Nothing Special   »   [go: up one dir, main page]

WO2024219234A1 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
WO2024219234A1
WO2024219234A1 PCT/JP2024/013834 JP2024013834W WO2024219234A1 WO 2024219234 A1 WO2024219234 A1 WO 2024219234A1 JP 2024013834 W JP2024013834 W JP 2024013834W WO 2024219234 A1 WO2024219234 A1 WO 2024219234A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
coating
wafer
map
substrate
Prior art date
Application number
PCT/JP2024/013834
Other languages
French (fr)
Japanese (ja)
Inventor
幸伸 宮本
貴大 工
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024219234A1 publication Critical patent/WO2024219234A1/en

Links

Images

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing apparatus.
  • Patent Document 1 discloses a substrate inspection device. This substrate inspection device is equipped with an edge detection unit configured to detect a target edge, which is the edge of the coating to be inspected, based on inspection image data obtained from a captured image of the peripheral portion of a substrate on which multiple coatings are formed.
  • This disclosure provides a substrate processing method and substrate processing apparatus that enable peripheral exposure that is tailored to the condition of the outer edge of the underlying film.
  • a substrate processing method includes: generating edge information indicating a relationship between a circumferential position around a center of a substrate and an outer edge position of the first coating in a radial direction of the substrate based on an image obtained by imaging a peripheral region of the surface of the substrate having a first coating formed thereon; setting an exposure map indicating a relationship between the circumferential position and a set value of an exposure width in the radial direction based on the edge information; forming a second coating on at least the peripheral region of the surface after the image is obtained; and exposing the second coating in the peripheral region according to the exposure map.
  • the present disclosure provides a substrate processing method and substrate processing apparatus that enable peripheral exposure that is tailored to the state of the outer edge of the underlying film.
  • FIG. 1 is a plan view illustrating an example of a wafer processing system.
  • FIG. 2 is a front view illustrating an example of a wafer processing system.
  • FIG. 3 is a schematic diagram showing an example of a liquid treatment apparatus.
  • FIG. 4 is a plan view illustrating an example of an inspection device.
  • FIG. 5 is a front view showing a schematic diagram of an example of an inspection device.
  • Fig. 6A is a schematic diagram showing an example of a peripheral exposure apparatus
  • Fig. 6B is a schematic side view showing an example of a mask member.
  • FIG. 7 is a block diagram illustrating an example of a functional configuration of the control device.
  • FIG. 8 is a block diagram illustrating an example of a hardware configuration of the control device.
  • FIG. 1 is a plan view illustrating an example of a wafer processing system.
  • FIG. 2 is a front view illustrating an example of a wafer processing system.
  • FIG. 3 is a schematic diagram showing an example of
  • FIG. 9 is a flow chart showing an example of a substrate processing method.
  • 10(a), 10(b), 10(c), 10(d), 10(e), and 10(f) are schematic views illustrating the substrate processing method.
  • Fig. 11A is a diagram showing an example of a captured peripheral image
  • Fig. 11B is a graph showing an example of edge information.
  • Fig. 12(a) is a graph visualizing an example of an exposure map
  • Fig. 12(b) is a diagram showing an example of a film state after exposure and development.
  • FIG. 13 is a graph showing an example of the relationship between edge information and an exposure map.
  • Fig. 14A is a graph showing an example of a measurement result of an exposure width after exposure
  • 14B is a graph showing an example of difference information obtained by the inspection process.
  • 15(a), 15(b), 15(c), 15(d), 15(e), and 15(f) are schematic views illustrating the substrate processing method.
  • 16(a), 16(b), 16(c), and 16(d) are schematic views illustrating the substrate processing method.
  • Fig. 17A is a schematic diagram illustrating the influence of warping
  • Fig. 17B is a schematic diagram showing an example of a peripheral exposure device.
  • Figures 1 and 2 are a plan view and a front view, respectively, that show a schematic outline of the configuration of a wafer processing system 1.
  • the wafer processing system 1 substrate processing apparatus
  • the wafer processing system 1 will be described as an example of a photolithography processing system that performs a resist film forming process and a developing process on a wafer W (substrate).
  • the wafer processing system 1 has a cassette station 2 where cassettes C containing multiple wafers W are loaded and unloaded, and a processing station 3 equipped with multiple processing devices that perform predetermined processing on the wafers W.
  • the wafer processing system 1 has a configuration in which the cassette station 2, the processing station 3, and an interface station 4 that transfers the wafers W between them and an exposure device (not shown) adjacent to the opposite side of the processing station 3 are integrally connected. Note that, as shown in FIG. 1, two processing stations 3 are installed between the cassette station 2 and the interface station 4, but there may be one or three or more processing stations installed.
  • the cassette station 2 is provided with a plurality of cassette placement tables 21, wafer transfer devices 22, and wafer transfer devices 23.
  • the wafer W is transferred between the cassette C placed on the cassette placement table 21 and the processing station 3 by the wafer transfer device 22 or the wafer transfer device 23.
  • the wafer transfer device 22 and the wafer transfer device 23 each have a drive mechanism in the X direction, Y direction, up and down direction, and around the vertical axis ( ⁇ direction) as necessary, and may have a drive mechanism in all directions.
  • At least one of the wafer transfer device 22 and the wafer transfer device 23 is capable of transferring the wafer W to and from the cassette C, and is also capable of transferring the wafer W to and from the processing station 3.
  • the transfer operation of the wafer W to and from the processing station 3 means, for example, transferring the wafer W to and from the third block G3 having a transfer device accessible to the wafer transfer device 33 in the processing station 3 described later.
  • the third block G3 may include multiple transfer devices (not shown) arranged vertically.
  • An inspection device U3 that performs inspections on the wafer W may be located at a position accessible to either the wafer transport device 22 or the wafer transport device 23.
  • the inspection device U3 may be located in the cassette station 2 (e.g., the third block G3).
  • the inspection device U3 may be located in the processing station 3 instead of or in addition to the cassette station 2, or may be located in the interface station 4.
  • the processing station 3 is provided with a plurality of blocks, for example, a first block G1, a second block G2, and a fourth block G4. Also, as shown in FIG. 2, a plurality of layers 31 each including a first block G1 and a second block G2 are stacked vertically.
  • the first block G1 is provided on the front side of the processing station 3 (negative side in the X direction in FIG. 1)
  • the second block G2 is provided on the rear side of the processing station 3 (positive side in the X direction in FIG. 1).
  • the fourth block G4 is provided at the connection between the processing station 3 arranged on the cassette station 2 side (negative side in the Y direction in FIG.
  • the fourth block G4 may be provided with a plurality of transfer devices arranged vertically. Also, the above-mentioned third block G3 may be provided within the processing station 3.
  • the film processing devices U1 are, for example, a film forming device for patterning or a developing processing device.
  • the film forming device for patterning may include, for example, a resist film forming device as well as an anti-reflective film forming device.
  • At least some of the multiple film processing devices U1 may be devices that perform film processing using a processing liquid.
  • the film processing includes forming a film and performing a developing process.
  • the first block G1 for example, multiple membrane processing devices U1 are arranged in a horizontal line. Note that the number, arrangement, and type of these membrane processing devices U1 can be selected arbitrarily.
  • a specific processing liquid or a specific gas is supplied onto the wafer W.
  • a resist film is formed that is used as a mask when forming a pattern on the underlying film, and an anti-reflective film is formed to efficiently perform a light irradiation process, an example of which is an exposure process.
  • a portion of the exposed resist film is removed to form the uneven shape that serves as the mask.
  • heat treatment devices U2 for performing heat treatment such as heating and cooling of the wafer W are arranged vertically and horizontally.
  • a hydrophobization treatment device (not shown) for performing a hydrophobization treatment to improve the fixation of the resist liquid and the wafer W, and a peripheral exposure device U4 for exposing the outer periphery of the wafer W are arranged vertically (Z direction in FIG. 2) and horizontally.
  • the number and arrangement of these heat treatment devices, hydrophobization treatment devices, and peripheral exposure devices U4 can be selected arbitrarily.
  • the peripheral exposure device U4 may be arranged in the interface station 4 instead of or in addition to the processing station 3 (e.g., the second block G2). Both the inspection device U3 and the peripheral exposure device U4 may be arranged in the processing station 3 or in the interface station 4.
  • a wafer transport area 32 is formed in the area between the first block G1 and the second block G2 in a plan view.
  • a wafer transport device 33 is disposed in the wafer transport area 32.
  • the wafer transport device 33 has a transport arm that can move freely in, for example, the Y direction, the front-rear direction, the ⁇ direction, and the up-down direction.
  • the wafer transport device 33 moves within the wafer transport area 32 and can transport the wafer W to a predetermined device within the surrounding first block G1, second block G2, third block G3, and fourth block G4.
  • the wafer transport device 33 provided in the processing station 3 located on the interface station 4 side can transport the wafer W to a predetermined device within the fifth block G5 described below in addition to the first block G1, second block G2, and fourth block G4.
  • multiple wafer transport devices 33 are arranged vertically.
  • One wafer transport device 33 can transport a wafer W to a specific device located at the height of the upper layers 31 out of the multiple layers 31 stacked vertically.
  • Another wafer transport device 33 can transport a wafer W to a specific device located at the height of the multiple layers 31 located below the layers 31.
  • Multiple wafer transport areas 32 are provided to enable such transportation of wafers W. Note that the number of wafer transport devices 33 and the number of layers 31 corresponding to one wafer transport device 33 can be selected arbitrarily, such as providing a wafer transport device 33 for each layer 31.
  • the wafer transport area 32 or the first block G1 or the second block G2 may have a shuttle transport device (not shown).
  • the shuttle transport device transports the wafer W in a straight line between a space adjacent to one side of the processing station 3 and another space adjacent to the opposite side.
  • the interface station 4 is provided with a fifth block G5 equipped with multiple transfer devices, a wafer transport device 41, and a wafer transport device 42.
  • the interface station 4 transports the wafer W between the exposure device and the fifth block G5, where the wafer W is transferred by the wafer transport device 33, using the wafer transport device 41 or the wafer transport device 42.
  • the wafer transport device 41 and the wafer transport device 42 each include a drive mechanism for the X direction, Y direction, up and down direction, and around the vertical axis ( ⁇ direction) as necessary, and may include a drive mechanism for all directions.
  • At least one of the wafer transport device 41 and the wafer transport device 42 can support the wafer W and transport the wafer W between the transfer device in the fifth block G5 and the exposure device.
  • a cleaning device for cleaning the surface of the wafer W and the aforementioned peripheral exposure device U4 may be provided in a position within the interface station 4 that is accessible to either the wafer transport device 41 or the wafer transport device 42.
  • the cleaning device and peripheral exposure device U4 may be provided in the location indicated by the dashed square within the interface station 4 in FIG. 1.
  • the above wafer processing system 1 is provided with a control device 100.
  • the control device 100 is, for example, a computer, and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of wafers W in the wafer processing system 1.
  • the program storage unit also stores a program for controlling the operation of the drive systems of the above-mentioned various processing devices and transport devices, etc., to realize wafer processing in the wafer processing system 1.
  • the above program may be recorded on a computer-readable storage medium H, and installed in the control device 100 from the storage medium H.
  • a cassette C containing multiple wafers W is carried into the cassette station 2 of the wafer processing system 1 and placed on the cassette placement table 21.
  • each wafer W in the cassette C is sequentially removed by the wafer transfer device 22 or the wafer transfer device 23 and transferred to the transfer device in the third block G3.
  • the wafer W transferred to the transfer device of the third block G3 is supported by the wafer transfer device 33 and transferred to the hydrophobization treatment device provided in the second block G2, where the hydrophobization treatment is performed.
  • the wafer W is transferred by the wafer transfer device 33 to the resist film forming device, where a resist film is formed on the wafer W, and then transferred to the heat treatment device for pre-baking, and then transferred to the transfer device of the fifth block G5.
  • the wafer W is placed once in the transfer device of the fourth block G4 before being transferred to the transfer device of the fifth block G5, and then transferred between the multiple wafer transfer devices 33.
  • the wafer W is also transferred by the wafer transfer device 33 to the peripheral exposure device U4, where the peripheral area of the wafer W is exposed.
  • the wafer W transported to the transfer device of the fifth block G5 is transported by the wafer transport device 41 and the wafer transport device 42 to the exposure device connected to the interface station 4, where it is exposed to a predetermined pattern.
  • the wafer W may be cleaned in a cleaning device before the exposure process.
  • the exposed wafer W is transported to the transfer device in the fifth block G5 by the wafer transport device 41 and the wafer transport device 42. It is then transported to the heat treatment device by the wafer transport device 33 and subjected to post-exposure baking.
  • the exposed and baked wafer W is transported by the wafer transport device 33 to the development processing device and developed. After development is complete, the wafer W is transported by the wafer transport device 33 to the heat treatment device U2 and post-baked.
  • the wafer W is transported by the wafer transport device 33 to the delivery device in the third block G3, and then transported by the wafer transport device 22 or wafer transport device 23 in the cassette station 2 to the cassette C on a predetermined cassette mounting table 21.
  • a series of photolithography processes is completed.
  • a resist film may be formed on at least the peripheral region of the wafer W before or after exposure in the exposure device, and the resist film may be exposed by the peripheral exposure device U4, and then developed in the development processing device.
  • a liquid treatment device that forms a coating using a treatment liquid will be described as an example of the film treatment device U1.
  • the film of the treatment liquid formed by applying the treatment liquid and the film formed by heat-treating the film of the treatment liquid are collectively referred to as "coating".
  • the film treatment device U1 includes, for example, a rotating holder 45 and a liquid supply unit 50.
  • the rotating holder 45 includes a rotating drive unit 46, a shaft 47, and a holder 48.
  • the rotating drive unit 46 operates based on an operation signal from the control device 100 to rotate the shaft 47.
  • the rotating drive unit 46 includes a power source such as an electric motor.
  • the holder 48 is provided at the tip of the shaft 47.
  • a wafer W can be placed on the holder 48.
  • the holder 48 is configured to hold the wafer W approximately horizontally, for example, by suction. That is, the holder 48 rotates the wafer W around a central axis (rotation axis) perpendicular to the surface Wa of the wafer W while the wafer W is in an approximately horizontal position.
  • the liquid supply unit 50 is configured to supply the processing liquid L to the surface Wa of the wafer W.
  • the processing liquid L is, for example, a resist liquid for forming a resist film (hereinafter, referred to as "processing liquid Lr").
  • the resist material contained in the processing liquid Lr may be a positive resist material or a negative resist material.
  • a positive resist material is a resist material in which exposed areas dissolve and unexposed areas remain.
  • a negative resist material is a resist material in which unexposed areas dissolve and exposed areas remain.
  • the liquid supply unit 50 includes a liquid source 51, a pump 52, a valve 53, a nozzle 54, a pipe 55, and a drive mechanism 56.
  • the liquid source 51 functions as a supply source of the processing liquid Lr.
  • the pump 52 operates based on an operation signal from the control device 100, sucks the processing liquid Lr from the liquid source 51, and sends it to the nozzle 54 via the pipe 55 and the valve 53.
  • the nozzle 54 is positioned above the wafer W so that its discharge port faces the surface Wa of the wafer W.
  • the nozzle 54 is configured to discharge the processing liquid Lr pumped out by the pump 52 onto the surface Wa of the wafer W.
  • the piping 55 connects, in order from the upstream side, the liquid source 51, the pump 52, the valve 53, and the nozzle 54.
  • the drive mechanism 56 operates based on an operation signal from the control device 100, and is configured to move the nozzle 54 horizontally and vertically.
  • the wafer W on which the film of the processing liquid Lr has been formed is transferred to one of the heat processing devices U2, which performs heat processing on the wafer W.
  • the film processing device U1 and the heat processing device U2 may constitute a film forming section that forms a resist film, which is a type of coating.
  • the inspection device U3 (inspection unit) is a device that generates one or more types of image information for inspecting the state of the wafer W.
  • the inspection device U3 includes, for example, a housing 68, a rotating and holding unit 60, a surface imaging unit 70, and a peripheral imaging unit 80.
  • the rotating and holding unit 60, the surface imaging unit 70, and the peripheral imaging unit 80 are disposed in the housing 68.
  • a transfer port 69 is formed in one side wall of the housing 68 for transferring the wafer W into the housing 68 and transferring the wafer W out of the housing 68.
  • the rotating and holding unit 60 is a unit that holds and rotates the wafer W and moves the wafer W within the housing 68.
  • the rotating and holding unit 60 includes a holding table 61, driving mechanisms 62 and 63, and a guide rail 64.
  • the holding table 61 is, for example, a suction chuck that holds the wafer W approximately horizontally by suction or the like.
  • the driving mechanism 62 includes a power source such as an electric motor, and drives the holding table 61 to rotate. That is, the driving mechanism 62 rotates the wafer W held on the holding table 61.
  • the wafer W may be placed on the holding table 61 so that the central axis of rotation by the driving mechanism 62 approximately coincides with the center of the wafer W.
  • the driving mechanism 62 may include an encoder for detecting the rotational position (rotation angle) of the holding table 61 about the central axis. In this case, the imaging position of the wafer W by the surface imaging unit 70 and the peripheral imaging unit 80 can be associated with the rotational position of the wafer W.
  • the attitude of the wafer W can be identified based on the index portion determined by the surface imaging unit 70 and the peripheral imaging unit 80 and the rotational position detected by the encoder.
  • the driving mechanism 63 is, for example, a linear actuator, and moves the holding table 61 along the guide rail 64. That is, the driving mechanism 63 transports the wafer W held on the holding table 61 between one end and the other end of the guide rail 64. Therefore, the wafer W held on the holding table 61 can move between a first position closer to the loading/unloading port 69 and a second position closer to the peripheral imaging unit 80.
  • the guide rail 64 extends linearly (for example, straight) within the housing 68.
  • the surface imaging unit 70 includes a camera 71 and a lighting module 72.
  • the camera 71 includes a lens and an imaging element (e.g., a CCD image sensor or a CMOS image sensor).
  • the camera 71 faces the lighting module 72 in the horizontal direction. In other words, the camera 71 and the lighting module 72 are aligned along the horizontal direction.
  • the lighting module 72 includes a half mirror 73 and a light source 74.
  • the half mirror 73 is arranged in the housing 68 at an angle of approximately 45° to the horizontal.
  • the half mirror 73 is located above the middle part of the guide rail 64.
  • the half mirror 73 has a rectangular shape, and extends so as to intersect with the extension direction of the guide rail 64 when viewed from above.
  • the length of the half mirror 73 is set to be greater than the diameter of the wafer W.
  • the light source 74 is located above the half mirror 73.
  • the light emitted from the light source 74 passes through the entire half mirror 73 and is irradiated downward (toward the guide rail 64).
  • the light that passes through the half mirror 73 is reflected by an object located below the half mirror 73, then reflected again by the half mirror 73, passes through the lens of the camera 71, and enters the image sensor of the camera 71. That is, the camera 71 can capture an image of an object present in the irradiation area of the light source 74 via the half mirror 73.
  • the camera 71 can capture an image of the surface Wa of the wafer W that passes through the irradiation area of the light source 74.
  • the image data captured by the camera 71 is transmitted to the control device 100.
  • the peripheral imaging unit 80 includes a camera 81, a lighting module 82, and a mirror member 83.
  • the camera 81 includes a lens and an imaging element (e.g., a CCD image sensor or a CMOS image sensor).
  • the camera 81 faces the lighting module 82 in the horizontal direction. In other words, the camera 81 and the lighting module 82 are aligned along the horizontal direction.
  • the lighting module 82 is disposed above the wafer W held on the holding table 61.
  • the lighting module 82 includes a light source 84 and a half mirror 85. As shown in FIG. 5, the half mirror 85 is disposed at an angle of approximately 45° to the horizontal direction. As shown in FIG. 4 and FIG. 5, the mirror member 83 is disposed below the lighting module 82.
  • the mirror member 83 includes a main body formed of an aluminum block and a reflective surface.
  • the reflective surface of the mirror member 83 faces the end face Wb of the wafer W held on the holding table 61 and the peripheral area on the back surface of the wafer W.
  • the reflective surface of the mirror member 83 is inclined with respect to the rotation axis of the holding table 61.
  • the reflective surface of the mirror member 83 is mirror-finished.
  • the reflective surface may have a mirror sheet attached, may be aluminum plated, or may have aluminum material vapor-deposited thereon. This reflective surface is a curved surface recessed radially outward of the wafer W held on the holding table 61.
  • the light emitted from the light source 84 passes entirely through the half mirror 85 and is irradiated downward. A portion of the light that passes through the half mirror 85 is reflected at the peripheral region of the surface Wa of the wafer W. This reflected light does not head toward the reflective surface of the mirror member 83, but is further reflected by the half mirror 85 before entering the imaging element of the camera 81.
  • the light reflected by the reflective surface of the mirror member 83 is mainly reflected by the edge surface Wb of the wafer W.
  • the reflected light is reflected in turn by the reflective surface of the mirror member 83 and the half mirror 85, and enters the imaging element of the camera 81.
  • the inspection device U3 may be configured in any way as long as it is capable of capturing an image of the peripheral region of the surface Wa and generating an image of the peripheral region.
  • the peripheral region of the surface Wa can also be referred to as the peripheral region (peripheral region) of the surface Wa, and refers to a ring-shaped region including the periphery of the surface Wa and the vicinity of the periphery.
  • the peripheral imaging unit 80 may further generate an image of the end face Wb without capturing an image of the peripheral region of the front surface Wa, and the inspection device U3 may have an imaging unit capable of generating an image of the end face Wb, separate from the peripheral imaging unit 80.
  • the amount of warping of the wafer W may be measured from an image of the end face Wb that does not include the peripheral region of the front surface Wa.
  • the peripheral exposure device U4 (peripheral exposure section) is a device that exposes the peripheral region on the front surface Wa of the wafer W.
  • the peripheral exposure device U4 does not expose a region located inside the peripheral region.
  • the peripheral exposure device U4 has, for example, a rotating and holding unit 110 and an exposure unit 120.
  • the rotating and holding unit 110 and the exposure unit 120 are arranged in a housing of the peripheral exposure device U4.
  • the rotating and holding unit 110 is a unit that holds and rotates the wafer W.
  • the rotating and holding unit 110 includes a holding table 111 (holding portion), driving mechanisms 112 and 113, and a guide rail 114.
  • the holding table 111 is, for example, a suction chuck that holds the wafer W approximately horizontally by suction or the like.
  • the driving mechanism 112 includes a power source such as an electric motor, and drives the holding table 111 to rotate. That is, the driving mechanism 112 rotates the wafer W held on the holding table 111.
  • the driving mechanism 112 may include an encoder for detecting the rotational position of the holding table 111. In this case, the exposure position of the wafer W by the exposure unit 120 can be associated with the rotational position of the wafer W.
