计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 72-78.doi: 10.11896/jsjkx.190400160
张琴, 陈红梅, 封云飞
ZHANG Qin, CHEN Hong-mei, FENG Yun-fei
摘要: 随着互联网和社会的发展,各个领域每天都会产生大量相互关联、彼此依赖的数据,这些数据根据不同的主题形成了各种复杂网络。挖掘社区结构是复杂网络领域中的一项重要研究内容,因为其在推荐系统、行为预测和信息传播等方面具有极其重要的意义。社区结构中的重叠社区结构在生活中普遍存在,更具有实际研究意义。为有效发现复杂网络中的重叠社区,文中引入了粗糙集理论对社区进行分析,识别出重叠节点,进而提出了一种基于粗糙集和密度峰值的重叠社区发现方法OCDRD(Overlapping Community Detection Algorithm Based on Rough Sets and Density Peaks)。该方法在传统网络节点局部相似性度量的基础上,结合灰色关联分析方法求出网络节点间的全局相似性,进而将其转化为节点间距离。将密度峰值聚类算法的思想应用于该算法中,以根据网络结构自动选取社区中心节点。依据网络中节点的距离比例关系,定义了社区的上近似、下近似以及边界域。最后,不断调整距离比率阈值并进行划分迭代,在每次迭代中针对社区的边界域进行计算,从而获得最佳重叠社区划分结构。在LFR基准人工网络数据集和真实网络数据集上,基于标准互信息(Normalized Mutual Information,NMI)和具有重叠性模块度EQ这两个评价指标,将OCDRD方法与近几年效果较好的其他社区发现算法进行测试比较。实验结果显示,OCDRD方法在社区划分结构方面整体优于其他社区发现算法,表明了该算法的可行性和有效性。
中图分类号:
[1]NEWMAN M E J.Networks:An Introduction[EB/OL].[2010-09].http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650. [2]BAI X Y,YANG P L,SHI X H.An overlapping community detection algorithm based on density peaks[J].Neurocomputing,2017,226:7-15. [3]WU H,GAO L,DONG J H,et al.Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks[J].PLoS One,2014,9(3):e91856. [4]ZHANG X Y,WANG C T,SU Y S,et al.A fast overlapping community detection algorithm based on weak cliques for large-scale networks[J].IEEE Transactions on Computational Social Systems,2017,4(4):218-230. [5]SUN H L,LIU J,HUANG J B,et al.LinkLPA:a link-based label propagation algorithm for overlapping community detection in networks[J].Computational Intelligence,2017,33(2):308-331. [6]YU Z Y,CHEN J J,QUO K,et al.Overlapping community detection based on random walk and seeds extension[C]//Proceedings of the 12th Chinese Conference on Computer Supported Cooperative Work and Social Computing(ChineseCSCW '17).New York,USA:ACM Press,2017:18-24. [7]BANSAL S,BHOWMICK S,PAYMAL P.Fast community detection for dynamic complex networks[M]//Communications in Computer and Information Science.Springer,2011:196-207. [8]PAWLAK Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11(5):341-356. [9]GRECO S,MATARAZZO B,SLOWINSKI R.Rough sets theory for multicriteria decision analysis[J].European Journal of Operational Research,2001,129(1):1-47. [10]ZHANG W X,WU W Z.An introduction and a survey for the studies of rough set theory[J].Fuzzy Systems and Mathema-tics,2000,14(4):1-12. [11]ZHANG Y,WU B,LIU Y.A novel community detection me-thod based on rough set K-means[J].Journal of Electronics and Information Technology,2017,39(4):770-777. [12]ZHU W Q,FU Y C.Community structure detection algorithm based on rough set[J].Computer Engineering,2011,37(14):41-43. [13]RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496. [14]DENG J L.The relational space in grey system theory[J].Fuzzy Mathematics,1985(2):1-10. [15]NEWMAN M E J,MICHELLE G.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113-026113. [16]ZHOU X,LIU Y H,WANG J,et al.A density based link clustering algorithm for overlapping community detection in networks[J].Physica A:Statistical Mechanics and Its Applications,2017,486:65-78. [17]XU X,YURUK N,FENG Z,et al.SCAN:a structural clustering algorithm for networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2007:824-833. [18]LIU S F,CAI H,YANG Y J,et al.Advance in grey incidence analysis modelling[J].Systems Engineering-Theory & Practice,2013,33(8):2041-2046. [19]ZHANG Q,QIU Q,GUO W,et al.A social community detection algorithm based on parallel grey label propagation[J].Computer Networks,2016,107(1):133-143. [20]WANG M M,ZUO W,WANG Y.An improved density peaks-based clustering method for social circle discovery in social networks[J].Neurocomputing,2016,179:219-227. [21]YANG Z,WANG H J,ZHOU Y.A clustering algorithm with adaptive cut-off distance and cluster centers[J].Data Analysis and Knowledge Discovery,2018(3):39-48. [22]DWYER T,HONG S H,DIPK K,et al.Visual analysis of network centralities[C]//Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation.2006:189-197. [23]BARTHELEMY M.