Nothing Special   »   [go: up one dir, main page]

WO2024232593A1 - Method for preparing mono-tert-butyl-esterified saturated hydrocarbon, and cyclic preparation method therefor - Google Patents

Method for preparing mono-tert-butyl-esterified saturated hydrocarbon, and cyclic preparation method therefor Download PDF

Info

Publication number
WO2024232593A1
WO2024232593A1 PCT/KR2024/005933 KR2024005933W WO2024232593A1 WO 2024232593 A1 WO2024232593 A1 WO 2024232593A1 KR 2024005933 W KR2024005933 W KR 2024005933W WO 2024232593 A1 WO2024232593 A1 WO 2024232593A1
Authority
WO
WIPO (PCT)
Prior art keywords
tert
mono
saturated hydrocarbon
producing
butyl
Prior art date
Application number
PCT/KR2024/005933
Other languages
French (fr)
Korean (ko)
Inventor
김원섭
전재훈
전병만
엄인영
Original Assignee
주식회사 아미노로직스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아미노로직스 filed Critical 주식회사 아미노로직스
Publication of WO2024232593A1 publication Critical patent/WO2024232593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom

Definitions

  • the present invention relates to a method for producing a mono-tert-butyl esterified saturated hydrocarbon and a cyclic method for producing the same.
  • Semaglutide is a representative GLP-1 (glucagon-like peptide-1) analogue and is a medicine used for the treatment or prevention of diabetes.
  • Octadecanedioic acid-mono-tert-butyl-ester (C 22 H 42 O 4 ) is an intermediate for synthesizing semaglutide and is obtained by hydrolyzing di-tert-butyl-octadecanedioate (C 26 H 50 O 4 ).
  • 2011-0306551 discloses a hydrolysis reaction using N,N-dimethylformamide di-tert-butylacetal and toluene as a solvent at 95°C, but due to the high reaction temperature, a large amount of impurities are generated, low purity, and it is difficult to recover the filtrate, so the yield is low.
  • the hydrolysis reaction disclosed in the previous literature 'Giuseppe Bartoli et al., "Selective Deprotection of N-Boc-Protected tert-Butyl Ester Amino Acid by the CeCl 3 7H 2 O-NaI System in Acetonitrile", J. Org. Chem. 2001, 66, 4430', the solvent in which the desired product is difficult to dissolve is used, so the reaction proceeds at a high temperature, resulting in low yield and purity.
  • U.S. Patent No. 1,026,6578 discloses a method using DMAP, 2-Me-THF, t-BuOH, and Boc 2 O; a method using acetic anhydride, DMAP, and t-BuOH under an argon atmosphere; and a method using DMAP, Boc 2 O, and toluene as a solvent.
  • these methods have low purity due to the generation of a large amount of impurities due to the high reaction temperature, and the yield is low because it is difficult to recover the filtrate.
  • it is difficult to apply it to a commercial process because silica gel chromatography is performed to purify the obtained product.
  • 3,321,279 discloses a method using 1 equivalent each of DIC ( N,N′ -diisopropylcarbodiimide) and DMAP[4-(dimethylamino)pyridine]; and initiates a hydrolysis reaction using t-BuOH as a solvent, but is difficult to apply to a commercial process due to the column chromatography performed thereafter to purify the obtained product.
  • the present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon and a cyclic method for producing the same.
  • the first aspect of the present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising subjecting a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 to a hydrolysis reaction in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2, wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:
  • n is an integer greater than or equal to 1.
  • the second aspect of the present invention provides a cyclic method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising: performing a hydrolysis reaction of a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2 ; and performing the hydrolysis reaction in the presence of the catalyst on a filtrate of the hydrolysis reaction to additionally obtain a mono-tert-butyl esterified saturated hydrocarbon, at least once; wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:
  • n is an integer greater than or equal to 1.
  • the method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention is easy to process and can be performed under mild conditions compared to conventional methods.
  • the method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention does not produce impurities compared to conventional methods, so that a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.
  • the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the method for producing a mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.
  • the method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention can be applied to a commercial process.
  • the cyclic production method of a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention is economical because the mono-tert-butyl esterified saturated hydrocarbon can be additionally obtained by performing the same hydrolysis reaction on the filtrate after the hydrolysis reaction.
  • the cumulative crystallization yield of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclical production method of the mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present disclosure can be about 40% or more, about 50% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, or about 90% or more.
  • Figure 1 is a reaction scheme for a reaction of obtaining a mono-tert-butyl esterified saturated hydrocarbon by hydrolyzing a di-tert-butyl esterified saturated hydrocarbon in the presence of a zinc bromide catalyst, in one embodiment of the present invention, wherein n is an integer greater than or equal to 1.
  • step of ⁇ or “step of ⁇ ” as used throughout this specification do not mean “step for ⁇ .”
  • the term "combination(s) thereof" included in the expressions in the Makushi format means one or more mixtures or combinations selected from the group consisting of the components described in the Makushi format, and means including one or more selected from the group consisting of said components.
  • references to “A and/or B” mean “A or B, or A and B.”
  • the first aspect of the present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising subjecting a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 to a hydrolysis reaction in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2, wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:
  • n is an integer greater than or equal to 1.
  • n may be an integer from about 4 to about 22, but may not be limited thereto. In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, from about 4 to about 18, from about 4 to about 14, from about 4 to about 10, from about 4 to about 6, from about 8 to about 22, from about 8 to about 18, from about 8 to about 14, from about 8 to about 10, from about 12 to about 22, from about 12 to about 18, from about 12 to about 16, from about 12 to about 14, from about 14 to about 22, from about 14 to about 18, or from about 20 to about 22. In one embodiment of the present disclosure, n may be about 6 to about 18. In one embodiment of the present disclosure, n may be 14. In one embodiment of the present invention, n may be 16.
  • the hydrolysis reaction may be performed in an environment including a catalyst selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ); and water, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including zinc bromide (ZnBr 2 ) and water.
  • the hydrolysis reaction may be performed including a hydrate of zinc bromide (ZnBr 2 ), a hydrate of zinc chloride (ZnCl 2 ), or a hydrate of zinc iodide (ZnI 2 ), but may not be limited thereto.
  • ZnBr 2 zinc bromide
  • ZnCl 2 zinc chloride
  • ZnI 2 zinc iodide
  • the catalyst may be zinc bromide (ZnBr 2 ). In one embodiment of the present invention, the catalyst may be a hydrate of zinc bromide (as a non-limiting example, a dihydrate, ZnBr 2 2H 2 O).
  • the catalyst may be used in an amount of more than about 0.2 equivalents and less than about 1 equivalent, but may not be limited thereto. In one embodiment of the present invention, the catalyst is present in an amount of from about 0.2 equivalents to about 1 equivalent or less, from about 0.2 equivalents to about 0.9 equivalents or less, from about 0.2 equivalents to about 0.8 equivalents or less, from about 0.2 equivalents to about 0.7 equivalents or less, from about 0.2 equivalents to about 0.6 equivalents or less, from about 0.3 equivalents to about 1 equivalent or less, from about 0.3 equivalents to about 0.9 equivalents or less, from about 0.3 equivalents to about 0.8 equivalents or less, from about 0.3 equivalents to about 0.7 equivalents or less, from about 0.3 equivalents to about 0.6 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalents to about 0.9 equivalents or less, from about 0.4 equivalents to about 0.8 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalent
  • n 14
  • about 100 mg to about 200 mg of zinc bromide may be used based on 1 mmol of the compound represented by the chemical formula 2.
  • the reaction time may be shortened, but all of the di-tert-butyl-ester groups of the compound represented by the chemical formula 1 may be hydrolyzed.
  • the hydrolysis reaction may be performed at a temperature range of about 0°C to about 40°C, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is performed at a temperature of about 0°C to about 40°C, about 0°C to about 37°C, about 0°C to about 34°C, about 0°C to about 31°C, about 0°C to about 28°C, about 3°C to about 40°C, about 3°C to about 37°C, about 3°C to about 34°C, about 3°C to about 31°C, about 3°C to about 28°C, about 6°C to about 40°C, about 6°C to about 37°C, about 6°C to about 34°C, about 6°C to about 31°C, about 6°C to about 28°C, about 9°C to about 40°C, about 9°C to about 37°C, about 9°C to about 34°C, about 9°C to about 31°C, about
  • the hydrolysis reaction may be preferably performed at about 25° C.
  • the hydrolysis reaction may be performed for about 12 hours to about 36 hours, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is carried out for about 12 hours to about 36 hours, about 12 hours to about 34 hours, about 12 hours to about 32 hours, about 12 hours to about 30 hours, about 12 hours to about 28 hours, about 12 hours to about 26 hours, about 14 hours to about 36 hours, about 14 hours to about 34 hours, about 14 hours to about 32 hours, about 14 hours to about 30 hours, about 14 hours to about 28 hours, about 14 hours to about 26 hours, about 16 hours to about 36 hours, about 16 hours to about 34 hours, about 16 hours to about 32 hours, about 16 hours to about 30 hours, about 16 hours to about 28 hours, about 16 hours to about 26 hours, about 18 hours to about 36 hours, about It can be performed for about 18 hours to about 34 hours, about 18 hours to about 32 hours, about 18 hours to about 30 hours, about 18 hours to about 28 hours, about 18 hours to about 26 hours, about 20 hours to about 36 hours, about
  • the hydrolysis reaction when using about 0.5 equivalents of the catalyst, may be performed for about 12 hours to about 36 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be preferably performed for about 24 hours. In one embodiment of the present invention, when using about 1 equivalent of the catalyst, the hydrolysis reaction may be preferably performed for about 12 hours.
  • it may be performed under solution conditions including a solvent, but may not be limited thereto.
  • the solvent may be at least one selected from a hydrochloric organic solvent, an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent.
  • the hydrochloric organic solvent may be at least one selected from carbon tetrachloride, chloroform, dichloromethane, and dichloroethane.
  • the aliphatic hydrocarbon organic solvent may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the aromatic hydrocarbon solvent may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.
  • the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the toluene may be substituted or unsubstituted and may be selected from toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene, 1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene, or 1,2,4-triiodotoluene.
  • n-hexane may be substituted or unsubstituted and may be selected from n-hexane, 1-chlorohexane, 1-bromohexane, 1-iodohexane, 1,6-dichlorohexane, 1,6-dibromohexane, 1,6-diiodohexane, and 1-hydroxyhexane.
  • the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride. In one embodiment of the present invention, it may be preferable that the solvent is dichloromethane or chloroform.
  • a crystallization process may be additionally included after the hydrolysis reaction, but may not be limited thereto.
  • the solvent used in the crystallization process may be at least one selected from an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and an alcohol solvent.
  • the aliphatic hydrocarbon solvent used in the crystallization process may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the aromatic hydrocarbon solvent used in the crystallization process may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.
  • the alcohol solvent used in the crystallization process may be at least one selected from methanol, ethanol, iso-propyl alcohol, butanol, and octanol.
  • the solvent used in the crystallization process may be n-heptane.
  • the present invention may further include, but is not limited to, performing a concentration process and a filtration process after the hydrolysis reaction.
  • the mono-tert-butyl-esterified saturated hydrocarbon can be obtained as a solid compound using a conventional separation method.
  • the hydrolysis reaction is a reaction in which no impurities are generated, a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.
  • the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the method for producing the mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.
  • the method for producing the mono-tert-butyl esterified saturated hydrocarbon can be applied to a commercial process.
  • the second aspect of the present invention provides a cyclic method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising: performing a hydrolysis reaction of a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2 ; and performing the hydrolysis reaction in the presence of the catalyst on a filtrate of the hydrolysis reaction to additionally obtain a mono-tert-butyl esterified saturated hydrocarbon, at least once; wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:
  • n is an integer greater than or equal to 1.
  • n may be an integer from about 4 to about 22, but may not be limited thereto. In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, from about 4 to about 18, from about 4 to about 14, from about 4 to about 10, from about 4 to about 6, from about 8 to about 22, from about 8 to about 18, from about 8 to about 14, from about 8 to about 10, from about 12 to about 22, from about 12 to about 18, from about 12 to about 16, from about 12 to about 14, from about 14 to about 22, from about 14 to about 18, or from about 20 to about 22. In one embodiment of the present disclosure, n may be about 6 to about 18. In one embodiment of the present disclosure, n may be 14. In one embodiment of the present invention, n may be 16.
  • the hydrolysis reaction may be performed in an environment including a catalyst selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ); and water, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including zinc bromide (ZnBr 2 ) and water.
  • the hydrolysis reaction may be performed including a hydrate of zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ), but may not be limited thereto.
  • the catalyst may be zinc bromide (ZnBr 2 ). In one embodiment of the present invention, the catalyst may be a hydrate of zinc bromide (as a non-limiting example, a dihydrate, ZnBr 2 2H 2 O).
  • the catalyst may be used in an amount of more than about 0.2 equivalents and less than about 1 equivalent, but may not be limited thereto. In one embodiment of the present invention, the catalyst is present in an amount of from about 0.2 equivalents to about 1 equivalent or less, from about 0.2 equivalents to about 0.9 equivalents or less, from about 0.2 equivalents to about 0.8 equivalents or less, from about 0.2 equivalents to about 0.7 equivalents or less, from about 0.2 equivalents to about 0.6 equivalents or less, from about 0.3 equivalents to about 1 equivalent or less, from about 0.3 equivalents to about 0.9 equivalents or less, from about 0.3 equivalents to about 0.8 equivalents or less, from about 0.3 equivalents to about 0.7 equivalents or less, from about 0.3 equivalents to about 0.6 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalents to about 0.9 equivalents or less, from about 0.4 equivalents to about 0.8 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalent
  • n 14
  • about 100 mg to about 200 mg of zinc bromide may be used based on 1 mmol of the compound represented by the chemical formula 2.
  • the reaction time may be shortened, but all of the di-tert-butyl-ester groups of the compound represented by the chemical formula 1 may be hydrolyzed.
  • the hydrolysis reaction may be performed at a temperature range of about 0°C to about 40°C, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is performed at a temperature of about 0°C to about 40°C, about 0°C to about 37°C, about 0°C to about 34°C, about 0°C to about 31°C, about 0°C to about 28°C, about 3°C to about 40°C, about 3°C to about 37°C, about 3°C to about 34°C, about 3°C to about 31°C, about 3°C to about 28°C, about 6°C to about 40°C, about 6°C to about 37°C, about 6°C to about 34°C, about 6°C to about 31°C, about 6°C to about 28°C, about 9°C to about 40°C, about 9°C to about 37°C, about 9°C to about 34°C, about 9°C to about 31°C, about
  • the hydrolysis reaction may be preferably performed at about 25° C.
  • the hydrolysis reaction may be performed for about 12 hours to about 36 hours, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is carried out for about 12 hours to about 36 hours, about 12 hours to about 34 hours, about 12 hours to about 32 hours, about 12 hours to about 30 hours, about 12 hours to about 28 hours, about 12 hours to about 26 hours, about 14 hours to about 36 hours, about 14 hours to about 34 hours, about 14 hours to about 32 hours, about 14 hours to about 30 hours, about 14 hours to about 28 hours, about 14 hours to about 26 hours, about 16 hours to about 36 hours, about 16 hours to about 34 hours, about 16 hours to about 32 hours, about 16 hours to about 30 hours, about 16 hours to about 28 hours, about 16 hours to about 26 hours, about 18 hours to about 36 hours, about It can be performed for about 18 hours to about 34 hours, about 18 hours to about 32 hours, about 18 hours to about 30 hours, about 18 hours to about 28 hours, about 18 hours to about 26 hours, about 20 hours to about 36 hours, about
  • the hydrolysis reaction when using about 0.5 equivalents of the catalyst, may be performed for about 12 hours to about 36 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be preferably performed for about 24 hours. In one embodiment of the present invention, when using about 1 equivalent of the catalyst, the hydrolysis reaction may be preferably performed for about 12 hours.
  • it may be performed under solution conditions including a solvent, but may not be limited thereto.
  • the solvent may be at least one selected from a hydrochloric organic solvent, an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent.
  • the hydrochloric organic solvent may be at least one selected from carbon tetrachloride, chloroform, dichloromethane, and dichloroethane.
  • the aliphatic hydrocarbon organic solvent may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the aromatic hydrocarbon solvent may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.
  • the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the toluene may be substituted or unsubstituted and may be selected from toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene, 1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene, or 1,2,4-triiodotoluene.
  • n-hexane may be substituted or unsubstituted and may be selected from n-hexane, 1-chlorohexane, 1-bromohexane, 1-iodohexane, 1,6-dichlorohexane, 1,6-dibromohexane, 1,6-diiodohexane, and 1-hydroxyhexane.
  • the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride. In one embodiment of the present invention, it may be preferable that the solvent is dichloromethane or chloroform.
  • it may further include, but is not limited to, performing a crystallization process after the hydrolysis reaction.
  • the solvent used in the crystallization process may be at least one selected from an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and an alcohol solvent.
  • the aliphatic hydrocarbon solvent used in the crystallization process may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
  • the aromatic hydrocarbon solvent used in the crystallization process may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.
  • the alcohol solvent used in the crystallization process may be at least one selected from methanol, ethanol, iso-propyl alcohol, butanol, and octanol.
  • the solvent used in the crystallization process may be n-heptane.
  • the present invention may further include, but is not limited to, performing a concentration process and a filtration process after the hydrolysis reaction.
  • the mono-tert-butyl-esterified saturated hydrocarbon can be obtained as a solid compound using a conventional separation method.
  • the hydrolysis reaction is a reaction in which no impurities are generated, a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.
  • the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclic production method of the mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.
  • the cyclic production method of the mono-tert-butyl esterified saturated hydrocarbon can be applied to a commercial process.
  • the cumulative crystallization yield of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclical production method of the mono-tert-butyl esterified saturated hydrocarbon may be about 40% or more, about 50% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, or about 90% or more.
  • the conversion rate represents the HPLC area at the end of the reaction.
  • Example 1-1 Dichloromethane (dichloromethane) 48 99.5
  • Comparative Example 1-1 N,N-Dimethylformaldehyde (N,N-dimethylformaldehyde) 0 -
  • Comparative Example 1-2 Tetrahydrofuran (tetrahydrofuran) 0 - Comparative Example 1-3 Acetone (acetone) 0 - Comparative Example 1-4 Ethyl acetate (ethyl acetate) 0 -
  • Comparative Examples 1-1 to 1-4 were unsuitable as reaction solvents because hydrolysis into octadecanedioic acid-mono-tert-butyl ester did not occur.
  • Examples 1-1 and 1-2 showed a high conversion rate of about 40% or more compared to Comparative Examples 1-1 to 1-4, and it was confirmed that products with a purity of about 99% or more were obtained, thereby confirming their suitability as solvents.
  • the respective conversion rates were 39% and 26%, which were lower values than Examples 1-1 and 1-2.
  • chloride-based organic solvents aromatic hydrocarbon-based solvents, and aliphatic hydrocarbon-based solvents are suitable as solvents for hydrolysis reactions, while ketone-based solvents, amide-based solvents, ester-based solvents, and ether-based solvents are unsuitable.
  • the yield represents the actual mass% of octadecanedioic acid-mono-tert-butyl-ester obtained through the post-treatment process after the reaction is completed.
  • Examples 2-2, 2-3, and 2-4 showed relatively fast reactions compared to Example 2-1; however, in Example 2-3, the solution discolored during the reaction, and the product obtained was not decolorized. Examples 2-2 and 2-4 had relatively fast reaction rates, and if the analysis time during the reaction is long, a lot of by-products are generated, so the process risk is high compared to Example 2-1.
  • the conversion rate, yield, and purity of the product obtained in Example 2-1 were 48%, 45%, and 99.5%, respectively, confirming that the zinc bromide of Example 2-1 was the most suitable catalyst for the hydrolysis reaction.
  • ZnBr 2 was used in amounts of 0.2 mmol, 0.5 mmol, and 1.0 mmol, respectively, and the reaction was carried out for 12 hours, 24 hours, and 36 hours, respectively, for each amount of ZnBr 2 .
  • the reaction temperature was 25°C, and 3.1 mL of dichloromethane was used as a solvent.
  • the obtained octadecanedioic acid-mono-tert-butyl ester was analyzed by HPLC to measure the conversion rate and purity, which are shown in Table 3 below:
  • Example 3-1 0.5 12 34 99.4 30
  • Example 3-2 0.5 24 48 99.5 45
  • Example 3-3 0.5 36 35 92.5 28
  • Example 3-4 1.0 12 27 91.0 22
  • Comparative Example 3-1 0.2 12 12 95.0% or more 10
  • Comparative Example 3-2 0.2 24 17 95.0% or more 13
  • Comparative Example 3-3 0.2 36 20 95.0% or more 15
  • Examples 3-1 to 3-4 all showed a purity of 90% or higher, and among these, Example 3-2 showed the best hydrolysis activity with a conversion rate of 48% and a purity of 99.5%, whereas Comparative Examples 3-1 to 3-5 showed very low conversion rates of 20% or less. Accordingly, it was experimentally confirmed that the appropriate amount and reaction time of ZnBr 2 used in the hydrolysis reaction were 0.5 equivalents and 24 hours, respectively.
  • the HPLC analysis result showed that the ratio of the starting material (di-tert-butyl-octadecanedioate) of the hydrolysis reaction and the target product (octadecanedioic acid-mono-tert-butyl ester) in the filtrate was measured to be 95:5.
  • the mass of the filtrate was measured to be 55 g, and accordingly, the mass of the starting material contained in the filtrate was confirmed to be 52.3 g (0.123 mol).
  • Example 5-1 The hydrolysis reaction was performed on the filtrate of Example 5-1 in the same manner as in Example 4-3 to additionally obtain the target product (Example 5-2).
  • the hydrolysis reaction was performed in the same manner on the filtrate of Example 5-2 (Example 5-3), and the hydrolysis reaction was performed in the same manner on the filtrate of Example 5-3 (Example 5-4).
  • a recovery process of repeatedly performing the same hydrolysis reaction on the filtrate generated after each hydrolysis reaction was performed, and a total of four recovery processes were performed on the filtrate of Example 4-3.
  • the yields and purities of Example 4-3 and Examples 5-1 to 5-4 are as shown in Table 5 below:
  • Example 6-1 16-(tert-butoxy)-16-oxohexadecanoic acid (CAS No. 843666-27-3) 89 99.3% to 99.9% D 1.25(m, 20 H); 1.44(s, 8 H); 1.59(m, 4H), 2.27(m, 4H)
  • Example 6-2 13 17-(tert-butoxy)-17-oxoheptadecanoic acid (CAS No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present application relates to a method for preparing a mono-tert-butyl-esterified saturated hydrocarbon, and a cyclic preparation method therefor. The method for preparing a mono-tert-butyl-esterified saturated hydrocarbon, according to embodiments of the present application, comprises processes that are easier than those of a conventional method and can be carried out under a mild condition. Unlike a conventional method, the method for preparing a mono-tert-butyl-esterified saturated hydrocarbon, according to embodiments of the present application does not generate impurities, and thus enables a mono-tert-butyl-esterified saturated hydrocarbon to be readily isolated and obtained.