  • the holding table 111 holds the back surface of the wafer W so that the center of rotation of the wafer W by the driving mechanism 112 approximately coincides with the center of the wafer W.
  • the driving mechanism 113 is, for example, a linear actuator, and moves the holding table 111 along the guide rail 114. That is, the driving mechanism 113 transports the wafer W held on the holding table 111 between one end and the other end of the guide rail 114.
  • the guide rail 114 extends linearly (for example, straight) within the housing of the peripheral exposure device U4, and one end of the guide rail 114 is located near the exposure unit 120. When the holding table 111 holding the wafer W is at one end of the guide rail 114, the exposure unit 120 may expose the wafer W.
  • the exposure unit 120 is a unit that irradiates the peripheral area on the surface Wa of the wafer W with light for exposure.
  • the exposure unit 120 irradiates the peripheral area on the surface Wa with light for exposure while the wafer W held on the holding table 111 is rotating.
  • the exposure unit 120 includes a light source 121, an optical system member 122, a mask member 123, and a drive mechanism 124.
  • the light source 121 may be disposed vertically above the peripheral area on the surface Wa of the wafer W disposed at a position where exposure is possible.
  • the light source 121 irradiates downward with an energy ray (e.g., ultraviolet light) containing a wavelength component capable of exposing a resist film.
  • the light source 121 may be, for example, an ultra-high pressure UV lamp, a high pressure UV lamp, a low pressure UV lamp, or an excimer lamp.
  • the optical system member 122 is disposed below the light source 121.
  • the optical system member 122 is composed of one or more lenses.
  • the optical system member 122 converts the exposure light from the light source 121 into approximately parallel light and irradiates the mask member 123.
  • the light source 121 and the optical system member 122 function as an irradiation unit that irradiates the exposure light.
  • the mask member 123 is formed with an opening 123a for adjusting the exposure area (exposure range).
  • the parallel light from the optical system member 122 passes through the opening 123a and is irradiated onto the peripheral region of the front surface Wa of the wafer W held on the holding table 111.
  • the driving mechanism 124 includes a power source such as an electric motor, and is connected to the mask member 123.
  • the driving mechanism 124 operates based on an operation signal from the control device 100, and moves the mask member 123 along the radial direction of the wafer W (the radial direction of the wafer W while held on the holding table 111).
  • the radial direction of the wafer W is the radial direction of a circle around the center of the wafer W.
  • the driving mechanism 124 moves the mask member 123 along the radial direction, the radial size of the range in which the exposure light reaches the portion of the resist film located in the peripheral region (hereinafter simply referred to as the "exposure width") changes.
  • the mask member 123 is driven by the drive mechanism 124 within a moving range in the above-mentioned radial direction in which the outer edge of the surface Wa is included in the area where the exposure light reaches the surface Wa.
  • the exposure width is determined by the distance in the above-mentioned radial direction between the outer edge of the surface Wa and the point closest to the center of the range where the exposure light reaches the surface Wa.
  • the method of changing the exposure width is not limited to driving by the driving mechanism 124.
  • the mask member 123 may have a shutter 125 as shown in FIG. 6(b).
  • FIG. 6(b) shows a schematic cross section of the wafer W cut along the radial direction, with the optical system member 122 omitted.
  • the shutter 125 is a member that can adjust the opening degree of the opening 123a provided in the mask member 123.
  • the opening degree of the opening 123a means the ratio of the area that passes the exposure light from the light source 121 and the optical system member 122 to the total area of the opening 123a.
  • the mask member 123 may be fixed at a position where the exposure light that has passed through the opening 123a reaches the outer edge of the surface Wa and the area inside that outer edge.
  • a drive unit is connected to the shutter 125, and the shutter 125 is movable along the radial direction.
  • the shutter 125 is capable of covering the area of the opening 123a that is closer to the center of the wafer W.
  • the opening degree of the opening 123a changes depending on the radial position of the shutter 125, and as a result, the exposure width changes. In other words, the radial position of the point closest to the center within the range where the exposure light reaches the surface Wa changes depending on the radial position of the shutter 125.
  • the method of changing the exposure width is not limited to the driving mechanism 124 and the shutter 125.
  • the peripheral exposure device U4 may change the exposure width by moving the holding table 111 holding the wafer W along the radial direction of the wafer W (the radial direction of the wafer W held on the holding table 111) relative to the mask member 123.
  • the mask member 123 may be fixed at a predetermined position.
  • the ratio of the area where the exposure light that has passed through the opening 123a reaches the wafer W and the area where the exposure light does not reach the wafer W changes when observing a cross section in the radial direction.
  • the radial position of the wafer W relative to the mask member 123 changes the radial position of the area closest to the center within the range where the exposure light reaches the surface Wa.
  • Control device functions> 7 shows a block diagram illustrating an example of the functional configuration of the control device 100.
  • the control device 100 has, as its functional configuration (hereinafter referred to as "functional modules"), for example, an image information acquisition unit 201, an edge information generation unit 202, an exposure map setting unit 203, a map storage unit 204, a film formation control unit 205, an exposure control unit 206, and a result determination unit 207.
  • the processes executed by these functional modules correspond to the processes executed by the control device 100.
  • the image information acquisition unit 201 is a functional module that acquires an image obtained by imaging the peripheral region on the surface Wa of the wafer W in a state where the coating F1 (first coating) is formed on the surface Wa.
  • an image obtained by imaging the peripheral region on the surface Wa in a state where the coating F1 (first coating) is formed on the surface Wa is referred to as a "peripheral image” (see also FIG. 11(a)).
  • the image information acquisition unit 201 acquires the peripheral image, for example, from the inspection device U3.
  • the coating F1 is a coating formed under a resist film (hereinafter referred to as "coating F2”) formed at least in the peripheral region.
  • the coating F1 may be any one of the multiple layers of films formed under the coating F2. Another film may exist between the coating F1 and the coating F2, or the coating F2 may be formed on the coating F1 without another film existing between the coating F1 and the coating F2.
  • the edge information generating unit 202 generates edge information indicating the relationship between the circumferential position around the center of the wafer W and the outer edge position of the coating F1 in the radial direction of the wafer W based on the peripheral image.
  • the circumferential position is identified, for example, by an angle from an index portion (reference position) such as the notch described above.
  • the outer edge position of the coating F1 is identified, for example, by the shortest distance along the radial direction between the center of the wafer W and the outer edge of the coating F1.
  • the outer edge of the coating F1 is located inside the outer edge on the surface Wa of the wafer W. Therefore, the outer edge position of the coating F1 may be identified by the shortest distance along the radial direction between the theoretical position of the outer edge of the surface Wa and the outer edge of the coating F1.
  • the edge information generating unit 202 may calculate the outer edge position of the coating F1 for each predetermined angle in the circumferential direction.
  • the edge information generating unit 202 calculates the outer edge position of the coating F1 for each arbitrary angle (e.g., 1°) between 0.5° and 5°.
  • the angle unit (e.g., 1°) used to calculate the outer edge position of the coating F1 can also be considered as the resolution of the edge information.
  • the position of the indicator portion on the wafer W may be set to 0°.
  • the edge information generating unit 202 may calculate the outer edge position of the coating F1 from the peripheral image by any image processing method.
  • the outer edge position of the coating F1 varies depending on the circumferential position, i.e., the angle from the indicator portion, and various other factors.
  • a missing portion that is recessed inward from the average outer edge position may be formed at some points on the outer edge of the coating F1.
  • the outer edge of the coating F1 may be an edge that is continuous as the circumferential position changes. In other words, when the surface Wa is viewed from above and the outer edge of the coating F1 is observed along the circumferential direction for one revolution starting from any position on the outer edge of the coating F1, there are no discontinuous points on the outer edge of the coating F1 (the outer edge of the coating F1 is continuous).
  • the exposure map setting unit 203 is a functional module that sets an exposure map indicating the relationship between the circumferential position around the center of the wafer W and the set value of the exposure width in the radial direction of the wafer W based on the edge information.
  • the exposure map setting unit 203 may set the exposure width for each predetermined angle in the circumferential direction in the exposure map.
  • the exposure map setting unit 203 sets the exposure width for each arbitrary angle (e.g., 1°) between 0.5° and 5°.
  • the angle unit (e.g., 1°) when setting the exposure width can also be said to be the resolution in the exposure map.
  • the resolution in the above-mentioned edge information may be the same as the resolution in the exposure map.
  • the exposure map setting unit 203 may set the exposure map so that the position of one end of the exposed range that is close to the center of the wafer W is shifted by a fixed amount from the outer edge position of the coating F1 indicated by the edge information for each specified angle in the circumferential direction (for example, every 1°). In this case, even if the circumferential position (angle) differs, the difference between the outer edge position of the coating F1 in the edge information and the position of one end of the exposed range that is close to the center of the wafer W will be constant.
  • the map storage unit 204 is a functional module that stores the exposure map set by the exposure map setting unit 203.
  • the film formation control unit 205 is a functional module that controls the film processing device U1 and heat processing device U2 to form a coating F2 (second coating) on at least the peripheral region of the surface Wa after the peripheral image is obtained.
  • the film formation control unit 205 may control the film processing device U1 to form the coating F2 on the entire surface Wa, or may control the film processing device U1 to form the coating F2 on the peripheral region without forming the coating F2 on the central portion including the center of the wafer W.
  • the exposure control unit 206 is a functional module that controls the peripheral exposure device U4 to expose the coating F2 in the peripheral region according to the exposure map stored in the map storage unit 204.
  • the exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 with an exposure width set for the circumferential position according to the circumferential position.
  • the exposure control unit 206 may change the exposure width according to the circumferential position by moving the mask member 123 with the drive mechanism 124.
  • the exposure control unit 206 may change the exposure width according to the circumferential position by changing the opening of the opening 123a of the mask member 123 by moving the shutter 125.
  • the exposure control unit 206 may change the exposure width according to the circumferential position by moving the holding table 111 that holds the wafer W in the radial direction.
  • the result determination unit 207 is a functional module that determines whether the result of exposure according to the exposure map is normal or not.
  • the result determination unit 207 performs the determination using an image (hereinafter referred to as a "determination image") obtained by imaging the peripheral area of the surface Wa after the exposed coating F2 is developed.
  • the determination image (second image) may be generated in the inspection device U3 and then acquired by the image information acquisition unit 201.
  • the peripheral image and the determination image may be obtained by the same inspection device U3, or may be obtained by different inspection devices U3.
  • the result determination unit 207 generates cut information indicating the relationship between the circumferential position and the inner edge position of the coating F2 (annular coating F2 after development) based on the determination captured image.
  • the inner edge position of the coating F2 may be specified by the radial distance from the theoretical position of the outer edge of the surface Wa. Since the coating F2 is formed up to the outer edge of the surface Wa, the inner edge position of the annular coating F2 represents the exposure width.
  • the result determination unit 207 determines whether the exposure of the coating F2 is normal or not based on the result of comparing the cut information with either the edge information or the exposure map.
  • the control device 100 includes, for example, a circuit 210.
  • the circuit 210 includes one or more processors 211, a memory 212, a storage 213, and an input/output port 214.
  • the storage 213 includes a computer-readable storage medium, such as a hard disk.
  • the storage medium stores a program for controlling the wafer processing system 1. That is, the storage 213 (or the storage medium) functions as the program storage unit described above.
  • the storage medium may be a removable medium, such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 212 temporarily stores the programs loaded from the storage medium of the storage 213 and the results of calculations by the processor 211.
  • the processor 211 configures each functional module of the control device 100 by executing the above programs in cooperation with the memory 212.
  • the input/output port 214 inputs and outputs electrical signals between the inspection device U3, the film processing device U1, the heat processing device U2, and the peripheral exposure device U4, etc., according to instructions from the processor 211.
  • each functional module may be realized by a separate computer.
  • each of these functional modules may be realized by a combination of two or more computers.
  • the multiple computers may be connected to each other so that they can communicate with each other and work together to execute control in the wafer processing system 1.
  • the hardware configuration of the control device 100 is not necessarily limited to configuring each functional module by a program.
  • each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) that integrates this.
  • ASIC Application Specific Integrated Circuit
  • the substrate processing method includes imaging a peripheral region of the surface Wa of a wafer W having a coating F1 formed on the surface Wa to obtain a peripheral image, and generating edge information indicating the relationship between the circumferential position around the center of the wafer W and the outer edge position of the coating F1 in the radial direction of the wafer W based on the peripheral image.
  • the substrate processing method also includes setting an exposure map indicating the relationship between the circumferential position and a set value of the exposure width in the radial direction of the wafer W based on the edge information, forming a coating F2 on at least the peripheral region of the surface Wa after obtaining the peripheral image, and exposing the coating F2 in the peripheral region according to the exposure map.
  • the control device 100 executes step S01.
  • the control device 100 controls the wafer processing system 1 to, for example, form a coating F1 on the front surface Wa of the wafer W.
  • the control device 100 may control the wafer processing system 1 to receive a wafer W having a coating F1 formed on its front surface Wa in another processing system.
  • the coating F1 formed on the wafer W has a portion near the periphery removed so that the outer edge of the coating F1 is located inside the outer edge of the front surface Wa.
  • the wafer W with the coating F1 formed on its front surface Wa is then transported to the inspection device U3.
  • step S02 the image information acquisition unit 201 causes the inspection device U3 to image the peripheral region on the front surface Wa of the wafer W having the coating F1 formed on the front surface Wa, and acquires image data indicating the peripheral image from the inspection device U3.
  • An example of the peripheral image is shown in FIG. 11(a). Note that in the peripheral image shown in FIG. 11(a), the circumferential position is converted to the horizontal direction on the image, and the radial direction is converted to the vertical direction on the image.
  • step S03 for example, the edge information generating unit 202 generates edge information (edge profile) indicating the relationship between the circumferential position and the outer edge position of the coating F1 in the radial direction from the image data obtained in step S02.
  • the edge information generating unit 202 may calculate the outer edge position of the coating F1 in the radial direction from the image data obtained in step S02 for each predetermined angle (for example, every 1°) around the center of the wafer W.
  • FIG. 11(b) is a graph showing an example of edge information.
  • the horizontal axis of the graph, "X ⁇ (°),” represents the circumferential position (or angle) around the center of the wafer W.
  • the vertical axis of the graph, "Xr (mm),” represents the radial position from the center of the wafer W.
  • "Eo” represents the theoretical radial position of the outer edge of the surface Wa of the wafer W
  • “R” represents a value obtained by subtracting a predetermined value from Eo. In one example, Eo is 150 mm, and R is any value between 140 mm and 148 mm.
  • "E1" is information showing the calculation result of the radial position (outer edge position) of the outer edge of the coating F1.
  • the outer edge position E1 is obtained by calculating the outer edge position of the coating F1 at each circumferential position while changing the circumferential position X ⁇ by 1°.
  • the edge information generating unit 202 may calculate the outer edge position of the coating F1 by repeatedly calculating the difference in pixel values between adjacent pixels on the image to identify the outer edge position of the coating F1 on the image.
  • the edge information generating unit 202 may correspond between the circumferential position and the outer edge position of the coating F1 by identifying the position of an indicator portion formed on the wafer W on the image.
  • step S04 for example, the exposure map setting unit 203 sets an exposure map indicating the relationship between the circumferential position X ⁇ around the center of the wafer W and the set value of the exposure width in the radial direction of the wafer W based on the edge information generated in step S03.
  • the set exposure map is stored by the map storage unit 204.
  • the exposure map setting unit 203 may set the exposure width by setting the position of one end of the range to be exposed that is close to the center of the wafer W at predetermined angles (for example, at 1°) around the center of the wafer W. By changing the position of one end of the range to be exposed that is close to the center of the wafer W, the distance between the position of the one end and the outer edge Eo of the front surface Wa changes, and the exposure width changes.
  • the exposure map setting unit 203 may set the position of one end of the range to be exposed close to the center of the wafer W for each specified angle so as to follow the shape of the outer edge position E1 indicated by the edge information.
  • An example of exposure map setting is visualized in FIG. 12(a).
  • FIG. 12(a) shows a graph representing the change in the position of one end of the range to be exposed close to the center of the wafer W with respect to the circumferential position.
  • the distance between the position of one end of the range to be exposed close to the center of the wafer W and the outer edge Eo of the front surface Wa is the exposure width
  • "Ees" is information indicating the setting value of the exposure width according to the circumferential position.
  • the exposure map setting unit 203 sets the exposure map (exposure width Ees) so that the tendency of the exposure width to change with circumferential position follows the tendency of the exposure width to change with circumferential position of the outer edge position of the coating F1 indicated by the edge information.
  • the exposure map setting unit 203 sets the exposure map so that, for example, at any circumferential position X ⁇ , one end of the range to be exposed that is closer to the center of the wafer W is located inside the outer edge of the coating F1, and the difference between the one end and the outer edge of the coating F1 is smaller than a predetermined value.
  • the predetermined value may be about 0.5 mm to 3 mm, or about 0.5 mm to 2 mm.
  • the exposure width setting value differs depending on the circumferential position X ⁇ .
  • the exposure width is set to "w1", in another range, the exposure width is set to "w2", and in another range, the exposure width is set to "w3". Note that even between two exposure widths of w1, w2, and w3 (for example, between the change from w1 to w2), the exposure width is set in accordance with the change in the outer edge of the coating F1.
  • FIG. 12(b) shows a schematic diagram of the relationship between the annular coating F2 after exposure and development and the coating F1.
  • the area with many diagonal lines represents the coating F1
  • the area with many dots represents the coating F2.
  • the exposure map setting unit 203 may set the exposure width so that the position of one end of the exposed range close to the center of the wafer W is shifted by a constant value from the outer edge position of the coating F1 indicated by the edge information at every predetermined angle (for example, every 1°).
  • the difference between the exposure width Ees and the outer edge position E1 is constant at every circumferential position X ⁇ .
  • the exposure width Ees is offset by a constant value from the outer edge position E1 in the entire range from 0° to 360° around the center of the wafer W.
  • the fixed offset value may be approximately 0.5 mm to 5.0 mm, or approximately 0.5 mm to 3.0 mm.
  • Table 1 below shows an example of an exposure map in which the exposure width is set every 1°. Note that the exposure map shown in Table 1 is provided as an example to facilitate understanding of the contents of this disclosure.
  • step S05 the control device 100 then executes step S05.
  • the wafer W on which the coating F1 has been formed is transported from the inspection device U3 to the film processing device U1.
  • the film formation control unit 205 controls the film processing device U1 to apply the processing liquid Lr to the entire surface Wa of the wafer W, as shown in FIG. 10(a).
  • the film formation control unit 205 controls the heat processing device U2 to heat the coating of the processing liquid Lr, as shown in FIG. 10(b).
  • the coating F2 before exposure and development is formed on the entire surface Wa.
  • the wafer W is then transported from the heat processing device U2 to the peripheral exposure device U4.
  • step S06 the exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 in the peripheral region of the front surface Wa according to the exposure map set in step S04.
  • the exposure control unit 206 causes the exposure unit 120 to irradiate the outer peripheral region of the front surface Wa with exposure light while rotating the wafer W held on the holding table 111 by the rotating holding unit 110.
  • the exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 with the set exposure width for each angle for which the exposure width is set in the exposure map.
  • the exposure control unit 206 controls the peripheral exposure device U4 so that the exposure width is 1.1 mm at the location where the circumferential position X ⁇ is 1°, and the exposure width is 1.2 mm at the location where the circumferential position X ⁇ is 2°.
  • the exposure control unit 206 may continue to irradiate the exposure light by the exposure unit 120 while continuing the rotation of the wafer W without stopping it. In this case, while the circumferential position X ⁇ transitions from 1° to 2°, the exposure control unit 206 moves the mask member 123 by the drive mechanism 124 so that the exposure width changes from 1.1 mm to 1.2 mm, for example.
  • the exposure control unit 206 may change the speed at which the mask member 123 is moved depending on the change width of the exposure width between two consecutive steps in the exposure map. After the peripheral region of the coating F2 is exposed according to the exposure map, the wafer W is transported from the peripheral exposure device U4 to the heat treatment device U2.
  • step S07 for example, the film formation control unit 205 controls the heat treatment device U2 to perform pre-development heat treatment on the wafer W (coating F2), as shown in FIG. 10(d). After the pre-development heat treatment, the wafer W is transported from the heat treatment device U2 to the film treatment device U1, which performs the development process.
  • the film formation control unit 205 controls the film processing device U1 to supply the developer Ld to the surface Wa and develop the coating F2, as shown in FIG. 10(e). This removes the portions of the coating F2 that are not irradiated with the exposure light. The developer Ld is then washed away, forming a ring-shaped coating F2 in the outer peripheral region of the surface Wa, as shown in FIG. 10(f). After development, the wafer W is transported from the film processing device U1 to the inspection device U3.
  • step S08 for example, the result determination unit 207 executes an inspection process regarding the exposure to the coating F2.
  • the result determination unit 207 uses the inspection device U3 to capture an image of the peripheral region of the wafer W after exposure and development, and acquires image data for the inspection process (the above-mentioned determination captured image) from the inspection device U3.
  • the result determination unit 207 generates cut information indicating the relationship between the circumferential position X ⁇ and the inner edge position of the coating F2 in the radial direction of the wafer W from the image data for the inspection process.
  • the result determination unit 207 may calculate the inner edge position of the coating F2 in the radial direction of the wafer W from the image data for the inspection process at predetermined angles (for example, at 1°) around the center of the wafer W.
  • FIG. 14(a) is a graph showing an example of cut information.
  • the vertical axis represents the radial distance between the outer edge Eo of the surface Wa and the inner edge position of the coating F2, i.e., the radial width of the coating F2.
  • "Eer” is information showing the calculation result of the radial position (inner edge position) of the inner edge of the coating F2. If the peripheral exposure according to the exposure map is normal, the inner edge position Eer approximately matches the exposure width Ees shown in FIG. 13, or is offset by a predetermined value at any circumferential position X ⁇ from the outer edge position E1 of the coating F1.
  • the result determination unit 207 can determine whether the result of the peripheral exposure is normal by comparing the exposure width Ees with the inner edge position Eer. Also, the result determination unit 207 can determine whether the result of the peripheral exposure is normal by comparing the outer edge position E1 with the inner edge position Eer.
  • the result determination unit 207 calculates the difference between the inner edge position Eer and the outer edge position E1 for each predetermined angle (e.g., every 1°) around the center of the wafer W.
  • FIG. 14(b) is a graph showing the difference obtained by subtracting the outer edge position E1 from the inner edge position Eer. If a constant value offset from the outer edge position E1 is designated as "OS,” then if the peripheral exposure is normal, the difference between the inner edge position Eer and the outer edge position E1 will be approximately constant regardless of the circumferential position X ⁇ .
