Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 74-79.doi: 10.11896/jsjkx.210900191

• 基于社会计算的多学科交叉融合专题* 上一篇    下一篇

关于法律人工智能数据和算法问题的若干思考

丛颖男1, 王兆毓2, 朱金清3   

  1. 1 中国政法大学商学院 北京 100088;
    2 中国政法大学法治信息管理学院 北京 102249;
    3 北京字节跳动网络技术有限公司 北京 100043
  • 收稿日期:2021-09-23 修回日期:2021-12-22 发布日期:2022-04-01
  • 通讯作者: 朱金清(zhujinqing@bytedance.com)
  • 作者简介:(cyn_2010@163.com)
  • 基金资助:
    北京市教改项目“法商大数据分析创新型人才培养模式研究”(京教函[2020]427号); 中国政法大学新兴学科培育建设计划

Insights into Dataset and Algorithm Related Problems in Artificial Intelligence for Law

CONG Ying-nan1, WANG Zhao-yu2, ZHU Jin-qing3   

  1. 1 Business School, China University of Political Science and Law, Beijing 100088, China;
    2 School of Information Management for Law, China University of Political Science and Law, Beijing 102249, China;
    3 Beijing Bytedance Network Technology Co., Ltd, Beijing 100043, China
  • Received:2021-09-23 Revised:2021-12-22 Published:2022-04-01
  • About author:CONG Ying-nan,born in 1985,Ph.D,senior lecturer,master supervisor,is a member of China Computer Federation and Chinese Association for Artificial Intelligence.His main research interests include big data on business and law,artificial intelligence,blockchain,Fin-tech,Reg-tech and complex system.ZHU Jin-qing,born in 1984,postgra-duate,engineer,is a member of China Computer Federaton and Chinese Association for Artificial Intelligence.His main research interests include database systems,content data analysis,artificial intelligence and knowledge graphs.
  • Supported by:
    This work was supported by the Beijing Education Reform Project“Research on the Training Mode of Innovative Talents for Law and Business Big Data Analysis”(Jingjiaohan [2020] No.427) and Cultivation and Construction Plan of Emerging Disciplines of China University of Political Science and Law.

摘要: 人工智能技术的不断发展使其在司法方面的应用逐渐增多,并引起广泛关注。具体来说,人工智能已经在合同审查、智慧法院等应用场景中崭露头角,相比传统人工,人工智能的高效率表现展示了其在司法领域的巨大应用潜力。但在其他应用场景,如智能司法裁判,虽然国内外有一定尝试,并取得了一些成果,但仍面临着数据样本量不足、算法与待解决实际问题匹配度不够的问题,以及算法过程不够透明等方面的质疑。文中围绕现有法律人工智能的相关工作,探索了人工智能可能带来的司法流程上的巨大变革,并对人工智能目前在智能裁判中遇到的数据和算法方面的问题是否会对司法的公正性产生影响进行了探讨,最后对上述问题的解决方案以及司法人工智能的未来发展路线略抒拙见,以期人工智能技术在我国司法领域有更为系统性的应用,助力社会主义法治建设。

关键词: AI算法, 法律, 人工智能, 数据分析

Abstract: With the rapid development of artificial intelligence (AI) technology, the application of AI-related technologies in law is increasedand attracts extensive attention.Specifically, AI has emerged in multiple legal scenarios such as automatic contract review and smart courts, compared with traditional artificial intelligence, its high efficiency shows its great application potential in the judicial field.However, in other scenarios such as legal judgement prediction (LJP), AI faces challenges and doubts in data analysis and algorithms, although some attempts have been made.Through analysis of the work related to legal AI, this paper summarizes the potential problems in datasets and algorithms in intelligent referees, investigates the changes in judicial progress that AI may bring and discusses whether the problems encountered by AI will affect the justice of law.Finally, this paper briefly expresses the potential solutions to the above problems, and provides insights into its future development, in the hope that AI technology will have a more systematic application in China's judicial field and contributeto the construction of socialist rule of law.