Description

모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법 및 이의 순환적 제조방법Method for producing mono-tert-butyl esterified saturated hydrocarbon and cyclical method for producing the same

본원은 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법 및 이의 순환적 제조방법에 관한 것이다.The present invention relates to a method for producing a mono-tert-butyl esterified saturated hydrocarbon and a cyclic method for producing the same.

세마글루타이드(semaglutide)는 대표적인 GLP-1(글루카곤유사펩티드-1) 유사체로서, 당뇨병의 치료 또는 예방에 사용되는 의약품이다. 옥타데칸다이오익애시드-모노-터트-부틸-에스터(octadecanedioic acid-mono-tert-butyl-ester; C22H42O4)는 세마글루타이드를 합성하기 위한 중간체로서, 디-터트-부틸-옥타데칸다이오에이트(di-tert-butyl-octadecanedioate; C26H50O4)를 가수분해하여 수득된다.Semaglutide is a representative GLP-1 (glucagon-like peptide-1) analogue and is a medicine used for the treatment or prevention of diabetes. Octadecanedioic acid-mono-tert-butyl-ester (C 22 H 42 O 4 ) is an intermediate for synthesizing semaglutide and is obtained by hydrolyzing di-tert-butyl-octadecanedioate (C 26 H 50 O 4 ).

디-터트-부틸-에스터화된 포화 탄화수소(di-tert-butyl-esterified saturated hydrocarbons)의 가수분해 방법은 다양하게 알려져 있으나, 목적 생성물의 낮은 수율, 부성분 생성으로 인한 낮은 순도, 고온의 반응 온도 등의 한계가 존재한다. Various methods for hydrolysis of di-tert-butyl-esterified saturated hydrocarbons are known, but there are limitations such as low yield of the desired product, low purity due to formation of by-products, and high reaction temperature.

선행문헌 'J. S. Yadav et al., "Montmorillonite Clay: A Novel Reagent for the Chemoselective Hydrolysis of t-Butyl Esters", Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500 007, India, 826-828'은 KSF 클레이를 촉매로서 사용한 가수분해 반응을 개시하고 있으나, KSF 클레이의 사용량과 무관하게 디-터트-부틸 에스터기가 모두 가수분해 되어 목적 생성물을 합성하기 어렵다는 단점이 있다.A previous literature, 'J. S. Yadav et al., "Montmorillonite Clay: A Novel Reagent for the Chemoselective Hydrolysis of t-Butyl Esters", Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500 007, India, 826-828', discloses a hydrolysis reaction using KSF clay as a catalyst. However, regardless of the amount of KSF clay used, all di-tert-butyl ester groups are hydrolyzed, making it difficult to synthesize the desired product.

선행문헌 'Vassiliki Theodorou et al., "Mild alkaline hydrolysis of hindered esters in non-aqueous solution", Arkivoc 2018, part vii, 308-309'는 강염기를 사용하는 가수분해 반응을 개시하나, 목적 생성물이 소듐염으로서 석출되어 반응이 진행되는 것을 방해한다. 또한, 반응 완료 후, 반응 용액이 슬러리상이 되어 목적 생성물의 분리가 어려우며, 반응시간이 길고, 순도 및 전환율이 낮다는 단점이 있다. 미국공개특허 제2011-0306551호는 N,N-디메틸포름아마이드 디-터트-부틸아세탈(N,N-dimethylformamide di-tert-butylacetal) 및 용매로서 톨루엔을 사용하여 95℃에서 반응시키는 가수분해 반응을 개시하나, 고온의 반응온도로 인하여 다량의 불순물이 생성되어 순도가 낮으며, 여액을 회수하기 어려우므로 수율이 낮다. 선행 문헌 'Giuseppe Bartoli et al., "Selective Deprotection of N-Boc-Protected tert-Butyl Ester Amino Acid by the CeCl7H2O-NaI System in Acetonitrile", J. Org. Chem. 2001, 66, 4430'에서 개시하는 가수분해 반응의 용매는 목적 생성물이 용해되기 어려우므로 고온에서 반응이 진행되며, 이로 인하여 수율 및 순도가 낮다.Prior literature, 'Vassiliki Theodorou et al., "Mild alkaline hydrolysis of hindered esters in non-aqueous solution", Arkivoc 2018, part vii, 308-309', discloses a hydrolysis reaction using a strong base, but the target product is precipitated as a sodium salt, which hinders the progress of the reaction. In addition, after the completion of the reaction, the reaction solution becomes a slurry, making it difficult to isolate the target product, and there are disadvantages such as a long reaction time, low purity, and low conversion rate. US Patent Publication No. 2011-0306551 discloses a hydrolysis reaction using N,N-dimethylformamide di-tert-butylacetal and toluene as a solvent at 95°C, but due to the high reaction temperature, a large amount of impurities are generated, low purity, and it is difficult to recover the filtrate, so the yield is low. In the hydrolysis reaction disclosed in the previous literature, 'Giuseppe Bartoli et al., "Selective Deprotection of N-Boc-Protected tert-Butyl Ester Amino Acid by the CeCl 3 7H 2 O-NaI System in Acetonitrile", J. Org. Chem. 2001, 66, 4430', the solvent in which the desired product is difficult to dissolve is used, so the reaction proceeds at a high temperature, resulting in low yield and purity.