[Lecture Notes in Morphogenesis] Mor-phogenesis of Spatial Networks‖Betweenness centrality[OL].https://www.onacademic.com/detail/journal_1000040157249110_02f6.html. [24]SABIDUSSI G.The centrality index of a graph[J].Psychome-trika,1966,31(4):581-603. [25]BONACICH P.Power and centrality:a family of measures[J].American Journal of Sociology,1987,92(5):1170-1182. [26]DING J J,HE X X,YUAN J Q,et al.Community detection by propagating the label of center[J].Physica A:Statistical Mechanics and Its Applications,2018,503:675-686. [27]HUANG L,WANG G S,WANG Y,et al.A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J].International Journal of Modern Physics B,2016,30(24):1650167. [28]LANCICHINETTI A,FORTUNATO S.Community detection algorithms:a comparative analysis[J].Physical Review E,2009,80(5):056117. [29]XIE J R,KELLEY S,SZYMANSKI B K.Overlapping community detection in networks[J].ACM Computing Surveys,2013,45(4):1-35. [30]NEWMAN M.Network data[EB/OL].[2013-04-19].http://www-personal.umich.edu/~mejn/netdata/. [31]ZACHARY W W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research,1977,33(4):452-473. [32]LUSSEAU D,SCHNEIDER K,BOISSEAU O J,et al.The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[J].Behavioral Ecology and Sociobiology,2003,54(4):396-405. [33]KREBS V.Books about US Politics[EB/OL].http://www.orgnet.com/. [34]GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[EB/OL].http://arxiv.org/abs/cond-mat/0112110/. [35]STREHL A,GHOSH J.Cluster ensembles:a knowledge reuse framework for combining partitionings[C]//Eighteenth national conference on Artificial intelligence.2002:93-98. [36]LANCICHINETTI A,FORTUNATO S,KERTÉSZ J.Detecting the overlapping and hierarchical community structure in complex networks[J].New Journal of Physics,2009,11(3):033015. [37]NICOSIA V,MANGIONI G,CARCHIOLO V,et al.Extending the definition of modularity to directed graphs with overlapping communities[J].Journal of Statistical Mechanics:Theory and Experiment,2009(3):P03024. |
[1] | 程富豪, 徐泰华, 陈建军, 宋晶晶, 杨习贝. 基于顶点粒k步搜索和粗糙集的强连通分量挖掘算法 Strongly Connected Components Mining Algorithm Based on k-step Search of Vertex Granule and Rough Set Theory 计算机科学, 2022, 49(8): 97-107. https://doi.org/10.11896/jsjkx.210700202 |
[2] | 许思雨, 秦克云. 基于剩余格的模糊粗糙集的拓扑性质 Topological Properties of Fuzzy Rough Sets Based on Residuated Lattices 计算机科学, 2022, 49(6A): 140-143. https://doi.org/10.11896/jsjkx.210200123 |
[3] | 方连花, 林玉梅, 吴伟志. 随机多尺度序决策系统的最优尺度选择 Optimal Scale Selection in Random Multi-scale Ordered Decision Systems 计算机科学, 2022, 49(6): 172-179. https://doi.org/10.11896/jsjkx.220200067 |
[4] | 陈于思, 艾志华, 张清华. 基于三角不等式判定和局部策略的高效邻域覆盖模型 Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy 计算机科学, 2022, 49(5): 152-158. https://doi.org/10.11896/jsjkx.210300302 |
[5] | 孙林, 黄苗苗, 徐久成. 基于邻域粗糙集和Relief的弱标记特征选择方法 Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief 计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094 |
[6] | 王子茵, 李磊军, 米据生, 李美争, 解滨. 基于误分代价的变精度模糊粗糙集属性约简 Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost 计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211 |
[7] | 王志成, 高灿, 邢金明. 一种基于正域的三支近似约简 Three-way Approximate Reduction Based on Positive Region 计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067 |
[8] | 薛占熬, 侯昊东, 孙冰心, 姚守倩. 带标记的不完备双论域模糊概率粗糙集中近似集动态更新方法 Label-based Approach for Dynamic Updating Approximations in Incomplete Fuzzy Probabilistic Rough Sets over Two Universes 计算机科学, 2022, 49(3): 255-262. https://doi.org/10.11896/jsjkx.201200042 |
[9] | 陈湘涛, 赵美杰, 杨梅. 基于子图结构的局部社区发现算法 Overlapping Community Detection Algorithm Based on Subgraph Structure 计算机科学, 2021, 48(9): 244-250. https://doi.org/10.11896/jsjkx.201100010 |
[10] | 李艳, 范斌, 郭劼, 林梓源, 赵曌. 基于k-原型聚类和粗糙集的属性约简方法 Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets 计算机科学, 2021, 48(6A): 342-348. https://doi.org/10.11896/jsjkx.201000053 |
[11] | 汤鑫瑶, 张正军, 储杰, 严涛. 基于自然最近邻的密度峰值聚类算法 Density Peaks Clustering Algorithm Based on Natural Nearest Neighbor 计算机科学, 2021, 48(3): 151-157. https://doi.org/10.11896/jsjkx.200100112 |
[12] | 宁懿昕, 谢辉, 姜火文. 图神经网络社区发现研究综述 Survey of Graph Neural Network in Community Detection 计算机科学, 2021, 48(11A): 11-16. https://doi.org/10.11896/jsjkx.210500151 |
[13] | 薛占熬, 孙冰心, 侯昊东, 荆萌萌. 基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法 Optimal Granulation Selection Method Based on Multi-granulation Rough Intuitionistic Hesitant Fuzzy Sets 计算机科学, 2021, 48(10): 98-106. https://doi.org/10.11896/jsjkx.200800074 |
[14] | 王卫东, 徐金慧, 张志峰, 杨习贝. 基于密度峰值聚类的高斯混合模型算法 Gaussian Mixture Models Algorithm Based on Density Peaks Clustering 计算机科学, 2021, 48(10): 191-196. https://doi.org/10.11896/jsjkx.200800191 |
[15] | 张煜, 陆亿红, 黄德才. 基于密度峰值的加权犹豫模糊聚类算法 Weighted Hesitant Fuzzy Clustering Based on Density Peaks 计算机科学, 2021, 48(1): 145-151. https://doi.org/10.11896/jsjkx.200400043 |
|