  • the result determination unit 207 can determine that exposure has not been performed normally in the portion indicated by "A”. It is also possible to confirm whether the inner edge position of the coating F2 has been offset by looking at the difference between the inner edge position Eer (actual value) and the exposure width Ees (set value), rather than the difference between the inner edge position Eer (actual value) and the outer edge position E1 (actual value).
  • the control device 100 also executes the series of processes from steps S01 to S08 for each of the subsequent wafers W.
  • the shape (condition) of the outer edge of the coating F1 is likely to be different for each individual wafer W, and by repeating the series of processes described above, an exposure map can be set that is tailored to each individual wafer W.
  • the series of processes shown in Fig. 9 is an example and can be modified as appropriate.
  • the control device 100 may execute one step and the next step in parallel, or may execute each step in an order different from that of the above example.
  • the control device 100 may execute steps with content different from that of the above example.
  • FIGs 15(a) to 15(f) illustrate the state of the substrate processing method when a coating film of the processing liquid Lr is formed only in the peripheral region of the surface Wa.
  • the steps shown in Figures 15(a), 15(b), 15(c), 15(d), 15(e), and 15(f) correspond to the steps shown in Figures 10(a), 10(b), 10(c), 10(d), 10(e), and 10(f), respectively.
  • an annular coating F2 is formed in and near the peripheral region of the surface Wa.
  • the inner edge of the coating F2 is formed to be located inside the outer edge of the coating F1.
  • peripheral exposure is performed on the coating F2 by a peripheral exposure device U4 equipped with an exposure unit 120.
  • the unexposed portion of the annular coating F2 (a part located on the inside) is removed. Note that in the heat treatment shown in FIG. 15(b) and FIG. 15(d), heat may be applied only to the peripheral region of the wafer W, without applying heat to the central portion of the wafer W.
  • the coating F2 before exposure and development may be formed to cover not only the surface Wa of the wafer W but also the end face Wb.
  • the peripheral exposure device U4 may have an exposure unit 130 capable of performing exposure on the end face Wb in addition to the exposure unit 120.
  • FIG. 16(b) shows a schematic representation of the coating F2 on the end face Wb before exposure and development
  • FIG. 16(c) shows a schematic representation of the coating F2 on the end face Wb after exposure and development
  • FIG. 16(d) shows a schematic representation of the coating F2 after exposure and development.
  • a portion of the coating F2 may be removed by exposure and development at the bottom of the end face Wb.
  • the inspection device U3 can obtain an image of the end face Wb in addition to the peripheral region of the front surface Wa. Therefore, the control device 100 can detect the condition of the base at the end face Wb from the image of the end face Wb. The exposure control unit 206 can then perform exposure at the end face Wb using the exposure unit 130 in accordance with the condition of the base at the end face Wb. For example, the height of the area onto which the exposure light from the exposure unit 130 is applied can be adjusted in accordance with the circumferential position X ⁇ in accordance with the condition of the base at the end face Wb.
  • the inner edge of the coating F2 after exposure and development is located inside the outer edge of the coating F1, and the coating F2 is formed to follow the shape of the outer edge of the coating F1.
  • the inner edge of the coating F2 after exposure and development may be located outside the outer edge of the coating F1, and the coating F2 may be formed to follow the shape of the outer edge of the coating F1.
  • a negative resist material is used, but a positive resist material may be used to form the coating F2.
  • the coating F2 before exposure and development is formed over the entire surface Wa, and then the peripheral exposure device U4 exposes the peripheral region of the coating F2 with an exposure width according to the position of the outer edge of the coating F1. Then, the exposed area is removed by development, so that the peripheral region of the coating F2 is removed.
  • the outer edge of the coating F2 after exposure and development may be located outside the outer edge of the coating F1, or may be located inside the outer edge of the coating F1, as long as it follows the shape of the outer edge of the coating F1.
  • the result determination unit 207 When a positive resist material is used, the result determination unit 207 generates cut information indicating the relationship between the circumferential position and the outer edge position of the coating F2 (the coating F2 after the peripheral portion is removed after development) based on the determination captured image.
  • the outer edge position of the coating F2 may be specified by the radial distance from the theoretical position of the outer edge of the surface Wa. Since the coating F2 before development and exposure is exposed up to the outer edge of the surface Wa, the outer edge position of the coating F2 after the peripheral portion is removed represents the exposure width.
  • the result determination unit 207 determines whether the exposure of the coating F2 is normal or not based on the result of comparing either the edge information or the exposure map with the cut information.
  • the image information acquisition unit 201 may acquire a peripheral image obtained by imaging the peripheral region of the surface Wa from an external device other than the wafer processing system 1.
  • the exposure control unit 206 may change the exposure width while stopping the rotation of the wafer W by the drive mechanism 112 of the rotation holding unit 110.
  • the exposure control unit 206 may control the peripheral exposure device U4 so that exposure is performed with an exposure width (1.1 mm) associated with 1° when the circumferential position X ⁇ (angle) is in the range of 1° to 2°. Then, the exposure control unit 206 may stop the rotation of the wafer W before the exposure light is irradiated to the location where the circumferential position X ⁇ is 2°, and change the position of the mask member 123, etc. to match the exposure width (1.2 mm) associated with 2°.
  • the exposure map may be set as shown in Table 2 below.
  • the exposure map shown in Table 2 indicates that the processes from “Step 1" to “Step 359” are executed in order, and the conditions for each step are set as the processing time (seconds), exposure width (mm), start angle (°), and angle range (°).
  • the processing time indicates the execution time of the step
  • the exposure width is the radial exposure range set based on the edge information.
  • the start angle indicates the circumferential position X ⁇ (angle) at which the step starts
  • the angle range indicates the circumferential range over which the step continues.
  • Step 1 means that the processing continues for only 0.5 seconds with the exposure width adjusted to 1.1 mm when the circumferential position X ⁇ is in the range from 0° to 1°.
  • the exposure control unit 206 may change the exposure width by driving the mask member 123, etc., while continuing the rotation of the wafer W so that one step and the next step are executed consecutively. If there is a change in the exposure width from the previous step, the exposure control unit 206 may start driving the mask member 123 to change the exposure width at the start of the current step. Driving the mask member 123, etc. means driving the mask member 123 to change the exposure width, driving the shutter 125 to change the exposure width, or driving the holding table 111 to change the exposure width.
  • the exposure control unit 206 may control the drive mechanism 112 that rotates and drives the holding table 111 so that the wafer W rotates at a constant rotation speed in all steps. In all steps, the exposure unit 120 may irradiate the exposure point on the front surface Wa of the wafer W with exposure light having a constant illuminance.
  • the exposure width and the rotation speed of the wafer W may be set for each predetermined angle.
  • the exposure control unit 206 may change the exposure width while continuing to rotate the wafer W according to the exposure map, and irradiate the surface Wa with exposure light by the exposure unit 120.
  • the exposure map setting unit 203 may repeatedly evaluate the difference in exposure width between two consecutive angles while changing the angle one by one.
  • one of the two angles to be evaluated at which the exposure light is first irradiated is set as the "first angle”
  • the other angle consecutive to the first angle is set as the "second angle”.
  • the exposure map setting unit 203 may repeatedly calculate the difference between the exposure width at the first angle and the exposure width at the second angle consecutive to the first angle while changing the second angle by the above-mentioned predetermined angle. Then, when the condition that the difference (the difference in exposure width between the first angle and the second angle) is smaller than a predetermined level is satisfied in a range that includes a predetermined number or more of consecutive angles, the exposure map setting unit 203 may set the rotation speed in that range to a value larger than the speed reference value.
  • the predetermined level and the predetermined number are each arbitrarily set in advance at the time of setting the exposure map.
  • the exposure map setting unit 203 creates an exposure map such as that shown in Table 2, and then repeatedly calculates the difference between the exposure width at the target Step (exposure width at the second angle) and the exposure width at the Step immediately preceding the target Step (exposure width at the first angle) while incrementing the target Step by one. Specifically, the exposure map setting unit 203 calculates the difference between the exposure width at Step 1 and the exposure width at Step 2, and then calculates the difference between the exposure width at Step 2 and the exposure width at Step 3. Thereafter, the exposure map setting unit 203 repeatedly calculates the difference in exposure width between two successive Steps in a similar manner.
  • the exposure map setting unit 203 sets the rotation speed to a value greater than the speed reference value in the range including the predetermined number or more target steps.
  • a predetermined number e.g., 3 to 7
  • the difference in exposure width from the previous step is within a predetermined level (e.g., ⁇ 0.3 mm), and the difference in exposure width between steps 6 and 7 is greater than the predetermined level.
  • the exposure map setting unit 203 sets the rotation speed to a value (e.g., 12 rpm) greater than the speed reference value (e.g., 10 rpm) in the range of steps 2 to 6. Note that when the predetermined number is 5, if the above condition is satisfied in six or more consecutive steps, the rotation speed is set to a value greater than the speed reference value in the six or more steps.
  • the exposure map setting unit 203 may set the rotation speed to the speed reference value (or less than the speed reference value) for steps (angles) outside the range in which the rotation speed is set to a value greater than the speed reference value. Depending on the exposure width setting in the exposure map, there may not be a predetermined number of consecutive steps that satisfy the above condition. In this case, the exposure map setting unit 203 may set the rotation speed to the speed reference value (or less than the speed reference value) for each of all steps.
  • Example 3 As in Example 2 above, when the rotation speed is increased in a range where the variation in the exposure width is continuously small, the illuminance of the exposure light may be further set for each predetermined angle in the exposure map.
  • the exposure control unit 206 may control the exposure unit 120 to irradiate the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map.
  • the exposure unit 120 may be configured to be able to adjust the illuminance of the exposure light (the dose amount in the area where the exposure light hits). The dose amount in the area where the exposure light hits the surface Wa changes depending on the illuminance of the exposure light.
  • the exposure map setting unit 203 may set the illuminance of the exposure light to a value greater than the illuminance reference value in the range where the rotation speed of the wafer W is set to a value greater than the speed reference value.
  • the rotation speed is set to a value greater than the speed reference value in the range of Steps 2 to 6
  • the illuminance of each of Steps 2 to 6 is set to a value greater than the illuminance reference value.
  • the exposure map setting unit 203 may set the illuminance of the exposure light to the illuminance reference value (or less than the illuminance reference value) in each of all Steps.
  • the exposure map setting unit 203 may set the rotation speed at an angle (second angle) that satisfies the condition that the difference between the exposure width at the first angle and the exposure width at the second angle subsequent to the first angle is greater than a predetermined level to a value smaller than the speed reference value.
  • the exposure map setting unit 203 repeatedly calculates the difference between the exposure width at the first angle and the exposure width at the second angle subsequent to the first angle while changing the second angle by the above-mentioned predetermined angle.
  • the predetermined level used in Example 4 may be different from the predetermined level used in Example 2, and is arbitrarily set in advance at the time of setting the exposure map.
  • the exposure map setting unit 203 creates an exposure map such as that shown in Table 2, and then calculates the difference between the exposure width at the target Step (exposure width at the second angle) and the exposure width at the Step immediately preceding the target Step (exposure width at the first angle), repeatedly while increasing the target Step by one. Then, the exposure map setting unit 203 sets the rotation speed to a value smaller than the speed reference value in the target Step that satisfies the condition that the difference in exposure width between two consecutive Steps is greater than a predetermined level.
  • the exposure map setting unit 203 sets the rotation speed in Step 5 to a value (e.g., 5 rpm) smaller than the speed reference value (e.g., 10 rpm).
  • the exposure map setting unit 203 may set the rotation speed to the speed reference value (or equal to or greater than the speed reference value) in Steps (angles) other than the range in which the rotation speed is set to a value smaller than the speed reference value.
  • the exposure map setting unit 203 may set the rotation speed to the speed reference value (or equal to or greater than the speed reference value) in each of all Steps.
  • the exposure map may further set the illuminance of the exposure light for each predetermined angle.
  • the exposure control unit 206 may control the exposure unit 120 to irradiate the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map.
  • the exposure unit 120 may be configured to be able to adjust the illuminance of the exposure light (the dose in the area where the exposure light hits).
  • the exposure map setting unit 203 sets the illuminance of the exposure light to a value smaller than the illuminance reference value at one or more angles where the rotation speed of the wafer W is set to a value smaller than the speed reference value.
  • the exposure map setting unit 203 may set the illuminance of the exposure light to the illuminance reference value (or greater than the illuminance reference value) in each of all Steps.
  • FIG. 17(a) shows a schematic diagram for explaining the problem when the wafer W includes warpage.
  • a wafer W with no warpage (flat) in the peripheral region to be exposed is shown as "W1”
  • a wafer W with the peripheral region to be exposed warped so as to bend upward is shown as "W2”
  • a wafer W with the peripheral region to be exposed warped so as to bend downward is shown as "W3”.
  • a single wafer W may have a mixture of two or more of the characteristics of no warpage, upward bending, and downward bending.
  • the area marked with many dots represents the range of light irradiated from the opening of mask member 123.
  • the range of light irradiated from the opening of mask member 123 expands as the light advances, even if the optical path is adjusted by optical system member 122.
  • the distance in the Z-axis direction between mask member 123 and the area to be exposed on front surface Wa (hereinafter referred to as "irradiation distance Id"; see Figure 17(b)) differs between wafers W1, W2, and W3. If the irradiation distances Id differ from one another, the actual exposed width will change even if the exposure width setting is the same.
  • the control device 100 may have a warpage information acquisition unit 209 as a functional block.
  • the warpage information acquisition unit 209 acquires information indicating the state of warpage in the peripheral region of the surface Wa of the wafer W (hereinafter simply referred to as "warpage information").
  • the warpage information acquisition unit 209 acquires, for example, an end face image of the end face Wb of the wafer W from the inspection device U3, and acquires warpage information from the difference with a reference wafer that has no warpage.
  • the warpage information may be information indicating the relationship between the circumferential position X ⁇ around the center of the wafer W and the amount of warpage in the outer edge portion of the surface Wa of the wafer W.
  • the warpage information acquisition unit 209 may calculate the amount of warpage of the outer edge portion of the surface Wa for each specified angle in the circumferential direction.
  • the warpage information acquisition unit 209 calculates the amount of warpage of the outer edge portion of the surface Wa for each arbitrary angle (e.g., 1°) between 0.5° and 5°.
  • the angle unit (e.g., 1°) used to calculate the amount of warpage of the outer edge portion of the surface Wa can also be considered the resolution of the warpage information.
  • the resolution of the warpage information may be the same as the resolution of the exposure map.
  • the driving mechanism 124 connected to the mask member 123 may change the position of the mask member 123 in the Z-axis direction.
  • the mask member 123 having the shutter 125 may be raised and lowered by the driving mechanism connected to the mask member 123.
  • the position of the mask member 123 in the direction in which the exposure light is emitted may be set for each predetermined angle.
  • the exposure control unit 206 may control the exposure unit 120 (e.g., the driving mechanism 124) to irradiate the exposure light onto the surface Wa while adjusting the position of the mask member 123 in the direction in which the exposure light is emitted according to the exposure map.
  • the direction in which the exposure light is emitted from the opening 123a of the mask member 123 may be the Z-axis direction. In other words, the opening 123a (a plane including the opening edge of the opening 123a) may be perpendicular to the Z-axis direction.
  • the exposure map setting unit 203 may set the position of the mask member 123 in the direction in which the exposure light is emitted for each predetermined angle based on the warp information.
  • the exposure map setting unit 203 may set the position of the mask member 123 in the Z-axis direction so that the difference in the irradiation distance Id for each angle is reduced (e.g., so that the irradiation distance Id is constant) according to the amount of warp indicated by the warp information.
  • the position of the mask member 123 in the Z-axis direction may be specified by the difference from a reference position (i.e., the offset value).
  • the peripheral exposure device U4 may have a position sensor 132 and a position sensor 134.
  • the position sensor 132 is a sensor that acquires information indicating the position of the mask member 123 in the Z-axis direction.
  • the position sensor 132 acquires, for example, information indicating the position of the lower surface of the mask member 123 in the Z-axis direction.
  • the position sensor 134 is a sensor that acquires information indicating the position of the peripheral portion (exposure target area) of the front surface Wa of the wafer W in the Z-axis direction.
  • the irradiation distance Id can be calculated based on the position information acquired by the position sensors 132 and 134.
  • the position sensors 132 and 134 may be of any type as long as they can detect information indicating the position, but are, for example, non-contact position sensors.
  • the control device 100 may acquire information from the position sensors 132 and 134 while controlling the peripheral exposure device U4 to expose the coating F2 in the peripheral region of the surface Wa in accordance with the exposure map. The control device 100 may then evaluate whether the irradiation distance Id while exposure is being performed on the coating F2 in the peripheral region is within an appropriate range based on the information from the position sensors 132 and 134. The control device 100 may sound an alarm if it evaluates that the irradiation distance Id during exposure is not within an appropriate range.
  • a substrate processing method including: generating edge information indicating a relationship between a circumferential position X ⁇ about a center of the wafer W and an outer edge position of the coating F1 in a radial direction of the wafer W, based on a peripheral image obtained by imaging a peripheral region of a surface Wa of a wafer W having a coating F1 formed on the surface Wa; setting an exposure map indicating a relationship between the circumferential position X ⁇ and a set value of an exposure width in the radial direction, based on the edge information; forming a coating F2 on at least the peripheral region of the surface Wa after the peripheral image is obtained; and exposing the coating F2 in the peripheral region in accordance with the exposure map.
  • an exposure map is set based on edge information. Therefore, in the exposure map, an exposure width is set according to the radial position of the outer edge of the coating F1 under the coating F2, and exposure can be performed in the peripheral region according to the exposure map. Therefore, exposure can be performed according to the state of the outer edge of the underlying film.
  • the exposure width is set to a constant value.
  • the position of "Er1" shown in FIG. 12(b) is set to the location closest to the center of the range to be exposed, in a certain range in the circumferential direction, the outer edge of the coating F1 may not be covered by the coating F2, and the coating F0 below the coating F1 may be exposed.
  • a part of the exposed coating F0 may affect the part of the coating F1 that is not covered by the coating F2 and has an uneven pattern. Therefore, for example, the position of "Er2" shown in FIG.
  • the exposure width 12(b) is set to the location closest to the center of the range to be exposed when the exposure width is set to a constant value. Note that, for each individual wafer W, it is usually set to a constant exposure width without detecting the position of the outer edge of the coating F1. In this case, assuming the worst case scenario, the exposure width is set further inward with respect to the outer edge of the coating F1. In this way, when the exposure width is set at the position of "Er2", the area between the outer edge of the coating F1 and the inner edge of the coating F2 after exposure and development becomes large. As a result, the area in the coating F1 where the uneven pattern is formed in an exposed state becomes small due to the annular coating F2 formed in the peripheral area.
  • the exposure width can be set according to the shape of the outer edge of the coating F1, so that it is possible to avoid a reduction in the area in the coating F1 where the uneven pattern can be formed due to the coating F2 without exposing the coating F0.
  • the peripheral portion of the resist film (coating F2) formed using the resist material more than necessary Therefore, it is possible to avoid a reduction in the area in the coating F2 where the uneven pattern can be formed due to the removal of the peripheral portion.
  • the exposure width can be set to a shape that is closer to the shape of the outer edge of the coating F1, and a constant value can be added or subtracted from the outer edge position of the coating F1, thereby reducing the computational load when setting the exposure map.
  • a substrate processing method according to any one of [1] to [3] above, wherein an exposure width is set for each predetermined angle in the exposure map, and the edge information provides the outer edge position for each of the predetermined angles.
  • the outer edge position of the coating F1 is calculated in the minimum angle unit required for setting the exposure map, so that the computational load when calculating the position of the outer edge of the coating F1 from the captured peripheral image can be reduced.
  • exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 having an opening 123a, and moving the mask member 123 radially so as to change the exposure width according to an exposure map.
  • the exposure width can be easily changed.
  • exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 provided with an opening 123a and a shutter 125 capable of adjusting the opening of the opening 123a, and adjusting the opening by the shutter so as to change the exposure width in accordance with an exposure map.
  • exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 provided with an opening 123a and a shutter 125 capable of adjusting the opening of the opening 123a, and adjusting the opening by the shutter so as to change the exposure width in accordance with an exposure map.
  • exposing the coating F2 includes irradiating the surface Wa of the wafer W held on the holding table 111 with exposure light from an irradiation section (light source 121 and optical system member 122) capable of irradiating exposure light, and moving the holding table 111 so as to change the exposure width according to an exposure map.
  • an irradiation section light source 121 and optical system member 122 capable of irradiating exposure light
  • moving the holding table 111 so as to change the exposure width according to an exposure map.
  • exposing the coating F2 includes irradiating the front surface Wa with exposure light while changing the exposure width while continuing to rotate the wafer W in accordance with the exposure map
  • setting the exposure map includes calculating a difference between the exposure width at a first angle and the exposure width at a second angle consecutive to the first angle while changing the second angle by the predetermined angle in increments, and setting the rotation speed in the range to a value greater than the speed reference value when a condition that the difference is smaller than a predetermined level is satisfied in a range including a predetermined number or more consecutive angles.
  • the difference in the amount of exposure (e.g., dose) of the exposure light between the range in which the rotation speed is faster than other ranges and the other ranges can be reduced, so that the exposure state within the front surface Wa of one wafer W can be made uniform even when the rotation speed is increased to shorten the processing time.
  • exposing the coating F2 includes irradiating the front surface Wa with exposure light while changing the exposure width while continuing to rotate the wafer W in accordance with the exposure map
  • setting the exposure map includes calculating a difference between the exposure width at a first angle and the exposure width at a second angle consecutive to the first angle while changing the second angle by the predetermined angle, and setting the rotation speed at an angle that satisfies a condition that the difference is greater than a predetermined level to a value greater than a speed reference value.
  • exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 having an opening, and the exposure map sets an exposure width and a position of the mask member 123 in the direction in which the exposure light is emitted for each predetermined angle
  • exposing the coating F2 further includes adjusting the position of the mask member 123 in the direction in which the exposure light is emitted in accordance with the exposure map
  • setting the exposure map includes setting the position of the mask member 123 in the direction in which the exposure light is emitted for each of the predetermined angles based on warpage information indicating a state of warpage in the peripheral region of the surface Wa.
  • the position of the mask member 123 is also changed based on the warp information, so that even if the peripheral region of the wafer W includes a warped portion, it is possible to suppress a difference in the region actually irradiated with the exposure light due to the warp. Therefore, exposure can be performed more accurately in accordance with the state of the outer edge of the underlying film.
