamedov, S.G.; Aliyeva, Z.F. The fraunhofer lines classifications by asymmetry changes inside the profiles in the spectrum of the Sun. Astrophys. Bull. 2017, 72, 337–339. [Google Scholar] [CrossRef]
- Heath, D.F.; Georgiev, G. A New Approach for Spectroradiometric Calibration Consistency on the Ground and in Space. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization, 2nd ed.; SPIE: Bellingham, WA, USA, 2012; p. 8528. [Google Scholar]
- O’Brien, D.M.; Mitchell, R.M.; English, S.A.; Da Costa, G.A. Airborne measurements of air mass from OA-band absorption spectra. J. Atmos. Ocean. Technol. 1998, 15, 1272–1286. [Google Scholar] [CrossRef]
- Mao, J.P.; Kawa, S.R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt. 2004, 43, 914–927. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.M.; Margolis, J.; Toon, G.; Crisp, D.; Yung, Y. Spaceborne measurements of atmospheric CO by high-resolution NIR spectrometry of reflected sunlight: An introductory study: Art. no. 1716. Geophys. Res. Lett. 2002, 29, 11. [Google Scholar] [CrossRef]
- Fontenla, J.; White, O.R.; Fox, P.A.; Avrett, E.H.; Kurucz, R.L. Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J. 1999, 518, 480–499. [Google Scholar] [CrossRef]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Li, S.; Li, C.L.; Xu, S.Y.; Zhang, H.; Zheng, Y.Q. Preflight radiometric calibration of a carbon dioxide spectrometer. Meas. Sci. Technol. 2019, 30, 055401. [Google Scholar] [CrossRef]
- Yang, Z.D.; Zhen, Y.Q.; Yin, Z.S.; Lin, C.; Bi, Y.M.; Liu, W.; Wang, Q.; Wang, L.; Gu, S.Y.; Tian, L.F. Prelaunch Radiometric Calibration of the TanSat Atmospheric Carbon Dioxide Grating Spectrometer. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4225–4233. [Google Scholar] [CrossRef]
Band | O2A | WCO2 | SCO2 |
---|---|---|---|
Detection Objective | Aerosol, surface air pressure | CO2 | CO2, H2O |
Wavelength (nm) | 757.5~772.5 | 1595~1625 | 2040~2080 |
Spectral Resolution (nm) | 0.04 | 0.08 | 0.10 |
Sampling Rate | 3 | ||
SNR ) | 350:[email protected] × 1019 | 340:[email protected] × 1019 | 230:[email protected] × 1018 |
Dynamic Range ) | 1.1 × 1017~1.4 × 1021 | 5.7 × 1016~4.9 × 1020 | 3.1 × 1016~1.7 × 1020 |
Spatial Resolution (km) | <3 | ||
Wavelength Calibration Accuracy | <FWHM/10 | ||
Absolute Calibration Accuracy | 5% | ||
Inter-channel Relative Calibration Accuracy | 0.2% |
Band | Fraunhofer Lines/nm | ||||||
---|---|---|---|---|---|---|---|
O2A | 758.812 | 761.909 | 764.238 | 765.972 | 767.178 | 768.239 | 770.110 |
WCO2 | 1596.446 | 1598.513 | 1600.212 | 1606.442 | 1612.039 | 1613.034 | 1619.025 |
SCO2 | 2045.000 | 2054.431 | 2056.960 | 2058.983 | 2063.533 | 2070.436 | 2074.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Gong, C.; Hu, Y.; Zheng, F.; Liu, Y. On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines. Remote Sens. 2024, 16, 3367. https://doi.org/10.3390/rs16183367
Guo Y, Gong C, Hu Y, Zheng F, Liu Y. On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines. Remote Sensing. 2024; 16(18):3367. https://doi.org/10.3390/rs16183367
Chicago/Turabian StyleGuo, Yulong, Cailan Gong, Yong Hu, Fuqiang Zheng, and Yunmeng Liu. 2024. "On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines" Remote Sensing 16, no. 18: 3367. https://doi.org/10.3390/rs16183367
APA StyleGuo, Y., Gong, C., Hu, Y., Zheng, F., & Liu, Y. (2024). On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines. Remote Sensing, 16(18), 3367. https://doi.org/10.3390/rs16183367