미국등록특허 제10266578호는 DMAP, 2-Me-THF, t-BuOH, 및 Boc2O를 사용하는 방법; 아르곤 분위기 하에서 아세틱 안하이드라이드(acetic anhydride), DMAP, 및 t-BuOH를 사용하는 방법; 및 DMAP, Boc2O, 및 용매로서 톨루엔을 사용하는 방법을 개시하고 있다. 그러나, 상기 방법들은 고온의 반응 온도로 인하여 다량의 불순물이 생성되어 순도가 낮으며, 여액을 회수하기 어려우므로 수율이 낮다. 또한, 수득한 생성물을 정제하기 위하여 실리카겔 크로마토그래피를 수행하기 때문에 상업적 공정에 적용하기 어렵다. 유럽등록특허 제3321279호는 각각 1 당량의 DIC(N,N′-diisopropylcarbodiimide) 및 DMAP[4-(dimethylamino)pyridine]; 및 용매로서 t-BuOH을 사용하는 가수분해 반응을 개시하나, 이후 수득물을 정제하기 위하여 수행되는 컬럼 크로마토그래피(column chromatography)로 인하여, 상업적 공정에 적용하기 어렵다.U.S. Patent No. 1,026,6578 discloses a method using DMAP, 2-Me-THF, t-BuOH, and Boc 2 O; a method using acetic anhydride, DMAP, and t-BuOH under an argon atmosphere; and a method using DMAP, Boc 2 O, and toluene as a solvent. However, these methods have low purity due to the generation of a large amount of impurities due to the high reaction temperature, and the yield is low because it is difficult to recover the filtrate. In addition, it is difficult to apply it to a commercial process because silica gel chromatography is performed to purify the obtained product. European Patent No. 3,321,279 discloses a method using 1 equivalent each of DIC ( N,N′ -diisopropylcarbodiimide) and DMAP[4-(dimethylamino)pyridine]; and initiates a hydrolysis reaction using t-BuOH as a solvent, but is difficult to apply to a commercial process due to the column chromatography performed thereafter to purify the obtained product.

따라서, 온화한 반응 조건에서 수행되며, 산업화에 적용 가능하며, 고수율 및 고순도의 옥타데칸다이오익애시드-모노-터트-부틸-에스터를 제조하는 방법에 관한 연구가 필요한 실정이다.Therefore, there is a need for research on a method for producing octadecanedioic acid-mono-tert-butyl-ester in high yield and high purity, which is performed under mild reaction conditions, is applicable to industrialization, and is applicable to industrialization.

본원은 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법 및 이의 순환적 제조방법을 제공하고자 한다.The present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon and a cyclic method for producing the same.

그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems that the present invention seeks to solve are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

본원의 제 1 측면은, 하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하는 것을 포함하며, 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법을 제공한다:The first aspect of the present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising subjecting a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 to a hydrolysis reaction in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2, wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000001
;
Figure PCTKR2024005933-appb-img-000001
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000002
;
Figure PCTKR2024005933-appb-img-000002
;

상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2,

n은 1 이상의 정수임.n is an integer greater than or equal to 1.

본원의 제 2 측면은, 하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하고, 상기 가수분해 반응의 여액에 대하여 상기 촉매 하에서 상기 가수분해 반응을 수행하여 모노-터트-부틸 에스터화된 포화 탄화수소를 추가적으로 수득하는 것을 1 회 이상 수행하는 것을 포함하며, 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법을 제공한다:The second aspect of the present invention provides a cyclic method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising: performing a hydrolysis reaction of a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2 ; and performing the hydrolysis reaction in the presence of the catalyst on a filtrate of the hydrolysis reaction to additionally obtain a mono-tert-butyl esterified saturated hydrocarbon, at least once; wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000003
;
Figure PCTKR2024005933-appb-img-000003
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000004
;
Figure PCTKR2024005933-appb-img-000004
;

상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2,

n은 1 이상의 정수임.n is an integer greater than or equal to 1.

본원의 구현예들에 따른 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법은 종래의 방법과 비교하여 공정이 용이하며 온화한 조건에서 수행될 수 있다.The method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention is easy to process and can be performed under mild conditions compared to conventional methods.

본원의 구현예들에 따른 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법은 종래의 방법과 비교하여 불순물이 생성되지 않으므로, 모노-터트-부틸 에스터화된 포화 탄화수소를 용이하게 분리하여 수득할 수 있다.The method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention does not produce impurities compared to conventional methods, so that a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.

본원의 일 구현예에 있어서, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법으로 수득되는 모노-터트-부틸 에스터화된 포화 탄화수소의 순도는 약 90% 이상, 약 95% 이상, 약 98% 이상, 또는 약 99% 이상일 수 있다.In one embodiment of the present invention, the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the method for producing a mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.

본원의 구현예들에 따른 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법은 상업적 공정에 적용될 수 있다.The method for producing a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention can be applied to a commercial process.

본원의 구현예들에 따른 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법은 가수분해 반응 이후의 여액에 동일한 가수분해 반응을 수행하여, 모노-터트-부틸 에스터화된 포화 탄화수소를 추가적으로 수득할 수 있으므로, 경제적이다.The cyclic production method of a mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present invention is economical because the mono-tert-butyl esterified saturated hydrocarbon can be additionally obtained by performing the same hydrolysis reaction on the filtrate after the hydrolysis reaction.

본원의 구현예들에 따른 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법으로 수득된 모노-터트-부틸 에스터화된 포화 탄화수소의 누적 결정화 수율은 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 또는 약 90% 이상일 수 있다.The cumulative crystallization yield of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclical production method of the mono-tert-butyl esterified saturated hydrocarbon according to the embodiments of the present disclosure can be about 40% or more, about 50% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, or about 90% or more.

도 1은, 본원의 일 실시예에 있어서, 디-터트-부틸 에스터화된 포화 탄화수소를 브롬화아연 촉매 하에서 가수분해 반응시켜 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하는 반응의 반응식이며, 여기서 n은 1 이상의 정수이다.Figure 1 is a reaction scheme for a reaction of obtaining a mono-tert-butyl esterified saturated hydrocarbon by hydrolyzing a di-tert-butyl esterified saturated hydrocarbon in the presence of a zinc bromide catalyst, in one embodiment of the present invention, wherein n is an integer greater than or equal to 1.

이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the attached drawings, the implementation examples and embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. However, the present invention may be implemented in various different forms and is not limited to the implementation examples and embodiments described herein. In addition, in order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are assigned similar drawing reference numerals throughout the specification.

본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a part is said to be "connected" to another part, this includes not only the case where it is "directly connected" but also the case where it is "electrically connected" with another element in between.

본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when it is said that an element is "on" another element, this includes not only cases where the element is in contact with the other element, but also cases where there is another element between the two elements.

본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, whenever a part is said to "include" a component, this does not mean that it excludes other components, but rather that it may include other components, unless otherwise specifically stated.

본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. The terms “about,” “substantially,” and the like, as used in this specification, are used in a meaning that is at or close to the numerical value when manufacturing and material tolerances inherent in the meanings mentioned are presented, and are used to prevent unscrupulous infringers from unfairly utilizing the disclosure in which exact or absolute values are mentioned to aid the understanding of the present application.

본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.The terms “step of ~” or “step of ~” as used throughout this specification do not mean “step for ~.”

본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination(s) thereof" included in the expressions in the Makushi format means one or more mixtures or combinations selected from the group consisting of the components described in the Makushi format, and means including one or more selected from the group consisting of said components.

본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, references to “A and/or B” mean “A or B, or A and B.”

이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Below, the implementation examples of the present invention are described in detail, but the present invention may not be limited thereto.

본원의 제 1 측면은, 하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하는 것을 포함하며, 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법을 제공한다:The first aspect of the present invention provides a method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising subjecting a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 to a hydrolysis reaction in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2, wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000005
;
Figure PCTKR2024005933-appb-img-000005
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000006
;
Figure PCTKR2024005933-appb-img-000006
;

상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2,

n은 1 이상의 정수임.n is an integer greater than or equal to 1.

본원의 일 구현예에 있어서, 상기 n은 약 4 내지 약 22의 정수일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 n은 약 4 내지 약 22, 약 4 내지 약 18, 약 4 내지 약 14, 약 4 내지 약 10, 약 4 내지 약 6, 약 8 내지 약 22, 약 8 내지 약 18, 약 8 내지 약 14, 약 8 내지 약 10, 약 12 내지 약 22, 약 12 내지 약 18, 약 12 내지 약 16, 약 12 내지 약 14, 약 14 내지 약 22, 약 14 내지 약 18, 또는 약 20 내지 약 22의 정수일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 약 6 내지 약 18일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 14일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 16일 수 있다.In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, but may not be limited thereto. In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, from about 4 to about 18, from about 4 to about 14, from about 4 to about 10, from about 4 to about 6, from about 8 to about 22, from about 8 to about 18, from about 8 to about 14, from about 8 to about 10, from about 12 to about 22, from about 12 to about 18, from about 12 to about 16, from about 12 to about 14, from about 14 to about 22, from about 14 to about 18, or from about 20 to about 22. In one embodiment of the present disclosure, n may be about 6 to about 18. In one embodiment of the present disclosure, n may be 14. In one embodiment of the present invention, n may be 16.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2), 염화아연(ZnCl2), 또는 요오드화아연(ZnI2)에서 선택되는 촉매; 및 물을 포함하는 환경에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2) 및 물을 포함하는 환경에서 수행되는 것일 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including a catalyst selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ); and water, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including zinc bromide (ZnBr 2 ) and water.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2)의 수화물, 염화아연(ZnCl2)의 수화물, 또는 요오드화아연(ZnI2)의 수화물을 포함하여 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed including a hydrate of zinc bromide (ZnBr 2 ), a hydrate of zinc chloride (ZnCl 2 ), or a hydrate of zinc iodide (ZnI 2 ), but may not be limited thereto.

본원의 일 구현예에 있어서, 상기 촉매는 브롬화아연(ZnBr2)일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 브롬화아연의 수화물 (비제한적 예로서, 2수화물, ZnBr2H2O)일 수 있다.In one embodiment of the present invention, the catalyst may be zinc bromide (ZnBr 2 ). In one embodiment of the present invention, the catalyst may be a hydrate of zinc bromide (as a non-limiting example, a dihydrate, ZnBr 2 2H 2 O).

본원의 일 구현예에 있어서, 상기 촉매는 약 0.2 당량 초과 내지 약 1 당량 이하로 사용되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 약 0.2 당량 초과 내지 약 1 당량 이하, 약 0.2 당량 초과 내지 약 0.9 당량 이하, 약 0.2 당량 초과 내지 약 0.8 당량 이하, 약 0.2 당량 초과 내지 약 0.7 당량 이하, 약 0.2 당량 초과 내지 약 0.6 당량 이하, 약 0.3 당량 내지 약 1 당량 이하, 약 0.3 당량 내지 약 0.9 당량 이하, 약 0.3 당량 내지 약 0.8 당량 이하, 약 0.3 당량 내지 약 0.7 당량 이하, 약 0.3 당량 내지 약 0.6 당량 이하, 약 0.4 당량 내지 약 1 당량 이하, 약 0.4 당량 내지 약 0.9 당량 이하, 약 0.4 당량 내지 약 0.8 당량 이하, 약 0.4 당량 내지 약 0.7 당량 이하, 또는 약 0.4 당량 내지 약 0.6 당량 이하로 사용되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 약 0.5 당량으로 사용되는 것이 바람직할 수 있다.In one embodiment of the present invention, the catalyst may be used in an amount of more than about 0.2 equivalents and less than about 1 equivalent, but may not be limited thereto. In one embodiment of the present invention, the catalyst is present in an amount of from about 0.2 equivalents to about 1 equivalent or less, from about 0.2 equivalents to about 0.9 equivalents or less, from about 0.2 equivalents to about 0.8 equivalents or less, from about 0.2 equivalents to about 0.7 equivalents or less, from about 0.2 equivalents to about 0.6 equivalents or less, from about 0.3 equivalents to about 1 equivalent or less, from about 0.3 equivalents to about 0.9 equivalents or less, from about 0.3 equivalents to about 0.8 equivalents or less, from about 0.3 equivalents to about 0.7 equivalents or less, from about 0.3 equivalents to about 0.6 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalents to about 0.9 equivalents or less, from about 0.4 equivalents to about 0.8 equivalents or less, from about 0.4 equivalents to about It may be used in an amount of 0.7 equivalents or less, or from about 0.4 equivalents to about 0.6 equivalents or less. In one embodiment of the present invention, it may be preferable that the catalyst is used in an amount of about 0.5 equivalents.

