Nothing Special   »   [go: up one dir, main page]

WO2024222249A1 - 不锈钢均热板加工方法及均热板 - Google Patents

不锈钢均热板加工方法及均热板 Download PDF

Info

Publication number
WO2024222249A1
WO2024222249A1 PCT/CN2024/081179 CN2024081179W WO2024222249A1 WO 2024222249 A1 WO2024222249 A1 WO 2024222249A1 CN 2024081179 W CN2024081179 W CN 2024081179W WO 2024222249 A1 WO2024222249 A1 WO 2024222249A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
upper cover
steel upper
copper
plating layer
Prior art date
Application number
PCT/CN2024/081179
Other languages
English (en)
French (fr)
Inventor
蔡子平
王乙生
梁平平
李学华
Original Assignee
东莞领益精密制造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞领益精密制造科技有限公司 filed Critical 东莞领益精密制造科技有限公司
Publication of WO2024222249A1 publication Critical patent/WO2024222249A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel

Definitions

  • the invention relates to the technical field of heat exchange, and in particular to a stainless steel vapor chamber processing method and the vapor chamber.
  • the heat spreader has excellent thermal conductivity, and has the advantages of large heat transfer area, good temperature uniformity and high reliability. It is the primary way to solve the heat dissipation problem of electronic equipment.
  • the structure of the wick of the heat spreader can be a single structure such as micro-grooves, powder sintering, foam metal, wire mesh sintering, or a composite structure composed of two types of single structures.
  • the composite structure is thicker, and the wick structure of the single structure is usually difficult to fully regulate its porosity, capillary pressure, permeability and overall size.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention provides a method for processing a stainless steel vapor chamber, which can form a porous copper coating as a liquid wick by electrodeposition to achieve efficient phase change heat dissipation.
  • the present invention also provides a heat spreader made by using the stainless steel heat spreader processing method.
  • a method for processing a stainless steel soaking plate comprises the following steps:
  • the positive electrode of the power supply is electrically connected to the first copper body, and the negative electrode of the power supply is electrically connected to the second copper body;
  • the stainless steel upper cover and the porous copper plating layer are vacuum heated.
  • the stainless steel vapor chamber processing method has at least the following beneficial effects: the surface of the stainless steel upper cover is plated with a nickel coating, the stainless steel upper cover is connected to the first copper body so that the stainless steel upper cover is electrically connected to the first copper body, the stainless steel upper cover, the first copper body and the second copper body are immersed in an electrolyte containing CuSO4 and H2SO4 , the positive electrode of the power supply is electrically connected to the first copper body, and the negative electrode of the power supply is electrically connected to the second copper body, so that after the power supply is started, a copper coating can be electro-deposited on the nickel coating of the stainless steel cover.
  • the copper electrodeposition process also includes a hydrogen evolution reaction.
  • Hydrogen bubbles are precipitated from the nickel coating of the stainless steel cover.
  • the hydrogen bubbles are used as templates. No deposition layer can be formed at the position occupied by the bubbles.
  • the copper ions can only be reduced and deposited in the gaps between the hydrogen bubbles as templates. Due to the fast deposition rate, the copper ions around the copper deposit are quickly exhausted.
  • the continuous precipitation of hydrogen interrupts the diffusion of reactive ions from the electrolyte to the ion depletion area. Therefore, copper can only grow continuously in the gaps between the bubbles, and finally a self-supporting structure with high porosity and high specific surface area is obtained.
  • the porous copper plating has high-efficiency flow and low permeability of liquid working fluid.
  • An ultra-hydrophilic porous copper plating is integrated on the surface of the stainless steel cover as a liquid wick to achieve efficient phase change heat dissipation.
  • the thickness of the porous copper plating can be controlled by controlling the time of starting the power supply, so that the thickness of the porous copper plating can be accurately controlled.
  • the stainless steel cover and the porous copper plating are first placed in an oxygen environment and heated at a low temperature, and then the stainless steel cover and the porous copper plating are placed in a vacuum environment and heated, so that an oxide film can be formed on the surface of the stainless steel cover to improve the corrosion resistance of the stainless steel cover, and the structural stability of the copper plating can be strengthened to further improve the working stability of the heat spreader.
  • Electrodeposition is performed on the stainless steel cover by a stainless steel heat spreader processing method.
  • a porous copper plating layer is formed as a liquid wick to achieve efficient phase change heat dissipation, and the thickness of the porous copper plating layer can be controlled to meet processing requirements.
  • starting the power supply, and electroplating a porous copper coating on the nickel coating of the stainless steel cover by a hydrogen bubble template method includes the following steps: adjusting the electrolyte to 25°C; starting the power supply for 25 seconds, the power supply outputting a current with a current density of 0.5A/ cm2 , and electroplating the porous copper coating on the nickel coating of the stainless steel cover by a hydrogen bubble template method.
  • immersing the first copper body, the second copper body and the stainless steel upper cover in an electrolyte containing CuSO 4 and H 2 SO 4 includes the following steps: immersing the first copper body, the second copper body and the stainless steel upper cover in the electrolyte containing 0.2 mol/L CuSO 4 , 1 mol/L H 2 SO 4 and sodium dodecyl sulfate.
  • the step of "vacuum heating the stainless steel upper cover and the porous copper coating” also includes the following steps before: placing the stainless steel lower cover on the side of the stainless steel upper cover electroplated with the porous copper coating; pressing the stainless steel upper cover and the stainless steel lower cover together; laser welding the stainless steel upper cover and the stainless steel lower cover to encapsulate the porous copper coating.
  • vacuum heating the stainless steel upper cover and the porous copper plating layer includes the following steps: placing the stainless steel upper cover and the stainless steel lower cover in a vacuum environment; heating the stainless steel upper cover and the stainless steel lower cover to 850°C for 120 minutes.
  • low-temperature oxidation of the stainless steel cover and the porous copper coating includes the following steps: placing the stainless steel cover and the porous copper coating in an aerobic environment; heating the stainless steel cover and the porous copper coating to 500°C for 120 minutes.
  • both the first copper body and the second copper body may be phosphor copper and brass.
  • the step of "connecting the stainless steel upper cover to the first copper body” also includes the following steps: immersing the stainless steel upper cover in acetone; immersing the stainless steel upper cover in ethanol; immersing the stainless steel upper cover in deionized water; immersing the stainless steel upper cover in 100 ml/L hydrochloric acid solution.
  • the step of "connecting the stainless steel upper cover to the first copper body” also includes the following steps: immersing the stainless steel upper cover in deionized water; electroplating to form a nickel coating on the surface of the stainless steel upper cover; and immersing the stainless steel upper cover in deionized water again.
