Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Augmented MPM for phase-change and varied materials

Published: 27 July 2014 Publication History

Abstract

In this paper, we introduce a novel material point method for heat transport, melting and solidifying materials. This brings a wider range of material behaviors into reach of the already versatile material point method. This is in contrast to best-of-breed fluid, solid or rigid body solvers that are difficult to adapt to a wide range of materials. Extending the material point method requires several contributions. We introduce a dilational/deviatoric splitting of the constitutive model and show that an implicit treatment of the Eulerian evolution of the dilational part can be used to simulate arbitrarily incompressible materials. Furthermore, we show that this treatment reduces to a parabolic equation for moderate compressibility and an elliptic, Chorin-style projection at the incompressible limit. Since projections are naturally done on marker and cell (MAC) grids, we devise a staggered grid MPM method. Lastly, to generate varying material parameters, we adapt a heat-equation solver to a material point framework.

Supplementary Material

ZIP File (a138-stomakhin.zip)
Supplemental material.

References

[1]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3.
[2]
Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proc 2008 ACM/Eurographics Symp Comp Anim, 219--228.
[3]
Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. In Eurographics Conf. Nat. Phen., 27--34.
[4]
Bonet, J., and Wood, R. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
[5]
Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and flowing. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 167--174.
[6]
Carlson, M., Mucha, P., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In ACM Trans. on Graph., vol. 23, 377--384.
[7]
Chang, Y., Bao, K., Liu, Y., Zhu, J., and Wu, E. 2009. A particle-based method for viscoelastic fluids animation. In ACM Symp. Virt. Real. Soft. Tech., 111--117.
[8]
Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 83--89.
[9]
Choi, S.-C. T. 2006. Iterative Methods for Singular Linear Equations and Least-Squares Problems. PhD thesis, ICME, Stanford University, CA.
[10]
Chorin, A. 1968. Numerical solution of the Navier-Stokes Equations. Math. Comp. 22, 745--762.
[11]
Clausen, P., Wicke, M., Shewchuk, J. R., and O'brien, J. F. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2, 17:1--17:15.
[12]
Dagenais, F., Gagnon, J., and Paquette, E. 2012. A prediction-correction approach for stable sph fluid simulation from liquid to rigid. In Proc. of Comp. Graph. Intl.
[13]
Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop Comp. Anim. Sim., 61--76.
[14]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[15]
Gonzalez, O., and Stuart, A. 2008. A First Course in Continuum Mechanics. Cambridge texts in applied mathematics. Cambridge University Press.
[16]
Harlow, F., and Welch, E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fl 8, 2182.
[17]
Hirt, C., and Shannon, J. 1968. Free-surface stress conditions for incompressible-flow calculations. JCP 2, 4, 403--411.
[18]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. 2004 ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 131--140.
[19]
Iwasaki, K., Uchida, H., Dobashi, Y., and Nishita, T. 2010. Fast particle-based visual simulation of ice melting. Comp. Graph. Forum 29, 7, 2215--2223.
[20]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified lagrangian approach to solid-fluid animation. In Eurographics/IEEE VGTC Conf. Point-Based Graph., 125--133.
[21]
Kim, T., Adalsteinsson, D., and Lin, M. C. 2006. Modeling ice dynamics as a thin-film stefan problem. In Proc 2006 ACM SIGGRAPH/Eurographics Symp Comp Anim, 167--176.
[22]
Kwatra, N., Su, J., Gretarsson, J., and Fedkiw, R. 2009. A method for avoiding the acoustic time-step restriction in compressible flow. J. Comp. Phys. 228, 4146--4161.
[23]
Lenaerts, T., and Dutre, P. 2009. Mixing fluids and granular materials. Comp. Graph. Forum 28, 2, 213--218.
[24]
Lii, S.-Y., and Wong, S.-K. 2013. Ice melting simulation with water flow handling. Vis. Comp., 1--8.
[25]
Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comp. Graph. 12, 343--352.
[26]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[27]
Maréchal, N., Guérin, E., Galin, E., Mérillou, S., and Mérillou, N. 2010. Heat transfer simulation for modeling realistic winter sceneries. Comp. Graph. Forum 29, 2, 449--458.
[28]
Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (July), 39:1--39:10.
[29]
Mast, C., Mackenzie-Helnwein, P., Arduino, P., Miller, G., and Shin, W. 2012. Mitigating kinematic locking in the material point method. J. Comp. Phys. 231, 16, 5351--5373.
[30]
Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30, 543--574.
[31]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 141--151.
[32]
Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471--478.
[33]
Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2006. Particle-based non-newtonian fluid animation for melting objects. In Conf. Graph. Patt. Images, 78--85.
[34]
Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Comp. Aided Des. 41, 4, 306--314.
[35]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 193--202.
[36]
Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3 (Aug.), 46:1--46:9.
[37]
Serway, R. A., and Jewett, J. W. 2009. Physics for Scientists and Engineers. Cengage Learning.
[38]
Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. In ACM transactions on graphics (TOG), vol. 28, ACM, 40.
[39]
Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions: Research articles. Comp. Anim. Virt. Worlds 18, 1, 69--82.
[40]
Steffen, M., Kirby, R., and Berzins, M. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Meth. Engng 76, 6, 922--948.
[41]
Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. 2012. Energetically consistent invertible elasticity. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 25--32.
[42]
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4 (July), 102:1--102:10.
[43]
Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. 1999. Animating lava flows. In Graph. Int., 203--210.
[44]
Sulsky, D., Zhou, S.-J., and Schreyer, H. 1995. Application of particle-in-cell method to solid mechanics. Comp. Phys. Comm. 87, 236--252.
[45]
Terzopoulos, D., Platt, J., and Fleischer, K. 1991. Heating and melting deformable models. J. Vis. Comp. Anim. 2, 2, 68--73.
[46]
Teschner, M., Heidelberger, B., Muller, M., and Gross, M. 2004. A versatile and robust model for geometrically complex deformable solids. In Comp. Graph. Int., 312--319.
[47]
Wei, X., Li, W., and Kaufman, A. 2003. Melting and flowing of viscous volumes. In Intl. Conf. Comp. Anim. Social Agents, 54--60.
[48]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (July), 49:1--11. Proc. of ACM SIGGRAPH 2010.
[49]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1--47:8.
[50]
Wojtan, C., Carlson, M., Mucha, P. J., and Turk, G. 2007. Animating corrosion and erosion. In Eurographics Conf. Nat. Phen., 15--22.
[51]
Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 76:1--76:10.
[52]
Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symp. on Comp. Anim., Eurographics Association, 217--225.
[53]
Zhao, Y., Wang, L., Qiu, F., Kaufman, A., and Mueller, K. 2006. Melting and flowing in multiphase environment. Comp. Graph. 30, 2006.
[54]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graph. 24, 3, 965--972.

