Inferring the Variability of Dielectric Constant on the Moon from Mini-RF S-Band Observations
<p>Schematic overview of the proposed framework in the research.</p> "> Figure 2
<p>Scattering geometry of the lunar surface, consisting of regolith, embedded rocks, and underlying bedrock. Regolith grains are represented by a circular shape, whereas the buried inclusions (rocks) are denoted by shaded circles. These are randomly distributed across the regolith layer of thickness <math display="inline"><semantics> <mrow> <mi>d</mi> </mrow> </semantics></math>. <b>a</b> is scattering from the top rough surface, <b>b</b> is volume scattering due to scatterers within the layer, <b>c</b> is subsurface scattering from the bedrock, and <b>d</b> represents the scattering due to surface-volume interaction. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math> is the dielectric constant of buried inclusions, whereas <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>r</mi> <mi>e</mi> <mi>g</mi> <mi>o</mi> <mi>l</mi> <mi>i</mi> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>b</mi> <mi>e</mi> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math> are for the regolith layer and subsurface, respectively.</p> "> Figure 3
<p>Sensitivity of radar backscatter to incidence angle for five scattering processes under S-band configuration.</p> "> Figure 4
<p>Sensitivity of radar backscatter to dielectric constant under S-band configuration and Mini-RF incidence angle of 49<math display="inline"><semantics> <mrow> <mo>°</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Comparison of predicted dielectric constant (violin plot with median lines) with ground truth (filled and hollow dots) from Apollo sites. The spread is calculated by dielectric constant radially averaged around the landing site in the radius range of 0–40 m (up to 5 km<sup>2</sup> area).</p> "> Figure 6
<p>Real part of the dielectric constant, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, from Mini-RF global S-band data at a spatial resolution of 64 pixels per degree. The map projection is equirectangular. AP is Aristarchus Plateau, K is Kepler crater, and C is Copernicus crater.</p> "> Figure 7
<p>Imaginary part of the dielectric constant, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>, from Mini-RF global S-band data at a spatial resolution of 64 pixels per degree. The map projection is equirectangular. AP is Aristarchus Plateau, K is Kepler crater, and C is Copernicus crater.</p> "> Figure 8
<p>Estimated average real part (top) and imaginary part (bottom) of the dielectric constant from Mini-RF polar S-band data at a spatial resolution of 512 pixels per degree. Cabeus (Ca), Schomberger-A (S-A), Wiechert-J (W-J), and Faustini (F) craters are marked in the South Pole (SP), whereas Rozhdestvenskiy (R), Plaskett (P), Hermite-A (H-A), and Erlanger (E) craters are in the North Pole (NP). The map projection is polar stereographic.</p> "> Figure 9
<p>Real (<b>a</b>–<b>d</b>) and imaginary (<b>e</b>–<b>h</b>) parts of dielectric constant, overlain on Mini-RF <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> image, for south polar craters Schomberger-A (<b>a</b>,<b>e</b>), Wiechert-J (<b>b</b>,<b>f</b>), Faustini (<b>c</b>,<b>g</b>), and Cabeus (<b>d</b>,<b>h</b>). The map projection is polar stereographic, and the spatial resolution is 512 pixels per degree.</p> "> Figure 10