  • the heat spreader includes a stainless steel upper cover and a heat dissipation copper coating;
  • the stainless steel upper cover includes a stainless steel body and a nickel coating, and the nickel coating is arranged on one side of the stainless steel body;
  • the heat dissipation copper coating is arranged on the nickel coating, and a plurality of micropores are arranged on the surface of the heat dissipation copper sheet.
  • the vapor chamber according to the embodiment of the present invention has at least the following beneficial effects: the vapor chamber can be manufactured according to the stainless steel vapor chamber processing method of the first embodiment, the surface of the stainless steel upper cover is plated with a nickel coating, the stainless steel upper cover is connected to the first copper body, so that the stainless steel upper cover is electrically connected to the first copper body, the stainless steel upper cover, the first copper body and the second copper body are immersed in an electrolyte, and the electrolyte contains CuSO4 and H2SO4 , the positive electrode of the power supply is electrically connected to the first copper body, and the negative electrode of the power supply is electrically connected to the second copper body, so that after the power supply is started, a copper coating can be electro-deposited on the nickel coating of the stainless steel cover.
  • the copper electrodeposition process also includes a hydrogen evolution reaction.
  • Hydrogen bubbles are precipitated from the nickel coating of the stainless steel cover. Using hydrogen bubbles as templates, no deposition layer can be formed at the position occupied by the bubbles. Copper ions can only be reduced and deposited in the gaps between the hydrogen bubbles as templates. Due to the fast deposition rate, the copper ions around the copper deposits are quickly exhausted, and the continuous precipitation of hydrogen interrupts the diffusion of reactive ions from the electrolyte to the ion depletion area. Therefore, copper can only grow continuously in the gaps between the bubbles, and finally a porous copper coating with a self-supporting structure having a high porosity and a high specific surface area is obtained.
  • the porous copper coating has efficient flow of liquid working fluids and low permeability, and is easy to grow on the stainless steel.
  • the surface of the steel upper cover is integrated with a super-hydrophilic porous copper coating as a liquid absorption core to achieve efficient phase change heat dissipation.
  • the thickness of the porous copper coating can be controlled by controlling the time of starting the power supply, so that the thickness of the porous copper coating can be accurately controlled. Among them, since the heat dissipation copper coating is arranged on the nickel coating, the surface of the heat dissipation copper sheet is provided with a plurality of micropores, and the multi-layer copper coating is the heat dissipation copper coating.
  • the stainless steel upper cover and the heat dissipation copper coating are first placed in an oxygen environment and heated at a low temperature, and then the stainless steel upper cover and the heat dissipation copper coating are placed in a vacuum environment and heated, so that an oxide film can be formed on the surface of the stainless steel upper cover to improve the corrosion resistance of the stainless steel upper cover, and the structural stability of the copper coating can be strengthened, so as to further improve the working stability of the heat spreader; the heat dissipation copper coating is formed as a liquid absorption core by electroplating at the stainless steel upper cover through the stainless steel heat spreader processing method, so as to achieve It can realize efficient phase change heat dissipation and control the thickness of the heat dissipation copper plating to meet processing requirements.
  • FIG1 is a schematic flow chart of a method for processing a stainless steel soaking plate of the present invention.
  • a method for processing a stainless steel vapor chamber according to a first embodiment of the present invention comprises the following steps:
  • the surface of the stainless steel upper cover is plated with a nickel coating
  • the stainless steel upper cover is connected to the first copper body, so that the stainless steel upper cover and the first copper body are electrically connected, and the stainless steel upper cover , the first copper body and the second copper body are immersed in an electrolyte containing CuSO4 and H2SO4 , the positive electrode of the power supply is electrically connected to the first copper body, and the negative electrode of the power supply is electrically connected to the second copper body, so that after the power supply is started, a copper coating can be electro-deposited on the nickel coating of the stainless steel cover.
  • the copper electrodeposition process also includes a hydrogen evolution reaction. Hydrogen bubbles are precipitated from the nickel coating of the stainless steel cover.
  • a deposition layer cannot be formed at the position occupied by the bubbles. Copper ions are reduced and deposited only in the gaps between the hydrogen bubbles as templates. Due to the fast deposition rate, the copper ions around the copper deposits are quickly exhausted, and the continuous precipitation of hydrogen interrupts the diffusion of reactive ions from the electrolyte to the ion depletion area. Therefore, copper can only grow continuously in the gaps between the bubbles, and finally a porous copper coating with a self-supporting structure having a high porosity and a high specific surface area is obtained. The porous copper coating has a high efficiency flow of liquid working fluid.
  • an ultra-hydrophilic porous copper coating is integrally constructed on the surface of the stainless steel upper cover as a liquid absorption core to achieve efficient phase change heat dissipation, and the thickness of the porous copper coating can be controlled by controlling the time of starting the power supply, so that the thickness of the porous copper coating can be accurately controlled; after the electroplating is completed, the stainless steel upper cover and the porous copper coating are first placed in an oxygen environment for low-temperature heating, and then the stainless steel upper cover and the porous copper coating are placed in a vacuum environment for heating, so that an oxide film can be formed on the surface of the stainless steel upper cover to improve the corrosion resistance of the stainless steel upper cover, and the structural stability of the copper coating can be enhanced, so as to further improve the working stability of the heat spreader; a porous copper coating is formed by electro-deposition at the stainless steel upper cover as a liquid absorption core through a stainless steel heat spreader processing method, so as to achieve efficient phase change heat dissipation, and the thickness of the porous copper
  • S400 starting the power supply, electroplating a porous copper coating on the nickel coating of the stainless steel cover by a hydrogen bubble template method” includes the following steps:
  • the power supply was started for 25 seconds, and the power supply outputted a current with a current density of 0.5 A/cm 2 , and a porous copper plating layer was electroplated on the nickel plating layer of the stainless steel upper cover by a hydrogen bubble template method.
  • the temperature of the first copper body, the second copper body and the stainless steel upper cover can be controlled, thereby controlling the temperature environment during the electroplating process and ensuring the stability of the electroplating process;
  • the electroplating time and the electroplating efficiency can be controlled, thereby controlling the porous copper plating layer so that the porous copper plating layer can meet the processing requirements of ultra-thin heat spreader.