본원의 일 구현예에 있어서, 상기 n이 14인 경우, 상기 화학식 2로서 표시되는 화합물 1 mmol을 기준으로 약 100 mg 내지 약 200 mg의 브롬화아연이 사용되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 브롬화아연을 증량시키는 경우 반응시간이 단축될 수 있으나, 상기 화학식 1로서 표시되는 화합물의 디-터트-부틸-에스터기가 모두 가수분해될 수 있다.In one embodiment of the present invention, when n is 14, about 100 mg to about 200 mg of zinc bromide may be used based on 1 mmol of the compound represented by the chemical formula 2. In one embodiment of the present invention, when the amount of zinc bromide is increased, the reaction time may be shortened, but all of the di-tert-butyl-ester groups of the compound represented by the chemical formula 1 may be hydrolyzed.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 0℃ 내지 약 40℃의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 0℃ 내지 약 40℃, 약 0℃ 내지 약 37℃, 약 0℃ 내지 약 34℃, 약 0℃ 내지 약 31℃, 약 0℃ 내지 약 28℃, 약 3℃ 내지 약 40℃, 약 3℃ 내지 약 37℃, 약 3℃ 내지 약 34℃, 약 3℃ 내지 약 31℃, 약 3℃ 내지 약 28℃, 약 6℃ 내지 약 40℃, 약 6℃ 내지 약 37℃, 약 6℃ 내지 약 34℃, 약 6℃ 내지 약 31℃, 약 6℃ 내지 약 28℃, 약 9℃ 내지 약 40℃, 약 9℃ 내지 약 37℃, 약 9℃ 내지 약 34℃, 약 9℃ 내지 약 31℃, 약 9℃ 내지 약 28℃, 약 12℃ 내지 약 40℃, 약 12℃ 내지 약 37℃, 약 12℃ 내지 약 34℃, 약 12℃ 내지 약 31℃, 약 12℃ 내지 약 28℃, 약 15℃ 내지 약 40℃, 약 15℃ 내지 약 37℃, 약 15℃ 내지 약 34℃, 약 15℃ 내지 약 31℃, 약 15℃ 내지 약 28℃, 약 18℃ 내지 약 40℃, 약 18℃ 내지 약 37℃, 약 18℃ 내지 약 34℃, 약 18℃ 내지 약 31℃, 약 18℃ 내지 약 28℃, 약 21℃ 내지 약 40℃, 약 21℃ 내지 약 37℃, 약 21℃ 내지 약 34℃, 약 21℃ 내지 약 31℃, 약 21℃ 내지 약 28℃, 약 24℃ 내지 약 40℃, 약 24℃ 내지 약 37℃, 약 24℃ 내지 약 34℃, 약 24℃ 내지 약 31℃, 또는 약 24℃ 내지 약 28℃의 온도 범위에서 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 25℃에서 수행되는 것이 바람직할 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed at a temperature range of about 0°C to about 40°C, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is performed at a temperature of about 0°C to about 40°C, about 0°C to about 37°C, about 0°C to about 34°C, about 0°C to about 31°C, about 0°C to about 28°C, about 3°C to about 40°C, about 3°C to about 37°C, about 3°C to about 34°C, about 3°C to about 31°C, about 3°C to about 28°C, about 6°C to about 40°C, about 6°C to about 37°C, about 6°C to about 34°C, about 6°C to about 31°C, about 6°C to about 28°C, about 9°C to about 40°C, about 9°C to about 37°C, about 9°C to about 34°C, about 9°C to about 31°C, about 9°C to about 28°C, about 12°C to about 40°C, about 12°C to about 37°C, about 12°C to about 34°C, about 12°C to about 31°C, about 12°C to about 28°C, about 15°C to about 40°C, about 15°C to about 37°C, about 15°C to about 34°C, about 15°C to about 31°C, about 15°C to about 28°C, about 18°C to about 40°C, about 18°C to about 37°C, about 18°C to about 34°C, about 18°C to about 31°C, about 18°C to about 28°C, about 21°C to about 40°C, about 21°C to about 37°C, about 21°C to about 34°C, about 21°C to about 31°C, about 21°C to about 28°C, about 24°C to about 40°C, about It may be performed at a temperature range of from about 24° C. to about 37° C., from about 24° C. to about 34° C., from about 24° C. to about 31° C., or from about 24° C. to about 28° C. In one embodiment of the present disclosure, the hydrolysis reaction may be preferably performed at about 25° C.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간 동안 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간, 약 12 시간 내지 약 34 시간, 약 12 시간 내지 약 32 시간, 약 12 시간 내지 약 30 시간, 약 12 시간 내지 약 28 시간, 약 12 시간 내지 약 26 시간, 약 14 시간 내지 약 36 시간, 약 14 시간 내지 약 34 시간, 약 14 시간 내지 약 32 시간, 약 14 시간 내지 약 30 시간, 약 14 시간 내지 약 28 시간, 약 14 시간 내지 약 26 시간, 약 16 시간 내지 약 36 시간, 약 16 시간 내지 약 34 시간, 약 16 시간 내지 약 32 시간, 약 16 시간 내지 약 30 시간, 약 16 시간 내지 약 28 시간, 약 16 시간 내지 약 26 시간, 약 18 시간 내지 약 36 시간, 약 18 시간 내지 약 34 시간, 약 18 시간 내지 약 32 시간, 약 18 시간 내지 약 30 시간, 약 18 시간 내지 약 28 시간, 약 18 시간 내지 약 26 시간, 약 20 시간 내지 약 36 시간, 약 20 시간 내지 약 34 시간, 약 20 시간 내지 약 32 시간, 약 20 시간 내지 약 30 시간, 약 20 시간 내지 약 28 시간, 약 20 시간 내지 약 26 시간, 약 22 시간 내지 약 36 시간, 약 22 시간 내지 약 34 시간, 약 22 시간 내지 약 32 시간, 약 22 시간 내지 약 30 시간, 약 22 시간 내지 약 28 시간, 또는 약 22 시간 내지 약 26 시간 동안 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 0.5 당량 사용하는 경우, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간 동안 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 0.5 당량 사용하는 경우, 상기 가수분해 반응은 약 24 시간 동안 수행되는 것이 바람직할 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 1 당량 사용하는 경우, 상기 가수분해 반응은 약 12 시간 동안 수행되는 것이 바람직할 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed for about 12 hours to about 36 hours, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is carried out for about 12 hours to about 36 hours, about 12 hours to about 34 hours, about 12 hours to about 32 hours, about 12 hours to about 30 hours, about 12 hours to about 28 hours, about 12 hours to about 26 hours, about 14 hours to about 36 hours, about 14 hours to about 34 hours, about 14 hours to about 32 hours, about 14 hours to about 30 hours, about 14 hours to about 28 hours, about 14 hours to about 26 hours, about 16 hours to about 36 hours, about 16 hours to about 34 hours, about 16 hours to about 32 hours, about 16 hours to about 30 hours, about 16 hours to about 28 hours, about 16 hours to about 26 hours, about 18 hours to about 36 hours, about It can be performed for about 18 hours to about 34 hours, about 18 hours to about 32 hours, about 18 hours to about 30 hours, about 18 hours to about 28 hours, about 18 hours to about 26 hours, about 20 hours to about 36 hours, about 20 hours to about 34 hours, about 20 hours to about 32 hours, about 20 hours to about 30 hours, about 20 hours to about 28 hours, about 20 hours to about 26 hours, about 22 hours to about 36 hours, about 22 hours to about 34 hours, about 22 hours to about 32 hours, about 22 hours to about 30 hours, about 22 hours to about 28 hours, or about 22 hours to about 26 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be performed for about 12 hours to about 36 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be preferably performed for about 24 hours. In one embodiment of the present invention, when using about 1 equivalent of the catalyst, the hydrolysis reaction may be preferably performed for about 12 hours.

본원의 일 구현예에 있어서, 용매를 포함하는 용액 조건에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, it may be performed under solution conditions including a solvent, but may not be limited thereto.

본원의 일 구현예에 있어서, 상기 용매는 염화수소계 유기용매, 지방족 탄화수소계 용매 및 방향족 탄화수소계 용매에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the solvent may be at least one selected from a hydrochloric organic solvent, an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent.

본원의 일 구현예에 있어서, 상기 염화수소계 유기용매는 사염화탄소, 클로로포름, 디클로로메탄, 및 디클로로에탄에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the hydrochloric organic solvent may be at least one selected from carbon tetrachloride, chloroform, dichloromethane, and dichloroethane.

본원의 일 구현예에 있어서, 상기 지방족 탄화수소계 유기용매는 n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aliphatic hydrocarbon organic solvent may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.

본원의 일 구현예에 있어서, 상기 방향족 탄화수소계 용매는 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, 및 n-아밀나프탈렌에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aromatic hydrocarbon solvent may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.

본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, n-아밀나프탈렌, n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다. 여기서, 상기 톨루엔은 치환 또는 비치환된 것으로서, 톨루엔, 플루오로톨루엔, 1,2-디플루오로톨루엔, 1,3-디플루오로톨루엔, 1,4-디플루오로톨루엔, 트리플루오로톨루엔, 1,2,4-트리플루오로톨루엔, 클로로톨루엔, 1,2-디클로로톨루엔, 1,3-디클로로톨루엔, 1,4-디클로로톨루엔, 1,2,4-트리클로로톨루엔, 아이오도톨루엔, 1,2-디아이오도톨루엔, 1,3-디아이오도톨루엔, 1,4-디아이오도톨루엔, 또는 1,2,4-트리아이오도톨루엔에서 선택되는 것일 수 있다. 여기서, 상기 n-헥산은 치환 또는 비치환된 것으로서, n-헥산, 1-클로로헥산, 1-브로모헥산, 1-아이오도헥산, 1,6-디클로로헥산, 1,6-디브로모헥산, 1,6-디 아이오도헥산, 및 1-하이드록시헥산에서 선택되는 것일 수 있다.In one embodiment of the present invention, the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane. Here, the toluene may be substituted or unsubstituted and may be selected from toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene, 1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene, or 1,2,4-triiodotoluene. Here, the n-hexane may be substituted or unsubstituted and may be selected from n-hexane, 1-chlorohexane, 1-bromohexane, 1-iodohexane, 1,6-dichlorohexane, 1,6-dibromohexane, 1,6-diiodohexane, and 1-hydroxyhexane.

본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 및 사염화탄소에서 선택되는 하나 이상인 것일 수 있다. 본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄 또는 클로로포름인 것이 바람직할 수 있다In one embodiment of the present invention, the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride. In one embodiment of the present invention, it may be preferable that the solvent is dichloromethane or chloroform.

본원의 일 구현예에 있어서, 상기 가수분해 반응 이후 결정화 공정을 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, a crystallization process may be additionally included after the hydrolysis reaction, but may not be limited thereto.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 용매는 지방족 탄화수소계 용매, 방향족 탄화수소계 용매, 및 알코올계 용매에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the solvent used in the crystallization process may be at least one selected from an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and an alcohol solvent.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 지방족 탄화수소계 용매는 n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aliphatic hydrocarbon solvent used in the crystallization process may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 방향족 탄화수소계 용매는 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, 및 n-아밀나프탈렌에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aromatic hydrocarbon solvent used in the crystallization process may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 알코올계 용매는 메탄올, 에탄올, iso-프로필 알코올, 부탄올, 및 옥탄올에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the alcohol solvent used in the crystallization process may be at least one selected from methanol, ethanol, iso-propyl alcohol, butanol, and octanol.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 용매는 n-헵탄인 것일 수 있다.In one embodiment of the present invention, the solvent used in the crystallization process may be n-heptane.

본원의 일 구현예에 있어서, 상기 가수분해 반응 이후 농축 공정 및 여과 공정이 수행되는 것을 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응 이후, 모노-터트-부틸-에스터화된 포화 탄화수소는 통상의 분리 방법을 사용하여 고체 화합물로서 수득될 수 있다.In one embodiment of the present invention, it may further include, but is not limited to, performing a concentration process and a filtration process after the hydrolysis reaction. In one embodiment of the present invention, after the hydrolysis reaction, the mono-tert-butyl-esterified saturated hydrocarbon can be obtained as a solid compound using a conventional separation method.

본원의 구현예에 있어서, 상기 가수분해 반응은 불순물이 생성되지 않는 반응이므로, 모노-터트-부틸 에스터화된 포화 탄화수소를 용이하게 분리하여 수득할 수 있다.In the embodiment of the present invention, since the hydrolysis reaction is a reaction in which no impurities are generated, a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.

본원의 일 구현예에 있어서, 상기 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법으로 수득되는 모노-터트-부틸 에스터화된 포화 탄화수소의 순도는 약 90% 이상, 약 95% 이상, 약 98% 이상, 또는 약 99% 이상인 것일 수 있다.In one embodiment of the present invention, the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the method for producing the mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.

본원의 구현예에 있어서, 상기 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법은 상업적 공정에 적용될 수 있다.In the embodiment of the present invention, the method for producing the mono-tert-butyl esterified saturated hydrocarbon can be applied to a commercial process.

본원의 제 2 측면은, 하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하고, 상기 가수분해 반응의 여액에 대하여 상기 촉매 하에서 상기 가수분해 반응을 수행하여 모노-터트-부틸 에스터화된 포화 탄화수소를 추가적으로 수득하는 것을 1 회 이상 수행하는 것을 포함하며, 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법을 제공한다:The second aspect of the present invention provides a cyclic method for producing a mono-tert-butyl esterified saturated hydrocarbon, comprising: performing a hydrolysis reaction of a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2 ; and performing the hydrolysis reaction in the presence of the catalyst on a filtrate of the hydrolysis reaction to additionally obtain a mono-tert-butyl esterified saturated hydrocarbon, at least once; wherein the catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000007
;
Figure PCTKR2024005933-appb-img-000007
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000008
;
Figure PCTKR2024005933-appb-img-000008
;

상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2,

n은 1 이상의 정수임.n is an integer greater than or equal to 1.

본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Although detailed descriptions of parts that overlap with the first aspect of the present application have been omitted, the contents described for the first aspect of the present application may be equally applied even if the description is omitted in the second aspect of the present application.

본원의 일 구현예에 있어서, 상기 n은 약 4 내지 약 22의 정수일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 n은 약 4 내지 약 22, 약 4 내지 약 18, 약 4 내지 약 14, 약 4 내지 약 10, 약 4 내지 약 6, 약 8 내지 약 22, 약 8 내지 약 18, 약 8 내지 약 14, 약 8 내지 약 10, 약 12 내지 약 22, 약 12 내지 약 18, 약 12 내지 약 16, 약 12 내지 약 14, 약 14 내지 약 22, 약 14 내지 약 18, 또는 약 20 내지 약 22의 정수일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 약 6 내지 약 18일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 14일 수 있다. 본원의 일 구현예에 있어서, 상기 n은 16일 수 있다.In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, but may not be limited thereto. In one embodiment of the present disclosure, n may be an integer from about 4 to about 22, from about 4 to about 18, from about 4 to about 14, from about 4 to about 10, from about 4 to about 6, from about 8 to about 22, from about 8 to about 18, from about 8 to about 14, from about 8 to about 10, from about 12 to about 22, from about 12 to about 18, from about 12 to about 16, from about 12 to about 14, from about 14 to about 22, from about 14 to about 18, or from about 20 to about 22. In one embodiment of the present disclosure, n may be about 6 to about 18. In one embodiment of the present disclosure, n may be 14. In one embodiment of the present invention, n may be 16.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2), 염화아연(ZnCl2), 또는 요오드화아연(ZnI2)에서 선택되는 촉매; 및 물을 포함하는 환경에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2) 및 물을 포함하는 환경에서 수행되는 것일 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including a catalyst selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ); and water, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction may be performed in an environment including zinc bromide (ZnBr 2 ) and water.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 브롬화아연(ZnBr2), 염화아연(ZnCl2), 또는 요오드화아연(ZnI2)의 수화물을 포함하여 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed including a hydrate of zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), or zinc iodide (ZnI 2 ), but may not be limited thereto.

