Slika:BMonSphere.jpg
Vsebina strani ni podprta v drugih jezikih.
Videz
Iz Wikipedije, proste enciklopedije
BMonSphere.jpg (365 × 356 točk, velikost datoteke: 10 KB, MIME-vrsta: image/jpeg)
Spodaj prikazane informacije so s tamkajšnje opisne strani.
Ta slika je bila naložena v formatu JPEG, čeprav sestoji iz nefotografskih podatkov. Te informacije bi bile bolj učinkovito ali natančno shranjene v formatu PNG ali SVG. Če je mogoče, naložite različico PNG ali SVG te slike brez artefaktov stiskanja, izpeljanih iz ne-JPEG vira (ali z odstranjenimi obstoječimi artefakti). Ko boste to storili, označite JPEG različico z {{Superseded|NewImage.ext}} in to oznako odstranite.. Ta oznaka naj se ne uporablja za fotografije ali preslikave. Za več informacij glejte {{BadJPEG}}. |
OpisBMonSphere.jpg | Brownian Motion on a Sphere. The generator of ths process is ½ times the Laplace-Beltrami-Operator |
Datum |
poletje 2007 date QS:P,+2007-00-00T00:00:00Z/9,P4241,Q40720564 (blender file as of 28.06.2007) |
Vir | read some papers (eg Price, Gareth C.; Williams, David: "Rolling with “slipping”" : I. Séminaire de probabilités de Strasbourg, 17 (1983), p. 194-197 You can download it from http://www.numdam.org/item?id=SPS_1983__17__194_0) use the GNU R code and the python code (in blender3d) to create this image. |
Avtor | Thomas Steiner |
Dovoljenje (Nadaljnja uporaba datoteke) |
Thomas Steiner put it under the CC-by-SA 2.5. If you use the python code or the R code, please give a reference to Christian Bayer and Thomas Steiner. |
Ta slika je bila ustvarjena z Blender.
Datoteka je objavljena pod licenco Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 2.5 Generična.
- Dovoljeno vam je:
- deljenje – reproducirati, distribuirati in javno priobčevati delo
- predelava – predelati delo
- Pod naslednjimi pogoji:
- priznanje avtorstva – Navesti morate ustrezno avtorstvo, povezavo do licence in morebitne spremembe. To lahko storite na kakršen koli primeren način, vendar ne na način, ki bi nakazoval, da dajalec licence podpira vas ali vašo uporabo dela.
- deljenje pod enakimi pogoji – Če boste to vsebino predelali, preoblikovali ali uporabili kot izhodišče za drugo delo, morate svoj prispevek distribuirati pod isto ali združljivo licenco, kot jo ima izvirnik.
code
Perhaps you grab the source from the "edit" page without the wikiformating.
GNU R
This creates the paths and saves them into textfiles that can be read by blender. There are also paths for BMs on a torus.