<p>Real (<b>a</b>–<b>d</b>) and Imaginary (<b>e</b>–<b>h</b>) parts of the dielectric constant, overlain on Mini-RF <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> image, for North polar craters Plaskett (<b>a</b>,<b>e</b>), Hermite-A (<b>b</b>,<b>f</b>), Erlanger (<b>c</b>,<b>g</b>), and Rozhdestvenskiy (<b>d</b>,<b>h</b>). R-K is Rozhdestvenskiy-K crater. The map projection is polar stereographic, and the spatial resolution is 512 pixels per degree.</p> "> Figure A1
<p>Difference maps of the real part (top) and imaginary part (bottom) of the dielectric constant from Mini-RF polar S-band data at a spatial resolution of 512 pixels per degree. Cabeus (Ca), Schomberger-A (S-A), Wiechert-J (W-J), and Faustini (F) craters are marked in the South Pole (SP), whereas Rozhdestvenskiy (R), Plaskett (P), Hermite-A (H-A), and Erlanger (E) craters are in the North Pole (NP). The map projection is polar stereographic.</p> "> Figure A2
<p>Histogram of difference maps of the real (top) and imaginary (bottom) parts of the dielectric constant for the south pole (left) and north pole (right).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Impact of Physical Properties on Radar Backscatter: A Radiative Transfer Modeling Approach
2.1.1. Parameterization of Radiative Transfer Model
2.1.2. Sensitivity Analysis of Radar Backscatter
2.2. Retrieval of Dielectric Constant from Mini-RF SAR—A Deep Learning-Based Inversion Model
2.3. Validation with Apollo Samples
3. Results and Analysis
3.1. Sensitivity of Radar Backscatter to Incidence Angle and Dielectric Constant
3.2. Validation of Inversion Model with Apollo Data
3.3. Dielectric Constant from LRO Mini-RF
3.3.1. Global Perspective
3.3.2. Polar Perspective
4. Discussion and Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2000, 105, 4197–4216. [Google Scholar] [CrossRef]
- Cahill, J.T.; Thomson, B.J.; Patterson, G.W.; Bussey DB, J.; Neish, C.D.; Lopez, N.R.; Pasckert, J.H. The Miniature Radio Frequency instrument’s (Mini-RF) global observations of Earth’s Moon. Icarus 2014, 243, 173–190. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Phillips, R.J. The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 2000, 105, 20417–20430. [Google Scholar] [CrossRef]
- Olhoeft, G.R.; Strangway, D.W. Electrical properties of the surface layers of Mars. Geophys. Res. Lett. 1974, 1, 141–143. [Google Scholar] [CrossRef]
- Olhoeft, G.R.; Frisillo, A.L.; Strangway, D.W. Electrical Properties of Lunar Soil Sample 15301,38. J. Geophys. Res. 1974, 79, 1599–1604. [Google Scholar] [CrossRef]
- Olhoeft, G.R.; Strangway, D.W. Dielectric properties of the first 100 m of the Moon. Earth. Planet. Sci. Lett. 1975, 24, 394–404. [Google Scholar] [CrossRef]
- Strangway, D.W.; Olhoeft, G.R. Electrical Properties of Planetary Surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 285, 441–450. [Google Scholar]
- Qian, Y.; Xiao, L.; Wang, Q.; Head, J.W.; Yang, R.; Kang, Y.; van der Bogert, C.H.; Hiesinger, H.; Lai, X.; Wang, G.; et al. China’s Chang’E-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 2021, 561, 116855. [Google Scholar] [CrossRef]
- Li, C.; Hu, H.; Yang, M.-F.; Pei, Z.-Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.; Zeng, X.; Zhang, G.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2022, 9, nwab188. [Google Scholar] [CrossRef]
