Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 79-83.doi: 10.11896/jsjkx.190400145

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于金融文本情感的股票波动预测

赵澄, 叶耀威, 姚明海   

  1. 浙江工业大学信息工程学院 杭州310014
  • 收稿日期:2019-04-26 出版日期:2020-05-15 发布日期:2020-05-19
  • 通讯作者: 姚明海(ymh@zjut.edu.cn)
  • 作者简介:zhaoc@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61902349)

Stock Volatility Forecast Based on Financial Text Emotion

ZHAO Cheng, YE Yao-wei, YAO Ming-hai   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310014,China
  • Received:2019-04-26 Online:2020-05-15 Published:2020-05-19
  • About author:ZHAO Cheng,born in 1985,Ph.D,seni-or engineer.His main research intere-sts include quantitative financial and artificial intelligence.
    YAO Ming-hai,born in 1963,professor,Ph.D,doctoral tutor.Hismain research interests include pattern recognition and intelligent control,control theory and control engineering,and computer application.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61902349).

摘要: 股票市场的情绪可以在一定程度上反映投资者的行为并影响其投资决策。市场新闻作为一种非结构性数据,能够体现并引导市场的大环境情绪,与股票价格一同成为至关重要的市场参考数据,能够为投资者的投资决策提供有效帮助。文中提出了一种可以准确、快速地建立针对海量新闻数据的多维情绪特征向量化方法,利用支持向量机(Support Victor Machine,SVM)模型来预测金融新闻对股票市场的影响,并通过bootstrap来减轻过拟合问题。在沪深股指上进行实验的结果表明,相比于传统模型,所提方法能够将预测准确度提高约8%,并在3个月的回测实验中获得了6.52%的超额收益,证明了其有效性。

关键词: 股票市场预测, 交易信号, 金融情感驱动, 人工智能, 文本特征, 新闻

Abstract: Emotions in the stock market can reflect investor behavior to a certain extent and influence investors' investment decisions.As a kind of unstructured data,market news can reflect the advantages and disadvantages of the market environment,and become a vital market reference data with stock prices,which can provide effective help for investment decisions effectively.This paper proposes a multidimensional emotional feature vectorization method which can accurately and quickly establish a large amount of news data for massive news data.It uses the support victor machine (SVM) model to predict the impact of financial news on the stock market,and uses bootstrap to mitigate overfitting problems.The results on Shanghai and Shenzhen stock indexes show that compared with the traditional model,the proposed method can improve the prediction accuracy by about 8% and obtain an excess of 6.52% duringthree months,thus proving the effectiveness of the proposed method.

Key words: Artificial intelligence, Financial emotion driven, News, Stock market prediction, Text feature, Trading signal

中图分类号: 