  • a substrate processing apparatus including: a film forming unit (film processing apparatus U1 and heat processing apparatus U2) that forms a coating on a front surface Wa of a wafer W; a peripheral exposure device U4 that exposes a peripheral region on the front surface Wa; an image information acquisition unit 201 that acquires a peripheral image obtained by imaging the peripheral region on the front surface Wa of the wafer W in a state in which a coating F1 is formed on the front surface Wa; an edge information generation unit 202 that generates edge information indicating a relationship between a circumferential position X ⁇ around the center of the wafer W and an outer edge position of the coating F1 in a radial direction of the wafer W based on the peripheral image; an exposure map setting unit 203 that sets an exposure map indicating a relationship between the circumferential position X ⁇ and a set value of an exposure width in the radial direction based on the edge information; a film formation control unit 205 that controls the film forming unit to form a coating F2
  • the substrate processing apparatus further comprising an inspection device U3 capable of imaging a peripheral region on the front surface Wa of the wafer W, and the image information acquisition unit 201 acquires a peripheral image from the inspection device U3. Even in this case, it is possible to perform exposure in accordance with the state of the outer edge of the underlying film.
  • the exposure width can be set to a shape that is closer to the shape of the outer edge of the coating F1, and since it is only necessary to add or subtract a constant value to the outer edge position, the computational load when setting the exposure map can be reduced.
  • 1...wafer processing system W...wafer, Wa...surface, U1...film processing device, U2...heat processing device, U3...inspection device, U4...periphery exposure device, 110...rotating holding unit, 111...holding table, 120...exposure unit, 123...mask member, 123a...opening, 125...shutter, 100...control device, 201...image information acquisition unit, 202...edge information generation unit, 203...exposure map setting unit, 205...film formation control unit, 206...exposure control unit.

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention addresses the problem of providing a substrate processing method that makes it possible to perform peripheral exposure in accordance with the state of an outer edge in a lower layer film. A substrate processing method according to one aspect of the present disclosure comprises: generating edge information indicating a relationship between a circumferential position (Xθ) around the center of a substrate having a first coating formed on a surface thereof and an outer edge position (w1-w3) of the first coating in a radial direction (Xr) of the substrate, on the basis of a captured image obtained by imaging the peripheral region on the surface of the substrate; setting an exposure map indicating a relationship between the circumferential position (Xθ) and a set value (Er) of an exposure width in the radial direction, on the basis of the edge information; forming a second coating in at least the peripheral region of the surface after the captured image is obtained; and exposing the second coating in the peripheral region in accordance with the exposure map.

Description

基板処理方法、及び、基板処理装置Substrate processing method and substrate processing apparatus
 本開示は、基板処理方法、及び、基板処理装置に関する。 This disclosure relates to a substrate processing method and a substrate processing apparatus.
 特許文献1には、基板検査装置が開示されている。この基板検査装置は、複数の被膜が形成されている基板の周縁部の撮像画像から得られる検査画像データに基づいて、検査対象被膜のエッジである対象エッジを検出するように構成されたエッジ検出部を備えている。 Patent Document 1 discloses a substrate inspection device. This substrate inspection device is equipped with an edge detection unit configured to detect a target edge, which is the edge of the coating to be inspected, based on inspection image data obtained from a captured image of the peripheral portion of a substrate on which multiple coatings are formed.
特開2020-144102号公報JP 2020-144102 A
 本開示は、下層膜における外縁の状態に合わせた周辺露光が可能な基板処理方法、及び、基板処理装置を提供する。 This disclosure provides a substrate processing method and substrate processing apparatus that enable peripheral exposure that is tailored to the condition of the outer edge of the underlying film.
 本開示の一側面に係る基板処理方法は、表面に第1被膜が形成された基板の前記表面における周縁領域を撮像して得られる撮像画像に基づいて、前記基板の中心まわりの周方向位置と、前記基板の径方向における前記第1被膜の外縁位置との関係を示すエッジ情報を生成することと、前記エッジ情報に基づいて、前記周方向位置と、前記径方向における露光幅の設定値との関係を示す露光マップを設定することと、前記撮像画像が得られた後に、前記表面のうちの少なくとも前記周縁領域に第2被膜を形成することと、前記露光マップに従って、前記周縁領域において前記第2被膜に対して露光することと、を含む。 A substrate processing method according to one aspect of the present disclosure includes: generating edge information indicating a relationship between a circumferential position around a center of a substrate and an outer edge position of the first coating in a radial direction of the substrate based on an image obtained by imaging a peripheral region of the surface of the substrate having a first coating formed thereon; setting an exposure map indicating a relationship between the circumferential position and a set value of an exposure width in the radial direction based on the edge information; forming a second coating on at least the peripheral region of the surface after the image is obtained; and exposing the second coating in the peripheral region according to the exposure map.
 本開示によれば、下層膜における外縁の状態に合わせた周辺露光が可能な基板処理方法、及び、基板処理装置が提供される。 The present disclosure provides a substrate processing method and substrate processing apparatus that enable peripheral exposure that is tailored to the state of the outer edge of the underlying film.
図1は、ウェハ処理システムの一例を模式的に示す平面図である。FIG. 1 is a plan view illustrating an example of a wafer processing system. 図2は、ウェハ処理システムの一例を模式的に示す正面図である。FIG. 2 is a front view illustrating an example of a wafer processing system. 図3は、液処理装置の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a liquid treatment apparatus. 図4は、検査装置の一例を模式的に示す平面図である。FIG. 4 is a plan view illustrating an example of an inspection device. 図5は、検査装置の一例を模式的に示す正面図である。FIG. 5 is a front view showing a schematic diagram of an example of an inspection device. 図6(a)は、周辺露光装置の一例を示す模式図である。図6(b)は、マスク部材の一例を模式的に示す側面図である。Fig. 6A is a schematic diagram showing an example of a peripheral exposure apparatus, and Fig. 6B is a schematic side view showing an example of a mask member. 図7は、制御装置の機能構成の一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a functional configuration of the control device. 図8は、制御装置のハードウェア構成の一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of a hardware configuration of the control device. 図9は、基板処理方法の一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of a substrate processing method. 図10(a)、図10(b)、図10(c)、図10(d)、図10(e)、及び図10(f)は、基板処理方法の様子を例示する模式図である。10(a), 10(b), 10(c), 10(d), 10(e), and 10(f) are schematic views illustrating the substrate processing method. 図11(a)は、周縁撮像画像の一例を示す図である。図11(b)は、エッジ情報の一例を示すグラフである。Fig. 11A is a diagram showing an example of a captured peripheral image, and Fig. 11B is a graph showing an example of edge information. 図12(a)は、露光マップの一例を可視化して表すグラフである。図12(b)は、露光及び現像後における膜の状態の一例を模式的に示す図である。Fig. 12(a) is a graph visualizing an example of an exposure map, and Fig. 12(b) is a diagram showing an example of a film state after exposure and development. 図13は、エッジ情報と露光マップとの関係の一例を示すグラフである。FIG. 13 is a graph showing an example of the relationship between edge information and an exposure map. 図14(a)は、露光後の露光幅の計測結果の一例を示すグラフである。図14(b)は、検査処理で得られる差分情報の一例を示すグラフである。Fig. 14A is a graph showing an example of a measurement result of an exposure width after exposure, and Fig. 14B is a graph showing an example of difference information obtained by the inspection process. 図15(a)、図15(b)、図15(c)、図15(d)、図15(e)、及び図15(f)は、基板処理方法の様子を例示する模式図である。15(a), 15(b), 15(c), 15(d), 15(e), and 15(f) are schematic views illustrating the substrate processing method. 図16(a)、図16(b)、図16(c)、及び図16(d)は、基板処理方法の様子を例示する模式図である。16(a), 16(b), 16(c), and 16(d) are schematic views illustrating the substrate processing method. 図17(a)は、反りによる影響を例示する模式図である。図17(b)は、周辺露光装置の一例を示す模式図である。Fig. 17A is a schematic diagram illustrating the influence of warping, and Fig. 17B is a schematic diagram showing an example of a peripheral exposure device.
 以下、図面を参照して一実施形態について説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。一部の図面には、X軸、Y軸、及びZ軸で規定される直交座標系が示されている。以下の実施形態では、X軸及びY軸が水平方向に対応し、Z軸が上下方向に対応する。 Below, one embodiment will be described with reference to the drawings. In the description, identical elements or elements having the same functions are given the same reference numerals, and duplicated descriptions will be omitted. Some drawings show an orthogonal coordinate system defined by the X-axis, Y-axis, and Z-axis. In the following embodiment, the X-axis and Y-axis correspond to the horizontal direction, and the Z-axis corresponds to the up-down direction.
<ウェハ処理システム>
 先ず、本実施形態にかかるウェハ処理システムの構成について説明する。図1、2は、それぞれウェハ処理システム1の構成の概略を模式的に示す平面図、正面図である。本実施形態においては、ウェハ処理システム1(基板処理装置)がウェハW(基板)に対してレジスト膜の形成処理および現像処理を行うフォトリソグラフィー処理システムである場合を一例として説明する。
<Wafer Processing System>
First, the configuration of a wafer processing system according to this embodiment will be described. Figures 1 and 2 are a plan view and a front view, respectively, that show a schematic outline of the configuration of a wafer processing system 1. In this embodiment, the wafer processing system 1 (substrate processing apparatus) will be described as an example of a photolithography processing system that performs a resist film forming process and a developing process on a wafer W (substrate).
 ウェハ処理システム1は、図1に示すように複数枚のウェハWを収容したカセットCが搬入出されるカセットステーション2と、ウェハWに所定の処理を施す複数の各種処理装置を備えた処理ステーション3と、を有する。そしてウェハ処理システム1は、カセットステーション2と、処理ステーション3と、処理ステーション3とは反対側に隣接する露光装置(図示せず)との間でウェハWの受け渡しを行うインターフェイスステーション4とを一体に接続した構成を有している。なお、処理ステーション3は図1に示すようにカセットステーション2とインターフェイスステーション4の間に2基設置されているが、1基でもよく3基以上設置されてもよい。 As shown in FIG. 1, the wafer processing system 1 has a cassette station 2 where cassettes C containing multiple wafers W are loaded and unloaded, and a processing station 3 equipped with multiple processing devices that perform predetermined processing on the wafers W. The wafer processing system 1 has a configuration in which the cassette station 2, the processing station 3, and an interface station 4 that transfers the wafers W between them and an exposure device (not shown) adjacent to the opposite side of the processing station 3 are integrally connected. Note that, as shown in FIG. 1, two processing stations 3 are installed between the cassette station 2 and the interface station 4, but there may be one or three or more processing stations installed.
 カセットステーション2には、複数のカセット載置台21、ウェハ搬送装置22およびウェハ搬送装置23が設けられている。カセットステーション2では、ウェハ搬送装置22またはウェハ搬送装置23によって、カセット載置台21に載置されたカセットCと処理ステーション3との間でウェハWが搬送される。そのために、ウェハ搬送装置22およびウェハ搬送装置23は、各々がX方向、Y方向、上下方向、鉛直軸回り(θ方向)といった方向の駆動機構を必要に応じて備えており、全ての方向の駆動機構を備えていてもよい。ウェハ搬送装置22およびウェハ搬送装置23の少なくともいずれか一方は、カセットCとの間でウェハWの受け渡しが可能であり、また、処理ステーション3との間でウェハWの受け渡し動作が可能である。なお、処理ステーション3とのウェハWの受け渡し動作とは、例えば、後述の処理ステーション3内のウェハ搬送装置33がアクセス可能な受け渡し装置を備える第3のブロックG3との間でウェハWの受け渡しを行うことである。第3のブロックG3は、上下方向に並ぶ複数の受け渡し装置(図示無し)を備えていてもよい。 The cassette station 2 is provided with a plurality of cassette placement tables 21, wafer transfer devices 22, and wafer transfer devices 23. In the cassette station 2, the wafer W is transferred between the cassette C placed on the cassette placement table 21 and the processing station 3 by the wafer transfer device 22 or the wafer transfer device 23. For this purpose, the wafer transfer device 22 and the wafer transfer device 23 each have a drive mechanism in the X direction, Y direction, up and down direction, and around the vertical axis (θ direction) as necessary, and may have a drive mechanism in all directions. At least one of the wafer transfer device 22 and the wafer transfer device 23 is capable of transferring the wafer W to and from the cassette C, and is also capable of transferring the wafer W to and from the processing station 3. The transfer operation of the wafer W to and from the processing station 3 means, for example, transferring the wafer W to and from the third block G3 having a transfer device accessible to the wafer transfer device 33 in the processing station 3 described later. The third block G3 may include multiple transfer devices (not shown) arranged vertically.
 ウェハ搬送装置22およびウェハ搬送装置23のいずれか一方がアクセス可能な位置に、ウェハWに対して検査を行う検査装置U3が配置されていてもよい。検査装置U3は、カセットステーション2内(例えば、第3のブロックG3)に配置されていてもよい。検査装置U3は、カセットステーション2に代えて、又は加えて、処理ステーション3内に配置されてもよく、インターフェイスステーション4内に配置されてもよい。 An inspection device U3 that performs inspections on the wafer W may be located at a position accessible to either the wafer transport device 22 or the wafer transport device 23. The inspection device U3 may be located in the cassette station 2 (e.g., the third block G3). The inspection device U3 may be located in the processing station 3 instead of or in addition to the cassette station 2, or may be located in the interface station 4.
 処理ステーション3には、複数のブロック、例えば第1のブロックG1、第2のブロックG2、及び第4のブロックG4が設けられている。また、図2に示すように第1のブロックG1及び第2のブロックG2を備える層31が複数、上下方向に積層されている。例えば処理ステーション3の正面側(図1のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション3の背面側(図1のX方向正方向側)には、第2のブロックG2が設けられている。カセットステーション2側(図1のY方向負方向側)に配置された処理ステーション3と、インターフェイスステーション4側(図1のY方向正方向側)に配置された処理ステーション3との接続部分には、第4のブロックG4が設けられている。第4のブロックG4は、上下方向に並ぶ複数の受け渡し装置を備えていてもよい。また、前述の第3のブロックG3が処理ステーション3内に設けられていてもよい。 The processing station 3 is provided with a plurality of blocks, for example, a first block G1, a second block G2, and a fourth block G4. Also, as shown in FIG. 2, a plurality of layers 31 each including a first block G1 and a second block G2 are stacked vertically. For example, the first block G1 is provided on the front side of the processing station 3 (negative side in the X direction in FIG. 1), and the second block G2 is provided on the rear side of the processing station 3 (positive side in the X direction in FIG. 1). The fourth block G4 is provided at the connection between the processing station 3 arranged on the cassette station 2 side (negative side in the Y direction in FIG. 1) and the processing station 3 arranged on the interface station 4 side (positive side in the Y direction in FIG. 1). The fourth block G4 may be provided with a plurality of transfer devices arranged vertically. Also, the above-mentioned third block G3 may be provided within the processing station 3.
 第1のブロックG1には、複数の膜処理装置U1が配置される。膜処理装置U1は、例えば、パターニング用膜形成装置や現像処理装置である。パターニング用膜形成装置としては、例えば、レジスト膜形成装置のほか、反射防止膜形成装置を含むことができる。複数の膜処理装置U1の少なくとも一部は、処理液を用いて膜処理を行う装置であってもよい。膜処理には、膜を形成することと、現像処理を行うこととが含まれる。 In the first block G1, multiple film processing devices U1 are arranged. The film processing devices U1 are, for example, a film forming device for patterning or a developing processing device. The film forming device for patterning may include, for example, a resist film forming device as well as an anti-reflective film forming device. At least some of the multiple film processing devices U1 may be devices that perform film processing using a processing liquid. The film processing includes forming a film and performing a developing process.
 第1のブロックG1では、例えば複数の膜処理装置U1が水平方向に並べて配置されている。なお、これら膜処理装置U1の数や配置、種類は、任意に選択できる。 In the first block G1, for example, multiple membrane processing devices U1 are arranged in a horizontal line. Note that the number, arrangement, and type of these membrane processing devices U1 can be selected arbitrarily.
 これらパターニング用膜形成装置や現像処理装置では、例えばウェハW上に所定の処理液を供給すること、または、所定のガスを供給することが行われる。そのようにして、パターニング用膜形成装置では、下層側の膜のパターンを形成する際のマスクとして利用されるレジスト膜の形成や、露光処理を一例とする光照射処理を効率的に行うための反射防止膜などの形成が行われる。また一方、現像処理装置では、露光されたレジスト膜の一部を除去して上記マスクとしての凹凸形状が形成される。 In these patterning film forming devices and developing treatment devices, for example, a specific processing liquid or a specific gas is supplied onto the wafer W. In this way, in the patterning film forming device, a resist film is formed that is used as a mask when forming a pattern on the underlying film, and an anti-reflective film is formed to efficiently perform a light irradiation process, an example of which is an exposure process. Meanwhile, in the developing treatment device, a portion of the exposed resist film is removed to form the uneven shape that serves as the mask.
 例えば第2のブロックG2には、ウェハWの加熱や冷却といった熱処理を行う熱処理装置U2が上下方向と水平方向に並べて設けられている。また第2のブロックG2には、レジスト液とウェハWとの定着性を高めるために疎水化処理を行う疎水化処理装置(図示せず)、ウェハWの外周部を露光する周辺露光装置U4が上下方向(図2のZ方向)と水平方向に並べて設けられている。これら熱処理装置、疎水化処理装置、及び周辺露光装置U4の数や配置についても、任意に選択できる。周辺露光装置U4は、処理ステーション3(例えば、第2のブロックG2)に代えて、又は加えて、インターフェイスステーション4に配置されてもよい。検査装置U3及び周辺露光装置U4の双方が、処理ステーション3内に配置されてもよく、又はインターフェイスステーション4内に配置されてもよい。 For example, in the second block G2, heat treatment devices U2 for performing heat treatment such as heating and cooling of the wafer W are arranged vertically and horizontally. Also, in the second block G2, a hydrophobization treatment device (not shown) for performing a hydrophobization treatment to improve the fixation of the resist liquid and the wafer W, and a peripheral exposure device U4 for exposing the outer periphery of the wafer W are arranged vertically (Z direction in FIG. 2) and horizontally. The number and arrangement of these heat treatment devices, hydrophobization treatment devices, and peripheral exposure devices U4 can be selected arbitrarily. The peripheral exposure device U4 may be arranged in the interface station 4 instead of or in addition to the processing station 3 (e.g., the second block G2). Both the inspection device U3 and the peripheral exposure device U4 may be arranged in the processing station 3 or in the interface station 4.
 図1に示すように平面視において第1のブロックG1と第2のブロックG2とに挟まれた領域には、ウェハ搬送領域32が形成されている。ウェハ搬送領域32には、例えばウェハ搬送装置33が配置されている。 As shown in FIG. 1, a wafer transport area 32 is formed in the area between the first block G1 and the second block G2 in a plan view. In the wafer transport area 32, for example, a wafer transport device 33 is disposed.
 ウェハ搬送装置33は、例えばY方向、前後方向、θ方向及び上下方向に移動自在な搬送アームを有している。ウェハ搬送装置33は、ウェハ搬送領域32内を移動し、周囲の第1のブロックG1、第2のブロックG2や、第3のブロックG3及び第4のブロックG4内の所定の装置にウェハWを搬送できる。図1のように処理ステーション3が複数ある場合、インターフェイスステーション4側に位置する処理ステーション3に設けられたウェハ搬送装置33は、第1のブロックG1、第2のブロックG2、及び第4のブロックG4のほかに後述の第5のブロックG5内の所定の装置にウェハWを搬送できる。 The wafer transport device 33 has a transport arm that can move freely in, for example, the Y direction, the front-rear direction, the θ direction, and the up-down direction. The wafer transport device 33 moves within the wafer transport area 32 and can transport the wafer W to a predetermined device within the surrounding first block G1, second block G2, third block G3, and fourth block G4. When there are multiple processing stations 3 as in FIG. 1, the wafer transport device 33 provided in the processing station 3 located on the interface station 4 side can transport the wafer W to a predetermined device within the fifth block G5 described below in addition to the first block G1, second block G2, and fourth block G4.
 ウェハ搬送装置33は、例えば上下に複数台配置される。1つのウェハ搬送装置33は、上下に積層された複数の層31のうち、上側における複数の層31の高さに位置する所定の装置にウェハWを搬送できる。それらの層31より下方に位置する複数の層31の高さに位置する所定の装置に対しては、別のウェハ搬送装置33がウェハWを搬送できる。このようなウェハWの搬送を可能とするように複数のウェハ搬送領域32(図2の上下に並ぶ領域を参照)が設けられる。なお、ウェハ搬送装置33を1つの層31ごとに設けるなど、ウェハ搬送装置33の数や、1つのウェハ搬送装置33に対応する層31の数は、任意に選択できる。 For example, multiple wafer transport devices 33 are arranged vertically. One wafer transport device 33 can transport a wafer W to a specific device located at the height of the upper layers 31 out of the multiple layers 31 stacked vertically. Another wafer transport device 33 can transport a wafer W to a specific device located at the height of the multiple layers 31 located below the layers 31. Multiple wafer transport areas 32 (see the areas lined up vertically in Figure 2) are provided to enable such transportation of wafers W. Note that the number of wafer transport devices 33 and the number of layers 31 corresponding to one wafer transport device 33 can be selected arbitrarily, such as providing a wafer transport device 33 for each layer 31.
 また、ウェハ搬送領域32あるいは第1のブロックG1や第2のブロックG2には、シャトル搬送装置(図示無し)があってもよい。シャトル搬送装置は、処理ステーション3の一方に隣接する空間と、その反対側に隣接する別の空間との間で直線的にウェハWを搬送する。 Furthermore, the wafer transport area 32 or the first block G1 or the second block G2 may have a shuttle transport device (not shown). The shuttle transport device transports the wafer W in a straight line between a space adjacent to one side of the processing station 3 and another space adjacent to the opposite side.
 インターフェイスステーション4には、複数の受け渡し装置を備える第5のブロックG5と、ウェハ搬送装置41、及びウェハ搬送装置42とが設けられている。インターフェイスステーション4は、ウェハ搬送装置33によってウェハWの受け渡しが行われる第5のブロックG5と露光装置との間で、ウェハ搬送装置41またはウェハ搬送装置42を用いてウェハWを搬送する。そのために、ウェハ搬送装置41およびウェハ搬送装置42は、各々がX方向、Y方向、上下方向、鉛直軸回り(θ方向)といった方向の駆動機構を必要に応じて備えており、全ての方向の駆動機構を備えていてもよい。ウェハ搬送装置41およびウェハ搬送装置42の少なくともいずれか一方が、ウェハWを支持して、第5のブロックG5内の受け渡し装置および露光装置との間でウェハWを搬送できる。 The interface station 4 is provided with a fifth block G5 equipped with multiple transfer devices, a wafer transport device 41, and a wafer transport device 42. The interface station 4 transports the wafer W between the exposure device and the fifth block G5, where the wafer W is transferred by the wafer transport device 33, using the wafer transport device 41 or the wafer transport device 42. For this purpose, the wafer transport device 41 and the wafer transport device 42 each include a drive mechanism for the X direction, Y direction, up and down direction, and around the vertical axis (θ direction) as necessary, and may include a drive mechanism for all directions. At least one of the wafer transport device 41 and the wafer transport device 42 can support the wafer W and transport the wafer W between the transfer device in the fifth block G5 and the exposure device.