Cited By

View all
  • (2025)Theoretical investigation of multipulse femtosecond laser processing on silicon carbide: ablation, shielding effect, and recast formationOptics & Laser Technology10.1016/j.optlastec.2024.111976181(111976)Online publication date: Feb-2025
  • (2024)Material Point Method-Based Simulation Techniques for Medical ApplicationsElectronics10.3390/electronics1307134013:7(1340)Online publication date: 2-Apr-2024
  • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. freezing
  2. lava
  3. material point
  4. melting
  5. physically-based modeling

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)174
  • Downloads (Last 6 weeks)29
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Theoretical investigation of multipulse femtosecond laser processing on silicon carbide: ablation, shielding effect, and recast formationOptics & Laser Technology10.1016/j.optlastec.2024.111976181(111976)Online publication date: Feb-2025
  • (2024)Material Point Method-Based Simulation Techniques for Medical ApplicationsElectronics10.3390/electronics1307134013:7(1340)Online publication date: 2-Apr-2024
  • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
  • (2024)MiNNIE: a Mixed Multigrid Method for Real-time Simulation of Nonlinear Near-Incompressible ElasticsACM Transactions on Graphics10.1145/368775843:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Scintilla: Simulating Combustible Vegetation for WildfiresACM Transactions on Graphics10.1145/365819243:4(1-21)Online publication date: 19-Jul-2024
  • (2024)Eulerian-Lagrangian Fluid Simulation on Particle Flow MapsACM Transactions on Graphics10.1145/365818043:4(1-20)Online publication date: 19-Jul-2024
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)Material point method simulation of hydro-mechanical behaviour in two-phase porous geomaterials: A state-of-the-art reviewJournal of Rock Mechanics and Geotechnical Engineering10.1016/j.jrmge.2023.05.00616:6(2341-2350)Online publication date: Jun-2024
  • (2024)Dynamic simulation of 3D-printed foodsFuture Foods10.1016/j.fufo.2024.1003759(100375)Online publication date: Jun-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media