  • “S200, immersing the first copper body, the second copper body and the stainless steel upper cover in an electrolyte, wherein the electrolyte comprises CuSO 4 and H 2 SO 4 ” includes the following steps:
  • the first copper body, the second copper body and the stainless steel upper cover are immersed in an electrolyte solution consisting of 0.2 mol/L CuSO 4 , 1 mol/L H 2 SO 4 and sodium dodecyl sulfate.
  • the first copper body, the second copper body and the stainless steel upper cover are immersed in an electrolyte. Since the electrolyte contains CuSO 4 and H 2 SO 4 , a chemical environment for copper electrodeposition can be provided. Sodium dodecyl sulfate, a chemical reducing agent, is introduced into the electrochemical deposition process to induce the coating to grow in the direction of instantaneous nucleation to obtain an electrodeposited coating sample, thereby improving the efficiency of electroplating.
  • the step of “S600, vacuum heating the stainless steel upper cover and the porous copper plating layer” includes the following steps:
  • the porous copper plating is located between the stainless steel upper cover and the stainless steel lower cover, the stainless steel upper cover and the stainless steel lower cover are pressed against each other, and the stainless steel upper cover and the stainless steel lower cover are fixedly welded and connected by laser welding, so that the porous copper plating can be encapsulated between the stainless steel upper cover and the stainless steel lower cover to protect the porous copper plating.
  • “S600, vacuum heating of stainless steel upper cover and porous copper plating layer” includes the following steps:
  • the stainless steel upper cover and the stainless steel lower cover are heated to 850° C. for 120 minutes.
  • the porous copper plating layer can be further strengthened to improve the structural strength of the porous copper plating layer.
  • “S500, low temperature oxidation stainless steel cover and porous copper plating layer” includes the following steps:
  • the stainless steel cover and the porous copper coating were heated to 500°C for 120 minutes.
  • Placing the stainless steel upper cover and the porous copper plating layer in an oxygen environment can form an oxide film on the surfaces of the stainless steel upper cover and the stainless steel lower cover, thereby improving the corrosion resistance of the stainless steel upper cover and the stainless steel lower cover.
  • the first copper body and the second copper body may both be phosphor copper and brass.
  • the first copper body is brass
  • the second copper body is phosphor copper.
  • Phosphor copper serves as the anode
  • brass serves as the cathode.
  • the grains of phosphor copper are small and evenly distributed.
  • the copper plating layer formed after electroplating is brighter and more uniform.
  • Brass has a high thermal conductivity and good thermal conduction efficiency, and can conduct heat more efficiently.
  • the step of “connecting the stainless steel upper cover to the first copper body” further includes the following steps:
  • the oil and oxide layer on the surface of the stainless steel cover can be removed, thereby improving the stability of subsequent electroplating; by immersing the stainless steel cover in deionized water, the acetone and ethanol attached to the stainless steel cover can be cleaned.
  • the step of “connecting the stainless steel upper cover to the first copper body” further includes the following steps:
  • the stainless steel upper cover can be cleaned by immersing it in deionized water.
  • the stainless steel upper cover is electroplated with a nickel layer, which can make the stainless steel upper cover have better corrosion resistance. Specifically, the part of the stainless steel upper cover plated with the nickel layer is immersed in the electrolyte to prevent H2SO4 in the electrolyte from corroding the stainless steel upper cover.
  • the heat spreader of the second embodiment of the present invention comprises a stainless steel upper cover and a heat dissipation copper coating;
  • the stainless steel upper cover comprises a stainless steel body and a nickel coating, the nickel coating is arranged on one side of the stainless steel body;
  • the heat dissipation copper coating is arranged on the nickel coating, and a plurality of micropores are arranged on the surface of the heat dissipation copper sheet.
  • the heat spreader can be made according to the stainless steel heat spreader processing method of the first embodiment, the surface of the stainless steel upper cover is plated with a nickel coating, the stainless steel upper cover is connected to the first copper body, so that the stainless steel upper cover is electrically connected to the first copper body, the stainless steel upper cover, the first copper body and the second copper body are immersed in an electrolyte, and the electrolyte contains CuSO4 and H2SO4 , the positive electrode of the power supply is electrically connected to the first copper body, and the negative electrode of the power supply is electrically connected to the second copper body, so that after the power supply is started, a copper coating can be electro-deposited on the nickel coating of the stainless steel cover.
  • the copper electrodeposition process also includes a hydrogen evolution reaction.
  • Hydrogen bubbles are precipitated from the nickel coating of the stainless steel cover. Using hydrogen bubbles as templates, a deposition layer cannot be formed at the position occupied by the bubbles. Copper ions can only be reduced and deposited in the gaps between the hydrogen bubbles as templates. Due to the fast deposition rate, the copper ions around the copper deposits are quickly exhausted, and the continuous precipitation of hydrogen interrupts the diffusion of reactive ions from the electrolyte to the ion depletion area. Therefore, copper can only grow continuously in the gaps between the bubbles, and finally a porous copper coating with a self-supporting structure having a high porosity and a high specific surface area is obtained.
  • the porous copper plating has efficient flow of liquid working fluid and low permeability.
  • a super hydrophilic porous copper plating is integrated on the surface of the stainless steel cover as a liquid absorption core to achieve efficient phase change heat dissipation.
  • the thickness of the porous copper plating can be controlled by controlling the time of starting the power supply, so that the thickness of the porous copper plating can be accurately controlled.
  • the heat dissipation copper plating is arranged on the nickel plating, the surface of the heat dissipation copper sheet is provided with a plurality of micropores, and the multi-layer copper plating is the heat dissipation copper plating.
  • the stainless steel cover and the heat dissipation copper plating are first placed in an oxygen environment and heated at a low temperature, and then the stainless steel cover and the heat dissipation copper plating are placed in a vacuum environment and heated, so that an oxide film can be formed on the surface of the stainless steel cover to improve the corrosion resistance of the stainless steel cover, and the structural stability of the copper plating can be strengthened to further improve the uniform
  • the working stability of the hot plate through the stainless steel heat spreader processing method, a heat dissipation copper plating layer is electro-deposited on the stainless steel upper cover as a liquid absorption core to achieve efficient phase change heat dissipation, and the thickness of the heat dissipation copper plating layer can be controlled to meet the processing requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种不锈钢均热板加工方法及均热板,涉及于热交换技术领域;不锈钢均热板加工方法包括由如下步骤:将不锈钢上盖与第一铜体连接;将第一铜体、第二铜体和不锈钢上盖浸入电解液内,电解液包含CuSO 4和H 2SO 4;将电源的负极与第一铜体电连接,将电源的正极与第二铜体电连接;启动电源,通过氢气泡模板法在不锈钢上盖的镍镀层上电镀形成多孔铜镀层;低温氧化不锈钢上盖和多孔铜镀层;真空加热不锈钢上盖和多孔铜镀层。通过不锈钢均热板加工方法在不锈钢钢上盖处电沉积形成多孔铜镀层作为吸液芯,实现高效相变散热,并且能够控制多孔铜镀层的厚度,满足加工要求。

