Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.B. Campbell, L.M. Carter et al., in Workshop on Radar Investigations of Planetary and Terrestrial Environments, Houston, TX, vol. 6026 (2005)

  • E.M. Eliason, A.S. McEwen, M.S. Robinson, E.M. Lee, T. Becker, L. Gaddis, et al., in Abstracts of 30th Lunar Planetary Sciences Conference, abstract 1933 (1999)

  • W.C. Feldman et al., Science 281, 1496 (1998)

    Article  ADS  Google Scholar 

  • W.C. Feldman et al., J. Geophys. Res. E2 105(1), 4125 (2000)

    ADS  Google Scholar 

  • C.L. Lichtenberg, Bistatic Radar Observations of the Moon Using the Clementine Spacecraft and Deep Space Network, Ph.D. Thesis (1996)

  • M.C. Malin et al., J. Geophys. Res. 106, 17651 (2001)

    Article  ADS  Google Scholar 

  • D. McCleese, J. Schofield, F. Taylor, S. Calcutt, M. Foote, D. Kass, et al., J. Geophys. Res. (2007, in press)

  • A.E. Metzger, J.I. Trombka, L.E. Peterson et al., Science 179, 800 (1973)

    Article  ADS  Google Scholar 

  • I.G. Mitrofanov et al., Science 297, 78 (2002)

    Article  ADS  Google Scholar 

  • S. Nozette, C.L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, M. Robinson, E.M. Shoemaker, Science 274, 1495 (1996)

    Article  ADS  Google Scholar 

  • S. Nozette, M.S. Spudis, D.B.J. Robinson, C. Bussey, R. Bonner, J. Geophys. Res. 106(10), 23253 (2001)

    Article  ADS  Google Scholar 

  • S.J. Ostro, in The Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. Meyers (Academic, Orlando, 2002) p. 12295

    Google Scholar 

  • K.J. Peters, Phys. Rev. Revis. B 46, 801 (1992)

    Article  ADS  Google Scholar 

  • R.K. Raney, in Principles and Applications of Imaging Radar, ed. by F. Henderson, A. Lewis (Wiley, New York, 1998), p. 9

    Google Scholar 

  • R.K. Raney, Hybrid-Polarity SAR Architecture. CD-ROM Proceedings. IEEE International and Geoscience Remote Sensing Symposium IGARSS, Denver, CO (2006)

  • D.E. Smith et al., J. Geophys. Res. 106(E10), 23689 (2001)

    Article  ADS  Google Scholar 

  • S.C. Solomon et al., Planet. Space Sci. 49, 1445 (2001)

  • D.C. Slater, S.A. Stern, T. Booker, J. Scherrer et al., in UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics, ed. by O.H.W. Siegmund, S. Fineschi, M.A. Gummin, Proceedings of SPIE, vol. 4498 (2001), pp. 239

  • N.J.S. Stacy, High-Resolution Synthetic Aperture Radar Observations of the Moons (Cornell University, Ithaca, 1993), p. 210

    Google Scholar 

  • N.J.S. Stacy, D.B. Campbell, in Proceedings IEEE Geoscience and Remote Sensing Symposium IGARSS93, Tokyo, Japan (1993), p. 30

  • S.A. Stern, J.R. Scherrer, D.C. Slater, G.R. Gladstone, L.A. Young, G.J. Dirks, J.M. Stone, M.W. Davis, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (2005)

  • S.A. Stern, Rev. Geophys. 37, 453 (1999)

    Article  ADS  Google Scholar 

  • A.P. Vinogradov et al., Space Res. (Russ.) 4, 871 (1966)

    Google Scholar 

  • R.R. Vondrak, LPI Contrib. 652, 246 (1988)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, G., Brylow, S., Foote, M. et al. Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission. Space Sci Rev 129, 391–419 (2007). https://doi.org/10.1007/s11214-007-9153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9153-y

Keywords

Navigation