  • TP391
[1]OLIVEIRA N,CORTEZ P,AREAL N.Stock market sentiment lexicon acquisition using microblogging data and statistical measures[J].Decision Support Systems,2016,85:62-73.
[2]LONG W,TANG Y,TIAN Y.Investor sentiment identification based on the universum SVM[J].Neural Computing and Applications,2018,30(2):661-670.
[3]PERIKOS I,HATZILYGEROUDIS I.Recognizing emotions in text using ensemble of classifiers[J].Engineering Applications of Artificial Intelligence,2016,51:191-201.
[4]WU B,ZHOU X,JIN Q,et al.Analyzing Social Roles Based on a Hierarchical Model and Data Mining for Collective Decision-Making Support[J].IEEE Systems Journal,2015:1-10.
[5]JIANG F,LEE J,MARTIN X,et al.Manager sentiment andstock returns[J].Journal of Financial Economics,2019,132(1):126-149.
[6]MIWA K.Investor sentiment,stock mispricing,and long-termgrowth expectations[J].Research in International Business and Finance,2016,36:414-423.
[7]BOLLEN J,MAO H,ZENG X.Twitter mood predicts the stock market[J].Journal of Computational Science,2011,2(1):1-8.
[8]SUL H K,DENNIS A R,YUAN L.Trading on twitter:Using social media sentiment to predict stock returns[J].DecisionScie-nces,2017,48(3):454-488.
[9]OLIVEIRA N,CORTEZ P,AREAL N.On the predictability of stock market behavior using stocktwits sentiment and posting volume[C]//Portuguese Conference on Artificial Intelligence.Berlin,Heidelberg:Springer,2013:355-365.
[10]MAKREHCHI M,SHAH S,LIAO W.Stock prediction usingevent-based sentiment analysis[C]//Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Vo-lume 01.IEEE Computer Society,2013:337-342.
[11]CHECKLEY M S,HIGÓN D A,ALLES H.The hasty wisdom of the mob:How market sentiment predicts stock market beha-vior[J].Expert Systems with Applications,2017,77:256-263.
[12]NIKKINEN J,SAHLSTRÖM P.Impact of Scheduled US Macroeconomic News on Stock Market Uncertainty:A Multinational Perspecive[J].Multinational Finance Journal,2011,5(2):129-148.
[13]REN R,WU D D,LIU T.Forecasting stock market movement direction using sentiment analysis and support vector machine[J].IEEE Systems Journal,2018,13(1):760-770.
[14]CHEN Y,HAO Y.A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction[J].Expert Systems with Applications,2017,80:340-355.
[15]HUANG W,NAKAMORI Y,WANG S Y.Forecasting stockmarket movement direction with support vector machine[J].Computers & Operations Research,2005,32(10):2513-2522.
[16]CHEN W,ZHANG Y,YEO C K,et al.Stock market prediction using neural network through news on online social networks[C]//2017 International Smart Cities Conference (ISC2).IEEE,2017:1-6.
[17]HÁJEK P.Combining bag-of-words and sentiment features ofannual reports to predict abnormal stock returns[J].Neural Computing and Applications,2018,29(7):343-358.
[18]SCHUMAKER R P,CHEN H.A discrete stock price prediction engine based on financial news[J].COMPUTER,2010,43(1):51-56.
[19]CI Y X,ZHAO S L,LUO Y,et al.Text data preprocessingmethod based on word frequency statistics[J].Computer Scie-nce,2017,44(10):276-282,288.
[20]LI L,ZHANG G Y,LI Z W,et al.Research on topic crawlertechnology based on SVM[J].Computer Science,2015,42(2):118-122.
[21]LI X,XIE H,WANG R,et al.Empirical analysis:stock market prediction via extreme learning machine[J].Neural Computing and Applications,2016,27(1):67-78.
[22]YAO W D,WANG R J.An Empirical Study of the Relationship between Stock Market Volatility and Policy Events from the Perspective of Structural Decomposition-Based on EEMD Algorithm [J].Shanghai Economic Research,2016(1):71-80.
[1] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[2] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[3] 康雁, 吴志伟, 寇勇奇, 张兰, 谢思宇, 李浩.
融合Bert和图卷积的深度集成学习软件需求分类
Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution
计算机科学, 2022, 49(6A): 150-158. https://doi.org/10.11896/jsjkx.210500065
[4] 蒲岍岍, 雷航, 李贞昊, 李晓瑜.
增强列表信息和用户兴趣的个性化新闻推荐算法
Personalized News Recommendation Algorithm with Enhanced List Information and User Interests
计算机科学, 2022, 49(6): 142-148. https://doi.org/10.11896/jsjkx.210400173
[5] 丛颖男, 王兆毓, 朱金清.
关于法律人工智能数据和算法问题的若干思考
Insights into Dataset and Algorithm Related Problems in Artificial Intelligence for Law
计算机科学, 2022, 49(4): 74-79. https://doi.org/10.11896/jsjkx.210900191
[6] 李野, 陈松灿.
基于物理信息的神经网络:最新进展与展望
Physics-informed Neural Networks:Recent Advances and Prospects
计算机科学, 2022, 49(4): 254-262. https://doi.org/10.11896/jsjkx.210500158
[7] 朝乐门, 尹显龙.
人工智能治理理论及系统的现状与趋势
AI Governance and System:Current Situation and Trend
计算机科学, 2021, 48(9): 1-8. https://doi.org/10.11896/jsjkx.210600034
[8] 王剑, 王玉翠, 黄梦杰.
社交网络中的虚假信息:定义、检测及控制
False Information in Social Networks:Definition,Detection and Control
计算机科学, 2021, 48(8): 263-277. https://doi.org/10.11896/jsjkx.210300053
[9] 景慧昀, 魏薇, 周川, 贺欣.
人工智能安全框架
Artificial Intelligence Security Framework
计算机科学, 2021, 48(7): 1-8. https://doi.org/10.11896/jsjkx.210300306
[10] 谢宸琪, 张保稳, 易平.
人工智能模型水印研究综述
Survey on Artificial Intelligence Model Watermarking
计算机科学, 2021, 48(7): 9-16. https://doi.org/10.11896/jsjkx.201200204
[11] 景慧昀, 周川, 贺欣.
针对人脸检测对抗攻击风险的安全测评方法
Security Evaluation Method for Risk of Adversarial Attack on Face Detection
计算机科学, 2021, 48(7): 17-24. https://doi.org/10.11896/jsjkx.210300305
[12] 暴雨轩, 芦天亮, 杜彦辉, 石达.
基于i_ResNet34模型和数据增强的深度伪造视频检测方法
Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation
计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258
[13] 裴莹, 李天祥, 王鏖清, 付加胜, 韩霄松.
基于新闻的国际天然气价格趋势预测方法
Prediction Method of International Natural Gas Price Trends Based on News
计算机科学, 2021, 48(6A): 235-239. https://doi.org/10.11896/jsjkx.201000056
[14] 秦智慧, 李宁, 刘晓彤, 刘秀磊, 佟强, 刘旭红.
无模型强化学习研究综述
Overview of Research on Model-free Reinforcement Learning
计算机科学, 2021, 48(3): 180-187. https://doi.org/10.11896/jsjkx.200700217
[15] 郁友琴, 李弼程.
基于多粒度文本特征表示的微博用户兴趣识别
Microblog User Interest Recognition Based on Multi-granularity Text Feature Representation
计算机科学, 2021, 48(12): 219-225. https://doi.org/10.11896/jsjkx.201100128
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!