본원의 일 구현예에 있어서, 상기 촉매는 브롬화아연(ZnBr2)일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 브롬화아연의 수화물 (비제한적 예로서, 2수화물, ZnBr2H2O)일 수 있다.In one embodiment of the present invention, the catalyst may be zinc bromide (ZnBr 2 ). In one embodiment of the present invention, the catalyst may be a hydrate of zinc bromide (as a non-limiting example, a dihydrate, ZnBr 2 2H 2 O).

본원의 일 구현예에 있어서, 상기 촉매는 약 0.2 당량 초과 내지 약 1 당량 이하로 사용되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 약 0.2 당량 초과 내지 약 1 당량 이하, 약 0.2 당량 초과 내지 약 0.9 당량 이하, 약 0.2 당량 초과 내지 약 0.8 당량 이하, 약 0.2 당량 초과 내지 약 0.7 당량 이하, 약 0.2 당량 초과 내지 약 0.6 당량 이하, 약 0.3 당량 내지 약 1 당량 이하, 약 0.3 당량 내지 약 0.9 당량 이하, 약 0.3 당량 내지 약 0.8 당량 이하, 약 0.3 당량 내지 약 0.7 당량 이하, 약 0.3 당량 내지 약 0.6 당량 이하, 약 0.4 당량 내지 약 1 당량 이하, 약 0.4 당량 내지 약 0.9 당량 이하, 약 0.4 당량 내지 약 0.8 당량 이하, 약 0.4 당량 내지 약 0.7 당량 이하, 또는 약 0.4 당량 내지 약 0.6 당량 이하로 사용되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매는 약 0.5 당량으로 사용되는 것이 바람직할 수 있다.In one embodiment of the present invention, the catalyst may be used in an amount of more than about 0.2 equivalents and less than about 1 equivalent, but may not be limited thereto. In one embodiment of the present invention, the catalyst is present in an amount of from about 0.2 equivalents to about 1 equivalent or less, from about 0.2 equivalents to about 0.9 equivalents or less, from about 0.2 equivalents to about 0.8 equivalents or less, from about 0.2 equivalents to about 0.7 equivalents or less, from about 0.2 equivalents to about 0.6 equivalents or less, from about 0.3 equivalents to about 1 equivalent or less, from about 0.3 equivalents to about 0.9 equivalents or less, from about 0.3 equivalents to about 0.8 equivalents or less, from about 0.3 equivalents to about 0.7 equivalents or less, from about 0.3 equivalents to about 0.6 equivalents or less, from about 0.4 equivalents to about 1 equivalent or less, from about 0.4 equivalents to about 0.9 equivalents or less, from about 0.4 equivalents to about 0.8 equivalents or less, from about 0.4 equivalents to about It may be used in an amount of 0.7 equivalents or less, or from about 0.4 equivalents to about 0.6 equivalents or less. In one embodiment of the present invention, it may be preferable that the catalyst is used in an amount of about 0.5 equivalents.

본원의 일 구현예에 있어서, 상기 n이 14인 경우, 상기 화학식 2로서 표시되는 화합물 1 mmol을 기준으로 약 100 mg 내지 약 200 mg의 브롬화아연이 사용되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 브롬화아연을 증량시키는 경우 반응시간이 단축될 수 있으나, 상기 화학식 1로서 표시되는 화합물의 디-터트-부틸-에스터기가 모두 가수분해될 수 있다.In one embodiment of the present invention, when n is 14, about 100 mg to about 200 mg of zinc bromide may be used based on 1 mmol of the compound represented by the chemical formula 2. In one embodiment of the present invention, when the amount of zinc bromide is increased, the reaction time may be shortened, but all of the di-tert-butyl-ester groups of the compound represented by the chemical formula 1 may be hydrolyzed.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 0℃ 내지 약 40℃의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 0℃ 내지 약 40℃, 약 0℃ 내지 약 37℃, 약 0℃ 내지 약 34℃, 약 0℃ 내지 약 31℃, 약 0℃ 내지 약 28℃, 약 3℃ 내지 약 40℃, 약 3℃ 내지 약 37℃, 약 3℃ 내지 약 34℃, 약 3℃ 내지 약 31℃, 약 3℃ 내지 약 28℃, 약 6℃ 내지 약 40℃, 약 6℃ 내지 약 37℃, 약 6℃ 내지 약 34℃, 약 6℃ 내지 약 31℃, 약 6℃ 내지 약 28℃, 약 9℃ 내지 약 40℃, 약 9℃ 내지 약 37℃, 약 9℃ 내지 약 34℃, 약 9℃ 내지 약 31℃, 약 9℃ 내지 약 28℃, 약 12℃ 내지 약 40℃, 약 12℃ 내지 약 37℃, 약 12℃ 내지 약 34℃, 약 12℃ 내지 약 31℃, 약 12℃ 내지 약 28℃, 약 15℃ 내지 약 40℃, 약 15℃ 내지 약 37℃, 약 15℃ 내지 약 34℃, 약 15℃ 내지 약 31℃, 약 15℃ 내지 약 28℃, 약 18℃ 내지 약 40℃, 약 18℃ 내지 약 37℃, 약 18℃ 내지 약 34℃, 약 18℃ 내지 약 31℃, 약 18℃ 내지 약 28℃, 약 21℃ 내지 약 40℃, 약 21℃ 내지 약 37℃, 약 21℃ 내지 약 34℃, 약 21℃ 내지 약 31℃, 약 21℃ 내지 약 28℃, 약 24℃ 내지 약 40℃, 약 24℃ 내지 약 37℃, 약 24℃ 내지 약 34℃, 약 24℃ 내지 약 31℃, 또는 약 24℃ 내지 약 28℃의 온도 범위에서 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 25℃에서 수행되는 것이 바람직할 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed at a temperature range of about 0°C to about 40°C, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is performed at a temperature of about 0°C to about 40°C, about 0°C to about 37°C, about 0°C to about 34°C, about 0°C to about 31°C, about 0°C to about 28°C, about 3°C to about 40°C, about 3°C to about 37°C, about 3°C to about 34°C, about 3°C to about 31°C, about 3°C to about 28°C, about 6°C to about 40°C, about 6°C to about 37°C, about 6°C to about 34°C, about 6°C to about 31°C, about 6°C to about 28°C, about 9°C to about 40°C, about 9°C to about 37°C, about 9°C to about 34°C, about 9°C to about 31°C, about 9°C to about 28°C, about 12°C to about 40°C, about 12°C to about 37°C, about 12°C to about 34°C, about 12°C to about 31°C, about 12°C to about 28°C, about 15°C to about 40°C, about 15°C to about 37°C, about 15°C to about 34°C, about 15°C to about 31°C, about 15°C to about 28°C, about 18°C to about 40°C, about 18°C to about 37°C, about 18°C to about 34°C, about 18°C to about 31°C, about 18°C to about 28°C, about 21°C to about 40°C, about 21°C to about 37°C, about 21°C to about 34°C, about 21°C to about 31°C, about 21°C to about 28°C, about 24°C to about 40°C, about It may be performed at a temperature range of from about 24° C. to about 37° C., from about 24° C. to about 34° C., from about 24° C. to about 31° C., or from about 24° C. to about 28° C. In one embodiment of the present disclosure, the hydrolysis reaction may be preferably performed at about 25° C.

본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간 동안 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간, 약 12 시간 내지 약 34 시간, 약 12 시간 내지 약 32 시간, 약 12 시간 내지 약 30 시간, 약 12 시간 내지 약 28 시간, 약 12 시간 내지 약 26 시간, 약 14 시간 내지 약 36 시간, 약 14 시간 내지 약 34 시간, 약 14 시간 내지 약 32 시간, 약 14 시간 내지 약 30 시간, 약 14 시간 내지 약 28 시간, 약 14 시간 내지 약 26 시간, 약 16 시간 내지 약 36 시간, 약 16 시간 내지 약 34 시간, 약 16 시간 내지 약 32 시간, 약 16 시간 내지 약 30 시간, 약 16 시간 내지 약 28 시간, 약 16 시간 내지 약 26 시간, 약 18 시간 내지 약 36 시간, 약 18 시간 내지 약 34 시간, 약 18 시간 내지 약 32 시간, 약 18 시간 내지 약 30 시간, 약 18 시간 내지 약 28 시간, 약 18 시간 내지 약 26 시간, 약 20 시간 내지 약 36 시간, 약 20 시간 내지 약 34 시간, 약 20 시간 내지 약 32 시간, 약 20 시간 내지 약 30 시간, 약 20 시간 내지 약 28 시간, 약 20 시간 내지 약 26 시간, 약 22 시간 내지 약 36 시간, 약 22 시간 내지 약 34 시간, 약 22 시간 내지 약 32 시간, 약 22 시간 내지 약 30 시간, 약 22 시간 내지 약 28 시간, 또는 약 22 시간 내지 약 26 시간 동안 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 0.5 당량 사용하는 경우, 상기 가수분해 반응은 약 12 시간 내지 약 36 시간 동안 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 0.5 당량 사용하는 경우, 상기 가수분해 반응은 약 24 시간 동안 수행되는 것이 바람직할 수 있다. 본원의 일 구현예에 있어서, 상기 촉매를 약 1 당량 사용하는 경우, 상기 가수분해 반응은 약 12 시간 동안 수행되는 것이 바람직할 수 있다.In one embodiment of the present invention, the hydrolysis reaction may be performed for about 12 hours to about 36 hours, but may not be limited thereto. In one embodiment of the present invention, the hydrolysis reaction is carried out for about 12 hours to about 36 hours, about 12 hours to about 34 hours, about 12 hours to about 32 hours, about 12 hours to about 30 hours, about 12 hours to about 28 hours, about 12 hours to about 26 hours, about 14 hours to about 36 hours, about 14 hours to about 34 hours, about 14 hours to about 32 hours, about 14 hours to about 30 hours, about 14 hours to about 28 hours, about 14 hours to about 26 hours, about 16 hours to about 36 hours, about 16 hours to about 34 hours, about 16 hours to about 32 hours, about 16 hours to about 30 hours, about 16 hours to about 28 hours, about 16 hours to about 26 hours, about 18 hours to about 36 hours, about It can be performed for about 18 hours to about 34 hours, about 18 hours to about 32 hours, about 18 hours to about 30 hours, about 18 hours to about 28 hours, about 18 hours to about 26 hours, about 20 hours to about 36 hours, about 20 hours to about 34 hours, about 20 hours to about 32 hours, about 20 hours to about 30 hours, about 20 hours to about 28 hours, about 20 hours to about 26 hours, about 22 hours to about 36 hours, about 22 hours to about 34 hours, about 22 hours to about 32 hours, about 22 hours to about 30 hours, about 22 hours to about 28 hours, or about 22 hours to about 26 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be performed for about 12 hours to about 36 hours. In one embodiment of the present invention, when using about 0.5 equivalents of the catalyst, the hydrolysis reaction may be preferably performed for about 24 hours. In one embodiment of the present invention, when using about 1 equivalent of the catalyst, the hydrolysis reaction may be preferably performed for about 12 hours.

본원의 일 구현예에 있어서, 용매를 포함하는 용액 조건에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, it may be performed under solution conditions including a solvent, but may not be limited thereto.

본원의 일 구현예에 있어서, 상기 용매는 염화수소계 유기용매, 지방족 탄화수소계 용매 및 방향족 탄화수소계 용매에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the solvent may be at least one selected from a hydrochloric organic solvent, an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent.

본원의 일 구현예에 있어서, 상기 염화수소계 유기용매는 사염화탄소, 클로로포름, 디클로로메탄, 및 디클로로에탄에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the hydrochloric organic solvent may be at least one selected from carbon tetrachloride, chloroform, dichloromethane, and dichloroethane.

본원의 일 구현예에 있어서, 상기 지방족 탄화수소계 유기용매는 n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aliphatic hydrocarbon organic solvent may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.

본원의 일 구현예에 있어서, 상기 방향족 탄화수소계 용매는 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, 및 n-아밀나프탈렌에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aromatic hydrocarbon solvent may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.

본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, n-아밀나프탈렌, n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다. 여기서, 상기 톨루엔은 치환 또는 비치환된 것으로서, 톨루엔, 플루오로톨루엔, 1,2-디플루오로톨루엔, 1,3-디플루오로톨루엔, 1,4-디플루오로톨루엔, 트리플루오로톨루엔, 1,2,4-트리플루오로톨루엔, 클로로톨루엔, 1,2-디클로로톨루엔, 1,3-디클로로톨루엔, 1,4-디클로로톨루엔, 1,2,4-트리클로로톨루엔, 아이오도톨루엔, 1,2-디아이오도톨루엔, 1,3-디아이오도톨루엔, 1,4-디아이오도톨루엔, 또는 1,2,4-트리아이오도톨루엔에서 선택되는 것일 수 있다. 여기서, 상기 n-헥산은 치환 또는 비치환된 것으로서, n-헥산, 1-클로로헥산, 1-브로모헥산, 1-아이오도헥산, 1,6-디클로로헥산, 1,6-디브로모헥산, 1,6-디아이오도헥산, 및 1-하이드록시헥산에서 선택되는 것일 수 있다.In one embodiment of the present invention, the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane. Here, the toluene may be substituted or unsubstituted and may be selected from toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene, 1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene, or 1,2,4-triiodotoluene. Here, the n-hexane may be substituted or unsubstituted and may be selected from n-hexane, 1-chlorohexane, 1-bromohexane, 1-iodohexane, 1,6-dichlorohexane, 1,6-dibromohexane, 1,6-diiodohexane, and 1-hydroxyhexane.

본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 및 사염화탄소에서 선택되는 하나 이상인 것일 수 있다. 본원의 일 구현예에 있어서, 상기 용매는 디클로로메탄 또는 클로로포름인 것이 바람직할 수 있다.In one embodiment of the present invention, the solvent may be at least one selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride. In one embodiment of the present invention, it may be preferable that the solvent is dichloromethane or chloroform.