- Carrier, W.D., III; Olhoeft, G.R.; Mendell, W. Physical Properties of the Lunar Surface. In Lunar Sourcebook; Cambridge University Press: Cambridge, MA, USA, 1991; pp. 475–594. [Google Scholar]
- Ghent, R.R.; Leverington, D.W.; Campbell, B.A.; Hawke, B.R.; Campbell, D.B. Earth-based observations of radar-dark crater haloes on the Moon: Implications for regolith properties. J. Geophys. Res. Planets 2005, 110, E02005. [Google Scholar] [CrossRef]
- Campbell, B.A.; Campbell, D.B.; Margot, J.L.; Ghent, R.R.; Nolan, M.; Chandler, J.; Carter, L.M.; Stacey, N.J.S. Focused 70-cm wavelength radar mapping of the Moon. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4032–4042. [Google Scholar] [CrossRef]
- Chin, G.; Brylow, S.; Foote, M.; Garvin, J.; Kasper, J.; Keller, J.; Litvak, M.; Mitrofanov, I.; Paige, D.; Raney, K.; et al. Lunar reconnaissance orbiter overview: The instrument suite and mission. Space Sci. Rev. 2007, 129, 391–419. [Google Scholar] [CrossRef]
- Nozette, S.; Spudis, P.; Bussey, B.; Jensen, R.; Raney, K.; Winters, H.; Lichtenberg, C.L.; Marinelli, W.; Crusan, J.; Gates, M.; et al. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration. SSR 2010, 150, 285–302. [Google Scholar]
- Fa, W.; Wieczorek, M.A.; Heggy, E. Modeling polarimetric radar scattering from the lunar surface: Study on the effect of physical properties of the regolith layer. J. Geophys. Res. 2011, 116, E03005. [Google Scholar] [CrossRef]
- Campbell, B.A.; Arvidson, R.E.; Shepard, M.K. Radar polarization properties of volcanic and playa surfaces: Applications to terrestrial remote sensing and Venus data interpretation. J. Geophys. Res. Planets 1993, 98, 17099–17113. [Google Scholar] [CrossRef]
- Campbell, B.A.; Grant, J.; Maxwell, T. Radar penetration in Mars analog environments. In Proceedings of the 33rd Lunar and Planetary Science Conference, Houston, TX, USA, 11–15 March 2002; p. 1616. [Google Scholar]
- Liu, N.; Ye, H.; Jin, Y.-Q. Dielectric inversion of lunar PSR media with topographic mapping and comment on ‘‘quantification of water ice in the Hermite-A crater of the lunar north pole. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1444–1448. [Google Scholar] [CrossRef]
- Kumar, A.; Kochar, I.M.; Pandey, D.K.; Das, A.; Putrevu, D.; Kumar, R.; Panigrahi, R.K. Dielectric Constant Estimation of Lunar Surface Using Mini-RF and Chandrayaan-2 SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4600608. [Google Scholar] [CrossRef]
- Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact decomposition theory. IEEE Geosci. Remote Sens. Lett. 2012, 9, 28–32. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gaultier, S.; King, C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Can. J. Remote Sens. 2002, 28, 701–711. [Google Scholar] [CrossRef]
- Shukla, S. Lunar Regolith Characterization for Solar Wind Implanted Helium-3 Using M3 Spectroscopy and Bistatic Miniature Radar. Master’s Thesis, University of Twente Faculty of Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands, 2019. [Google Scholar]
- Shukla, S.; Tolpekin, V.; Kumar, S.; Stein, A. Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data. Remote Sens. 2020, 12, 3350. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, S.; Bhiravarasu, S.S. Integral equation modeling for dielectric retrieval of the lunar surface using Chandrayaan-2 fully-Polarimetric L-band dual frequency SAR (DFSAR) data. Icarus 2023, 391, 115350. [Google Scholar] [CrossRef]