 ウェハWの表面を洗浄する洗浄装置や、前述した周辺露光装置U4が、インターフェイスステーション4内で、ウェハ搬送装置41およびウェハ搬送装置42のいずれか一方がアクセス可能な位置に設けられていても良い。一例では、図1において、インターフェイスステーション4内において破線の四角で示した箇所に、洗浄装置や周辺露光装置U4が設けられてもよい。 A cleaning device for cleaning the surface of the wafer W and the aforementioned peripheral exposure device U4 may be provided in a position within the interface station 4 that is accessible to either the wafer transport device 41 or the wafer transport device 42. In one example, the cleaning device and peripheral exposure device U4 may be provided in the location indicated by the dashed square within the interface station 4 in FIG. 1.
 以上のウェハ処理システム1には、制御装置100が設けられている。制御装置100は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1におけるウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置100にインストールされたものであってもよい。 The above wafer processing system 1 is provided with a control device 100. The control device 100 is, for example, a computer, and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing of wafers W in the wafer processing system 1. The program storage unit also stores a program for controlling the operation of the drive systems of the above-mentioned various processing devices and transport devices, etc., to realize wafer processing in the wafer processing system 1. The above program may be recorded on a computer-readable storage medium H, and installed in the control device 100 from the storage medium H.
<ウェハ処理システムの動作>
 ウェハ処理システム1は以上のように構成されている。次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理の一例について説明する。
Operation of the Wafer Processing System
The above is the configuration of the wafer processing system 1. Next, an example of wafer processing performed using the wafer processing system 1 configured as above will be described.
 先ず、複数のウェハWを収納したカセットCが、ウェハ処理システム1のカセットステーション2に搬入され、カセット載置台21に載置される。次に、ウェハ搬送装置22あるいはウェハ搬送装置23によりカセットC内の各ウェハWが順次取り出され、第3のブロックG3の受け渡し装置に搬送される。 First, a cassette C containing multiple wafers W is carried into the cassette station 2 of the wafer processing system 1 and placed on the cassette placement table 21. Next, each wafer W in the cassette C is sequentially removed by the wafer transfer device 22 or the wafer transfer device 23 and transferred to the transfer device in the third block G3.
 第3のブロックG3の受け渡し装置に搬送されたウェハWは、ウェハ搬送装置33で支持されて第2のブロックG2内に設けられた疎水化処理装置に搬送され、疎水化処理が行われる。次いで、ウェハ搬送装置33によって、レジスト膜形成装置に搬送されてウェハW上にレジスト膜が形成され、その後に熱処理装置に搬送されてプリベーク処理された後で、第5のブロックG5の受け渡し装置に搬送される。なお、図1及び図2に示すように処理ステーション3が複数ある場合は、ウェハWは第5のブロックG5の受け渡し装置に搬送される前に第4のブロックG4の受け渡し装置に一度置かれてから、複数のウェハ搬送装置33との間での受け渡しが行われる。また、ウェハWは、ウェハ搬送装置33によって周辺露光装置U4に搬送され、ウェハWの周縁領域に対する露光処理が行われる。 The wafer W transferred to the transfer device of the third block G3 is supported by the wafer transfer device 33 and transferred to the hydrophobization treatment device provided in the second block G2, where the hydrophobization treatment is performed. Next, the wafer W is transferred by the wafer transfer device 33 to the resist film forming device, where a resist film is formed on the wafer W, and then transferred to the heat treatment device for pre-baking, and then transferred to the transfer device of the fifth block G5. Note that, when there are multiple processing stations 3 as shown in Figures 1 and 2, the wafer W is placed once in the transfer device of the fourth block G4 before being transferred to the transfer device of the fifth block G5, and then transferred between the multiple wafer transfer devices 33. The wafer W is also transferred by the wafer transfer device 33 to the peripheral exposure device U4, where the peripheral area of the wafer W is exposed.
 第5のブロックG5の受け渡し装置に搬送されたウェハWは、ウェハ搬送装置41およびウェハ搬送装置42によって、インターフェイスステーション4に接続された露光装置に搬送され、所定のパターンで露光処理される。なお、露光処理の前に洗浄装置でウェハWを洗浄してもよい。 The wafer W transported to the transfer device of the fifth block G5 is transported by the wafer transport device 41 and the wafer transport device 42 to the exposure device connected to the interface station 4, where it is exposed to a predetermined pattern. The wafer W may be cleaned in a cleaning device before the exposure process.
 露光処理されたウェハWは、ウェハ搬送装置41およびウェハ搬送装置42によって第5のブロックG5の受け渡し装置に搬送される。その後、ウェハ搬送装置33によって熱処理装置に搬送され、露光後ベーク処理される。 The exposed wafer W is transported to the transfer device in the fifth block G5 by the wafer transport device 41 and the wafer transport device 42. It is then transported to the heat treatment device by the wafer transport device 33 and subjected to post-exposure baking.
 露光後ベーク処理されたウェハWは、ウェハ搬送装置33によって現像処理装置に搬送され、現像される。現像終了後、ウェハWは、ウェハ搬送装置33によって熱処理装置U2に搬送され、ポストベーク処理される。 The exposed and baked wafer W is transported by the wafer transport device 33 to the development processing device and developed. After development is complete, the wafer W is transported by the wafer transport device 33 to the heat treatment device U2 and post-baked.
 その後ウェハWは、ウェハ搬送装置33によって第3のブロックG3の受け渡し装置に搬送され、カセットステーション2のウェハ搬送装置22あるいはウェハ搬送装置23によって所定のカセット載置台21のカセットCに搬送される。こうして、一連のフォトリソグラフィー工程が終了する。なお、露光装置での露光前又は露光後において、ウェハWの少なくとも周縁領域にレジスト膜が形成され、そのレジスト膜が周辺露光装置U4で露光された後に、現像処理装置において現像が行われてもよい。 Then, the wafer W is transported by the wafer transport device 33 to the delivery device in the third block G3, and then transported by the wafer transport device 22 or wafer transport device 23 in the cassette station 2 to the cassette C on a predetermined cassette mounting table 21. Thus, a series of photolithography processes is completed. Note that a resist film may be formed on at least the peripheral region of the wafer W before or after exposure in the exposure device, and the resist film may be exposed by the peripheral exposure device U4, and then developed in the development processing device.
<液処理装置>
 続いて図3を参照しながら、膜処理装置U1の一例として、処理液を用いて被膜を形成する液処理装置について説明する。本開示では、処理液が塗布されて形成される処理液の膜、及び、処理液の膜が熱処理されて得られる成膜を総称して、「被膜」と称する。膜処理装置U1は、例えば、回転保持部45と、液供給部50とを備える。
<Liquid Treatment Device>
Next, referring to Fig. 3, a liquid treatment device that forms a coating using a treatment liquid will be described as an example of the film treatment device U1. In the present disclosure, the film of the treatment liquid formed by applying the treatment liquid and the film formed by heat-treating the film of the treatment liquid are collectively referred to as "coating". The film treatment device U1 includes, for example, a rotating holder 45 and a liquid supply unit 50.
 回転保持部45は、回転駆動部46と、シャフト47と、保持部48とを含む。回転駆動部46は、制御装置100からの動作信号に基づいて動作し、シャフト47を回転させる。回転駆動部46は、例えば電動モータ等の動力源を含む。保持部48は、シャフト47の先端に設けられている。保持部48上にはウェハWが載置可能である。保持部48は、例えば吸着等によりウェハWを略水平に保持するように構成されている。すなわち、保持部48は、ウェハWの姿勢が略水平の状態で、ウェハWの表面Waに対して垂直な中心軸(回転軸)まわりにウェハWを回転させる。 The rotating holder 45 includes a rotating drive unit 46, a shaft 47, and a holder 48. The rotating drive unit 46 operates based on an operation signal from the control device 100 to rotate the shaft 47. The rotating drive unit 46 includes a power source such as an electric motor. The holder 48 is provided at the tip of the shaft 47. A wafer W can be placed on the holder 48. The holder 48 is configured to hold the wafer W approximately horizontally, for example, by suction. That is, the holder 48 rotates the wafer W around a central axis (rotation axis) perpendicular to the surface Wa of the wafer W while the wafer W is in an approximately horizontal position.
 液供給部50は、ウェハWの表面Waに対して処理液Lを供給するように構成されている。処理液Lは、例えば、レジスト膜を形成するためのレジスト液(以下、「処理液Lr」と表記する。)である。処理液Lrが含有するレジスト材料は、ポジ型レジスト材料であってもよく、ネガ型レジスト材料であってもよい。ポジ型レジスト材料は、露光された箇所が溶け出して、露光されていない箇所が残るレジスト材料である。ネガ型レジスト材料は、露光されていない箇所が溶け出し、露光された箇所が残るレジスト材料である。以下では、処理液Lが処理液Lrであり、処理液Lrが含有するレジスト材料が、ネガ型レジスト材料である場合を例に用いて説明する。 The liquid supply unit 50 is configured to supply the processing liquid L to the surface Wa of the wafer W. The processing liquid L is, for example, a resist liquid for forming a resist film (hereinafter, referred to as "processing liquid Lr"). The resist material contained in the processing liquid Lr may be a positive resist material or a negative resist material. A positive resist material is a resist material in which exposed areas dissolve and unexposed areas remain. A negative resist material is a resist material in which unexposed areas dissolve and exposed areas remain. In the following, an example will be described in which the processing liquid L is the processing liquid Lr and the resist material contained in the processing liquid Lr is a negative resist material.
 液供給部50は、液源51と、ポンプ52と、バルブ53と、ノズル54と、配管55と、駆動機構56とを含む。液源51は、処理液Lrの供給源として機能する。ポンプ52は、制御装置100からの動作信号に基づいて動作し、液源51から処理液Lrを吸引し、配管55及びバルブ53を介してノズル54に送り出す。 The liquid supply unit 50 includes a liquid source 51, a pump 52, a valve 53, a nozzle 54, a pipe 55, and a drive mechanism 56. The liquid source 51 functions as a supply source of the processing liquid Lr. The pump 52 operates based on an operation signal from the control device 100, sucks the processing liquid Lr from the liquid source 51, and sends it to the nozzle 54 via the pipe 55 and the valve 53.
 ノズル54は、その吐出口がウェハWの表面Waに向かうようにウェハWの上方に配置されている。ノズル54は、ポンプ52によって送り出された処理液Lrを、ウェハWの表面Waに吐出するように構成されている。配管55は、上流側から順に、液源51、ポンプ52、バルブ53、及びノズル54を接続している。駆動機構56は、制御装置100からの動作信号に基づいて動作し、ノズル54を水平方向及び上下方向に移動させるように構成されている。 The nozzle 54 is positioned above the wafer W so that its discharge port faces the surface Wa of the wafer W. The nozzle 54 is configured to discharge the processing liquid Lr pumped out by the pump 52 onto the surface Wa of the wafer W. The piping 55 connects, in order from the upstream side, the liquid source 51, the pump 52, the valve 53, and the nozzle 54. The drive mechanism 56 operates based on an operation signal from the control device 100, and is configured to move the nozzle 54 horizontally and vertically.
 膜処理装置U1において、処理液Lrの膜が形成されたウェハWは、いずれかの熱処理装置U2に搬送され、その熱処理装置U2は、ウェハWの熱処理を行う。これにより、ウェハWの表面Waにレジスト膜が形成される。以上のように、膜処理装置U1及び熱処理装置U2が、被膜の1種であるレジスト膜を形成する被膜形成部を構成してもよい。 In the film processing device U1, the wafer W on which the film of the processing liquid Lr has been formed is transferred to one of the heat processing devices U2, which performs heat processing on the wafer W. This forms a resist film on the surface Wa of the wafer W. As described above, the film processing device U1 and the heat processing device U2 may constitute a film forming section that forms a resist film, which is a type of coating.
<検査装置>
 続いて、図4及び図5を参照して、検査装置U3の一例について説明する。検査装置U3(検査部)は、ウェハWの状態を検査するための1種以上の画像情報を生成する装置である。検査装置U3は、例えば、筐体68と、回転保持ユニット60と、表面撮像ユニット70と、周縁撮像ユニット80と、を含む。回転保持ユニット60、表面撮像ユニット70、及び周縁撮像ユニット80は、筐体68内に配置されている。筐体68のうちの1つの側壁には、ウェハWを筐体68の内部に搬入し、また、ウェハWを筐体68の外部に搬出するための搬入出口69が形成されている。
<Inspection equipment>
Next, an example of the inspection device U3 will be described with reference to Fig. 4 and Fig. 5. The inspection device U3 (inspection unit) is a device that generates one or more types of image information for inspecting the state of the wafer W. The inspection device U3 includes, for example, a housing 68, a rotating and holding unit 60, a surface imaging unit 70, and a peripheral imaging unit 80. The rotating and holding unit 60, the surface imaging unit 70, and the peripheral imaging unit 80 are disposed in the housing 68. A transfer port 69 is formed in one side wall of the housing 68 for transferring the wafer W into the housing 68 and transferring the wafer W out of the housing 68.
 回転保持ユニット60は、ウェハWを保持して回転させ、筐体68内においてウェハWを移動させるユニットである。回転保持ユニット60は、保持台61と、駆動機構62,63と、ガイドレール64と、を含む。保持台61は、例えば、吸着等によりウェハWを略水平に保持する吸着チャックである。 The rotating and holding unit 60 is a unit that holds and rotates the wafer W and moves the wafer W within the housing 68. The rotating and holding unit 60 includes a holding table 61, driving mechanisms 62 and 63, and a guide rail 64. The holding table 61 is, for example, a suction chuck that holds the wafer W approximately horizontally by suction or the like.
 駆動機構62は、例えば電動モータ等の動力源を含み、保持台61を回転駆動する。すなわち、駆動機構62は、保持台61に保持されているウェハWを回転させる。保持台61には、駆動機構62による回転の中心軸がウェハWの中心と略一致するように、ウェハWが載せられてもよい。駆動機構62は、保持台61の上記中心軸まわりの回転位置(回転角度)を検出するためのエンコーダを含んでもよい。この場合、表面撮像ユニット70及び周縁撮像ユニット80によるウェハWの撮像位置と、ウェハWの回転位置との対応付けを行うことができる。ウェハWが周方向における基準位置を表す指標部(例えば、切欠部)を含む場合には、表面撮像ユニット70及び周縁撮像ユニット80によって判別された指標部と、エンコーダによって検出された回転位置とに基づいて、ウェハWの姿勢を特定することができる。 The driving mechanism 62 includes a power source such as an electric motor, and drives the holding table 61 to rotate. That is, the driving mechanism 62 rotates the wafer W held on the holding table 61. The wafer W may be placed on the holding table 61 so that the central axis of rotation by the driving mechanism 62 approximately coincides with the center of the wafer W. The driving mechanism 62 may include an encoder for detecting the rotational position (rotation angle) of the holding table 61 about the central axis. In this case, the imaging position of the wafer W by the surface imaging unit 70 and the peripheral imaging unit 80 can be associated with the rotational position of the wafer W. If the wafer W includes an index portion (e.g., a notch) that indicates a reference position in the circumferential direction, the attitude of the wafer W can be identified based on the index portion determined by the surface imaging unit 70 and the peripheral imaging unit 80 and the rotational position detected by the encoder.
 駆動機構63は、例えばリニアアクチュエータであり、保持台61をガイドレール64に沿って移動させる。すなわち、駆動機構63は、保持台61に保持されているウェハWをガイドレール64の一端側と他端側との間で搬送する。従って、保持台61に保持されているウェハWは、搬入出口69寄りの第1位置と、周縁撮像ユニット80寄りの第2位置との間で移動可能である。ガイドレール64は、筐体68内において線状(例えば、直線状)に延びている。 The driving mechanism 63 is, for example, a linear actuator, and moves the holding table 61 along the guide rail 64. That is, the driving mechanism 63 transports the wafer W held on the holding table 61 between one end and the other end of the guide rail 64. Therefore, the wafer W held on the holding table 61 can move between a first position closer to the loading/unloading port 69 and a second position closer to the peripheral imaging unit 80. The guide rail 64 extends linearly (for example, straight) within the housing 68.
 表面撮像ユニット70は、カメラ71と、照明モジュール72とを含む。カメラ71は、レンズと、撮像素子(例えば、CCDイメージセンサ、又はCMOSイメージセンサ等)とを含む。カメラ71は、水平方向において、照明モジュール72に対向している。すなわち、カメラ71及び照明モジュール72は、水平方向に沿って並んでいる。 The surface imaging unit 70 includes a camera 71 and a lighting module 72. The camera 71 includes a lens and an imaging element (e.g., a CCD image sensor or a CMOS image sensor). The camera 71 faces the lighting module 72 in the horizontal direction. In other words, the camera 71 and the lighting module 72 are aligned along the horizontal direction.
 照明モジュール72は、ハーフミラー73と、光源74とを含む。ハーフミラー73は、水平方向に対して略45°傾いた状態で、筐体68内に配置されている。ハーフミラー73は、ガイドレール64の中間部分の上方に位置している。ハーフミラー73は、矩形状を呈しており、上方から見て、ガイドレール64の延在方向に交差するように延びている。ハーフミラー73の長さは、ウェハWの直径よりも大きく設定されている。 The lighting module 72 includes a half mirror 73 and a light source 74. The half mirror 73 is arranged in the housing 68 at an angle of approximately 45° to the horizontal. The half mirror 73 is located above the middle part of the guide rail 64. The half mirror 73 has a rectangular shape, and extends so as to intersect with the extension direction of the guide rail 64 when viewed from above. The length of the half mirror 73 is set to be greater than the diameter of the wafer W.
 光源74は、ハーフミラー73の上方に位置している。光源74から出射された光は、ハーフミラー73を全体的に通過して下方(ガイドレール64側)に向けて照射される。ハーフミラー73を通過した光は、ハーフミラー73の下方に位置する物体で反射した後、ハーフミラー73で再び反射して、カメラ71のレンズを通過し、カメラ71の撮像素子に入射する。すなわち、カメラ71は、ハーフミラー73を介して、光源74の照射領域に存在する物体を撮像できる。例えば、ウェハWを保持する保持台61が駆動機構63によってガイドレール64に沿って移動する際に、カメラ71は、光源74の照射領域を通過するウェハWの表面Waを撮像できる。カメラ71によって撮像された画像データは、制御装置100に送信される。 The light source 74 is located above the half mirror 73. The light emitted from the light source 74 passes through the entire half mirror 73 and is irradiated downward (toward the guide rail 64). The light that passes through the half mirror 73 is reflected by an object located below the half mirror 73, then reflected again by the half mirror 73, passes through the lens of the camera 71, and enters the image sensor of the camera 71. That is, the camera 71 can capture an image of an object present in the irradiation area of the light source 74 via the half mirror 73. For example, when the holding table 61 that holds the wafer W moves along the guide rail 64 by the driving mechanism 63, the camera 71 can capture an image of the surface Wa of the wafer W that passes through the irradiation area of the light source 74. The image data captured by the camera 71 is transmitted to the control device 100.
 周縁撮像ユニット80は、カメラ81と、照明モジュール82と、ミラー部材83とを含む。カメラ81は、レンズと、撮像素子(例えば、CCDイメージセンサ、又はCMOSイメージセンサ等)とを含む。カメラ81は、水平方向において、照明モジュール82に対向している。すなわち、カメラ81及び照明モジュール82は、水平方向に沿って並んでいる。 The peripheral imaging unit 80 includes a camera 81, a lighting module 82, and a mirror member 83. The camera 81 includes a lens and an imaging element (e.g., a CCD image sensor or a CMOS image sensor). The camera 81 faces the lighting module 82 in the horizontal direction. In other words, the camera 81 and the lighting module 82 are aligned along the horizontal direction.
 照明モジュール82は、保持台61に保持されたウェハWの上方に配置されている。照明モジュール82は、光源84と、ハーフミラー85とを含む。ハーフミラー85は、図5に示されるように、水平方向に対して略45°傾いた状態で配置されている。ミラー部材83は、図4及び図5に示されるように、照明モジュール82の下方に配置されている。ミラー部材83は、アルミブロックによって構成されている本体と、反射面とを含む。 The lighting module 82 is disposed above the wafer W held on the holding table 61. The lighting module 82 includes a light source 84 and a half mirror 85. As shown in FIG. 5, the half mirror 85 is disposed at an angle of approximately 45° to the horizontal direction. As shown in FIG. 4 and FIG. 5, the mirror member 83 is disposed below the lighting module 82. The mirror member 83 includes a main body formed of an aluminum block and a reflective surface.
 ミラー部材83の反射面は、保持台61に保持されたウェハWが上記第2位置にある場合、保持台61に保持されたウェハWの端面Wbと、ウェハWの裏面における周縁領域とに対向する。ミラー部材83の反射面は、保持台61の回転軸に対して傾斜している。ミラー部材83の反射面には、鏡面加工が施されている。例えば、反射面には、ミラーシートが貼り付けられていてもよいし、アルミめっきが施されていてもよいし、アルミ材料が蒸着されていてもよい。この反射面は、保持台61に保持されたウェハWの径方向外方に向けて窪んだ湾曲面である。 When the wafer W held on the holding table 61 is in the second position, the reflective surface of the mirror member 83 faces the end face Wb of the wafer W held on the holding table 61 and the peripheral area on the back surface of the wafer W. The reflective surface of the mirror member 83 is inclined with respect to the rotation axis of the holding table 61. The reflective surface of the mirror member 83 is mirror-finished. For example, the reflective surface may have a mirror sheet attached, may be aluminum plated, or may have aluminum material vapor-deposited thereon. This reflective surface is a curved surface recessed radially outward of the wafer W held on the holding table 61.
 照明モジュール82において、光源84から出射された光は、ハーフミラー85を全体的に通過して下方に向けて照射される。ハーフミラー85を通過した光の一部は、ウェハWの表面Waにおける周縁領域において反射する。当該反射光は、ミラー部材83の反射面には向かわずに、ハーフミラー85でさらに反射した後、カメラ81の撮像素子に入射する。 In the lighting module 82, the light emitted from the light source 84 passes entirely through the half mirror 85 and is irradiated downward. A portion of the light that passes through the half mirror 85 is reflected at the peripheral region of the surface Wa of the wafer W. This reflected light does not head toward the reflective surface of the mirror member 83, but is further reflected by the half mirror 85 before entering the imaging element of the camera 81.