# calculate a Brownian motion on the sphere; the output is a list # consisting of: # Z ... BM on the sphere # Y ... tangential BM, see Price&Williams # b ... independent 1D BM (see Price & Williams) # B ... generating 3D BM # n ... number of time-steps in the discretization # T ... the above processes are given on a uniform mesh of size # n on [0,T] euler = function(x0, T, n) { # initialize objects dt = T/(n-1); dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1); dB[,1] = rnorm(n-1, 0, sqrt(dt)); dB[,2] = rnorm(n-1, 0, sqrt(dt)); dB[,3] = rnorm(n-1, 0, sqrt(dt)); Z = matrix(rep(0,3*n), ncol=3, nrow=n); dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1); Y = matrix(rep(0,3*n), ncol=3, nrow=n); B = matrix(rep(0,3*n), ncol=3, nrow=n); b = rep(0, n); Z[1,] = x0; #do the computation for(k in 2:n){ B[k,] = B[k-1,] + dB[k-1,]; dZ[k-1,] = cross(Z[k-1,],dB[k-1,]) - Z[k-1,]*dt; Z[k,] = Z[k-1,] + dZ[k-1,]; Y[k,] = Y[k-1,] - cross(Z[k-1,],dZ[k-1,]); b[k] = b[k-1] + dot(Z[k-1,],dB[k-1,]); } return(list(Z = Z, Y = Y, b = b, B = B, n = n, T = T)); } # write the output from euler in csv-files euler.write = function(bms, files=c("Z.csv","Y.csv","b.csv","B.csv"),steps=bms$n){ bigsteps=round(seq(1,bms$n,length=steps)) write.table(bms$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$Y[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$b[bigsteps],file=files[3],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$B[bigsteps,],file=files[4],col.names=F,row.names=F,sep=",",dec="."); } # calculate a Brownian motion on a 3-d torus with outer # radius R and inner radius r eulerTorus = function(x0, r, R, t, n) { # initialize objects dt = t/(n-1); dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1); dB[,1] = rnorm(n-1, 0, sqrt(dt)); dB[,2] = rnorm(n-1, 0, sqrt(dt)); dB[,3] = rnorm(n-1, 0, sqrt(dt)); Z = matrix(rep(0,3*n), ncol=3, nrow=n); B = matrix(rep(0,3*n), ncol=3, nrow=n); dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1); Z[1,] = x0; nT = rep(0,3); #do the computation for(k in 2:n){ B[k,] = B[k-1,] + dB[k-1,]; nT = nTorus(Z[k-1,],r,R); dZ[k-1,] = cross(nT, dB[k-1,]) + HTorus(Z[k-1,],r,R)*nT*dt; Z[k,] = Z[k-1,] + dZ[k-1,]; } return(list(Z = Z, B = B, n = n, t = t)); } # write the output from euler in csv-files torus.write = function(bmt, files=c("tZ.csv","tB.csv"),steps=bmt$n){ bigsteps=round(seq(1,bmt$n,length=steps)) write.table(bmt$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec="."); write.table(bmt$B[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec="."); } # "defining" function of a torus fTorus = function(x,r,R){ return((x[1]^2+x[2]^2+x[3]^2+R^2-r^2)^2 - 4*R^2*(x[1]^2+x[2]^2)); } # normal vector of a 3-d torus with outer radius R and inner radius r nTorus = function(x, r, R) { c1 = x[1]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6+3*x[3]^2*x[1]^4 -4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2 +R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4 +x[3]^2*R^4+x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2); c2 = x[2]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6 +3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2+R^4*x[1]^2 +x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2); c3 = (x[1]^2+x[2]^2+x[3]^2+R^2-r^2)*x[3]/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2 +6*x[3]^2*x[1]^2*x[2]^2 +3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2 -4*x[1]^2*x[2]^2*R^2+x[1]^6 +x[2]^6+x[3]^6+3*x[3]^2*x[1]^4 -4*x[1]^2*x[2]^2*r^2 -4*x[1]^2*x[3]^2*r^2 +2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2 +2*R^2*x[2]^2*r^2-2*x[1]^4*R^2 -2*x[1]^4*r^2+R^4*x[1]^2 +x[1]^2*r^4-2*x[2]^4*R^2 -2*x[2]^4*r^2+R^4*x[2]^2 +x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2 +2*x[3]^4*R^2)^(1/2); return(c(c1,c2,c3)); } # mean curvature of a 3-d torus with outer radius R and inner radius r HTorus = function(x, r, R){ return( -(3*x[1]^4*r^4+4*x[2]^6*x[3]^2+4*x[1]^6*x[2]^2-3*x[2]^4*x[3]^2*R^2 -2*x[1]^6*R^2+4*x[1]^2*x[3]^6+x[3]^6*R^2+4*x[2]^4*R^2*r^2-x[1]^2*r^6 -x[2]^2*r^6+x[2]^4*R^4+4*x[2]^2*x[3]^2*R^4+6*x[2]^2*x[3]^2*r^4 -2*x[1]^2*R^2*r^4-x[1]^2*R^4*r^2-9*x[1]^4*x[2]^2*r^2 -9*x[1]^4*x[3]^2*r^2+4*x[1]^4*R^2*r^2+12*x[1]^2*x[3]^4*x[2]^2 -3*x[2]^6*r^2+4*x[1]^6*x[3]^2+3*x[3]^4*r^4-x[3]^4*R^4 -9*x[2]^4*x[3]^2*r^2+2*x[2]^2*x[3]^2*R^2*r^2+4*x[1]^2*x[2]^6 -6*x[1]^2*x[3]^2*x[2]^2*R^2-x[3]^2*r^6+6*x[2]^4*x[3]^4+x[3]^8 +x[1]^8+x[2]^8-3*x[1]^6*r^2+6*x[1]^4*x[3]^4+12*x[1]^2*x[3]^2*x[2]^4 -6*x[1]^2*x[2]^4*R^2-2*x[3]^4*R^2*r^2-2*x[2]^2*R^2*r^4-x[2]^2*R^4*r^2 -9*x[2]^2*x[3]^4*r^2+x[3]^2*R^2*r^4+x[3]^2*R^4*r^2-9*x[1]^2*x[2]^4*r^2 +2*x[1]^2*R^4*x[2]^2+6*x[1]^2*x[2]^2*r^4-3*x[1]^4*x[3]^2*R^2 -6*x[1]^4*x[2]^2*R^2+4*x[1]^2*x[3]^2*R^4+6*x[1]^2*x[3]^2*r^4 -9*x[1]^2*x[3]^4*r^2+8*x[1]^2*R^2*x[2]^2*r^2+2*x[1]^2*x[3]^2*R^2*r^2 +x[1]^4*R^4-3*x[3]^6*r^2-2*x[2]^6*R^2+6*x[1]^4*x[2]^4-x[3]^2*R^6 -18*x[1]^2*x[2]^2*x[3]^2*r^2+4*x[2]^2*x[3]^6+12*x[1]^4*x[3]^2*x[2]^2 +3*x[2]^4*r^4)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2+3*x[3]^4*x[1]^2 +6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6 +x[3]^6+3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2 -4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2 -2*x[1]^4*r^2+R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2 -2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(3/2)); } # calculate the cross product of the two 3-dim vectors # x and y. No argument-checking for performance reasons cross = function(x,y){ res = rep(0,3); res[1] = x[2]*y[3] - x[3]*y[2]; res[2] = -x[1]*y[3] + x[3]*y[1]; res[3] = x[1]*y[2] - x[2]*y[1]; return(res); } # calculate the inner product of two vectors of dim 3 # returns a number, not a 1x1-matrix! dot = function(x,y){ return(sum(x*y)); } # calculate the cross product of the two 3-dim vectors # x and y. No argument-checking for performance reasons cross = function(x,y){ res = rep(0,3); res[1] = x[2]*y[3] - x[3]*y[2]; res[2] = -x[1]*y[3] + x[3]*y[1]; res[3] = x[1]*y[2] - x[2]*y[1]; return(res); } ############# ### main-teil set.seed(280180) et=eulerTorus(c(3,0,0),3,5,19,10000) torus.write(et,steps=9000) # #bms=euler(c(1,0,0),4,70000) #euler.write(bms,steps=10000)
blender3d
The blender (python) code to create a image that looks almost like this one. Play around...