Description

不锈钢均热板加工方法及均热板 技术领域
本发明涉及于热交换技术领域,特别涉及一种不锈钢均热板加工方法及均热板。
背景技术
均热板具有优异的导热性能,其具有较大传热面积、较好的均温性能和高可靠性等优点,是解决电子设备散热问题的首要途径。
现在为了满足5G时代下现代微型化电子设备的散热需求,均热板的超薄化是当前业界和学术界的研究热点,目前均热板吸液芯结构可以为微沟槽、粉末烧结、泡沫金属、丝网烧结等单一结构,或为由两种类型的单一结构复合而成的复合结构,然而复合结构的厚度较厚,而单一结构的吸液芯结构通常难以全面调控其孔隙率,毛细压力、渗透率和整体尺寸,这些因素综合决定了超薄均热板吸液芯的优异毛细性能,其中吸液芯的毛细性能好坏对均热板性能起到决定性的作用,然而随着均热板的设计越来越薄,吸液芯的厚度均被不断压缩,进而导致均热板传热性能急剧下降,无法保证均热板的散热效果。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种不锈钢均热板加工方法,其能够通过电沉积形成多孔铜镀层作为吸液芯,实现高效相变散热。
本发明还提出一种使用不锈钢均热板加工方法而成的均热板。
根据本发明第一方面实施例的不锈钢均热板加工方法,包括以下步骤:
将不锈钢上盖与第一铜体连接;
将第一铜体、第二铜体和所述不锈钢上盖浸入电解液内,所述电解液包含CuSO4和H2SO4
将电源的正极与所述第一铜体电连接,将所述电源的负极与所述第二铜体电连接;
启动所述电源,通过氢气泡模板法在所述不锈钢上盖的镍镀层上电镀形成多孔铜镀层;
低温氧化所述不锈钢上盖和所述多孔铜镀层;
真空加热所述不锈钢上盖和所述多孔铜镀层。
根据本发明实施例的不锈钢均热板加工方法,至少具有如下有益效果:不锈钢上盖的表面镀有镍镀层,将不锈钢上盖与第一铜体连接,使得不锈钢上盖与第一铜体电连接,将不锈钢上盖、第一铜体和第二铜体浸入电解液内,电解液包含有CuSO4和H2SO4,将电源的正极与所述第一铜体电连接,将所述电源的负极与所述第二铜体电连接,使得启动电源后能够在不锈钢上盖的镍镀层电沉积有铜镀层,而在铜电沉积的过程中除铜离子的还原反应外,还包含有析氢反应,氢气泡从不锈钢上盖的镍镀层处析出,利用氢气泡为模板,气泡占据的位置上不能形成沉积层,铜离子只有在氢气泡作为的模板间的空隙中还原沉积,由于沉积速率较快,铜沉积物周围的铜离子快速耗尽,加上氢气的不断析出又中断了反应离子从电解液到离子耗尽区域的扩散,因此铜只能在气泡之间的空隙中连续生长,最终得到具有高孔隙率和高比表面积的自支撑结构的多孔铜镀层,多孔铜镀层具有液态工质高效流动及低渗透性,在不锈钢上盖的表面一体化构筑超亲水的多孔铜镀层作为吸液芯,实现高效相变散热,通过控制启动电源的时间能够控制多孔铜镀层的厚度,以能够精准控制多孔铜镀层的厚度;在电镀完成后,先将所述不锈钢上盖和所述多孔铜镀层放置于氧气环境下低温加热,再将所述不锈钢上盖和所述多孔铜镀层放置于真空环境下加热,以能够在不锈钢上盖的表面形成氧化膜以提高不锈钢上盖的抗锈蚀能力,并且能够强化铜镀层的结构的稳定性,以进一步提高该均热板工作的稳定性;通过不锈钢均热板加工方法在不锈钢钢上盖处电沉积 形成多孔铜镀层作为吸液芯,实现高效相变散热,并且能够控制多孔铜镀层的厚度,满足加工要求。
根据本发明的一些实施例,“启动所述电源,通过氢气泡模板法在所述不锈钢上盖的镍镀层上电镀形成多孔铜镀层”,包括有以下步骤:将所述电解液调节至25℃;启动所述电源25秒,所述电源输出电流密度为0.5A/cm2的电流,通过氢气泡模板法在所述不锈钢上盖的所述镍镀层上电镀形成所述多孔铜镀层。
根据本发明的一些实施例,“将第一铜体、第二铜体和所述不锈钢上盖浸入电解液内,所述电解液包含CuSO4和H2SO4”,包括有以下步骤:将所述第一铜体、所述第二铜体和所述不锈钢上盖浸入所述电解液内,所述电解液由0.2mol/L的CuSO4、1mol/L的H2SO4和十二烷基硫酸钠组成。
根据本发明的一些实施例,“真空加热不锈钢上盖和多孔铜镀层”,的步骤之前还包括有以下步骤:将所述不锈钢下盖放在所述不锈钢上盖电镀有所述多孔铜镀层一侧;压合所述不锈钢上盖和所述不锈钢下盖;激光焊接所述不锈钢上盖和所述不锈钢下盖,以封装所述多孔铜镀层。
根据本发明的一些实施例,“真空加热不锈钢上盖和多孔铜镀层”,包括有以下步骤:将所述不锈钢上盖和所述不锈钢下盖放在真空环境下;加热所述不锈钢上盖和所述不锈钢下盖至850℃,加热时间为120分钟。
根据本发明的一些实施例,“低温氧化所述不锈钢上盖和所述多孔铜镀层”,包括有以下步骤:将所述不锈钢上盖和所述多孔铜镀层放置于有氧环境;加热所述不锈钢上盖和所述多孔铜镀层至500℃,加热时间为120分钟。
根据本发明的一些实施例,所述第一铜体和所述第二铜体均可以为磷铜和黄铜。
根据本发明的一些实施例,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:将所述不锈钢上盖浸入丙酮内;将所述不锈钢上盖浸入乙醇内;将所述不锈钢上盖浸入去离子水内;将所述不锈钢上盖浸入100ml/L的盐酸溶液内。