 一方、ハーフミラー85を通過した光の他の一部は、ハーフミラー85の下方に位置するミラー部材83の反射面で反射する。保持台61に保持されたウェハWが第2位置にある場合、ミラー部材83の反射面で反射した反射光は、主としてウェハWの端面Wbで反射する。当該反射光は、ミラー部材83の反射面及びハーフミラー85で順次反射して、カメラ81の撮像素子に入射する。 Meanwhile, another portion of the light that passes through the half mirror 85 is reflected by the reflective surface of the mirror member 83 located below the half mirror 85. When the wafer W held on the holding table 61 is in the second position, the light reflected by the reflective surface of the mirror member 83 is mainly reflected by the edge surface Wb of the wafer W. The reflected light is reflected in turn by the reflective surface of the mirror member 83 and the half mirror 85, and enters the imaging element of the camera 81.
 このように、ウェハWの表面Waにおける周縁領域からの反射光とウェハWの端面Wbからの反射光とは、互いに異なる光路を経てカメラ81の撮像素子に入射する。すなわち、保持台61に保持されたウェハWが第2位置にある場合、カメラ81は、ウェハWの表面Waにおける周縁領域とウェハWの端面Wbとの双方を撮像して、表面Waの周縁領域の撮像画像と、端面Wbの撮像画像とを生成するように構成されている。カメラ81によって撮像された撮像画像データは、制御装置100に送信される。なお、検査装置U3は、表面Waの周縁領域を撮像可能であり、周縁領域の撮像画像を生成できれば、どのように構成されてもよい。表面Waの周縁領域は、表面Waにおける周辺の領域(周辺領域)とも称することができ、表面Waの周縁と当該周縁の近傍とを含む環状の領域を意味する。周縁撮像ユニット80は、表面Waの周縁領域を撮像せずに、端面Wbの撮像画像を更に生成可能であってもよく、検査装置U3が、周縁撮像ユニット80とは別に、端面Wbの撮像画像を生成可能な撮像ユニットを有してもよい。表面Waの周縁領域を含まない端面Wbの撮像画像から、ウェハWの反り量が計測されてもよい。 In this way, the light reflected from the peripheral region on the surface Wa of the wafer W and the light reflected from the end face Wb of the wafer W enter the image sensor of the camera 81 via different optical paths. That is, when the wafer W held on the holding table 61 is in the second position, the camera 81 is configured to capture both the peripheral region on the surface Wa of the wafer W and the end face Wb of the wafer W to generate an image of the peripheral region of the surface Wa and an image of the end face Wb. The captured image data captured by the camera 81 is transmitted to the control device 100. Note that the inspection device U3 may be configured in any way as long as it is capable of capturing an image of the peripheral region of the surface Wa and generating an image of the peripheral region. The peripheral region of the surface Wa can also be referred to as the peripheral region (peripheral region) of the surface Wa, and refers to a ring-shaped region including the periphery of the surface Wa and the vicinity of the periphery. The peripheral imaging unit 80 may further generate an image of the end face Wb without capturing an image of the peripheral region of the front surface Wa, and the inspection device U3 may have an imaging unit capable of generating an image of the end face Wb, separate from the peripheral imaging unit 80. The amount of warping of the wafer W may be measured from an image of the end face Wb that does not include the peripheral region of the front surface Wa.
<周辺露光装置>
 続いて、図6(a)及び図6(b)を参照して、周辺露光装置U4について説明する。周辺露光装置U4(周辺露光部)は、ウェハWの表面Waにおける周縁領域を露光する装置である。周辺露光装置U4は、周縁領域よりも内側に位置する領域に対しては露光しない。周辺露光装置U4は、例えば、回転保持ユニット110と、露光ユニット120とを有する。回転保持ユニット110及び露光ユニット120は、周辺露光装置U4が有する筐体内に配置されている。
<Peripheral exposure device>
Next, the peripheral exposure device U4 will be described with reference to Figures 6(a) and 6(b). The peripheral exposure device U4 (peripheral exposure section) is a device that exposes the peripheral region on the front surface Wa of the wafer W. The peripheral exposure device U4 does not expose a region located inside the peripheral region. The peripheral exposure device U4 has, for example, a rotating and holding unit 110 and an exposure unit 120. The rotating and holding unit 110 and the exposure unit 120 are arranged in a housing of the peripheral exposure device U4.
 回転保持ユニット110は、ウェハWを保持して回転させるユニットである。回転保持ユニット110は、保持台111(保持部)と、駆動機構112,113と、ガイドレール114と、を含む。保持台111は、例えば、吸着等によりウェハWを略水平に保持する吸着チャックである。 The rotating and holding unit 110 is a unit that holds and rotates the wafer W. The rotating and holding unit 110 includes a holding table 111 (holding portion), driving mechanisms 112 and 113, and a guide rail 114. The holding table 111 is, for example, a suction chuck that holds the wafer W approximately horizontally by suction or the like.
 駆動機構112は、例えば、電動モータ等の動力源を含み、保持台111を回転駆動する。すなわち、駆動機構112は、保持台111に保持されているウェハWを回転させる。駆動機構112は、保持台111の回転位置を検出するためのエンコーダを含んでいてもよい。この場合、露光ユニット120によるウェハWの露光位置と、ウェハWの回転位置との対応付けを行うことができる。駆動機構112によるウェハWの回転中心がウェハWの中心に略一致するように、保持台111はウェハWの裏面を保持する。 The driving mechanism 112 includes a power source such as an electric motor, and drives the holding table 111 to rotate. That is, the driving mechanism 112 rotates the wafer W held on the holding table 111. The driving mechanism 112 may include an encoder for detecting the rotational position of the holding table 111. In this case, the exposure position of the wafer W by the exposure unit 120 can be associated with the rotational position of the wafer W. The holding table 111 holds the back surface of the wafer W so that the center of rotation of the wafer W by the driving mechanism 112 approximately coincides with the center of the wafer W.
 駆動機構113は、例えばリニアアクチュエータであり、保持台111をガイドレール114に沿って移動させる。すなわち、駆動機構113は、保持台111に保持されているウェハWをガイドレール114の一端側と他端側との間で搬送する。ガイドレール114は、周辺露光装置U4の筐体内において線状(例えば、直線状)に延びており、その一端が、露光ユニット120の近傍に位置している。ウェハWを保持した保持台111が、ガイドレール114の一端にある場合に、露光ユニット120によってウェハWに対して露光が行われてもよい。 The driving mechanism 113 is, for example, a linear actuator, and moves the holding table 111 along the guide rail 114. That is, the driving mechanism 113 transports the wafer W held on the holding table 111 between one end and the other end of the guide rail 114. The guide rail 114 extends linearly (for example, straight) within the housing of the peripheral exposure device U4, and one end of the guide rail 114 is located near the exposure unit 120. When the holding table 111 holding the wafer W is at one end of the guide rail 114, the exposure unit 120 may expose the wafer W.
 露光ユニット120は、ウェハWの表面Waにおける周縁領域に対して露光用の光を照射するユニットである。露光ユニット120は、保持台111に保持されたウェハWが回転している状態で、表面Waにおける周縁領域に対して露光用の光を照射する。露光ユニット120は、光源121と、光学系部材122と、マスク部材123と、駆動機構124と、を含む。光源121は、露光可能な位置に配置されたウェハWの表面Waにおける周縁領域の鉛直上方に配置されてもよい。光源121は、レジスト膜を露光可能な波長成分を含むエネルギー線(例えば紫外線)を下方に向けて照射する。光源121は、例えば、超高圧UVランプ、高圧UVランプ、低圧UVランプ、又はエキシマランプなどであってもよい。 The exposure unit 120 is a unit that irradiates the peripheral area on the surface Wa of the wafer W with light for exposure. The exposure unit 120 irradiates the peripheral area on the surface Wa with light for exposure while the wafer W held on the holding table 111 is rotating. The exposure unit 120 includes a light source 121, an optical system member 122, a mask member 123, and a drive mechanism 124. The light source 121 may be disposed vertically above the peripheral area on the surface Wa of the wafer W disposed at a position where exposure is possible. The light source 121 irradiates downward with an energy ray (e.g., ultraviolet light) containing a wavelength component capable of exposing a resist film. The light source 121 may be, for example, an ultra-high pressure UV lamp, a high pressure UV lamp, a low pressure UV lamp, or an excimer lamp.
 光学系部材122は、光源121の下方に配置されている。光学系部材122は、1以上のレンズによって構成されている。光学系部材122は、光源121からの露光用の光を略平行な光に変換して、マスク部材123に照射する。光源121及び光学系部材122が、露光用の光を照射する照射部として機能する。マスク部材123には、露光面積(露光範囲)を調節するための開口123aが形成されている。光学系部材122からの平行な光は、開口123aを通過し、保持台111に保持されているウェハWの表面Waのうちの周縁領域に対して照射される。周縁領域に露光用の光が照射されたレジスト膜に対して現像液が供給されると、露光用の光が照射されていない領域が除去される。 The optical system member 122 is disposed below the light source 121. The optical system member 122 is composed of one or more lenses. The optical system member 122 converts the exposure light from the light source 121 into approximately parallel light and irradiates the mask member 123. The light source 121 and the optical system member 122 function as an irradiation unit that irradiates the exposure light. The mask member 123 is formed with an opening 123a for adjusting the exposure area (exposure range). The parallel light from the optical system member 122 passes through the opening 123a and is irradiated onto the peripheral region of the front surface Wa of the wafer W held on the holding table 111. When a developer is supplied to the resist film whose peripheral region has been irradiated with the exposure light, the region not irradiated with the exposure light is removed.
 駆動機構124は、例えば、電動モータ等の動力源を含み、マスク部材123に接続されている。駆動機構124は、制御装置100からの動作信号に基づいて動作し、マスク部材123をウェハWの径方向(保持台111に保持された状態のウェハWの径方向)に沿って移動させる。ウェハWの径方向は、ウェハWの中心まわりの円の径方向である。駆動機構124によってマスク部材123が上記径方向に沿って移動することによって、レジスト膜のうちの周縁領域に位置する部分に対して露光用の光が到達する範囲の径方向における大きさ(以下、単に「露光幅」という。)が変化する。 The driving mechanism 124 includes a power source such as an electric motor, and is connected to the mask member 123. The driving mechanism 124 operates based on an operation signal from the control device 100, and moves the mask member 123 along the radial direction of the wafer W (the radial direction of the wafer W while held on the holding table 111). The radial direction of the wafer W is the radial direction of a circle around the center of the wafer W. As the driving mechanism 124 moves the mask member 123 along the radial direction, the radial size of the range in which the exposure light reaches the portion of the resist film located in the peripheral region (hereinafter simply referred to as the "exposure width") changes.
 マスク部材123は、上記径方向において、露光用の光が表面Waに到達する領域内に表面Waの外縁が含まれる移動範囲で、駆動機構124によって駆動される。この場合、露光幅は、表面Waの外縁と、露光用の光が表面Waに到達する範囲のうちの最も中心寄りの箇所との間の上記径方向における距離で特定される。また、径方向において、ウェハWの中心に対するマスク部材123の位置が変化すると、露光用の光が表面Waに到達する範囲のうちの最も中心寄りの箇所の径方向における位置が変化する。 The mask member 123 is driven by the drive mechanism 124 within a moving range in the above-mentioned radial direction in which the outer edge of the surface Wa is included in the area where the exposure light reaches the surface Wa. In this case, the exposure width is determined by the distance in the above-mentioned radial direction between the outer edge of the surface Wa and the point closest to the center of the range where the exposure light reaches the surface Wa. Furthermore, when the position of the mask member 123 relative to the center of the wafer W changes in the radial direction, the radial position of the point closest to the center of the range where the exposure light reaches the surface Wa changes.
 露光幅を変化させる方法は、駆動機構124による駆動に限られない。マスク部材123は、図6(b)に示されるように、シャッター125を有してもよい。図6(b)には、ウェハWの径方向に沿って切断した際の断面が模式的に示されており、光学系部材122は省略されている。シャッター125は、マスク部材123に設けられた開口123aの開度を調節可能な部材である。開口123aの開度とは、開口123aの全体の面積に対する、光源121及び光学系部材122からの露光用の光を通過させる面積の割合を意味する。 The method of changing the exposure width is not limited to driving by the driving mechanism 124. The mask member 123 may have a shutter 125 as shown in FIG. 6(b). FIG. 6(b) shows a schematic cross section of the wafer W cut along the radial direction, with the optical system member 122 omitted. The shutter 125 is a member that can adjust the opening degree of the opening 123a provided in the mask member 123. The opening degree of the opening 123a means the ratio of the area that passes the exposure light from the light source 121 and the optical system member 122 to the total area of the opening 123a.
 マスク部材123は、開口123aを通過した露光用の光が、表面Waの外縁とその外縁の内側の領域とに到達する位置に固定されてもよい。シャッター125には駆動部が接続されており、シャッター125は、径方向に沿って移動可能である。シャッター125は、開口123aのうちのウェハWの中心寄りの領域を覆うことが可能である。シャッター125の径方向における位置によって、開口123aの開度が変化し、その結果、露光幅が変化する。すなわち、シャッター125の径方向における位置によって、露光用の光が表面Waに到達する範囲のうちの最も中心寄りの箇所の径方向における位置が変化する。 The mask member 123 may be fixed at a position where the exposure light that has passed through the opening 123a reaches the outer edge of the surface Wa and the area inside that outer edge. A drive unit is connected to the shutter 125, and the shutter 125 is movable along the radial direction. The shutter 125 is capable of covering the area of the opening 123a that is closer to the center of the wafer W. The opening degree of the opening 123a changes depending on the radial position of the shutter 125, and as a result, the exposure width changes. In other words, the radial position of the point closest to the center within the range where the exposure light reaches the surface Wa changes depending on the radial position of the shutter 125.
 露光幅を変化させる方法は、駆動機構124及びシャッター125に限られない。周辺露光装置U4は、マスク部材123に対して、ウェハWの径方向(保持台111に保持された状態のウェハWの径方向)に沿って、ウェハWを保持した保持台111を移動させることで、露光幅を変化させてもよい。この場合、マスク部材123は所定位置に固定されていてもよい。マスク部材123に対して、保持台111(ウェハW)を径方向に移動させることで、径方向での断面を観察した際に、開口123aを通過した露光用の光がウェハWに到達する領域と、露光用の光がウェハWに到達しない領域との割合が変化する。すなわち、マスク部材123に対するウェハWの径方向における位置によって、露光用の光が表面Waに到達する範囲のうちの最も中心寄りの箇所の径方向における位置が変化する。 The method of changing the exposure width is not limited to the driving mechanism 124 and the shutter 125. The peripheral exposure device U4 may change the exposure width by moving the holding table 111 holding the wafer W along the radial direction of the wafer W (the radial direction of the wafer W held on the holding table 111) relative to the mask member 123. In this case, the mask member 123 may be fixed at a predetermined position. By moving the holding table 111 (wafer W) in the radial direction relative to the mask member 123, the ratio of the area where the exposure light that has passed through the opening 123a reaches the wafer W and the area where the exposure light does not reach the wafer W changes when observing a cross section in the radial direction. In other words, the radial position of the wafer W relative to the mask member 123 changes the radial position of the area closest to the center within the range where the exposure light reaches the surface Wa.
<制御装置の機能>
 図7には、制御装置100の機能上の構成の一例を表すブロック図が示されている。制御装置100は、機能上の構成(以下、「機能モジュール」という。)として、例えば、画像情報取得部201と、エッジ情報生成部202と、露光マップ設定部203と、マップ記憶部204と、膜形成制御部205と、露光制御部206と、結果判定部207と、を有する。これらの機能モジュールが実行する処理は、制御装置100が実行する処理に相当する。
<Control device functions>
7 shows a block diagram illustrating an example of the functional configuration of the control device 100. The control device 100 has, as its functional configuration (hereinafter referred to as "functional modules"), for example, an image information acquisition unit 201, an edge information generation unit 202, an exposure map setting unit 203, a map storage unit 204, a film formation control unit 205, an exposure control unit 206, and a result determination unit 207. The processes executed by these functional modules correspond to the processes executed by the control device 100.
 画像情報取得部201は、表面Waに被膜F1(第1被膜)が形成された状態のウェハWの表面Waにおける周縁領域を撮像して得られる撮像画像を取得する機能モジュールである。以下、表面Waに被膜F1(第1被膜)が形成された状態で、表面Waにおける周縁領域を撮像して得られる撮像画像を「周縁撮像画像」と称する(図11(a)も参照)。画像情報取得部201は、例えば、周縁撮像画像を検査装置U3から取得する。被膜F1は、少なくとも周縁領域に形成されるレジスト膜(以下、「被膜F2」と表記する。)の下層に形成される被膜である。被膜F1は、被膜F2の下に形成される複数層の膜のうちのいずれか1つの膜であってもよい。被膜F1と被膜F2との間に他の膜が存在していてもよく、被膜F1と被膜F2との間に他の膜が存在せずに、被膜F1上に被膜F2が形成されていてもよい。 The image information acquisition unit 201 is a functional module that acquires an image obtained by imaging the peripheral region on the surface Wa of the wafer W in a state where the coating F1 (first coating) is formed on the surface Wa. Hereinafter, an image obtained by imaging the peripheral region on the surface Wa in a state where the coating F1 (first coating) is formed on the surface Wa is referred to as a "peripheral image" (see also FIG. 11(a)). The image information acquisition unit 201 acquires the peripheral image, for example, from the inspection device U3. The coating F1 is a coating formed under a resist film (hereinafter referred to as "coating F2") formed at least in the peripheral region. The coating F1 may be any one of the multiple layers of films formed under the coating F2. Another film may exist between the coating F1 and the coating F2, or the coating F2 may be formed on the coating F1 without another film existing between the coating F1 and the coating F2.
 エッジ情報生成部202は、周縁撮像画像に基づいて、ウェハWの中心まわりの周方向位置と、ウェハWの径方向における被膜F1の外縁位置との関係を示すエッジ情報を生成する。周方向位置は、例えば、上述した切欠部等の指標部(基準位置)からの角度で特定される。被膜F1の外縁位置は、例えば、ウェハWの中心と被膜F1の外縁との間の径方向に沿った最短距離で特定される。被膜F1の外縁は、ウェハWの表面Waにおける外縁よりも内側に位置している。そのため、被膜F1の外縁位置は、表面Waの外縁の理論上の位置と被膜F1の外縁との間の径方向に沿った最短距離で特定されてもよい。 The edge information generating unit 202 generates edge information indicating the relationship between the circumferential position around the center of the wafer W and the outer edge position of the coating F1 in the radial direction of the wafer W based on the peripheral image. The circumferential position is identified, for example, by an angle from an index portion (reference position) such as the notch described above. The outer edge position of the coating F1 is identified, for example, by the shortest distance along the radial direction between the center of the wafer W and the outer edge of the coating F1. The outer edge of the coating F1 is located inside the outer edge on the surface Wa of the wafer W. Therefore, the outer edge position of the coating F1 may be identified by the shortest distance along the radial direction between the theoretical position of the outer edge of the surface Wa and the outer edge of the coating F1.
 エッジ情報生成部202は、エッジ情報を生成する際に、周方向における所定の角度ごとに、被膜F1の外縁位置を算出してもよい。エッジ情報生成部202は、例えば0.5°~5°のうちの任意の角度(例えば、1°)ごとに、被膜F1の外縁位置を算出する。被膜F1の外縁位置を算出する際の角度単位(例えば1°)は、エッジ情報での分解能ということもできる。ウェハWにおける指標部の位置が、0°に設定されてもよい。エッジ情報生成部202は、どのような画像処理の手法によって、周縁撮像画像から被膜F1の外縁位置を算出してもよい。 When generating edge information, the edge information generating unit 202 may calculate the outer edge position of the coating F1 for each predetermined angle in the circumferential direction. The edge information generating unit 202 calculates the outer edge position of the coating F1 for each arbitrary angle (e.g., 1°) between 0.5° and 5°. The angle unit (e.g., 1°) used to calculate the outer edge position of the coating F1 can also be considered as the resolution of the edge information. The position of the indicator portion on the wafer W may be set to 0°. The edge information generating unit 202 may calculate the outer edge position of the coating F1 from the peripheral image by any image processing method.
 周方向位置によって、すなわち、指標部からの角度によって、種々の要因によって、被膜F1の外縁位置は異なっている。一例では、被膜F1の外縁の一部の箇所において、外縁位置の平均よりも内側に凹む欠落部分が形成される場合がある。被膜F1の外縁は、周方向位置の変化に伴って連続している縁であってもよい。すなわち、表面Waを上方から見て、被膜F1の外縁のうちの任意の位置を始点として、周方向に沿って外縁を1周分観察したときに、被膜F1の外縁では、不連続となっている箇所が存在していない(被膜F1の外縁が連続した状態である)。 The outer edge position of the coating F1 varies depending on the circumferential position, i.e., the angle from the indicator portion, and various other factors. In one example, a missing portion that is recessed inward from the average outer edge position may be formed at some points on the outer edge of the coating F1. The outer edge of the coating F1 may be an edge that is continuous as the circumferential position changes. In other words, when the surface Wa is viewed from above and the outer edge of the coating F1 is observed along the circumferential direction for one revolution starting from any position on the outer edge of the coating F1, there are no discontinuous points on the outer edge of the coating F1 (the outer edge of the coating F1 is continuous).
 露光マップ設定部203は、上記エッジ情報に基づいて、ウェハWの中心まわりの周方向位置と、ウェハWの径方向における露光幅の設定値との関係を示す露光マップを設定する機能モジュールである。露光マップ設定部203は、露光マップにおいて、周方向における所定の角度ごとに、露光幅を設定してもよい。露光マップ設定部203は、例えば0.5°~5°のうちの任意の角度(例えば、1°)ごとに、露光幅を設定する。露光幅を設定する際の角度単位(例えば1°)は、露光マップでの分解能ということもできる。上述のエッジ情報での分解能は、露光マップでの分解能と一致していてもよい。 The exposure map setting unit 203 is a functional module that sets an exposure map indicating the relationship between the circumferential position around the center of the wafer W and the set value of the exposure width in the radial direction of the wafer W based on the edge information. The exposure map setting unit 203 may set the exposure width for each predetermined angle in the circumferential direction in the exposure map. The exposure map setting unit 203 sets the exposure width for each arbitrary angle (e.g., 1°) between 0.5° and 5°. The angle unit (e.g., 1°) when setting the exposure width can also be said to be the resolution in the exposure map. The resolution in the above-mentioned edge information may be the same as the resolution in the exposure map.
 露光マップ設定部203は、エッジ情報に基づいて露光マップを設定する際に、周方向における所定の角度ごと(例えば1°ごと)に、露光する範囲のうちのウェハWの中心に近い一端の位置を、エッジ情報で示される被膜F1の外縁位置から一定値ずらすように、露光マップを設定してもよい。この場合、周方向位置(角度)が異なっても、エッジ情報での被膜F1の外縁位置と、露光する範囲のうちのウェハWの中心に近い一端の位置との差が一定となる。マップ記憶部204は、露光マップ設定部203が設定した露光マップを記憶する機能モジュールである。 When setting the exposure map based on the edge information, the exposure map setting unit 203 may set the exposure map so that the position of one end of the exposed range that is close to the center of the wafer W is shifted by a fixed amount from the outer edge position of the coating F1 indicated by the edge information for each specified angle in the circumferential direction (for example, every 1°). In this case, even if the circumferential position (angle) differs, the difference between the outer edge position of the coating F1 in the edge information and the position of one end of the exposed range that is close to the center of the wafer W will be constant. The map storage unit 204 is a functional module that stores the exposure map set by the exposure map setting unit 203.