- Gao, Y.; Dang, Y.; Lu, P.; Hou, W.; Zhao, F.; Wang, B.; Yu, W.; Wang, R. Investigating the dielectric properties of lunar surface regolith fines using Mini-RF SAR data. ISPRS J. Photogramm. Remote Sens. 2023, 197, 56–70. [Google Scholar] [CrossRef]
- Patterson, G.; Stickle, A.; Turner, F.; Jensen, J.; Bussey, D.; Spudis, P.; Espiritu, R.; Schulze, R.; Yocky, D.; Wahl, D.; et al. Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus 2017, 283, 2–19. [Google Scholar] [CrossRef]
- Raney, K. Dual polarized SAR and Stokes parameters. Geosci. Remote Sens. Lett. 2006, 3, 317–319. [Google Scholar] [CrossRef]
- Kirk, R.L.; Becker, T.L.; Shinaman, J.; Edmundson, K.L.; Cook, D.; Bussey, D.B.J. A Radargrammetric Control Network and Controlled Mini-RF Mosaics of the Moon’s North Pole … at Last! In Proceedings of the 44th Annual Lunar and Planetary Science Conference, Ser. Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; p. 2920. [Google Scholar]
- Fung, A.K.; Chen, K.S. Microwave Scattering and Emission Models for Users; Artech House Publishers: Norwood, MA, USA, 2010; ISBN 1608070379. [Google Scholar]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1982, 30, 356–369. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural networks in remote sensing. Int. J. Remote Sens. 2010, 18, 699–709. [Google Scholar] [CrossRef]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. Planets 2012, 117, 1–8. [Google Scholar] [CrossRef]
- Thompson, T.W. High-resolution lunar radar map at 70-cm wavelength. Earth Moon Planets 1987, 37, 59–70. [Google Scholar] [CrossRef]
- Scott, R.F.; Carrier, W.D., III; Costes, N.C.; Mitchell, J.K. Apollo 12 soil mechanics investigation. Geotechnique 1971, 21, 1–14. [Google Scholar] [CrossRef]
- Morgan, G.A.; Jawin, E.R.; Campbell, B.A.; Patterson, G.W.; Bramson, A.M.; Nypaver, C.A.; Stopar, J.D.; Jozwiak, L.M.; Stickle, A.M.; Bhiravarasu, S.S. Radar Perspective of the Aristarchus Pyroclastic Deposit and Implications for Future Missions. Planet. Sci. J. 2023, 4, 209. [Google Scholar] [CrossRef]
- Campbell, B.A.; Carter, L.M.; Hawke, B.R.; Campbell, D.B.; Ghent, R.R. Volcanic and impact deposits of the Moon’s Aristarchus Plateau: A new view from Earth-based radar images. Geology 2008, 36, 135–138. [Google Scholar] [CrossRef]
- Chevrel, S.D.; Pinet, P.C.; Daydou, Y.; Le Mouélic, S.; Langevin, Y.; Costard, F.; Erard, S. The Aristarchus Plateau on the Moon: Mineralogical and structural study from integrated Clementine UV-Vis-NIR spectral data. Icarus 2009, 199, 9–24. [Google Scholar] [CrossRef]
- Spudis, P.D.; Bussey, D.B.J.; Baloga, S.M.; Cahill, J.T.S.; Glaze, L.S.; Neish, C.D.; Patterson, G.W.; Raney, R.K.; Thompson, T.W.; Thomson, B.J.; et al. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res. Planets 2013, 118, 2016–2029. [Google Scholar] [CrossRef]
- Neish, C.D.; Bussey, D.B.J.; Spudis, P.; Marshall, W.; Thomson, B.J.; Patterson, G.W.; Carter, L.M. The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. J. Geophys. Res. 2011, 116, E01005. [Google Scholar] [CrossRef]
- Bell, S.W.; Thomson, B.J.; Dyar, M.D.; Neish, C.D.; Cahill, J.T.S.; Bussey, D.B.J. Dating small fresh lunar craters with Mini-RF radar observations of ejecta blankets. J. Geophys. Res. 2012, 117, E00H30. [Google Scholar] [CrossRef]