根据本发明的一些实施例,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:将所述不锈钢上盖浸入去离子水内;在所述不锈钢上盖的表面上电镀形成镍镀层;将所述不锈钢上盖再次浸入去离子水内。
根据本发明第二方面实施例的均热板,包括有不锈钢上盖和散热铜镀层;不锈钢上盖包括有不锈钢主体和镍镀层,所述镍镀层设置于所述不锈钢主体的一侧;散热铜镀层设置于镍镀层上,所述散热铜片的表面设置有若干微孔。
根据本发明实施例的均热板,至少具有如下有益效果:均热板能够按照上述第一方面实施例的不锈钢均热板加工方法制成,不锈钢上盖的表面镀有镍镀层,将不锈钢上盖与第一铜体连接,使得不锈钢上盖与第一铜体电连接,将不锈钢上盖、第一铜体和第二铜体浸入电解液内,电解液包含有CuSO4和H2SO4,将电源的正极与第一铜体电连接,将电源的负极与第二铜体电连接,使得启动电源后能够在不锈钢上盖的镍镀层电沉积有铜镀层,而在铜电沉积的过程中除铜离子的还原反应外,还包含有析氢反应,氢气泡从不锈钢上盖的镍镀层处析出,利用氢气泡为模板,气泡占据的位置上不能形成沉积层,铜离子只有在氢气泡作为的模板间的空隙中还原沉积,由于沉积速率较快,铜沉积物周围的铜离子快速耗尽,加上氢气的不断析出又中断了反应离子从电解液到离子耗尽区域的扩散,因此铜只能在气泡之间的空隙中连续生长,最终得到具有高孔隙率和高比表面积的自支撑结构的多孔铜镀层,多孔铜镀层具有液态工质高效流动及低渗透性,在不锈钢上盖的表面一体化构筑超亲水的多孔铜镀层作为吸液芯,实现高效相变散热,通过控制启动电源的时间能够控制多孔铜镀层的厚度,以能够精准控制多孔铜镀层的厚度,其中,由于,散热铜镀层设置于镍镀层上,散热铜片的表面设置有若干微孔,多层铜镀层即为散热铜镀层,在电镀完成后,先将不锈钢上盖和散热铜镀层放置于氧气环境下低温加热,再将不锈钢上盖和散热铜镀层放置于真空环境下加热,以能够在不锈钢上盖的表面形成氧化膜以提高不锈钢上盖的抗锈蚀能力,并且能够强化铜镀层的结构的稳定性,以进一步提高该均热板工作的稳定性;通过不锈钢均热板加工方法在不锈钢钢上盖处电沉积形成散热铜镀层作为吸液芯,实 现高效相变散热,并且能够控制散热铜镀层的厚度,满足加工要求。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明的不锈钢均热板加工方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、左、右、前、后等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1,根据本发明第一方面实施例的不锈钢均热板加工方法,包括以下步骤:
S100、将不锈钢上盖与第一铜体连接;
S200、将第一铜体、第二铜体和不锈钢上盖浸入电解液内,电解液包含CuSO4和H2SO4
S300、将电源的正极与第一铜体电连接,将电源的负极与第二铜体电连接;
S400、启动电源,通过氢气泡模板法在不锈钢上盖的镍镀层上电镀形成多孔铜镀层;
S500、低温氧化不锈钢上盖和多孔铜镀层;
S600、真空加热不锈钢上盖和多孔铜镀层。
不锈钢上盖的表面镀有镍镀层,将不锈钢上盖与第一铜体连接,使得不锈钢上盖与第一铜体电连接,将不锈钢上盖、第一铜体和第二铜体浸入电解液内,电解液包含有CuSO4和H2SO4,将电源的正极与第一铜体电连接,将电源的负极与第二铜体电连接,使得启动电源后能够在不锈钢上盖的镍镀层电沉积有铜镀层,而在铜电沉积的过程中除铜离子的还原反应外,还包含有析氢反应,氢气泡从不锈钢上盖的镍镀层处析出,利用氢气泡为模板,气泡占据的位置上不能形成沉积层,铜离子只有在氢气泡作为的模板间的空隙中还原沉积,由于沉积速率较快,铜沉积物周围的铜离子快速耗尽,加上氢气的不断析出又中断了反应离子从电解液到离子耗尽区域的扩散,因此铜只能在气泡之间的空隙中连续生长,最终得到具有高孔隙率和高比表面积的自支撑结构的多孔铜镀层,多孔铜镀层具有液态工质高效流动及低渗透性,在不锈钢上盖的表面一体化构筑超亲水的多孔铜镀层作为吸液芯,实现高效相变散热,通过控制启动电源的时间能够控制多孔铜镀层的厚度,以能够精准控制多孔铜镀层的厚度;在电镀完成后,先将不锈钢上盖和多孔铜镀层放置于氧气环境下低温加热,再将不锈钢上盖和多孔铜镀层放置于真空环境下加热,以能够在不锈钢上盖的表面形成氧化膜以提高不锈钢上盖的抗锈蚀能力,并且能够强化铜镀层的结构的稳定性,以进一步提高该均热板工作的稳定性;通过不锈钢均热板加工方法在不锈钢钢上盖处电沉积形成多孔铜镀层作为吸液芯,实现高效相变散热,并且能够控制多孔铜镀层的厚度,满足加工要求。
在本发明的一些实施例中,“S400、启动电源,通过氢气泡模板法在不锈钢上盖的镍镀层上电镀形成多孔铜镀层”,包括有以下步骤:
将电解液调节至25℃;