 膜形成制御部205は、周縁撮像画像が得られた後に、表面Waのうちの少なくとも周縁領域に被膜F2(第2被膜)を形成するように膜処理装置U1及び熱処理装置U2を制御する機能モジュールである。膜形成制御部205は、表面Waの全体に被膜F2を形成するように膜処理装置U1を制御してもよく、ウェハWの中心を含む中央部分には被膜F2を形成せずに、周縁領域に被膜F2を形成するように膜処理装置U1を制御してもよい。 The film formation control unit 205 is a functional module that controls the film processing device U1 and heat processing device U2 to form a coating F2 (second coating) on at least the peripheral region of the surface Wa after the peripheral image is obtained. The film formation control unit 205 may control the film processing device U1 to form the coating F2 on the entire surface Wa, or may control the film processing device U1 to form the coating F2 on the peripheral region without forming the coating F2 on the central portion including the center of the wafer W.
 露光制御部206は、マップ記憶部204に記憶された露光マップに従って、周縁領域において被膜F2に対して露光するように周辺露光装置U4を制御する機能モジュールである。露光制御部206は、周方向位置に応じて、その周方向位置に設定された露光幅で、被膜F2に対して露光するように周辺露光装置U4を制御する。 The exposure control unit 206 is a functional module that controls the peripheral exposure device U4 to expose the coating F2 in the peripheral region according to the exposure map stored in the map storage unit 204. The exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 with an exposure width set for the circumferential position according to the circumferential position.
 露光制御部206は、駆動機構124によりマスク部材123を移動させることで、周方向位置に応じて露光幅を変化させてもよい。露光制御部206は、シャッター125の移動によりマスク部材123の開口123aの開度を変化させることで、周方向位置に応じて露光幅を変化させてもよい。露光制御部206は、ウェハWを保持している保持台111を径方向に移動させることで、周方向位置に応じて露光幅を変化させてもよい。 The exposure control unit 206 may change the exposure width according to the circumferential position by moving the mask member 123 with the drive mechanism 124. The exposure control unit 206 may change the exposure width according to the circumferential position by changing the opening of the opening 123a of the mask member 123 by moving the shutter 125. The exposure control unit 206 may change the exposure width according to the circumferential position by moving the holding table 111 that holds the wafer W in the radial direction.
 結果判定部207は、露光マップに従って露光した結果が正常であるか否かを判定する機能モジュールである。結果判定部207は、露光された被膜F2が現像された後に、表面Waにおける周縁領域を撮像して得られる撮像画像(以下、「判定撮像画像」という。)を用いて判定を行う。判定撮像画像(第2撮像画像)は、検査装置U3において生成されたうえで、画像情報取得部201によって取得されてもよい。周縁撮像画像と判定撮像画像とが、同じ検査装置U3によって得られてもよく、異なる検査装置U3によって得られてもよい。 The result determination unit 207 is a functional module that determines whether the result of exposure according to the exposure map is normal or not. The result determination unit 207 performs the determination using an image (hereinafter referred to as a "determination image") obtained by imaging the peripheral area of the surface Wa after the exposed coating F2 is developed. The determination image (second image) may be generated in the inspection device U3 and then acquired by the image information acquisition unit 201. The peripheral image and the determination image may be obtained by the same inspection device U3, or may be obtained by different inspection devices U3.
 結果判定部207は、判定撮像画像に基づいて、周方向位置と、被膜F2(現像後の環状の被膜F2)の内縁位置との関係を示すカット情報を生成する。被膜F2の内縁位置は表面Waの外縁の理論上の位置からの径方向に沿った距離によって特定されてもよい。被膜F2は、表面Waの外縁まで形成されているので、環状の被膜F2の内縁位置は、露光幅を表す。結果判定部207は、エッジ情報及び露光マップのいずれか一方と、カット情報とを比較した結果に基づいて、被膜F2に対する露光が正常であるか否かを判定する。 The result determination unit 207 generates cut information indicating the relationship between the circumferential position and the inner edge position of the coating F2 (annular coating F2 after development) based on the determination captured image. The inner edge position of the coating F2 may be specified by the radial distance from the theoretical position of the outer edge of the surface Wa. Since the coating F2 is formed up to the outer edge of the surface Wa, the inner edge position of the annular coating F2 represents the exposure width. The result determination unit 207 determines whether the exposure of the coating F2 is normal or not based on the result of comparing the cut information with either the edge information or the exposure map.
<制御装置のハードウェア構成>
 図8には、制御装置100のハードウェア構成が例示されている。制御装置100は、例えば、回路210を有する。回路210は、1つ又は複数のプロセッサ211と、メモリ212と、ストレージ213と、入出力ポート214と、を有する。ストレージ213は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、ウェハ処理システム1を制御するためのプログラムを記憶している。すなわち、ストレージ213(又は記憶媒体)は、上述したプログラム格納部として機能する。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。
<Hardware configuration of the control device>
8 illustrates an example of a hardware configuration of the control device 100. The control device 100 includes, for example, a circuit 210. The circuit 210 includes one or more processors 211, a memory 212, a storage 213, and an input/output port 214. The storage 213 includes a computer-readable storage medium, such as a hard disk. The storage medium stores a program for controlling the wafer processing system 1. That is, the storage 213 (or the storage medium) functions as the program storage unit described above. The storage medium may be a removable medium, such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
 メモリ212は、ストレージ213の記憶媒体からロードしたプログラム及びプロセッサ211による演算結果を一時的に記憶する。プロセッサ211は、メモリ212と協働して上記プログラムを実行することで、制御装置100が有する各機能モジュールを構成する。入出力ポート214は、プロセッサ211からの指令に従って、検査装置U3、膜処理装置U1、熱処理装置U2、及び周辺露光装置U4等との間で電気信号の入出力を行う。 The memory 212 temporarily stores the programs loaded from the storage medium of the storage 213 and the results of calculations by the processor 211. The processor 211 configures each functional module of the control device 100 by executing the above programs in cooperation with the memory 212. The input/output port 214 inputs and outputs electrical signals between the inspection device U3, the film processing device U1, the heat processing device U2, and the peripheral exposure device U4, etc., according to instructions from the processor 211.
 制御装置100が、複数のコンピュータで構成される場合、各機能モジュールがそれぞれ、個別のコンピュータによって実現されていてもよい。あるいは、これらの各機能モジュールがそれぞれ、2つ以上のコンピュータの組み合わせによって実現されていてもよい。これらの場合、複数のコンピュータは、互いに通信可能に接続された状態で、ウェハ処理システム1における制御を連携して実行してもよい。なお、制御装置100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御装置100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 When the control device 100 is configured with multiple computers, each functional module may be realized by a separate computer. Alternatively, each of these functional modules may be realized by a combination of two or more computers. In these cases, the multiple computers may be connected to each other so that they can communicate with each other and work together to execute control in the wafer processing system 1. Note that the hardware configuration of the control device 100 is not necessarily limited to configuring each functional module by a program. For example, each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) that integrates this.
[基板処理方法]
 続いて、図9~図14を参照しながら、ウェハ処理システム1において実行される基板処理方法の一例を説明する。以下では、下地膜としての被膜F1には既に凹凸パターンが形成され、その被膜F1が表面Waに形成された状態のウェハWの周縁領域に対して、レジスト膜である被膜F2を形成する場合を例に説明する。被膜F1の下には、図10(a)等に示されるように、別の被膜である被膜F0が形成されていてもよい。
[Substrate Processing Method]
9 to 14, an example of a substrate processing method executed in the wafer processing system 1 will be described. In the following, an example will be described in which a coating F2, which is a resist film, is formed on the peripheral region of a wafer W in which a concave-convex pattern has already been formed on a coating F1 serving as a base film and the coating F1 has been formed on the front surface Wa. As shown in FIG. 10(a) and the like, a coating F0, which is another coating, may be formed under the coating F1.
 基板処理方法は、表面Waに被膜F1が形成されたウェハWの表面Waにおける周縁領域を撮像して周縁撮像画像を得ることと、周縁撮像画像に基づいて、ウェハWの中心まわりの周方向位置と、ウェハWの径方向における被膜F1の外縁位置との関係を示すエッジ情報を生成することと、を含む。また、基板処理方法は、エッジ情報に基づいて、上記周方向位置と、ウェハWの径方向における露光幅の設定値との関係を示す露光マップを設定することと、周縁撮像画像を得た後に、表面Waのうちの少なくとも周縁領域に被膜F2を形成することと、露光マップに従って、周縁領域において被膜F2に対して露光することと、を更に含む。 The substrate processing method includes imaging a peripheral region of the surface Wa of a wafer W having a coating F1 formed on the surface Wa to obtain a peripheral image, and generating edge information indicating the relationship between the circumferential position around the center of the wafer W and the outer edge position of the coating F1 in the radial direction of the wafer W based on the peripheral image. The substrate processing method also includes setting an exposure map indicating the relationship between the circumferential position and a set value of the exposure width in the radial direction of the wafer W based on the edge information, forming a coating F2 on at least the peripheral region of the surface Wa after obtaining the peripheral image, and exposing the coating F2 in the peripheral region according to the exposure map.
 図9に示されるように、最初に、制御装置100はステップS01を実行する。制御装置100は、例えば、ウェハWの表面Waに被膜F1を形成するようにウェハ処理システム1を制御する。ウェハ処理システム1での被膜F1の形成に代えて、制御装置100は、他の処理システムで被膜F1が表面Waに形成されたウェハWを、受け入れるようにウェハ処理システム1を制御してもよい。ウェハWに形成されている被膜F1では、被膜F1の外縁が表面Waの外縁よりも内側に位置するように、周縁の近傍部分が除去されている。そして、表面Waに被膜F1が形成されたウェハWは、検査装置U3に搬送される。 As shown in FIG. 9, first, the control device 100 executes step S01. The control device 100 controls the wafer processing system 1 to, for example, form a coating F1 on the front surface Wa of the wafer W. Instead of forming the coating F1 in the wafer processing system 1, the control device 100 may control the wafer processing system 1 to receive a wafer W having a coating F1 formed on its front surface Wa in another processing system. The coating F1 formed on the wafer W has a portion near the periphery removed so that the outer edge of the coating F1 is located inside the outer edge of the front surface Wa. The wafer W with the coating F1 formed on its front surface Wa is then transported to the inspection device U3.
 次に、制御装置100は、ステップS02を実行する。ステップS02では、例えば、画像情報取得部201が、表面Waに被膜F1が形成されたウェハWの表面Waにおける周縁領域を検査装置U3に撮像させ、検査装置U3から周縁撮像画像を示す画像データを取得する。図11(a)には、周縁撮像画像の一例が示されている。なお、図11(a)に示される周縁撮像画像では、周方向位置が画像上の横方向に変換され、径方向が画像上の縦方向に変換されている。 Next, the control device 100 executes step S02. In step S02, for example, the image information acquisition unit 201 causes the inspection device U3 to image the peripheral region on the front surface Wa of the wafer W having the coating F1 formed on the front surface Wa, and acquires image data indicating the peripheral image from the inspection device U3. An example of the peripheral image is shown in FIG. 11(a). Note that in the peripheral image shown in FIG. 11(a), the circumferential position is converted to the horizontal direction on the image, and the radial direction is converted to the vertical direction on the image.
 次に、制御装置100は、ステップS03を実行する。ステップS03では、例えば、エッジ情報生成部202が、ステップS02で得られた画像データから、周方向位置と、径方向における被膜F1の外縁位置との関係を示すエッジ情報(エッジプロファイル)を生成する。エッジ情報生成部202は、ウェハWの中心まわりにおいて所定の角度ごとに(例えば、1°ごとに)、ステップS02で得られた画像データから、径方向における被膜F1の外縁位置を算出してもよい。 Next, the control device 100 executes step S03. In step S03, for example, the edge information generating unit 202 generates edge information (edge profile) indicating the relationship between the circumferential position and the outer edge position of the coating F1 in the radial direction from the image data obtained in step S02. The edge information generating unit 202 may calculate the outer edge position of the coating F1 in the radial direction from the image data obtained in step S02 for each predetermined angle (for example, every 1°) around the center of the wafer W.
 図11(b)は、エッジ情報の一例を表すグラフである。図11(b)において、グラフの横軸である「Xθ(°)」は、ウェハWの中心まわりの周方向位置(又は角度)を表す。グラフの縦軸である「Xr(mm)」は、ウェハWの中心からの径方向位置を表している。「Eo」は、ウェハWの表面Waの外縁の径方向での理論上の位置を表し、「R」は、Eoから所定値を減算して得られる値を表す。Eoは、一例では、150mmであり、Rは、140mm~148mmのうちの任意の値である。「E1」は、被膜F1の外縁の径方向における位置(外縁位置)の算出結果を示す情報である。 FIG. 11(b) is a graph showing an example of edge information. In FIG. 11(b), the horizontal axis of the graph, "Xθ (°)," represents the circumferential position (or angle) around the center of the wafer W. The vertical axis of the graph, "Xr (mm)," represents the radial position from the center of the wafer W. "Eo" represents the theoretical radial position of the outer edge of the surface Wa of the wafer W, and "R" represents a value obtained by subtracting a predetermined value from Eo. In one example, Eo is 150 mm, and R is any value between 140 mm and 148 mm. "E1" is information showing the calculation result of the radial position (outer edge position) of the outer edge of the coating F1.
 エッジ情報では、例えば、周方向位置Xθを1°ずつ変化させながら、各周方向位置での被膜F1の外縁位置が算出されることで、外縁位置E1が得られている。エッジ情報生成部202は、画像上で隣り合うピクセル同士の画素値の差分を演算することを繰り返して、画像上での被膜F1の外縁位置を特定することで、被膜F1の外縁位置を算出してもよい。エッジ情報生成部202は、画像上のウェハWに形成された指標部の位置を特定することで、周方向位置と被膜F1の外縁位置とを対応付けてもよい。 In the edge information, for example, the outer edge position E1 is obtained by calculating the outer edge position of the coating F1 at each circumferential position while changing the circumferential position Xθ by 1°. The edge information generating unit 202 may calculate the outer edge position of the coating F1 by repeatedly calculating the difference in pixel values between adjacent pixels on the image to identify the outer edge position of the coating F1 on the image. The edge information generating unit 202 may correspond between the circumferential position and the outer edge position of the coating F1 by identifying the position of an indicator portion formed on the wafer W on the image.
 次に、制御装置100は、ステップS04を実行する。ステップS04では、例えば、露光マップ設定部203が、ステップS03で生成されたエッジ情報に基づいて、ウェハWの中心まわりの周方向位置Xθと、ウェハWの径方向における露光幅の設定値との関係を示す露光マップを設定する。設定された露光マップは、マップ記憶部204によって記憶される。露光マップ設定部203は、ウェハWの中心まわりにおいて所定の角度ごとに(例えば1°ごとに)、露光する範囲のうちのウェハWの中心に近い一端の位置を設定することで、露光幅を設定してもよい。露光する範囲のウェハWの中心に近い一端の位置が変化することで、当該一端の位置と表面Waの外縁Eoとの間の距離が変わり、露光幅が変化する。 Next, the control device 100 executes step S04. In step S04, for example, the exposure map setting unit 203 sets an exposure map indicating the relationship between the circumferential position Xθ around the center of the wafer W and the set value of the exposure width in the radial direction of the wafer W based on the edge information generated in step S03. The set exposure map is stored by the map storage unit 204. The exposure map setting unit 203 may set the exposure width by setting the position of one end of the range to be exposed that is close to the center of the wafer W at predetermined angles (for example, at 1°) around the center of the wafer W. By changing the position of one end of the range to be exposed that is close to the center of the wafer W, the distance between the position of the one end and the outer edge Eo of the front surface Wa changes, and the exposure width changes.
 露光マップ設定部203は、エッジ情報で示される外縁位置E1の形状に沿うように、露光する範囲のウェハWの中心に近い一端の位置を、所定の角度ごとに設定してもよい。図12(a)には、露光マップの設定の一例が可視化して示されている。図12(a)には、露光する範囲のウェハWの中心に近い一端の位置の、周方向位置に対する変化を表すグラフが示されている。露光する範囲のウェハWの中心に近い一端の位置と、表面Waの外縁Eoとの間の距離が露光幅であり、「Ees」は、周方向位置に応じた露光幅の設定値を示す情報である。 The exposure map setting unit 203 may set the position of one end of the range to be exposed close to the center of the wafer W for each specified angle so as to follow the shape of the outer edge position E1 indicated by the edge information. An example of exposure map setting is visualized in FIG. 12(a). FIG. 12(a) shows a graph representing the change in the position of one end of the range to be exposed close to the center of the wafer W with respect to the circumferential position. The distance between the position of one end of the range to be exposed close to the center of the wafer W and the outer edge Eo of the front surface Wa is the exposure width, and "Ees" is information indicating the setting value of the exposure width according to the circumferential position.
 露光マップ設定部203は、露光幅の周方向位置に応じた変化の傾向が、エッジ情報で示される被膜F1の外縁位置の周方向位置に応じた変化の傾向に沿うように、露光マップ(露光幅Ees)を設定する。露光マップ設定部203は、例えば、どの周方向位置Xθにおいても、露光する範囲のウェハWの中心に近い一端が、被膜F1の外縁よりも内側に位置し、且つ、上記一端と被膜F1の外縁との差分が所定値よりも小さくなるように、露光マップを設定する。上記所定値は、0.5mm~3mm程度であってもよく、0.5mm~2mm程度であってもよい。 The exposure map setting unit 203 sets the exposure map (exposure width Ees) so that the tendency of the exposure width to change with circumferential position follows the tendency of the exposure width to change with circumferential position of the outer edge position of the coating F1 indicated by the edge information. The exposure map setting unit 203 sets the exposure map so that, for example, at any circumferential position Xθ, one end of the range to be exposed that is closer to the center of the wafer W is located inside the outer edge of the coating F1, and the difference between the one end and the outer edge of the coating F1 is smaller than a predetermined value. The predetermined value may be about 0.5 mm to 3 mm, or about 0.5 mm to 2 mm.
 露光マップの設定を、被膜F2の下に形成された被膜F1の外縁の形状に合わせることで、周方向位置Xθによって、露光幅の設定値が異なる。図12(a)に示される例では、周方向位置Xθのある範囲では、露光幅が「w1」に設定され、他のある範囲では、露光幅が「w2」に設定され、他のある範囲では、露光幅が「w3」に設定されている。なお、w1、w2、及びw3のうちの2つの露光幅の間(例えば、w1からw2に変化する間)でも、被膜F1の外縁の変化に合わせて、露光幅が設定されている。 By adjusting the exposure map settings to the shape of the outer edge of the coating F1 formed under the coating F2, the exposure width setting value differs depending on the circumferential position Xθ. In the example shown in FIG. 12(a), in a certain range of the circumferential position Xθ, the exposure width is set to "w1", in another range, the exposure width is set to "w2", and in another range, the exposure width is set to "w3". Note that even between two exposure widths of w1, w2, and w3 (for example, between the change from w1 to w2), the exposure width is set in accordance with the change in the outer edge of the coating F1.
 図12(b)には、露光及び現像後の環状の被膜F2と、被膜F1との関係が模式的に示されている。図12(b)において、多数の斜線が付された領域が被膜F1を表し、多数のドットが付された領域が被膜F2を表す。露光幅Eesを、被膜F1の外縁に沿わせて設定することで、図12(b)に示されるように、露光及び現像後の環状の被膜F2は、例えば、被膜F1の外縁を全て覆うように形成され、且つ、被膜F2の内縁形状が、被膜F1の外縁に沿って形成される。 FIG. 12(b) shows a schematic diagram of the relationship between the annular coating F2 after exposure and development and the coating F1. In FIG. 12(b), the area with many diagonal lines represents the coating F1, and the area with many dots represents the coating F2. By setting the exposure width Ees along the outer edge of the coating F1, as shown in FIG. 12(b), the annular coating F2 after exposure and development is formed, for example, so as to cover the entire outer edge of the coating F1, and the inner edge shape of the coating F2 is formed along the outer edge of the coating F1.
 図13には、被膜F1の外縁位置の算出結果(外縁位置E1)、及び露光マップでの露光幅の設定結果(露光幅Ees)について、図11(b)及び図12(a)とは異なる例が示されている。図11(b)及び図12(a)とは異なり、図13では、縦軸は、表面Waの外縁Eoからの径方向における距離を表す。図13に示されるように、露光マップ設定部203は、所定の角度ごとに(例えば1°ごとに)、露光する範囲のウェハWの中心に近い一端の位置を、エッジ情報で示される被膜F1の外縁位置から一定値ずらすように、露光幅を設定してもよい。この場合、どの周方向位置Xθにおいても、露光幅Eesと外縁位置E1との差分が一定である。言い換えると、ウェハWの中心まわりの0°~360°の全範囲において、露光幅Eesが、外縁位置E1から一定値でオフセットされている。オフセットさせる一定値は、0.5mm~5.0mm程度であってもよく、0.5mm~3.0mm程度であってもよい。 13 shows an example of the calculation result of the outer edge position of the coating F1 (outer edge position E1) and the setting result of the exposure width in the exposure map (exposure width Ees) different from those in FIG. 11(b) and FIG. 12(a). Unlike FIG. 11(b) and FIG. 12(a), in FIG. 13, the vertical axis represents the radial distance from the outer edge Eo of the surface Wa. As shown in FIG. 13, the exposure map setting unit 203 may set the exposure width so that the position of one end of the exposed range close to the center of the wafer W is shifted by a constant value from the outer edge position of the coating F1 indicated by the edge information at every predetermined angle (for example, every 1°). In this case, the difference between the exposure width Ees and the outer edge position E1 is constant at every circumferential position Xθ. In other words, the exposure width Ees is offset by a constant value from the outer edge position E1 in the entire range from 0° to 360° around the center of the wafer W. The fixed offset value may be approximately 0.5 mm to 5.0 mm, or approximately 0.5 mm to 3.0 mm.
