Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Unified simulation of elastic rods, shells, and solids

Published: 26 July 2010 Publication History

Abstract

We develop an accurate, unified treatment of elastica. Following the method of resultant-based formulation to its logical extreme, we derive a higher-order integration rule, or elaston, measuring stretching, shearing, bending, and twisting along any axis. The theory and accompanying implementation do not distinguish between forms of different dimension (solids, shells, rods), nor between manifold regions and non-manifold junctions. Consequently, a single code accurately models a diverse range of elastoplastic behaviors, including buckling, writhing, cutting and merging. Emphasis on convergence to the continuum sets us apart from early unification efforts.

Supplementary Material

JPG File (tp038-10.jpg)
Supplemental material. (039.zip)
* elastons.mov - Video demonstrating the method's performance on various examples. * elastonsSupplementary.pdf - Implementation notes. Description of plasticity, cutting and meshless virtual node. * elastonsSupplementary.mov - Video sequence showing dynamic resampling for a swinging bar.
MP4 File (tp038-10.mp4)

References

[1]
Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. J. 2008. Meshless modeling of deformable shapes and their motion. In Proc. of Symp. on Computer Animation, 77--86.
[2]
An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. on Graphics 27, 5, 164:1--164:11.
[3]
Atluri, S. N., Cho, J. Y., and Kim, H.-G. 1999. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 24, 334--347.
[4]
Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of ACM SIGGRAPH, 43--54.
[5]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. on Graphics 26, 3, 16.1--16.8.
[6]
Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. on Graphics 27, 3, 63:1--63:12.
[7]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of Symp. on Computer Animation, 28--36.
[8]
Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, 1--14.
[9]
Cirak, F., Ortiz, M., and Schröder, P. 2000. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Int. J. Numer. Methods Eng. 47, 12, 2039--2072.
[10]
Delingette, H. 2008. Triangular springs for modeling nonlinear membranes. IEEE Trans. on Visualization and Computer Graphics 14, 2, 329--341.
[11]
Etzmuss, O., Gross, J., and Strasser, W. 2003. Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans. on Visualization and Computer Graphics 9, 538--550.
[12]
Fries, T. P., and Matthies, H. G. 2004. Classification and overview of meshfree methods. Informatikbericht 2003-03, revised 2004, Institute of Scientific Computing, Technical University Braunschweig.
[13]
Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proc. of Symp. on Computer Animation, 133--138.
[14]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of Symp. on Computer Animation, 62--67.
[15]
Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. on Visualization and Computer Graphics 12, 3, 375--385.
[16]
Hadap, S., Cani, M.-P., Lin, M., Kim, T.-Y., Bertails, F., Marschner, S., Ward, K., and Kaĉić-Alesić, Z. 2007. Strands and hair: modeling, animation, and rendering. ACM SIGGRAPH 2007 Courses, 1--150.
[17]
Hauth, M., and Strasser, W. 2004. Corotational simulation of deformable solids. In Proc. of WSCG, 137--145.
[18]
Hughes, T. J. R. 2000. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications.
[19]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. on Graphics 26, 3, 13.1--13.6.
[20]
Kikuuwe, R., Tabuchi, H., and Yamamoto, M. 2009. An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements. ACM Trans. on Graphics 28, 1, 1--13.
[21]
Krysl, P. 2005. A Pragmatic Introduction to the Finite Element Method for Thermal and Stress Analysis. Pressure Cooker Press, San Diego.
[22]
Lloyd, B., Székely, G., and Harders, M. 2007. Identification of spring parameters for deformable object simulation. IEEE Trans. on Visualization and Computer Graphics 13, 1081--1094.
[23]
Lloyd, S. 1957. Least squares quantization in PCM. Tech. rep., Tech. rep., Bell Telephone Laboratories, Murray Hill, NJ.
[24]
Malvern, L. E. 1969. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ.
[25]
Mezger, J., Thomaszewski, B., Pabst, S., and Strasser, W. 2008. Interactive physically-based shape editing. In Proc. of ACM Symp. on Solid and Physical Modeling, 79--89.
[26]
Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. on Graphics 23, 3, 385--392.
[27]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. of Symp. on Computer Animation, 163--170.