본원의 일 구현예에 있어서, 상기 가수분해 반응 이후 결정화 공정이 수행되는 것을 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, it may further include, but is not limited to, performing a crystallization process after the hydrolysis reaction.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 용매는 지방족 탄화수소계 용매, 방향족 탄화수소계 용매, 및 알코올계 용매에서 선택되는 하나 이상인 것일 수 있다. In one embodiment of the present invention, the solvent used in the crystallization process may be at least one selected from an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and an alcohol solvent.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 지방족 탄화수소계 용매는 n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aliphatic hydrocarbon solvent used in the crystallization process may be at least one selected from n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 방향족 탄화수소계 용매는 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, 및 n-아밀나프탈렌에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the aromatic hydrocarbon solvent used in the crystallization process may be at least one selected from benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 알코올계 용매는 메탄올, 에탄올, iso-프로필 알코올, 부탄올, 및 옥탄올에서 선택되는 하나 이상인 것일 수 있다.In one embodiment of the present invention, the alcohol solvent used in the crystallization process may be at least one selected from methanol, ethanol, iso-propyl alcohol, butanol, and octanol.

본원의 일 구현예에 있어서, 상기 결정화 공정에 사용되는 용매는 n-헵탄인 것일 수 있다.In one embodiment of the present invention, the solvent used in the crystallization process may be n-heptane.

본원의 일 구현예에 있어서, 상기 가수분해 반응 이후 농축 공정 및 여과 공정이 수행되는 것을 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 가수분해 반응 이후, 모노-터트-부틸-에스터화된 포화 탄화수소는 통상의 분리 방법을 사용하여 고체 화합물로서 수득될 수 있다.In one embodiment of the present invention, it may further include, but is not limited to, performing a concentration process and a filtration process after the hydrolysis reaction. In one embodiment of the present invention, after the hydrolysis reaction, the mono-tert-butyl-esterified saturated hydrocarbon can be obtained as a solid compound using a conventional separation method.

본원의 구현예에 있어서, 상기 가수분해 반응은 불순물이 생성되지 않는 반응이므로, 모노-터트-부틸 에스터화된 포화 탄화수소를 용이하게 분리하여 수득할 수 있다.In the embodiment of the present invention, since the hydrolysis reaction is a reaction in which no impurities are generated, a mono-tert-butyl esterified saturated hydrocarbon can be easily separated and obtained.

본원의 일 구현예에 있어서, 상기 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법으로 수득되는 모노-터트-부틸 에스터화된 포화 탄화수소의 순도는 약 90% 이상, 약 95% 이상, 약 98% 이상, 또는 약 99% 이상인 것일 수 있다.In one embodiment of the present invention, the purity of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclic production method of the mono-tert-butyl esterified saturated hydrocarbon may be about 90% or more, about 95% or more, about 98% or more, or about 99% or more.

본원의 구현예에 있어서, 상기 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법은 상업적 공정에 적용될 수 있다.In the embodiment of the present invention, the cyclic production method of the mono-tert-butyl esterified saturated hydrocarbon can be applied to a commercial process.

본원의 구현예에 있어서, 상기 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법으로 수득된 모노-터트-부틸 에스터화된 포화 탄화수소의 누적 결정화 수율은 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 또는 약 90% 이상일 수 있다.In an embodiment of the present invention, the cumulative crystallization yield of the mono-tert-butyl esterified saturated hydrocarbon obtained by the cyclical production method of the mono-tert-butyl esterified saturated hydrocarbon may be about 40% or more, about 50% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, or about 90% or more.

이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail using examples. However, the following examples are provided only to help understand the present invention, and the contents of the present invention are not limited to the following examples.

[실시예][Example]

<모노-터트-부틸 에스터화된 포화 탄화수소의 제조><Production of mono-tert-butyl esterified saturated hydrocarbons>

1. 용매의 선별1. Selection of solvent

디-터트-부틸-옥타데칸다이오에이트(di-tert-butyl-octadecandioate)의 가수분해 반응의 적절한 용매를 선별하기 위하여, 용매로서 디클로로메탄(dichloromethane), 클로로포름(chloroform), 디메틸포름알데히드(dimethylformaldehyde), 톨루엔(toluene), 테트라히드로퓨란(tetrahydrofuran), 아세톤(acetone), 에틸 아세테이트 (ethyl acetate), 및 노말 헥산(n-hexane)을 사용하여 각각 반응을 진행하였다.To select an appropriate solvent for the hydrolysis reaction of di-tert-butyl-octadecandioate, the reaction was carried out using dichloromethane, chloroform, dimethylformaldehyde, toluene, tetrahydrofuran, acetone, ethyl acetate, and n-hexane, respectively, as solvents.

1 mmol의 디-터트-부틸-옥타데칸다이오에이트 및 0.5 mmol의 브롬화아연(ZnBr2)을 상기 용매에 각각 넣고 상온에서 24 시간 동안 교반하여 옥타데칸다이오익애시드-모노-터트-부틸 에스터(octadecanedioic acid mono-tert-butyl ester)를 수득하였다. HPLC(high performance liquid chromatography) 분석을 통하여 상기 옥타데칸다이오익애시드-모노-터트-부틸 에스터의 전환율 및 순도를 측정하였으며, 이를 하기 표 1로서 나타내었다. 하기 표 1 내지 5에서 나타내는 전환율은 하기 계산식 1로서 계산되었다:1 mmol of di-tert-butyl-octadecanedioic acid and 0.5 mmol of zinc bromide (ZnBr 2 ) were each added to the above solvent and stirred at room temperature for 24 hours to obtain octadecanedioic acid mono-tert-butyl ester. The conversion and purity of the octadecanedioic acid mono-tert-butyl ester were measured through high performance liquid chromatography (HPLC) analysis and are shown in Table 1 below. The conversions shown in Tables 1 to 5 below were calculated by the following calculation formula 1:

[계산식 1][Calculation formula 1]

전환율(%)=Conversion rate (%) =

Figure PCTKR2024005933-appb-img-000009
Figure PCTKR2024005933-appb-img-000009

상기 계산식 1에서, 상기 전환율은 반응 종결시점의 HPLC 면적(area)을 나타냄.In the above calculation formula 1, the conversion rate represents the HPLC area at the end of the reaction.

용매menstruum 전환율(%)Conversion rate (%) 옥타데칸다이오익애시드-모노-터트-부틸 에스터의 순도(%)Purity (%) of octadecanedioic acid-mono-tert-butyl ester 실시예 1-1Example 1-1 디클로로메탄
(dichloromethane)
Dichloromethane
(dichloromethane)
4848 99.599.5
실시예 1-2Example 1-2 클로로포름
(chloroform)
chloroform
(chloroform)
4343 99.499.4
실시예 1-3Example 1-3 톨루엔
(toluene)
toluene
(toluene)
3939 98.398.3
실시예 1-4Example 1-4 노말 헥산
(n-hexane)
Normal hexane
(n-hexane)
2626 96.296.2
비교예 1-1Comparative Example 1-1 N,N-디메틸포름알데히드
(N,N-dimethylformaldehyde)
N,N-Dimethylformaldehyde
(N,N-dimethylformaldehyde)
00 --
비교예 1-2Comparative Example 1-2 테트라히드로퓨란
(tetrahydrofuran)
Tetrahydrofuran
(tetrahydrofuran)
00 --
비교예 1-3Comparative Example 1-3 아세톤
(acetone)
Acetone
(acetone)
00 --
비교예 1-4Comparative Example 1-4 에틸 아세테이트
(ethyl acetate)
Ethyl acetate
(ethyl acetate)
00 --

상기 표 1을 참조하여 설명하면, 비교예 1-1 내지 1-4는, 옥타데칸다이오익애시드-모노-터트-부틸 에스터로의 가수분해가 일어나지 않기에 반응 용매로서 부적합하였다. 반면, 실시예 1-1 및 1-2는, 비교예 1-1 내지 1-4와 비교하여 약 40% 이상의 높은 전환율을 나타내었으며, 약 99% 이상의 순도의 생성물이 수득된 것을 확인하였는 바, 용매로서의 적합성을 확인하였다. 실시예 1-3 및 1-4는 가수분해 반응이 진행되긴 하였으나, 각 전환율은 39% 및 26%로서, 실시예 1-1 및 1-2 보다 낮은 값을 나타내었다. 이에 따라, 가수분해 반응의 용매로서 염화수소계 유기용매, 방향족 탄화수소계 용매, 및 지방족 탄화수소계 용매가 적합하며, 케톤계 용매, 아미드계 용매, 에스테르계 용매, 및 에테르계 용매는 부적합한 것을 확인하였다.Referring to Table 1 above, Comparative Examples 1-1 to 1-4 were unsuitable as reaction solvents because hydrolysis into octadecanedioic acid-mono-tert-butyl ester did not occur. On the other hand, Examples 1-1 and 1-2 showed a high conversion rate of about 40% or more compared to Comparative Examples 1-1 to 1-4, and it was confirmed that products with a purity of about 99% or more were obtained, thereby confirming their suitability as solvents. In Examples 1-3 and 1-4, although the hydrolysis reaction proceeded, the respective conversion rates were 39% and 26%, which were lower values than Examples 1-1 and 1-2. Accordingly, it was confirmed that chloride-based organic solvents, aromatic hydrocarbon-based solvents, and aliphatic hydrocarbon-based solvents are suitable as solvents for hydrolysis reactions, while ketone-based solvents, amide-based solvents, ester-based solvents, and ether-based solvents are unsuitable.

2. 촉매의 선별2. Selection of catalyst

1 mmol의 디-터트-부틸-옥타데칸다이오에이트의 가수분해 반응에 적절한 촉매를 선별하기 위하여, 0.5 mol의 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화 아연(ZnI2), 및 브롬화아연 2수화물(ZnBr2H2O)을 각각 투입한 후, 상온에서 12 시간 내지 24 시간 동안 반응을 수행하여 옥타데칸다이오익애시드-모노-터트-부틸 에스터를 수득하였으며, 이때의 전환률 및 수율은 아래와 같다. 여기서, 수율은 하기 계산식 2로서 계산되었다:In order to select a suitable catalyst for the hydrolysis reaction of 1 mmol of di-tert-butyl-octadecanedioate, 0.5 mol of zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and zinc bromide dihydrate (ZnBr 2 2H 2 O) were each added, and the reaction was performed at room temperature for 12 to 24 hours to obtain octadecanedioic acid-mono-tert-butyl ester, and the conversion and yield at this time were as follows. Here, the yield was calculated by the following calculation formula 2:

[계산식 2][Calculation formula 2]

Figure PCTKR2024005933-appb-img-000010
Figure PCTKR2024005933-appb-img-000010

상기 계산식 2에서, 상기 수율은 반응이 종결된 후 후처리 공정을 통하여 수득된 옥타데칸다이오익애시드-모노-터트-부틸-에스터의 실제 질량%을 나타냄.In the above calculation formula 2, the yield represents the actual mass% of octadecanedioic acid-mono-tert-butyl-ester obtained through the post-treatment process after the reaction is completed.

촉매 종류 Catalyst type 전환율
(%)
Conversion rate
(%)
옥타데칸다이오익애시드-모노-터트-부틸 에스터의 화학순도 (%)Chemical Purity of Octadecane Dioic Acid Mono-Tert-Butyl Ester (%) 반응 시간
(hr)
Reaction time
(hr)
수율
(%)
transference number
(%)
실시예 2-1Example 2-1 브롬화아연
(ZnBr2)
Zinc Bromide
(ZnBr 2 )
4848 99.599.5 2424 4545
실시예 2-2Example 2-2 염화아연
(ZnCl2)
Zinc chloride
(ZnCl 2 )
4646 99.399.3 1414 4444
실시예 2-3Example 2-3 요오드화 아연
(ZnI2)
Zinc iodide
(ZnI 2 )
4444 98.998.9 1616 4242
실시예 2-4Example 2-4 브롬화 아연 2 수화물
(ZnBr2H2O)
zinc bromide dihydrate
(ZnBr 2H 2 O)
4242 99.199.1 66 4040

상기 표 2를 참조하여 설명하면, 실시예 2-2, 2-3, 및 2-4는 실시예 2-1과 비교하여 상대적으로 반응이 빠르게 진행되었으나, 실시예 2-3은 반응 중 용액이 변색되었고, 수득물이 탈색되지 않았다. 실시예 2-2 및 2-4는 반응 속도가 비교적 빠른 편으로서, 반응 중 분석 시간이 길어지는 경우, 부산물이 많이 생성되므로, 실시예 2-1과 비교하여 공정상의 위험성이 높다. 실시예 2-1의 전환율, 수율, 및 수득물의 순도는 각각 48%, 45%, 및 99.5%를 나타냄으로써, 실시예 2-1의 브롬화아연이 가수분해 반응의 가장 적합한 촉매임을 확인하였다.Referring to Table 2 above, Examples 2-2, 2-3, and 2-4 showed relatively fast reactions compared to Example 2-1; however, in Example 2-3, the solution discolored during the reaction, and the product obtained was not decolorized. Examples 2-2 and 2-4 had relatively fast reaction rates, and if the analysis time during the reaction is long, a lot of by-products are generated, so the process risk is high compared to Example 2-1. The conversion rate, yield, and purity of the product obtained in Example 2-1 were 48%, 45%, and 99.5%, respectively, confirming that the zinc bromide of Example 2-1 was the most suitable catalyst for the hydrolysis reaction.

3. ZnBr2의 사용량 및 반응시간의 선별3. Selection of ZnBr 2 usage amount and reaction time

1 mmol의 디-터트-부틸-옥타데칸다이오에이트의 가수분해 반응에 적절한 ZnBr2의 사용량 및 반응시간을 선별하기 위하여, 각 조건을 상이하게 조절하여 반응을 수행하였다.In order to select the appropriate amount of ZnBr 2 and reaction time for the hydrolysis reaction of 1 mmol of di-tert-butyl-octadecanedioate, the reaction was performed by controlling each condition differently.