Key words: AI, AI algorithm, Data analysis, Law

中图分类号: 

  • TP182
[1] RAISCH S,KRAKOWSKI S.Artificial intelligence and management:The automation-augmentation paradox[J].Academy of Management Review,2021,46(1):192-210.
[2] DOAA A E.Bail or Jail? Judicial Versus Algorithmic Decision-Making in the Pretrial System[J].The Columbia Science & Technology Law Review,2019,21:376-446.
[3] CAMPBELL R W.Artificial intelligence in the courtroom:The delivery of justice in the age of machine learning[J].Colo.Tech.LJ,2020,18:323-350.
[4] KATZ D M,BOMMARITO II M J,BLACKMAN J.Predicting the behavior of the supreme court of the United States:A gene-ral approach[J].arXiv:1407.6333,2014.
[5] RAPPA M,EISENBERG T,DOHERTY J W,et al.The Evolving Role of the Corporate Counsel:How Information Technologyis Reinventing Legal Practice[J].Campbell L.Rev.,2013,36:383,446-447.
[6] DING G F.‘Smart Court’ injects momentum into the modernization of judicial capacity[N].Legal Daily,2017.
[7] LIU Z Y.The modernization of judicial system and judicial capacity by the integration of advanced technology and trial implementation[N].Legal Daily,2016.
[8] YANG W,JIA W,ZHOU X,et al.Legal Judgment Prediction via Multi-PerspectiveBi-Feedback Network[J].arXiv:1905.03969,2019.
[9] PAN S J,QIANG Y.A Survey on Transfer Learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[10] WANG L M,ZHU X G,WANG D J,et al.Study on Judicial Data Classification Method Based on Natural Language Processing Technologies[J].Computer Science,2021,48(8):80-85.
[11] MA C,YU X H,HE H B.Big Data Analysis:The Report about Chinese Online Judicial Judgment Documents[J].China Law Review,2016(4):195-246.
[12] ZUO W M.Insights on the prospect of using legal AI in China[J].Tsinghua University Law Journal,2018,12(2):109-125.
[13] HUA L.Ten key words of judicial reform in 2020,the public disclosure of adjudication documents broke 100 million[J].China Trial,2021,3:30-31.
[14] XIANG L,YANG X,ZHANG J,et al.A word-frequency-preserving steganographic method based on synonym substitution[J].International Journal of Computational Science and Engineering,2019,19(1):132-139.
[15] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014:1112-1119.
[16] QIN C J,HOU H Q.Mapping Knowledge Domain—A New Field of Information Management and Knowledge Management[J].Journal of Academic Libraries,2009,27(1):30-37.
[17] HUANG W Y.Deep Neural Networks for Legal Question Answering based on Knowledge Graph[D].Hefei:University of Chinese Academy of Sciences(Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences),2020.
[18] MOSES L B,CHAN J.Using big data for legal and law enforcement decisions:Testing the new tools[J].The University of New South Wales Law Journal,2014,37(2):643-678.
[19] ZHANG L H.A study of algorithmic interpretation rights for automated business decisions[J].Science of Law(Journal of Northwest University of Political Science and Law),2018,36(3):65-74.
[20] SUTSKEVER I,HINTON G E.Deep,narrow sigmoid beliefnetworks are universal approximators[J].Neural Computation,2008,20(11):2629-2636.
[21] CHAZETTE L,SCHNEIDER K.Explainability as a non-func-tional requirement:challenges and recommendations[J].Requirements Engineering,2020,25(4):493-514.
[22] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013.
[23] TAO HC,XU Y C.Construction of the Mechanism of Algorithm Interpretation—Algorithmic Logic Regulation on Judicature[J].Journal of Wuhan Vocational College of Transpotation,2021,23(3):50-57.