启动电源25秒,电源输出电流密度为0.5A/cm2的电流,通过氢气泡模板法在不锈钢上盖的镍镀层上电镀形成多孔铜镀层。
通过控制电解液的温度,以能够控制第一铜体、第二铜体和不锈钢上盖的温度,从而控制电镀过程中的温度环境,保证电镀过程的稳定性;
通过控制电源的启动时间和电源输出的电流,以能够控制电镀的时间及电镀的效率,从而能够控制多孔铜镀层,以使得多孔铜镀层能够符合均热板超薄化的加工需求。
在本发明的一些实施例中,“S200、将第一铜体、第二铜体和不锈钢上盖浸入电解液内,电解液包含CuSO4和H2SO4”,包括有以下步骤:
将第一铜体、第二铜体和不锈钢上盖浸入电解液内,电解液由0.2mol/L的CuSO4、1mol/L的H2SO4和十二烷基硫酸钠组成。
通过将第一铜体、第二铜体和不锈钢上盖浸入电解液内,由于电解液包含CuSO4和H2SO4,以能够提供电沉积铜的化学环境,将为化学还原剂的十二烷基硫酸钠引入电化学沉积过程中,能够诱导镀层往瞬时成核生长方向发生得到电沉积镀层样品,提高电镀的效率。
在本发明的一些实施例中,“S600、真空加热不锈钢上盖和多孔铜镀层”,的步骤之前还包括有以下步骤:
将不锈钢下盖放在不锈钢上盖电镀有多孔铜镀层一侧;
压合不锈钢上盖和不锈钢下盖;
激光焊接不锈钢上盖和不锈钢下盖,以封装多孔铜镀层。
多孔铜镀层位于不锈钢上盖和不锈钢下盖之间,相互压合不锈钢上盖和不锈钢下盖,并且通过激光焊接的方式固定焊接连接不锈钢上盖和不锈钢下盖,以能够将多孔铜镀层封装在不锈钢上盖和不锈钢下盖之间,以保护多孔铜镀层。
在本发明的一些实施例中,“S600、真空加热不锈钢上盖和多孔铜镀层”,包括有以下步骤:
将所述不锈钢上盖和所述不锈钢下盖放在真空环境下;
加热所述不锈钢上盖和所述不锈钢下盖至850℃,加热时间为120分钟。
通过真空加热不锈钢上盖和不锈钢下盖能够繁平不锈钢焊接带来的起皱变形,且进一步强化多孔铜镀层,提高多孔铜镀层的结构强度。
在本发明的一些实施例中,“S500、低温氧化不锈钢上盖和多孔铜镀层”,包括有以下步骤:
将不锈钢上盖和多孔铜镀层放置于有氧环境;
加热不锈钢上盖和多孔铜镀层至500℃,加热时间为120分钟。
将不锈钢上盖和多孔铜镀层放置于有氧环境,能够使得不锈钢上盖和不锈钢下盖的表面形成有氧化膜,以能够提高不锈钢上盖和不锈钢下盖的抗腐蚀能力。
在本发明的一些实施例中,第一铜体和第二铜体均可以为磷铜和黄铜。
具体地,第一铜体为黄铜,第二铜体为磷铜,磷铜作为阳极,黄铜作为阴极,磷铜的晶粒细小且分布均匀,电镀时阳极膜形成快速且均匀,铜离子释放稳定,电镀后形成的铜镀层更光亮均匀,而黄铜的导热率较高,具有良好的热传导效率,能够更高效地将传导热量。
在本发明的一些实施例中,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:
将不锈钢上盖浸入丙酮内;
将不锈钢上盖浸入乙醇内;
将不锈钢上盖浸入去离子水内;
将不锈钢上盖浸入100ml/L的盐酸溶液内。
通过将不锈钢上盖浸入丙酮、乙醇和盐酸溶液,能够去除不锈钢上盖表面的油污和氧化层,提高后续电镀的稳定性;将不锈钢上盖浸入去离子水内,能够清洗不锈钢上盖上依附的丙酮和乙醇。
在本发明的一些实施例中,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:
将不锈钢上盖浸入去离子水内;
在不锈钢上盖的表面上电镀形成镍镀层;
将不锈钢上盖再次浸入去离子水内。
将不锈钢上盖浸入去离子水内,能够清洗不锈钢上盖,在不锈钢上盖电镀有镍镀层,能够使得不锈钢上盖具有较好的抗腐蚀能力,具体地,不锈钢上盖镀有镍镀层的部分浸入电解液内,以避免电解液内的H2SO4腐蚀不锈钢上盖。
参照图1,本发明第二方面实施例的均热板,均热板包括有不锈钢上盖和散热铜镀层;不锈钢上盖包括有不锈钢主体和镍镀层,镍镀层设置于不锈钢主体的一侧;散热铜镀层设置于镍镀层上,散热铜片的表面设置有若干微孔。
均热板能够按照上述第一方面实施例的不锈钢均热板加工方法制成,不锈钢上盖的表面镀有镍镀层,将不锈钢上盖与第一铜体连接,使得不锈钢上盖与第一铜体电连接,将不锈钢上盖、第一铜体和第二铜体浸入电解液内,电解液包含有CuSO4和H2SO4,将电源的正极与第一铜体电连接,将电源的负极与第二铜体电连接,使得启动电源后能够在不锈钢上盖的镍镀层电沉积有铜镀层,而在铜电沉积的过程中除铜离子的还原反应外,还包含有析氢反应,氢气泡从不锈钢上盖的镍镀层处析出,利用氢气泡为模板,气泡占据的位置上不能形成沉积层,铜离子只有在氢气泡作为的模板间的空隙中还原沉积,由于沉积速率较快,铜沉积物周围的铜离子快速耗尽,加上氢气的不断析出又中断了反应离子从电解液到离子耗尽区域的扩散,因此铜只能在气泡之间的空隙中连续生长,最终得到具有高孔隙率和高比表面积的自支撑结构的多孔铜镀层,多孔铜镀层具有液态工质高效流动及低渗透性,在不锈钢上盖的表面一体化构筑超亲水的多孔铜镀层作为吸液芯,实现高效相变散热,通过控制启动电源的时间能够控制多孔铜镀层的厚度,以能够精准控制多孔铜镀层的厚度,其中,由于,散热铜镀层设置于镍镀层上,散热铜片的表面设置有若干微孔,多层铜镀层即为散热铜镀层,在电镀完成后,先将不锈钢上盖和散热铜镀层放置于氧气环境下低温加热,再将不锈钢上盖和散热铜镀层放置于真空环境下加热,以能够在不锈钢上盖的表面形成氧化膜以提高不锈钢上盖的抗锈蚀能力,并且能够强化铜镀层的结构的稳定性,以进一步提高该均 热板工作的稳定性;通过不锈钢均热板加工方法在不锈钢钢上盖处电沉积形成散热铜镀层作为吸液芯,实现高效相变散热,并且能够控制散热铜镀层的厚度,满足加工要求。