[28]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point-based animation of elastic, plastic and melting objects. In Proc. of Symp. on Computer Animation, 141--151.
[29]
Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2, 109--118.
[30]
Naghdi, P. 1972. Handbuch der Physik, Mechanics of Solids II, vol. VI a/2. Springer, Berlin.
[31]
Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. on Graphics 28, 3, 52:1--52:9.
[32]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of ACM SIGGRAPH, 137--146.
[33]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. on Graphics 21, 3, 291--294.
[34]
Pai, D. K. 2002. STRANDS: interactive simulation of thin solids using Cosserat models. Comput. Graphics Forum 21, 3, 347--352.
[35]
Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. on Graphics 24, 3, 957--964.
[36]
Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface '95, 147--154.
[37]
Rubin, M. B. 1985. On the theory of a cosserat point and its application to the numerical solution of continuum problems. Journal of Applied Mechanics 52, 2, 368--372.
[38]
Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. on Graphics 27, 3, 64.1--64.11.
[39]
Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proc. of Symp. on Computer Animation, 81--90.
[40]
Spillmann, J., and Teschner, M. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proc. of Symp. on Computer Animation, 63--72.
[41]
Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In IEEE International Conference on Computer-Aided Design and Computer Graphics, 1--11.
[42]
Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of Symp. on Computer Animation, 63--72.
[43]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proc. of ACM SIGGRAPH, 269--278.
[44]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH, 205--214.
[45]
Van Gelder, A. 1998. Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools 3, 2, 21--42.
[46]
Veubeke, B. F. D. 1976. The dynamics of flexible bodies. International Journal of Engineering Science 14, 895--913.
[47]
Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. on Graphics 28, 4, 1--16.
[48]
Wang, X., and Devarajan, V. 2005. 1D and 2D structured mass-spring models with preload. Visual Computer 21, 7, 429--448.
[49]
Wicke, M., Steinemann, D., and Gross, M. 2005. Efficient animation of point-sampled thin shells. Comput. Graphics Forum 24, 667--676.
[50]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. on Graphics 27, 3, 47:1--47:8.
[51]
Yang, H., Saigal, S., Masud, A., and Kapania, R. 2000. A survey of recent shell finite elements. Int. J. Numer. Methods Eng., 47, 101--127.
[52]
Zerbato, D., Galvan, S., and Fiorini, P. 2007. Calibration of mass spring models for organ simulations. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 370--375.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 29, Issue 4
July 2010
942 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1778765
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2010
Published in TOG Volume 29, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)111
  • Downloads (Last 6 weeks)7
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)More Than Killmonger Locs: A Style Guide for Black Hair (in Computer Graphics)ACM SIGGRAPH 2024 Courses10.1145/3664475.3664535(1-251)Online publication date: 27-Jul-2024
  • (2024)Simplicits: Mesh-Free, Geometry-Agnostic Elastic SimulationACM Transactions on Graphics10.1145/365818443:4(1-11)Online publication date: 19-Jul-2024
  • (2024)Vertex Block DescentACM Transactions on Graphics10.1145/365817943:4(1-16)Online publication date: 19-Jul-2024
  • (2024)PIE-NeRF: Physics-Based Interactive Elastodynamics with NeRF2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00426(4450-4461)Online publication date: 16-Jun-2024
  • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
  • (2024)A moment–curvature-based constitutive model for interactive simulation of visco-plastic rodsEngineering with Computers10.1007/s00366-023-01938-0Online publication date: 17-Mar-2024
  • (2023)Too Stiff, Too Strong, Too SmartProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069356:3(1-17)Online publication date: 24-Aug-2023
  • (2023)A Unified Analysis of Penalty-Based Collision EnergiesProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069346:3(1-19)Online publication date: 24-Aug-2023
  • (2023)Adaptive Rigidification of Discrete ShellsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069326:3(1-17)Online publication date: 24-Aug-2023
  • (2023)A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable PhysicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069256:3(1-20)Online publication date: 24-Aug-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media