[24] ZHANG W T.Research on Judicial Documents ClassficationMethod based on Bayesian Network[D].Nanjing:Southeast University,2019.
[25] ZHONG H,GUO Z,TU C,et al.Legal judgment prediction via topological learning[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3540-3549.
[26] SALTON G,HARMAN D.Informationretrieval[M].Encyclopedia of Computer Science.2003:858-863.
[27] LIN C Y.Rouge:A package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text summarization Branches Out.2004:74-81.
[28] ZHENG Z H.The Ethical Crisis and Legal Regulation of Artificial Intelligence Algorithms[J].Social Sciences Digest,2021(4):74-76.
[29] LEPRI B,OLIVER N,LETOUZÉ E,et al.Fair,transparent,and accountable algorithmic decision-making processes[J].Philosophy & Technology,2018,31(4):611-627.
[1] 李野, 陈松灿.
基于物理信息的神经网络:最新进展与展望
Physics-informed Neural Networks:Recent Advances and Prospects
计算机科学, 2022, 49(4): 254-262. https://doi.org/10.11896/jsjkx.210500158
[2] 江昊琛, 魏子麒, 刘璘, 陈俊.
非均衡数据分类经典方法综述与面向医疗领域的实验分析
Imbalanced Data Classification:A Survey and Experiments in Medical Domain
计算机科学, 2022, 49(1): 80-88. https://doi.org/10.11896/jsjkx.210200124
[3] 朝乐门, 尹显龙.
人工智能治理理论及系统的现状与趋势
AI Governance and System:Current Situation and Trend
计算机科学, 2021, 48(9): 1-8. https://doi.org/10.11896/jsjkx.210600034
[4] 余乐章, 夏天宇, 荆一楠, 何震瀛, 王晓阳.
面向大数据分析的智能交互向导系统
Smart Interactive Guide System for Big Data Analytics
计算机科学, 2021, 48(9): 110-117. https://doi.org/10.11896/jsjkx.200900083
[5] 景慧昀, 魏薇, 周川, 贺欣.
人工智能安全框架
Artificial Intelligence Security Framework
计算机科学, 2021, 48(7): 1-8. https://doi.org/10.11896/jsjkx.210300306
[6] 谢宸琪, 张保稳, 易平.
人工智能模型水印研究综述
Survey on Artificial Intelligence Model Watermarking
计算机科学, 2021, 48(7): 9-16. https://doi.org/10.11896/jsjkx.201200204
[7] 景慧昀, 周川, 贺欣.
针对人脸检测对抗攻击风险的安全测评方法
Security Evaluation Method for Risk of Adversarial Attack on Face Detection
计算机科学, 2021, 48(7): 17-24. https://doi.org/10.11896/jsjkx.210300305
[8] 暴雨轩, 芦天亮, 杜彦辉, 石达.
基于i_ResNet34模型和数据增强的深度伪造视频检测方法
Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation
计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258
[9] 吴广智, 郭斌, 丁亚三, 成家慧, 於志文.
假消息认知机理研究综述
Cognitive Mechanisms of Fake News
计算机科学, 2021, 48(6): 306-314. https://doi.org/10.11896/jsjkx.201200194
[10] 张寒烁, 杨冬菊.
基于关系图谱的科技数据分析算法
Technology Data Analysis Algorithm Based on Relational Graph
计算机科学, 2021, 48(3): 174-179. https://doi.org/10.11896/jsjkx.191200154
[11] 秦智慧, 李宁, 刘晓彤, 刘秀磊, 佟强, 刘旭红.
无模型强化学习研究综述
Overview of Research on Model-free Reinforcement Learning
计算机科学, 2021, 48(3): 180-187. https://doi.org/10.11896/jsjkx.200700217
[12] 张春云, 曲浩, 崔超然, 孙皓亮, 尹义龙.
基于过程监督的序列多任务法律判决预测方法
Process Supervision Based Sequence Multi-task Method for Legal Judgement Prediction
计算机科学, 2021, 48(3): 227-232. https://doi.org/10.11896/jsjkx.200700056
[13] 胡腾, 王艳平, 张小松, 牛伟纳.
基于区块链的DApp数据与行为分析
Data and Behavior Analysis of Blockchain-based DApp
计算机科学, 2021, 48(11): 116-123. https://doi.org/10.11896/jsjkx.210200134
[14] 仝鑫, 王斌君, 王润正, 潘孝勤.
面向自然语言处理的深度学习对抗样本综述
Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing
计算机科学, 2021, 48(1): 258-267. https://doi.org/10.11896/jsjkx.200500078
[15] 朱涤尘, 夏换, 杨秀璋, 于小民, 张亚成, 武帅.
基于文本挖掘和决策树分析的中国手游产业发展研究
Research on Mobile Game Industry Development in China Based on Text Mining and Decision Tree Analysis
计算机科学, 2020, 47(6A): 530-534. https://doi.org/10.11896/JsJkx.190700124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!