여기서, ZnBr2은 각각 0.2 mmol, 0.5 mmol, 및 1.0 mmol을 사용하였으며, ZnBr2의 각각의 사용량별로 각각, 12 시간, 24 시간, 및 36 시간 동안 반응을 진행하였다. 반응온도는 25℃였으며, 용매로서 3.1 mL의 디클로로메탄을 사용하였다. 반응 후, 수득한 옥타데칸다이오익애시드-모노-터트-부틸 에스터를 HPLC 분석하여 전환율 및 순도를 측정하였으며, 이를 하기 표 3으로서 나타내었다:Here, ZnBr 2 was used in amounts of 0.2 mmol, 0.5 mmol, and 1.0 mmol, respectively, and the reaction was carried out for 12 hours, 24 hours, and 36 hours, respectively, for each amount of ZnBr 2 . The reaction temperature was 25°C, and 3.1 mL of dichloromethane was used as a solvent. After the reaction, the obtained octadecanedioic acid-mono-tert-butyl ester was analyzed by HPLC to measure the conversion rate and purity, which are shown in Table 3 below:

브롬화아연
(mmol, 당량)
Zinc Bromide
(mmol, equivalent)
반응시간
(hr)
Reaction time
(hr)
전환율
(%)
Conversion rate
(%)
옥타데칸다이오익애시드-모노-터트-부틸 에스터의 화학순도 (%)Chemical Purity of Octadecane Dioic Acid Mono-Tert-Butyl Ester (%) 수율 (%)transference number (%)
실시예 3-1Example 3-1 0.50.5 1212 3434 99.499.4 3030 실시예 3-2Example 3-2 0.50.5 2424 4848 99.599.5 4545 실시예 3-3Example 3-3 0.50.5 3636 3535 92.592.5 2828 실시예 3-4Example 3-4 1.01.0 1212 2727 91.091.0 2222 비교예 3-1Comparative Example 3-1 0.20.2 1212 1212 95.0% 이상95.0% or more 1010 비교예 3-2Comparative Example 3-2 0.20.2 2424 1717 95.0% 이상95.0% or more 1313 비교예 3-3Comparative Example 3-3 0.20.2 3636 2020 95.0% 이상95.0% or more 1515 비교예 3-4Comparative Example 3-4 1.01.0 2424 99 80.0% 이하80.0% or less 55 비교예 3-5Comparative Example 3-5 1.01.0 3636 N/DN/D -- --

상기 표 3를 참조하면, 실시예 3-1 내지 3-4는 모두 90% 이상의 순도를 나타냈으며, 이 중 실시예 3-2는 전환율 48% 및 순도 99.5%를 보임으로써 가장 우수한 가수분해 활성을 나타낸 반면, 비교예 3-1 내지 3-5는 20% 이하의 매우 낮은 전환율을 나타내었다. 이에 따라, 가수분해 반응에 사용되는 ZnBr2의 적절한 사용량 및 반응시간은 각각 0.5 당량 및 24 시간인 것을 실험적으로 확인하였다.Referring to Table 3 above, Examples 3-1 to 3-4 all showed a purity of 90% or higher, and among these, Example 3-2 showed the best hydrolysis activity with a conversion rate of 48% and a purity of 99.5%, whereas Comparative Examples 3-1 to 3-5 showed very low conversion rates of 20% or less. Accordingly, it was experimentally confirmed that the appropriate amount and reaction time of ZnBr 2 used in the hydrolysis reaction were 0.5 equivalents and 24 hours, respectively.

상기 가수분해 반응에서 동일한 양의 촉매를 사용하는 경우, 반응시간이 과도하게 길어지면 반응물인 디-터트-부틸-옥타데칸다이오에이트에 포함된 2 개의 에스터가 모두 분해되어 목적 생성물의 수율 및 순도가 낮아지므로 적당한 당량의 촉매 사용이 매우 중요하다.When using the same amount of catalyst in the above hydrolysis reaction, if the reaction time becomes excessively long, both esters included in the reactant, di-tert-butyl-octadecanedioate, are decomposed, lowering the yield and purity of the desired product. Therefore, it is very important to use an appropriate equivalent amount of catalyst.

4. 모노-터트-부틸-에스터화된 긴사슬 탄화수소 카르복시산 제조4. Preparation of mono-tert-butyl-esterified long-chain hydrocarbon carboxylic acids

하기 화학식 1로서 표시되며 n 값이 각각 12 내지 16인 화합물 1 mmol을 ZnBr2 촉매 하에서 24 시간 동안 각각 가수분해하여, 하기 화학식 2로서 표시되며 n 값이 각각 12 내지 16인 모노-터트-부틸-에스터화된 긴사슬 탄화수소 카르복시산을 수득하였다. 상기 각각의 가수분해 반응에 대한 전환율, 목적 생성물의 화학순도, 및 수율은 하기 표 4으로서 나타내었다:1 mmol of compounds represented by the following chemical formula 1 and having n values of 12 to 16 were each hydrolyzed for 24 hours in the presence of a ZnBr 2 catalyst to obtain mono-tert-butyl-esterified long-chain hydrocarbon carboxylic acids represented by the following chemical formula 2 and having n values of 12 to 16. The conversion, chemical purity of the desired product, and yield for each hydrolysis reaction are shown in Table 4 below:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000011
;
Figure PCTKR2024005933-appb-img-000011
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000012
.
Figure PCTKR2024005933-appb-img-000012
.

nn 전환율
(%)
Conversion rate
(%)
목적 생성물의 화학순도 (%)Chemical purity of target product (%) 수율
(%)
transference number
(%)
실시예 4-1Example 4-1 1212 4747 99.499.4 4242 실시예 4-2Example 4-2 1313 4646 99.399.3 4343 실시예 4-3Example 4-3 1414 4848 99.599.5 4545 실시예 4-4Example 4-4 1515 4747 99.699.6 4444 실시예 4-5Example 4-5 1616 4646 99.599.5 4545

상기 실시예 4-3에서 수득되며, 하기 화학식 3으로서 표시되는 옥타데칸다이오익애시드-모노-터트-부틸 에스터의 제조방법은 하기와 같다:The method for producing octadecanedioic acid-mono-tert-butyl ester obtained in the above Example 4-3 and represented by the following chemical formula 3 is as follows:

[화학식 3][Chemical Formula 3]

Figure PCTKR2024005933-appb-img-000013
;
Figure PCTKR2024005933-appb-img-000013
;

100 g의 디-터트-부틸-옥타데칸다이오에이트(0.234 mol) 및 26.3 g의 ZnBr2(0.117 mol, 0.5 당량)을 1,000 mL의 디클로로메탄에 넣고 25℃에서 24 시간 동안 교반하여 가수분해 반응을 수행하였다. HPLC를 통해 상기 반응의 종결을 확인한 후, 500 mL의 정제수를 첨가하고 1 시간 동안 교반하였다. 이후, 층분리하여 수용액 층을 제거하였고, 유기층에 20 g의 무수황산나트륨을 투입하여 탈수 및 여과하였다. 여과액을 감압 농축한 후 노말-헵탄(n-heptane)을 넣고 1 시간 동안 교반하여 결정을 수득하였고, 상기 결정을 10℃까지 냉각하여 여과하였다. 이후, n-헵탄으로 세척한 후 40℃에서 감압 건조하여, 39.1 g의 백색의 옥타데칸다이오익애시드-모노-터트-부틸 에스터 (0.105 mol 및 화학순도 99.5%)를 수득하였다.100 g of di-tert-butyl-octadecanedioate (0.234 mol) and 26.3 g of ZnBr 2 (0.117 mol, 0.5 equivalents) were added to 1,000 mL of dichloromethane and stirred at 25°C for 24 hours to perform a hydrolysis reaction. After confirming the completion of the reaction through HPLC, 500 mL of purified water was added and stirred for 1 hour. Thereafter, the layers were separated to remove the aqueous solution layer, and 20 g of anhydrous sodium sulfate was added to the organic layer, dehydrated, and filtered. The filtrate was concentrated under reduced pressure, and n-heptane was added and stirred for 1 hour to obtain a crystal, which was then cooled to 10°C and filtered. Afterwards, after washing with n-heptane and drying under reduced pressure at 40°C, 39.1 g of white octadecanedioic acid-mono-tert-butyl ester (0.105 mol and chemical purity 99.5%) was obtained.

<모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조><Cyclic production of mono-tert-butyl esterified saturated hydrocarbons>

5. 가수 분해 반응 여액의 회수 공정5. Recovery process of hydrolysis reaction residue

상기 실시예 4-3의 여액을 농축한 후 HPLC로 분석한 결과, 상기 여액 내 상기 가수분해 반응의 출발물질(디-터트-부틸-옥타데칸다이오에이트) 및 목적 생성물(옥타데칸다이오익애시드-모노-터트-부틸 에스터)의 비율은 95:5인 것으로 측정되었다. 상기 여액의 질량은 55 g으로 측정되었으며, 이에 따라 상기 여액에 포함된 출발물질의 질량은 52.3 g(0.123 mol)인 것을 확인하였다. 0.5 당량에 해당하는 13.8 g의 ZnBr2 (0.061 mol) 및 디클로로메탄 523 mL을 상기 여액에 넣고 25℃에서 24 시간 동안 교반하여 회수 반응을 수행하였다. HPLC로 상기 회수 반응의 종결을 확인한 후, 결정화 공정을 수행하여 20 g의 옥타데칸다이오익애시드-모노-터트-부틸 에스터 (0.054 mol 및 화학순도 99.6%)를 추가적으로 수득하였다 (실시예 5-1).After concentrating the filtrate of Example 4-3, the HPLC analysis result showed that the ratio of the starting material (di-tert-butyl-octadecanedioate) of the hydrolysis reaction and the target product (octadecanedioic acid-mono-tert-butyl ester) in the filtrate was measured to be 95:5. The mass of the filtrate was measured to be 55 g, and accordingly, the mass of the starting material contained in the filtrate was confirmed to be 52.3 g (0.123 mol). 13.8 g of ZnBr 2 (0.061 mol) corresponding to 0.5 equivalents and 523 mL of dichloromethane were added to the filtrate, and the mixture was stirred at 25°C for 24 hours to perform a recovery reaction. After confirming the completion of the above recovery reaction by HPLC, a crystallization process was performed to additionally obtain 20 g of octadecanedioic acid-mono-tert-butyl ester (0.054 mol and chemical purity 99.6%) (Example 5-1).

이후, 상기 실시예 5-1의 여액에 대하여 상기 실시예 4-3과 동일한 방법으로 가수분해 반응을 수행하여 추가적으로 목적 생성물을 수득하였다 (실시예 5-2). 상기 실시예 5-2의 여액에 대하여 동일하게 가수분해 반응을 수행하였으며 (실시예 5-3), 상기 실시예 5-3의 여액에 대하여 동일하게 가수분해 반응을 수행하였다 (실시예 5-4). 상기와 같이, 각 가수분해 반응 이후 생성된 여액에 대하여 동일한 가수분해 반응을 반복 수행하는 회수 공정을 수행하여, 실시예 4-3의 여액에 대하여 총 4 회의 회수 공정을 진행하였다. 상기 실시예 4-3 및 실시예 5-1 내지 5-4의 수율 및 순도는 하기 표 5와 같다:Thereafter, the hydrolysis reaction was performed on the filtrate of Example 5-1 in the same manner as in Example 4-3 to additionally obtain the target product (Example 5-2). The hydrolysis reaction was performed in the same manner on the filtrate of Example 5-2 (Example 5-3), and the hydrolysis reaction was performed in the same manner on the filtrate of Example 5-3 (Example 5-4). As described above, a recovery process of repeatedly performing the same hydrolysis reaction on the filtrate generated after each hydrolysis reaction was performed, and a total of four recovery processes were performed on the filtrate of Example 4-3. The yields and purities of Example 4-3 and Examples 5-1 to 5-4 are as shown in Table 5 below:

여액의
회수 횟수
The remainder
Number of recoveries
결정화 수율
(각 회수 단계의
목적 생성물을 포함한 누적 수율)
Crystallization yield
(At each recovery stage
Cumulative yield including target product)
목적 생성물 순도 (%)Purity of target product (%)
실시예 4-3Example 4-3 00 45% (45%)45% (45%) 99.599.5 실시예 5-1Example 5-1 11 23% (68%)23% (68%) 99.699.6 실시예 5-2Example 5-2 22 14% (82%)14% (82%) 99.599.5 실시예 5-3Example 5-3 33 7% (89%)7% (89%) 99.499.4 실시예 5-4Example 5-4 44 3% (92%)3% (92%) 99.599.5

상기 가수분해 반응은 부성분이 생성되지 않아 순도가 높으므로 여액의 회수가 용이하였으며, 상기 표 5를 참조하면, 상기 실시예 4-3의 여액에 대하여 4 회의 회수 공정을 수행함에 따라 결정화 수율은 45%에서 92%로 증가하였다.상기 실시예 4-1, 4-2, 4-3, 4-4 및 4-5로부터 제조된 화합물에 대하여 각각 4 회의 회수 공정을 수행한 후 수득된 생성물의 결정화 수율, 평균 화학 순도 범위 및 NMR 분석 결과는 하기 표 6으로서 나타내었다:Since the hydrolysis reaction above did not generate by-products and thus had a high purity, recovery of the filtrate was easy, and referring to Table 5 above, the crystallization yield increased from 45% to 92% as the recovery process was performed four times for the filtrate of Example 4-3. The crystallization yield, average chemical purity range, and NMR analysis results of the products obtained after performing the recovery process four times for each of the compounds prepared from Examples 4-1, 4-2, 4-3, 4-4, and 4-5 are shown in Table 6 below:

[화학식 1][Chemical Formula 1]

Figure PCTKR2024005933-appb-img-000014
;
Figure PCTKR2024005933-appb-img-000014
;

[화학식 2][Chemical formula 2]