## import data from matlab-text-file and draw BM on the S^2 ## (c) 2007 by Christan Bayer and Thomas Steiner from Blender import Curve, Object, Scene, Window, BezTriple, Mesh, Material, Camera, World from math import * ##import der BM auf der Kugel aus einem csv-file def importcurve(inpath="Z.csv"): infile = open(inpath,'r') lines = infile.readlines() vec=[] for i in lines: li=i.split(',') vec.append([float(li[0]),float(li[1]),float(li[2].strip())]) infile.close() return(vec) ##function um aus einem vektor (mit den x,y,z Koordinaten) eine Kurve zu machen def vec2Cur(curPts,name="BMonSphere"): bztr=[] bztr.append(BezTriple.New(curPts[0])) bztr[0].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT) cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen cur.appendNurb(bztr[0]) for i in range(1,len(curPts)): bztr.append(BezTriple.New(curPts[i])) bztr[i].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT) cur[0].append(bztr[i]) return( cur ) #erzeugt einen kreis, der später die BM umgibt (liegt in y-z-Ebene) def circle(r,name="tubus"): bzcir=[] bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r)) bzcir[0].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen cur.appendNurb(bzcir[0]) #jetzt alle weietren pkte bzcir.append(BezTriple.New(0.,r,4./3.*r, 0.,r,0., 0.,r,-4./3.*r)) bzcir[1].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur[0].append(bzcir[1]) bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r)) bzcir[2].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur[0].append(bzcir[2]) return ( cur ) #erzeuge mit skript eine (glas)kugel (UVSphere) def sphGlass(r=1.0,name="Glaskugel",n=40,smooth=0): glass=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen for i in range(0,n): for j in range(0,n): x=sin(j*pi*2.0/(n-1))*cos(-pi/2.0+i*pi/(n-1))*1.0*r y=cos(j*pi*2.0/(n-1))*(cos(-pi/2.0+i*pi/(n-1)))*1.0*r z=sin(-pi/2.0+i*pi/(n-1))*1.0*r glass.verts.extend(x,y,z) for i in range(0,n-1): for j in range(0,n-1): glass.faces.extend([i*n+j,i*n+j+1,(i+1)*n+j+1,(i+1)*n+j]) glass.faces[i*(n-1)+j].smooth=1 return( glass ) def torus(r=0.3,R=1.4): krGro=circle(r=R,name="grTorusKreis") #jetzt das material ändern def verglasen(mesh): matGlass = Material.New("glas") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen #matGlass.setSpecShader(0.6) matGlass.setHardness(30) #für spec: 30 matGlass.setRayMirr(0.15) matGlass.setFresnelMirr(4.9) matGlass.setFresnelMirrFac(1.8) matGlass.setIOR(1.52) matGlass.setFresnelTrans(3.9) matGlass.setSpecTransp(2.7) #glass.materials.setSpecTransp(1.0) matGlass.rgbCol = [0.66, 0.81, 0.85] matGlass.mode |= Material.Modes.ZTRANSP matGlass.mode |= Material.Modes.RAYTRANSP #matGlass.mode |= Material.Modes.RAYMIRROR mesh.materials=[matGlass] return ( mesh ) def maleBM(mesh): matDraht = Material.New("roterDraht") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen matDraht.rgbCol = [1.0, 0.1, 0.1] mesh.materials=[matDraht] return( mesh ) #eine solide Mesh-Ebene (Quader) # auf der höhe ebh, dicke d, seitenlänge (quadratisch) 2*gr def ebene(ebh=-2.5,d=0.1,gr=6.0,name="Schattenebene"): quader=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen #obere ebene quader.verts.extend(gr,gr,ebh) quader.verts.extend(-gr,gr,ebh) quader.verts.extend(-gr,-gr,ebh) quader.verts.extend(gr,-gr,ebh) #untere ebene quader.verts.extend(gr,gr,ebh-d) quader.verts.extend(-gr,gr,ebh-d) quader.verts.extend(-gr,-gr,ebh-d) quader.verts.extend(gr,-gr,ebh-d) quader.faces.extend([0,1,2,3]) quader.faces.extend([0,4,5,1]) quader.faces.extend([1,5,6,2]) quader.faces.extend([2,6,7,3]) quader.faces.extend([3,7,4,0]) quader.faces.extend([4,7,6,5]) #die ebene einfärben matEb = Material.New("ebenen_material") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen matEb.rgbCol = [0.53, 0.51, 0.31] matEb.mode |= Material.Modes.TRANSPSHADOW matEb.mode |= Material.Modes.ZTRANSP quader.materials=[matEb] return (quader) ################### #### main-teil #### # wechsel in den edit-mode editmode = Window.EditMode() if editmode: Window.EditMode(0) dataBMS=importcurve("C:/Dokumente und Einstellungen/thire/Desktop/bmsphere/Z.csv") #dataBMS=importcurve("H:\MyDocs\sphere\Z.csv") BMScur=vec2Cur(dataBMS,"BMname") #dataStereo=importcurve("H:\MyDocs\sphere\stZ.csv") #stereoCur=vec2Cur(dataStereo,"SterName") cir=circle(r=0.01) glass=sphGlass() glass=verglasen(glass) ebe=ebene() #jetzt alles hinzufügen scn=Scene.GetCurrent() obBMScur=scn.objects.new(BMScur,"BMonSphere") obcir=scn.objects.new(cir,"round") obgla=scn.objects.new(glass,"Glaskugel") obebe=scn.objects.new(ebe,"Ebene") #obStereo=scn.objects.new(stereoCur,"StereoCurObj") BMScur.setBevOb(obcir) BMScur.update() BMScur=maleBM(BMScur) #stereoCur.setBevOb(obcir) #stereoCur.update() cam = Object.Get("Camera") #cam.setLocation(-5., 5.5, 2.9) #cam.setEuler(62.0,-1.,222.6) #alternativ, besser?? cam.setLocation(-3.3, 8.4, 1.7) cam.setEuler(74,0,200) world=World.GetCurrent() world.setZen([0.81,0.82,0.61]) world.setHor([0.77,0.85,0.66]) if editmode: Window.EditMode(1) # optional, zurück n den letzten modus #ergebnis von #set.seed(24112000) #sbm=euler(c(0,0,-1),T=1.5,n=5000) #euler.write(sbm)
Predmeti, prikazani v tej datoteki
motiv
avtorskopravno varovano<\/a>"}},"text\/plain":{"sl":{"P6216":"avtorskopravno varovano"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P6216 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 2.5 Nedolo\u010dena<\/a>"}},"text\/plain":{"sl":{"P275":"Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 2.5 Nedolo\u010dena"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P275 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
image/jpeg
na\u010din dolo\u010ditve<\/a>"}},"text\/plain":{"sl":{"":"na\u010din dolo\u010ditve"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":13414952,\"id\":\"Q13414952\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"sl":{"P459":"SHA-1<\/a>"}},"text\/plain":{"sl":{"P459":"SHA-1"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P4092 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
f51c8d9194ca77a5c2a7d77d21c292e592d5c6c5
10.693 bajt
356 piksel
365 piksel
Zgodovina datoteke
Kliknite datum in čas za ogled datoteke, ki je bila takrat naložena.
Datum in čas | Sličica | Velikost | Uporabnik | Komentar | |
---|---|---|---|---|---|
trenutno | 20:53, 22. december 2013 | 365 × 356 (10 KB) | Olli Niemitalo | Cropped (in a JPEG-lossless way) | |
23:53, 28. september 2007 | 783 × 588 (14 KB) | Thire | {{Information |Description = Brownian Motion on a Sphere |Source = read some papere ;) use the GNU R code and the python code (in blender3d) to create this image. |Date = summer 2007 (blender file as of ) |Author = Thomas Steiner |P |
Uporaba datoteke
Datoteka je del naslednje 1 strani slovenske Wikipedije (strani drugih projektov niso navedene):
Globalna uporaba datoteke
To datoteko uporabljajo tudi naslednji vikiji:
- Uporaba na als.wikipedia.org
- Uporaba na ar.wikipedia.org
- Uporaba na ast.wikipedia.org
- Uporaba na bn.wikipedia.org
- Uporaba na de.wikipedia.org
- Uporaba na en.wikipedia.org
- Uporaba na es.wikipedia.org
- Uporaba na fr.wikipedia.org
- Uporaba na hu.wikipedia.org
- Uporaba na hy.wikipedia.org
- Uporaba na kn.wikipedia.org
- Uporaba na lt.wikipedia.org
- Uporaba na ms.wikipedia.org
- Uporaba na pt.wikipedia.org
- Uporaba na ru.wikipedia.org
- Uporaba na sq.wikipedia.org
- Uporaba na sr.wikipedia.org
- Uporaba na uk.wikipedia.org
- Uporaba na www.wikidata.org
Pridobljeno iz »https://sl.wikipedia.org/wiki/Slika:BMonSphere.jpg«