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 不锈钢均热板加工方法,其特征在于,包括以下步骤:
    将不锈钢上盖与第一铜体连接;
    将第一铜体、第二铜体和所述不锈钢上盖浸入电解液内,所述电解液包含CuSO4和H2SO4
    将电源的正极与所述第一铜体电连接,将所述电源的负极与所述第二铜体电连接;
    启动所述电源,通过氢气泡模板法在所述不锈钢上盖的镍镀层上电镀形成多孔铜镀层;
    低温氧化所述不锈钢上盖和所述多孔铜镀层;
    真空加热所述不锈钢上盖和所述多孔铜镀层。
  2. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,“启动所述电源,通过氢气泡模板法在所述不锈钢上盖的镍镀层上电镀形成多孔铜镀层”,包括有以下步骤:
    将所述电解液调节至25℃;
    启动所述电源25秒,所述电源输出电流密度为0.5A/cm2的电流,通过氢气泡模板法在所述不锈钢上盖的所述镍镀层上电镀形成所述多孔铜镀层。
  3. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,“将第一铜体、第二铜体和所述不锈钢上盖浸入电解液内,所述电解液包含CuSO4和H2SO4”,包括有以下步骤:
    将所述第一铜体、所述第二铜体和所述不锈钢上盖浸入所述电解液内,所述电解液由0.2mol/L的CuSO4、1mol/L的H2SO4和十二烷基硫酸钠组成。
  4. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,“真空加热不锈钢上盖和多孔铜镀层”,的步骤之前还包括有以下步骤:
    将所述不锈钢下盖放在所述不锈钢上盖电镀有所述多孔铜镀层一侧;
    压合所述不锈钢上盖和所述不锈钢下盖;
    激光焊接所述不锈钢上盖和所述不锈钢下盖,以封装所述多孔铜镀层。
  5. 根据权利要求4所述的不锈钢均热板加工方法,其特征在于,“真空加热不锈钢上盖和多孔铜镀层”,包括有以下步骤:
    将所述不锈钢上盖和所述不锈钢下盖放在真空环境下;
    加热所述不锈钢上盖和所述不锈钢下盖至850℃,加热时间为120分钟。
  6. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,“低温氧化所述不锈钢上盖和所述多孔铜镀层”,包括有以下步骤:
    将所述不锈钢上盖和所述多孔铜镀层放置于有氧环境;
    加热所述不锈钢上盖和所述多孔铜镀层至500℃,加热时间为120分钟。
  7. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,所述第一铜体和所述第二铜体均可以为磷铜和黄铜。
  8. 根据权利要求1所述的不锈钢均热板加工方法,其特征在于,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:
    将所述不锈钢上盖浸入丙酮内;
    将所述不锈钢上盖浸入乙醇内;
    将所述不锈钢上盖浸入去离子水内;
    将所述不锈钢上盖浸入100ml/L的盐酸溶液内。
  9. 根据权利要求8所述的不锈钢均热板加工方法,其特征在于,“将不锈钢上盖与第一铜体连接”的步骤之前还包括有以下步骤:
    将所述不锈钢上盖浸入去离子水内;
    在所述不锈钢上盖的表面上电镀形成镍镀层;
    将所述不锈钢上盖再次浸入去离子水内。
  10. 均热板,其特征在于,包括:
    不锈钢上盖,包括有不锈钢主体和镍镀层,所述镍镀层设置于所述不锈钢主体的一侧;
    散热铜镀层,设置于镍镀层上,所述散热铜片的表面设置有若干微孔。
PCT/CN2024/081179 2023-04-27 2024-03-12 不锈钢均热板加工方法及均热板 WO2024222249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310479237.1 2023-04-27
CN202310479237.1A CN116497410A (zh) 2023-04-27 2023-04-27 不锈钢均热板加工方法及均热板