Figure PCTKR2024005933-appb-img-000015
;
Figure PCTKR2024005933-appb-img-000015
;

nn 생성물
(CAS No.)
product
(CAS No.)
수율 (%)transference number (%) 평균 화학순도
범위 (%)
Average chemical purity
Range (%)
1H-NMR (CDCl3) 1 H-NMR (CDCl 3 )
실시예
6-1
Example
6-1
1212 16-(tert-butoxy)-16-oxohexadecanoic acid
(CAS No. 843666-27-3)
16-(tert-butoxy)-16-oxohexadecanoic acid
(CAS No. 843666-27-3)
8989 99.3% 내지 99.9 %99.3% to 99.9% D 1.25(m, 20 H); 1.44(s, 8 H); 1.59(m, 4 H), 2.27(m, 4H)D 1.25(m, 20 H); 1.44(s, 8 H); 1.59(m, 4H), 2.27(m, 4H)
실시예
6-2
Example
6-2
1313 17-(tert-butoxy)-17-oxoheptadecanoic acid
(CAS No. 905302-44-5)
17-(tert-butoxy)-17-oxoheptadecanoic acid
(CAS No. 905302-44-5)
9090 99.3% 내지 99.9 %99.3% to 99.9% D 1.25(m, 22 H); 1.44(s, 9 H); 1.59(m, 4 H), 2.27(m, 4H)D 1.25(m, 22 H); 1.44(s, 9 H); 1.59(m, 4H), 2.27(m, 4H)
실시예
6-3
Example
6-3
1414 18-(tert-butoxy)-18-oxooctadecanoic acid
(CAS No. 843666-40-0)
18-(tert-butoxy)-18-oxooctadecanoic acid
(CAS No. 843666-40-0)
9292 99.3% 내지 99.9 %99.3% to 99.9% D 1.25(m, 24 H); 1.44(s, 9 H); 1.59(m, 4 H), 2.27(m, 4H)D 1.25(m, 24 H); 1.44(s, 9 H); 1.59(m, 4H), 2.27(m, 4H)
실시예
6-4
Example
6-4
1515 19-(tert-butoxy)-19-oxononadecanoic acid
(CAS No.1643852-37-2)
19-(tert-butoxy)-19-oxononadecanoic acid
(CAS No.1643852-37-2)
9090 99.3% 내지 99.9 %99.3% to 99.9% D 1.25(m, 26 H); 1.44(s, 9 H); 1.59(m, 4 H), 2.27(m, 4H)D 1.25(m, 26 H); 1.44(s, 9 H); 1.59(m, 4H), 2.27(m, 4H)
실시예
6-5
Example
6-5
1616 20-(tert-butoxy)-20-oxoicosanoic acid
(CAS No. 683239-16-9)
20-(tert-butoxy)-20-oxoicosanoic acid
(CAS No. 683239-16-9)
9191 99.3% 내지 99.9 %99.3% to 99.9% D 1.25(m, 28 H); 1.44(s, 9 H); 1.59(m, 4 H), 2.27(m, 4H)D 1.25(m, 28 H); 1.44(s, 9 H); 1.59(m, 4H), 2.27(m, 4H)

전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present invention is for illustrative purposes only, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single component may be implemented in a distributed manner, and likewise, components described as distributed may be implemented in a combined manner.

Claims (25)

하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하는 것을 포함하며,A method comprising: subjecting a di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 to a hydrolysis reaction under a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2; 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인,The above catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof. 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법:Process for producing mono-tert-butyl esterified saturated hydrocarbons: [화학식 1][Chemical Formula 1]
Figure PCTKR2024005933-appb-img-000016
;
Figure PCTKR2024005933-appb-img-000016
;
[화학식 2][Chemical formula 2]
Figure PCTKR2024005933-appb-img-000017
;
Figure PCTKR2024005933-appb-img-000017
;
상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2, n은 1 이상의 정수임.n is an integer greater than or equal to 1.
제 1 항에 있어서,In paragraph 1, 상기 n은 4 내지 22의 정수인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein n is an integer from 4 to 22. 제 1 항에 있어서,In paragraph 1, 상기 n은 14인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above n is 14. 제 1 항에 있어서,In paragraph 1, 상기 n은 16인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법. A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above n is 16. 제 1 항에 있어서,In paragraph 1, 상기 촉매는 브롬화아연(ZnBr2) 또는 이의 수화물인 것인, 모노-터트-부틸-에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl-esterified saturated hydrocarbon, wherein the catalyst is zinc bromide (ZnBr 2 ) or a hydrate thereof. 제 1 항에 있어서,In paragraph 1, 상기 촉매는 0.2 당량 초과 내지 1 당량 이하로 사용되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법. A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the catalyst is used in an amount of more than 0.2 equivalents and less than or equal to 1 equivalent. 제 1 항에 있어서,In paragraph 1, 상기 촉매는 0.4 당량 내지 0.6 당량으로 사용되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the catalyst is used in an amount of 0.4 to 0.6 equivalents. 제 1 항에 있어서,In paragraph 1, 상기 가수분해 반응은 0℃ 내지 40℃의 온도 범위에서 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above hydrolysis reaction is performed at a temperature range of 0°C to 40°C. 제 1 항에 있어서,In paragraph 1, 상기 가수분해 반응은 20℃ 내지 30℃의 온도 범위에서 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above hydrolysis reaction is performed at a temperature range of 20°C to 30°C. 제 1 항에 있어서,In paragraph 1, 상기 가수분해 반응은 12 시간 내지 36 시간 동안 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above hydrolysis reaction is performed for 12 to 36 hours. 제 1 항에 있어서,In paragraph 1, 상기 가수분해 반응은 용매를 포함하는 용액 조건에서 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above hydrolysis reaction is performed under solution conditions containing a solvent. 제 11 항에 있어서,In Article 11, 상기 용매는 염화수소계 유기용매, 지방족 탄화수소계 용매 및 방향족 탄화수소계 용매에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent is at least one selected from a hydrochloric organic solvent, an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent. 제 11 항에 있어서, In Article 11, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, n-아밀나프탈렌, n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent is at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane. 제 11 항에 있어서,In Article 11, 상기 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 및 사염화탄소에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent is at least one selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride. 제 1 항에 있어서,In paragraph 1, 상기 가수분해 반응 이후 결정화 공정을 추가 포함하는, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, further comprising a crystallization process after the above hydrolysis reaction. 제 15 항에 있어서,In Article 15, 상기 결정화 공정에 사용되는 용매는 지방족 탄화수소계 용매, 방향족 탄화수소계 용매, 및 알코올계 용매에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent used in the above crystallization process is at least one selected from an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and an alcohol solvent. 제 15 항에 있어서,In Article 15, 상기 결정화 공정에 사용되는 용매는 n-헵탄인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 제조방법.A method for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent used in the above crystallization process is n-heptane. 하기 화학식 1로서 표시되는 디-터트-부틸 에스터화된 포화 탄화수소를 촉매 하에서 가수분해 반응시켜 하기 화학식 2로서 표시되는 모노-터트-부틸 에스터화된 포화 탄화수소를 수득하고,A di-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 1 is hydrolyzed in the presence of a catalyst to obtain a mono-tert-butyl esterified saturated hydrocarbon represented by the following chemical formula 2, 상기 가수분해 반응의 여액에 대하여 상기 촉매 하에서 상기 가수분해 반응을 수행하여 모노-터트-부틸 에스터화된 포화 탄화수소를 추가적으로 수득하는 것을 1 회 이상 수행하는 것을 포함하며,It includes performing the hydrolysis reaction on the residue of the above hydrolysis reaction under the above catalyst at least once to additionally obtain a mono-tert-butyl esterified saturated hydrocarbon, 상기 촉매는 브롬화아연(ZnBr2), 염화아연(ZnCl2), 요오드화아연(ZnI2), 및 이의 수화물들에서 선택되는 하나 이상인 것인,The above catalyst is at least one selected from zinc bromide (ZnBr 2 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), and hydrates thereof. 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법:Cyclic process for the production of mono-tert-butyl esterified saturated hydrocarbons: [화학식 1][Chemical Formula 1]
Figure PCTKR2024005933-appb-img-000018
;
Figure PCTKR2024005933-appb-img-000018
;
[화학식 2][Chemical formula 2]
Figure PCTKR2024005933-appb-img-000019
;
Figure PCTKR2024005933-appb-img-000019
;
상기 화학식 1 및 상기 화학식 2에서,In the above chemical formula 1 and the above chemical formula 2, n은 1 이상의 정수임.n is an integer greater than or equal to 1.
제 18 항에 있어서,In Article 18, 상기 n은 14인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein n is 14. 제 18 항에 있어서,In Article 18, 상기 n은 16인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법. A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein n is 16. 제 18 항에 있어서,In Article 18, 상기 촉매는 브롬화아연(ZnBr2) 또는 이의 수화물인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the catalyst is zinc bromide (ZnBr 2 ) or a hydrate thereof. 제 18 항에 있어서,In Article 18, 상기 촉매는 0.4 당량 내지 0.6 당량으로 사용되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the catalyst is used in an amount of 0.4 to 0.6 equivalents. 제 18 항에 있어서,In Article 18, 상기 가수분해 반응은 20℃ 내지 30℃의 온도 범위에서 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the hydrolysis reaction is performed at a temperature range of 20°C to 30°C. 제 18 항에 있어서,In Article 18, 상기 가수분해 반응은 12 시간 내지 36 시간 동안 수행되는 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A cyclic process for producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the above hydrolysis reaction is performed for 12 to 36 hours. 제 18 항에 있어서,In Article 18, 상기 가수분해 반응에서 사용되는 용매는 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, n-아밀나프탈렌, n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n-옥탄, iso-옥탄, 시클로헥산, 및 메틸시클로헥산에서 선택되는 하나 이상인 것인, 모노-터트-부틸 에스터화된 포화 탄화수소의 순환적 제조방법.A method for cyclically producing a mono-tert-butyl esterified saturated hydrocarbon, wherein the solvent used in the above hydrolysis reaction is at least one selected from dichloromethane, dichloroethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene, n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane.
PCT/KR2024/005933 2023-05-10 2024-05-02 Method for preparing mono-tert-butyl-esterified saturated hydrocarbon, and cyclic preparation method therefor WO2024232593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230060347A KR20240163292A (en) 2023-05-10 2023-05-10 Method of preparing mono-tert-butyl esterified saturated hydrocarbons and cyclic method of preparing thereof
KR10-2023-0060347 2023-05-10

Publications (1)

Publication Number Publication Date
WO2024232593A1 true WO2024232593A1 (en) 2024-11-14

Family

ID=93430310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/005933 WO2024232593A1 (en) 2023-05-10 2024-05-02 Method for preparing mono-tert-butyl-esterified saturated hydrocarbon, and cyclic preparation method therefor

Country Status (2)

Country Link
KR (1) KR20240163292A (en)
WO (1) WO2024232593A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306551A1 (en) * 2009-02-19 2011-12-15 Novo Nordisk A/S Modification of Factor VIII
CN113061086A (en) * 2020-01-02 2021-07-02 南京药石科技股份有限公司 Preparation method of long-chain aliphatic dicarboxylic acid mono-tert-butyl ester
CN113773200A (en) * 2021-09-14 2021-12-10 郑州猫眼农业科技有限公司 Preparation method of mono-tert-butyl glutarate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306551A1 (en) * 2009-02-19 2011-12-15 Novo Nordisk A/S Modification of Factor VIII
CN113061086A (en) * 2020-01-02 2021-07-02 南京药石科技股份有限公司 Preparation method of long-chain aliphatic dicarboxylic acid mono-tert-butyl ester
CN113773200A (en) * 2021-09-14 2021-12-10 郑州猫眼农业科技有限公司 Preparation method of mono-tert-butyl glutarate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAUL RAMESH, BROUILLETTE YANN, SAJJADI ZOHREH, HANSFORD KARL A., LUBELL WILLIAM D.: "Selective tert -Butyl Ester Deprotection in the Presence of Acid Labile Protecting Groups with Use of ZnBr 2", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, UNITED STATES, vol. 69, no. 18, 1 September 2004 (2004-09-01), United States, pages 6131 - 6133, XP093235837, ISSN: 0022-3263, DOI: 10.1021/jo0491206 *
WU, Y.-Q. LIMBURG, D.C. WILKINSON, D.E. VAAL, M.J. HAMILTON, G.S.: "A mild deprotection procedure for tert-butyl esters and tert-butyl ethers using ZnBr"2 in methylene chloride", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 41, no. 16, 1 April 2000 (2000-04-01), AMSTERDAM, NL, pages 2847 - 2849, XP004195685, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(00)00300-2 *

Also Published As

Publication number Publication date
KR20240163292A (en) 2024-11-19

Similar Documents

Publication Publication Date Title
WO2010104344A2 (en) Process for preparing prostaglandin derivatives
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2010030132A9 (en) Purification method for adefovir dipivoxil
AU2018385820B2 (en) Intermediates for optically active piperidine derivatives and preparation methods thereof
EP1078921B1 (en) Novel intermediates and processes for the preparation of optically active octanoic acid derivatives
WO2011004980A2 (en) Method for preparing tricyclic derivatives
WO2017023123A1 (en) Novel method for preparing chromanone derivative
WO2018152949A1 (en) Method for preparing optically pure (r)-4-n-propyl-dihydrofuran-2(3h)-one
WO2017126847A1 (en) Method for preparing 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
WO2014065577A1 (en) Method for preparing loxoprofen (2s, 1&#39;r, 2&#39;s) trans-alcohol
WO2024232593A1 (en) Method for preparing mono-tert-butyl-esterified saturated hydrocarbon, and cyclic preparation method therefor
EP3941911A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2020040617A1 (en) Method of manufacturing gadobutrol
WO2022103239A1 (en) Preparation method for edoxaban tosylate or hydrate thereof
WO2021210920A1 (en) Method for producing ramelteon, and intermediate compound used for same
WO2023249414A1 (en) Method for producing benzoamine derivative
WO2021045585A1 (en) Method for producing pyrimidinyl bipyridine compound and intermediate therefor
WO2020060213A1 (en) Method for producing 4-methoxy pyrrole derivative
WO2011105649A1 (en) New method for manufacturing pitavastatin hemicalcium using new intermediate
WO2023101115A1 (en) Preparation method for high purity 1-(1-(2-benzyl phenoxy)propan-2-yl)-2-methylpiperidine single isomer
WO2015053576A1 (en) Method for preparation of 3-alkylthio-2-bromopyridine
WO2017183835A1 (en) Method for preparing d-4,4&#39;-biphenylalanine alkyl ester or l-4,4&#39;-biphenylalanine alkyl ester from dl-4,4&#39;-biphenylalanine alkyl ester
WO2017090991A1 (en) Method for purifying benzopyran derivative, crystal form thereof, and method for preparing crystal form
WO2024014637A1 (en) Method for preparing perampanel derivative comprising continuous flow process
WO2019045355A1 (en) Method for preparing rivastigmine pamoate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24803647

Country of ref document: EP

Kind code of ref document: A1