- Fassett, C.I.; King, I.R.; Nypaver, C.A.; Thomson, B.J. Temporal evolution of S-band circular polarization ratios of kilometer-scale craters on the lunar maria. J. Geophys. Res. Planets 2018, 123, 3133–3143. [Google Scholar] [CrossRef]
- Nypaver, C.A.; Thomson, B.J.; Fassett, C.I.; Rivera-Valentín, E.G.; Patterson, G.W. Prolonged rock exhumation at the rims of kilometer-scale lunar craters. J. Geophys. Res. Planets 2021, 126, e2021JE006897. [Google Scholar] [CrossRef]
- Heggy, E.; Palmer, E.; Thompson, T.; Thomson, B.; Patterson, G. Bulk composition of regolith fines on lunar crater floors: Initial investigation by LRO/Mini-RF. Earth Planet. Sci. Lett. 2020, 541, 116274. [Google Scholar] [CrossRef]
- Hongo, K.; Toh, H.; Kumamoto, A. Correction to: Estimation of bulk permittivity of the Moon’s surface using Lunar Radar Sounder on-board Selenological and Engineering Explorer. Earth Planets Space 2021, 73, 55. [Google Scholar] [CrossRef]
- Wen, B.; Tsang, L.; Winebrenner, D.; Ishimaru, A. Dense medium radiative transfer theory: Comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Trans. Geosci. Remote Sens. 1990, 28, 46–59. [Google Scholar] [CrossRef]
- Wu, T.-D.; Chen, K.-S.; Shi, J.C.; Lee, H.-W.; Fung, A.K. A Study of an AIEM Model for Bistatic Scattering From Randomly Rough Surfaces. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2584–2598. [Google Scholar]
- Kiefer, W.S.; Macke, R.J.; Britt, D.T.; Irving, A.J.; Consolmagno, G.J. The density and porosity of lunar rocks. Geophys. Res. Lett. 2012, 39, L07201. [Google Scholar] [CrossRef]
- Peña-Asensio, E.; Trigo-Rodríguez, J.M.; Sort, J.; Ibáñez-Insa, J.; Rimola, A. Mechanical properties of minerals in lunar and HED meteorites from nanoindentation testing: Implications for space mining. Meteorit. Planet Sci. 2024, 59, 1297–1313. [Google Scholar] [CrossRef]
Criteria | Parameter | Range |
---|---|---|
Surface roughness | Autocorrelation length [cm] | 12.6 |
RMS height [cm] | 0–5 | |
Physical properties | FeO+TiO2 wt% [%] | 0–30 |
Bulk density [g/cm3] | 0.75–3.32 | |
Volume fraction | 0–0.1 | |
Regolith thickness [m] | 4–15 | |
Radius [cm] | 0.5–5 | |
Radar parameters | Incidence angle [] | 0–80 |
Wavelength [cm] | 12.6 |
Parameter | Scenario 1 | Scenario 2 |
---|---|---|
Incidence angle [] | 0–80 | 49 |
2–10 with fixed | ||
Regolith thickness [m] | 5 | |
RMS height [cm] | 1 | |
Autocorrelation length [cm] | 12.6 | |
Radius [cm] | 1 | |
Volume fraction | 0.25 | |
Wavelength [cm] | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, S.; Patterson, G.W.; Maiti, A.; Kumar, S.; Dutton, N. Inferring the Variability of Dielectric Constant on the Moon from Mini-RF S-Band Observations. Remote Sens. 2024, 16, 3208. https://doi.org/10.3390/rs16173208
Shukla S, Patterson GW, Maiti A, Kumar S, Dutton N. Inferring the Variability of Dielectric Constant on the Moon from Mini-RF S-Band Observations. Remote Sensing. 2024; 16(17):3208. https://doi.org/10.3390/rs16173208
Chicago/Turabian StyleShukla, Shashwat, Gerald Wesley Patterson, Abhisek Maiti, Shashi Kumar, and Nicholas Dutton. 2024. "Inferring the Variability of Dielectric Constant on the Moon from Mini-RF S-Band Observations" Remote Sensing 16, no. 17: 3208. https://doi.org/10.3390/rs16173208
APA StyleShukla, S., Patterson, G. W., Maiti, A., Kumar, S., & Dutton, N. (2024). Inferring the Variability of Dielectric Constant on the Moon from Mini-RF S-Band Observations. Remote Sensing, 16(17), 3208. https://doi.org/10.3390/rs16173208