Publications (1)

Publication Number Publication Date
WO2024222249A1 true WO2024222249A1 (zh) 2024-10-31

Family

ID=87317907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/081179 WO2024222249A1 (zh) 2023-04-27 2024-03-12 不锈钢均热板加工方法及均热板

Country Status (2)

Country Link
CN (1) CN116497410A (zh)
WO (1) WO2024222249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497410A (zh) * 2023-04-27 2023-07-28 东莞领益精密制造科技有限公司 不锈钢均热板加工方法及均热板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132111A (zh) * 2013-01-25 2013-06-05 重庆大学 三维微米级多孔铜薄膜的制备方法
CN212431875U (zh) * 2020-03-12 2021-01-29 深圳威铂驰热技术有限公司 一种复合均温板
CN212658107U (zh) * 2020-08-21 2021-03-05 北京中石伟业科技无锡有限公司 一种高强轻质的超薄均热板
CN112458503A (zh) * 2020-11-19 2021-03-09 瑞声科技(南京)有限公司 均温板上盖板的制备方法以及均温板
CN115915699A (zh) * 2021-08-19 2023-04-04 台湾台北科技大学 均热板及其改质制造方法
CN116497410A (zh) * 2023-04-27 2023-07-28 东莞领益精密制造科技有限公司 不锈钢均热板加工方法及均热板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132111A (zh) * 2013-01-25 2013-06-05 重庆大学 三维微米级多孔铜薄膜的制备方法
CN212431875U (zh) * 2020-03-12 2021-01-29 深圳威铂驰热技术有限公司 一种复合均温板
CN212658107U (zh) * 2020-08-21 2021-03-05 北京中石伟业科技无锡有限公司 一种高强轻质的超薄均热板
CN112458503A (zh) * 2020-11-19 2021-03-09 瑞声科技(南京)有限公司 均温板上盖板的制备方法以及均温板
CN115915699A (zh) * 2021-08-19 2023-04-04 台湾台北科技大学 均热板及其改质制造方法
CN116497410A (zh) * 2023-04-27 2023-07-28 东莞领益精密制造科技有限公司 不锈钢均热板加工方法及均热板

Also Published As

Publication number Publication date
CN116497410A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US20200373586A1 (en) Highly corrosion-resistant porous metal body
WO2024222249A1 (zh) 不锈钢均热板加工方法及均热板
JP6663584B2 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
CN106495147B (zh) 一种催化石墨化制备高导热石墨的方法
TWI638068B (zh) 銅合金多孔吸液芯及其製備方法
CN103556193A (zh) 紫铜表面超亲水结构制备方法及用该方法制造的紫铜微热管
CN109599563A (zh) 锂离子电池集流体及其制备方法
KR101623447B1 (ko) 리튬 이차전지용 음극의 제조방법
CN104818503A (zh) 一种三维网络结构多孔铜全透膜的制备方法
CN220265866U (zh) 一种aem电解水制氢流道双极板
WO2024148713A1 (zh) 一种高导电性能的抗高温氧化涂层及其制备方法
JP3930393B2 (ja) 燃料電池用金属製セパレータおよびその製造方法
CN110340174A (zh) 一种电容器用钽铝复合板带的生产方法
KR20240159655A (ko) 스테인리스강 베이퍼 챔버의 가공방법 및 베이퍼 챔버
CN115261952A (zh) 络合剂电解液体系下电化学阳极氧化制备多孔铜箔的方法
CN108712830B (zh) 一种电路板的无钯化学镀铜工艺
CN104218245B (zh) 一种钛/亚氧化钛/铅复合基板的制备方法
CN101425586B (zh) 一种质子交换膜燃料电池薄层铝双极板的改性方法
WO2015019154A2 (en) Film deposition device of metal film and metal film deposition method
CN115787011B (zh) 电解水制氢用钛集电器表面制备铂涂层的电镀液及电镀方法
CN115106678B (zh) 一种高温复合钎料及其制备方法和应用
CN111254434B (zh) 一种掺硼金刚石电极及其制备方法
RU2779038C1 (ru) Способ изготовления батареи трубчатых твердооксидных топливных элементов и батарея, изготовленная заявленным способом
CN117364192A (zh) 一种梯度仿生铜森林网状吸液芯及其制备方法
CN108754549A (zh) 一种镀镍层应力调节剂及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024722100

Country of ref document: EP

Effective date: 20240507