 下記の表1には、1°ごとに露光幅を設定する場合の露光マップの一例が示されている。なお、表1に示される露光マップは、本開示の内容の理解を容易にするために例示するものである。 Table 1 below shows an example of an exposure map in which the exposure width is set every 1°. Note that the exposure map shown in Table 1 is provided as an example to facilitate understanding of the contents of this disclosure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図9に戻り、次に、制御装置100は、ステップS05を実行する。ステップS05の実行前において、被膜F1が形成された状態のウェハWは、検査装置U3から膜処理装置U1に搬送されている。ステップS05では、例えば、膜形成制御部205が、図10(a)に示されるように、ウェハWの表面Waの全体に処理液Lrを塗布するように膜処理装置U1を制御する。そして、ウェハWが熱処理装置U2に搬送された後、膜形成制御部205が、図10(b)に示されるように、処理液Lrの塗布膜を加熱するように熱処理装置U2を制御する。これにより、露光及び現像前の被膜F2が、表面Waの全体に形成される。その後、ウェハWが、熱処理装置U2から周辺露光装置U4に搬送される。 Returning to FIG. 9, the control device 100 then executes step S05. Before step S05, the wafer W on which the coating F1 has been formed is transported from the inspection device U3 to the film processing device U1. In step S05, for example, the film formation control unit 205 controls the film processing device U1 to apply the processing liquid Lr to the entire surface Wa of the wafer W, as shown in FIG. 10(a). After the wafer W is transported to the heat processing device U2, the film formation control unit 205 controls the heat processing device U2 to heat the coating of the processing liquid Lr, as shown in FIG. 10(b). As a result, the coating F2 before exposure and development is formed on the entire surface Wa. The wafer W is then transported from the heat processing device U2 to the peripheral exposure device U4.
 次に、制御装置100は、ステップS06を実行する。ステップS06では、例えば、露光制御部206が、ステップS04で設定された露光マップに従って、表面Waの周縁領域において被膜F2に対して露光するように周辺露光装置U4を制御する。露光制御部206は、図10(c)に示されるように、回転保持ユニット110により保持台111に保持されたウェハWを回転させながら、表面Waの外周領域に対して露光ユニット120により露光用の光を照射させる。露光制御部206は、露光マップで露光幅が設定された角度ごとに、設定された露光幅で被膜F2の露光が行われるように、周辺露光装置U4を制御する。 Next, the control device 100 executes step S06. In step S06, for example, the exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 in the peripheral region of the front surface Wa according to the exposure map set in step S04. As shown in FIG. 10(c), the exposure control unit 206 causes the exposure unit 120 to irradiate the outer peripheral region of the front surface Wa with exposure light while rotating the wafer W held on the holding table 111 by the rotating holding unit 110. The exposure control unit 206 controls the peripheral exposure device U4 to expose the coating F2 with the set exposure width for each angle for which the exposure width is set in the exposure map.
 表1に示される例を用いると、露光制御部206は、例えば、周方向位置Xθが1°である箇所では露光幅が1.1mmとなるように、周方向位置Xθが2°である箇所では露光幅が1.2mmとなるように、周辺露光装置U4を制御する。露光制御部206は、ウェハWの回転を停止することなく回転を継続させつつ、露光ユニット120による露光用の光の照射を継続させてもよい。この場合、周方向位置Xθが1°から2°に遷移する間に、露光制御部206は、例えば、露光幅が1.1mmから1.2mmに変化するように駆動機構124によりマスク部材123を移動させる。露光制御部206は、露光マップでの連続する2つのステップ(Step)間において、露光幅の変化幅に応じて、マスク部材123を移動させる速度を変化させてもよい。露光マップに従って、被膜F2の周縁領域に対する露光が行われた後、ウェハWは、周辺露光装置U4から熱処理装置U2に搬送される。 Using the example shown in Table 1, the exposure control unit 206 controls the peripheral exposure device U4 so that the exposure width is 1.1 mm at the location where the circumferential position Xθ is 1°, and the exposure width is 1.2 mm at the location where the circumferential position Xθ is 2°. The exposure control unit 206 may continue to irradiate the exposure light by the exposure unit 120 while continuing the rotation of the wafer W without stopping it. In this case, while the circumferential position Xθ transitions from 1° to 2°, the exposure control unit 206 moves the mask member 123 by the drive mechanism 124 so that the exposure width changes from 1.1 mm to 1.2 mm, for example. The exposure control unit 206 may change the speed at which the mask member 123 is moved depending on the change width of the exposure width between two consecutive steps in the exposure map. After the peripheral region of the coating F2 is exposed according to the exposure map, the wafer W is transported from the peripheral exposure device U4 to the heat treatment device U2.
 次に、制御装置100は、ステップS07を実行する。ステップS07では、例えば、膜形成制御部205が、図10(d)に示されるように、ウェハW(被膜F2)に対して現像前の熱処理を行うように熱処理装置U2を制御する。現像前の熱処理後、ウェハWは、熱処理装置U2から、現像処理を行う膜処理装置U1に搬送される。 Next, the control device 100 executes step S07. In step S07, for example, the film formation control unit 205 controls the heat treatment device U2 to perform pre-development heat treatment on the wafer W (coating F2), as shown in FIG. 10(d). After the pre-development heat treatment, the wafer W is transported from the heat treatment device U2 to the film treatment device U1, which performs the development process.
 そして、膜形成制御部205が、図10(e)に示されるように、現像液Ldを表面Waに対して供給して、被膜F2の現像を行うように膜処理装置U1を制御する。これにより、被膜F2のうちの露光用の光が照射されていない箇所が除去される。その後、現像液Ldが洗い流されることで、図10(f)に示されるように、表面Waの外周領域において環状の被膜F2が形成される。現像が行われた後のウェハWは、膜処理装置U1から検査装置U3に搬送される。 Then, the film formation control unit 205 controls the film processing device U1 to supply the developer Ld to the surface Wa and develop the coating F2, as shown in FIG. 10(e). This removes the portions of the coating F2 that are not irradiated with the exposure light. The developer Ld is then washed away, forming a ring-shaped coating F2 in the outer peripheral region of the surface Wa, as shown in FIG. 10(f). After development, the wafer W is transported from the film processing device U1 to the inspection device U3.
 次に、制御装置100は、ステップS08を実行する。ステップS08では、例えば、結果判定部207が、被膜F2に対する露光に関して検査処理を実行する。一例では、結果判定部207は、露光及び現像後のウェハWの周縁領域を検査装置U3により撮像して、検査処理用の画像データ(上記判定撮像画像)を検査装置U3から取得する。結果判定部207は、検査処理用の画像データから、周方向位置Xθと、ウェハWの径方向における被膜F2の内縁位置との関係を示すカット情報を生成する。結果判定部207は、ウェハWの中心まわりにおいて所定の角度ごとに(例えば1°ごとに)、検査処理用の画像データから、ウェハWの径方向での被膜F2の内縁位置を算出してもよい。 Next, the control device 100 executes step S08. In step S08, for example, the result determination unit 207 executes an inspection process regarding the exposure to the coating F2. In one example, the result determination unit 207 uses the inspection device U3 to capture an image of the peripheral region of the wafer W after exposure and development, and acquires image data for the inspection process (the above-mentioned determination captured image) from the inspection device U3. The result determination unit 207 generates cut information indicating the relationship between the circumferential position Xθ and the inner edge position of the coating F2 in the radial direction of the wafer W from the image data for the inspection process. The result determination unit 207 may calculate the inner edge position of the coating F2 in the radial direction of the wafer W from the image data for the inspection process at predetermined angles (for example, at 1°) around the center of the wafer W.
 図14(a)は、カット情報の一例を表すグラフである。図14(a)において、縦軸は、表面Waの外縁Eoと被膜F2の内縁位置との径方向における距離、すなわち、被膜F2の径方向における幅を表す。「Eer」は、被膜F2の内縁の径方向における位置(内縁位置)の算出結果を示す情報である。内縁位置Eerは、露光マップに従った周辺露光が正常であれば、図13に示される露光幅Eesに略一致するか、被膜F1に関する外縁位置E1から、どの周方向位置Xθにおいても所定値だけオフセットされている。そのため、結果判定部207は、露光幅Eesと内縁位置Eerとを比較することで、周辺露光の結果が正常であるか否かを判定できる。また、結果判定部207は、外縁位置E1と内縁位置Eerとを比較することで、周辺露光の結果が正常であるか否かを判定できる。 14(a) is a graph showing an example of cut information. In FIG. 14(a), the vertical axis represents the radial distance between the outer edge Eo of the surface Wa and the inner edge position of the coating F2, i.e., the radial width of the coating F2. "Eer" is information showing the calculation result of the radial position (inner edge position) of the inner edge of the coating F2. If the peripheral exposure according to the exposure map is normal, the inner edge position Eer approximately matches the exposure width Ees shown in FIG. 13, or is offset by a predetermined value at any circumferential position Xθ from the outer edge position E1 of the coating F1. Therefore, the result determination unit 207 can determine whether the result of the peripheral exposure is normal by comparing the exposure width Ees with the inner edge position Eer. Also, the result determination unit 207 can determine whether the result of the peripheral exposure is normal by comparing the outer edge position E1 with the inner edge position Eer.
 一例では、結果判定部207は、ウェハWの中心まわりの所定の角度ごとに(例えば1°ごとに)、内縁位置Eerと外縁位置E1との差分を算出する。図14(b)は、内縁位置Eerから外縁位置E1を減算することで得られる差分を示すグラフである。外縁位置E1からオフセットさせる一定値を「OS」とすると、周辺露光が正常であれば、内縁位置Eerと外縁位置E1との差分は、周方向位置Xθによらず略一定となる。 In one example, the result determination unit 207 calculates the difference between the inner edge position Eer and the outer edge position E1 for each predetermined angle (e.g., every 1°) around the center of the wafer W. FIG. 14(b) is a graph showing the difference obtained by subtracting the outer edge position E1 from the inner edge position Eer. If a constant value offset from the outer edge position E1 is designated as "OS," then if the peripheral exposure is normal, the difference between the inner edge position Eer and the outer edge position E1 will be approximately constant regardless of the circumferential position Xθ.
 一方、何らかの要因により、ある箇所において異常があった場合、図14(b)での「A」で示される部分のように、内縁位置Eerと外縁位置E1との差分が、オフセットさせる一定値(OS)から外れる。この場合、結果判定部207は、「A」で示される部分において、露光が正常に行われていないと判定することができる。なお、内縁位置Eer(実測値)と外縁位置E1(実測値)との差分ではなく、内縁位置Eer(実測値)と露光幅Ees(設定値)との差分を見ることで、被膜F2の内縁位置がオフセットされているかも確認することができる。 On the other hand, if an abnormality occurs at a certain location due to some factor, the difference between the inner edge position Eer and the outer edge position E1 will deviate from the fixed offset value (OS), as in the portion indicated by "A" in FIG. 14(b). In this case, the result determination unit 207 can determine that exposure has not been performed normally in the portion indicated by "A". It is also possible to confirm whether the inner edge position of the coating F2 has been offset by looking at the difference between the inner edge position Eer (actual value) and the exposure width Ees (set value), rather than the difference between the inner edge position Eer (actual value) and the outer edge position E1 (actual value).
 制御装置100は、後続の複数のウェハWそれぞれについても、ステップS01~S08の一連の処理を実行する。ウェハWの個体ごとに、被膜F1の外縁の形状(状態)は異なる可能性が高く、上記一連の処理を繰り返すことで、ウェハWの個体に合わせた露光マップを設定することができる。 The control device 100 also executes the series of processes from steps S01 to S08 for each of the subsequent wafers W. The shape (condition) of the outer edge of the coating F1 is likely to be different for each individual wafer W, and by repeating the series of processes described above, an exposure map can be set that is tailored to each individual wafer W.
[変形例]
 図9に示される一連の処理は一例であり、適宜変更可能である。上記一連の処理において、制御装置100は、1つのステップと次のステップとを並列に実行してもよく、上述した例とは異なる順序で各ステップを実行してもよい。制御装置100は、上述した例とは異なる内容のステップを実行してもよい。
[Modification]
The series of processes shown in Fig. 9 is an example and can be modified as appropriate. In the series of processes described above, the control device 100 may execute one step and the next step in parallel, or may execute each step in an order different from that of the above example. The control device 100 may execute steps with content different from that of the above example.
 上述の例では、露光及び現像前の被膜F2を形成する際に、表面Waの全体に処理液Lrが塗布されたが、表面Waの中央部分に対して処理液Lrが塗布されなくてもよい。図15(a)~図15(f)には、表面Waの周縁領域のみに処理液Lrの塗布膜が形成される場合の基板処理方法の様子が例示されている。図15(a)、図15(b)、図15(c)、図15(d)、図15(e)、及び図15(f)で示される工程は、図10(a)、図10(b)、図10(c)、図10(d)、図10(e)、及び図10(f)で示される工程にそれぞれ対応する。 In the above example, when forming the coating F2 before exposure and development, the processing liquid Lr is applied to the entire surface Wa, but the processing liquid Lr does not have to be applied to the central portion of the surface Wa. Figures 15(a) to 15(f) illustrate the state of the substrate processing method when a coating film of the processing liquid Lr is formed only in the peripheral region of the surface Wa. The steps shown in Figures 15(a), 15(b), 15(c), 15(d), 15(e), and 15(f) correspond to the steps shown in Figures 10(a), 10(b), 10(c), 10(d), 10(e), and 10(f), respectively.
 図15(c)に示されるように、表面Waの周縁領域及びその近傍に環状の被膜F2が形成される。被膜F2の内縁は、被膜F1の外縁よりも内側に位置するように形成される。そして、被膜F2に対して、露光ユニット120を備える周辺露光装置U4によって、周辺露光が行われる。被膜F2に対して露光及び現像が行われることで、環状の被膜F2のうちの露光されていない部分(内側に位置する一部)が除去される。なお、図15(b)及び図15(d)に示される熱処理において、ウェハWの中央部分には熱が加えられずに、ウェハWの周縁領域のみに熱が加えられてもよい。 As shown in FIG. 15(c), an annular coating F2 is formed in and near the peripheral region of the surface Wa. The inner edge of the coating F2 is formed to be located inside the outer edge of the coating F1. Then, peripheral exposure is performed on the coating F2 by a peripheral exposure device U4 equipped with an exposure unit 120. By exposing and developing the coating F2, the unexposed portion of the annular coating F2 (a part located on the inside) is removed. Note that in the heat treatment shown in FIG. 15(b) and FIG. 15(d), heat may be applied only to the peripheral region of the wafer W, without applying heat to the central portion of the wafer W.
 図16(a)に示されるように、露光及び現像前の被膜F2は、ウェハWの表面Waだけなく、端面Wbを覆うように形成されてもよい。周辺露光装置U4は、露光ユニット120に加えて、端面Wbに対する露光を行うことが可能な露光ユニット130を有してもよい。図16(b)には、露光及び現像前の端面Wbにおける被膜F2が模式的に示されており、図16(c)には、露光及び現像後の端面Wbにおける被膜F2が模式的に示されている。図16(d)には、露光及び現像後の被膜F2が模式的に示されている。図16(c)及び図16(d)に示されるように、端面Wbの下部において、露光及び現像によって被膜F2の一部が除去されてもよい。 As shown in FIG. 16(a), the coating F2 before exposure and development may be formed to cover not only the surface Wa of the wafer W but also the end face Wb. The peripheral exposure device U4 may have an exposure unit 130 capable of performing exposure on the end face Wb in addition to the exposure unit 120. FIG. 16(b) shows a schematic representation of the coating F2 on the end face Wb before exposure and development, and FIG. 16(c) shows a schematic representation of the coating F2 on the end face Wb after exposure and development. FIG. 16(d) shows a schematic representation of the coating F2 after exposure and development. As shown in FIGS. 16(c) and 16(d), a portion of the coating F2 may be removed by exposure and development at the bottom of the end face Wb.
 上述したように、検査装置U3では、表面Waの周縁領域に加えて、端面Wbの撮像画像も得られる。そのため、制御装置100は、端面Wbの撮像画像から、端面Wbでの下地の状態を検出してもよい。そして、露光制御部206は、端面Wbでの下地の状態に合わせて、露光ユニット130による端面Wbでの露光を行ってもよい。例えば、端面Wbでの下地の状態に合わせて、周方向位置Xθに応じて、露光ユニット130からの露光用の光を当てる領域の高さが調節されてもよい。 As described above, the inspection device U3 can obtain an image of the end face Wb in addition to the peripheral region of the front surface Wa. Therefore, the control device 100 can detect the condition of the base at the end face Wb from the image of the end face Wb. The exposure control unit 206 can then perform exposure at the end face Wb using the exposure unit 130 in accordance with the condition of the base at the end face Wb. For example, the height of the area onto which the exposure light from the exposure unit 130 is applied can be adjusted in accordance with the circumferential position Xθ in accordance with the condition of the base at the end face Wb.
 上述した例では、露光及び現像後の被膜F2の内縁が、被膜F1の外縁よりも内側に位置して、被膜F1の外縁の形状に沿うように被膜F2が形成されている。これとは異なり、露光及び現像後の被膜F2の内縁が、被膜F1の外縁よりも外側に位置して、被膜F1の外縁の形状に沿うように被膜F2が形成されてもよい。 In the above example, the inner edge of the coating F2 after exposure and development is located inside the outer edge of the coating F1, and the coating F2 is formed to follow the shape of the outer edge of the coating F1. Alternatively, the inner edge of the coating F2 after exposure and development may be located outside the outer edge of the coating F1, and the coating F2 may be formed to follow the shape of the outer edge of the coating F1.
 上述した例では、ネガ型のレジスト材料が用いられいるが、ポジ型のレジスト材料が用いられて、被膜F2が形成されてもよい。この場合、例えば、露光及び現像前の被膜F2が表面Waの全体に形成され、その後、周辺露光装置U4によって、被膜F2の周縁領域に対して、被膜F1の外縁の位置に応じた露光幅で露光が行われる。そして、現像によって、露光された箇所が取り除かれるので、被膜F2の周縁領域が除去される。露光及び現像後の被膜F2の外縁は、被膜F1の外縁の形状に沿っていれば、被膜F1の外縁よりも外側に位置していてもよく、被膜F1の外縁よりも内側に位置していてもよい。 In the above example, a negative resist material is used, but a positive resist material may be used to form the coating F2. In this case, for example, the coating F2 before exposure and development is formed over the entire surface Wa, and then the peripheral exposure device U4 exposes the peripheral region of the coating F2 with an exposure width according to the position of the outer edge of the coating F1. Then, the exposed area is removed by development, so that the peripheral region of the coating F2 is removed. The outer edge of the coating F2 after exposure and development may be located outside the outer edge of the coating F1, or may be located inside the outer edge of the coating F1, as long as it follows the shape of the outer edge of the coating F1.
 ポジ型のレジスト材料が用いられる場合、結果判定部207は、判定撮像画像に基づいて、周方向位置と、被膜F2(現像後に周縁部分が除去された後の被膜F2)の外縁位置との関係を示すカット情報を生成する。被膜F2の外縁位置は表面Waの外縁の理論上の位置からの径方向に沿った距離によって特定されてもよい。現像及び露光前の被膜F2では、表面Waの外縁まで露光されているので、周縁部分が除去された後の被膜F2の外縁位置は、露光幅を表す。結果判定部207は、ネガ型のレジスト材料が用いられる場合と同様に、エッジ情報及び露光マップのいずれか一方と、カット情報とを比較した結果に基づいて、被膜F2に対する露光が正常であるか否かを判定する。 When a positive resist material is used, the result determination unit 207 generates cut information indicating the relationship between the circumferential position and the outer edge position of the coating F2 (the coating F2 after the peripheral portion is removed after development) based on the determination captured image. The outer edge position of the coating F2 may be specified by the radial distance from the theoretical position of the outer edge of the surface Wa. Since the coating F2 before development and exposure is exposed up to the outer edge of the surface Wa, the outer edge position of the coating F2 after the peripheral portion is removed represents the exposure width. As in the case where a negative resist material is used, the result determination unit 207 determines whether the exposure of the coating F2 is normal or not based on the result of comparing either the edge information or the exposure map with the cut information.
 画像情報取得部201は、検査装置U3に代えて、ウェハ処理システム1とは別の外部の装置から、表面Waにおける周縁領域を撮像して得られる周縁撮像画像を取得してもよい。 Instead of the inspection device U3, the image information acquisition unit 201 may acquire a peripheral image obtained by imaging the peripheral region of the surface Wa from an external device other than the wafer processing system 1.
 露光制御部206は、露光マップに従って、マスク部材123の駆動等によって露光幅を変化させる際に、回転保持ユニット110の駆動機構112によりウェハWの回転を停止させた状態で、露光幅を変化させてもよい。例えば、表1に示されるような露光マップが得られている場合、露光制御部206は、周方向位置Xθ(角度)が1°~2°の範囲において、1°に対応付けられた露光幅(1.1mm)で露光されるように、周辺露光装置U4を制御してもよい。そして、露光制御部206は、周方向位置Xθが2°である箇所に露光用の光が照射される前に、ウェハWの回転を停止させて、2°に対応付けられた露光幅(1.2mm)に合わせて、マスク部材123等の位置を変化させてもよい。 When changing the exposure width by driving the mask member 123 or the like according to the exposure map, the exposure control unit 206 may change the exposure width while stopping the rotation of the wafer W by the drive mechanism 112 of the rotation holding unit 110. For example, when an exposure map such as that shown in Table 1 is obtained, the exposure control unit 206 may control the peripheral exposure device U4 so that exposure is performed with an exposure width (1.1 mm) associated with 1° when the circumferential position Xθ (angle) is in the range of 1° to 2°. Then, the exposure control unit 206 may stop the rotation of the wafer W before the exposure light is irradiated to the location where the circumferential position Xθ is 2°, and change the position of the mask member 123, etc. to match the exposure width (1.2 mm) associated with 2°.
 露光マップは、下記表2に示されるように設定されてもよい。
Figure JPOXMLDOC01-appb-T000002
The exposure map may be set as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 表2に示される露光マップは、「Step1」~「Step359」までの処理が順に実行されることを表し、各Stepでの条件として、処理時間(秒)、露光幅(mm)、開始角度(°)、及び角度範囲(°)が設定されている。処理時間は、そのStepの実行時間を表し、露光幅は、エッジ情報に基づき設定される径方向の露光範囲である。開始角度は、そのStepが開始される周方向位置Xθ(角度)を表し、角度範囲は、そのStepが継続される周方向の範囲を表す。例えば、Step1では、周方向位置Xθが0°から1°の範囲において、露光幅が1.1mmとなるように調整された状態で、0.5秒間だけ処理が継続されることを意味する。以下、表2に示されるような露光マップに従った制御について、いくつかの例を説明する。 The exposure map shown in Table 2 indicates that the processes from "Step 1" to "Step 359" are executed in order, and the conditions for each step are set as the processing time (seconds), exposure width (mm), start angle (°), and angle range (°). The processing time indicates the execution time of the step, and the exposure width is the radial exposure range set based on the edge information. The start angle indicates the circumferential position Xθ (angle) at which the step starts, and the angle range indicates the circumferential range over which the step continues. For example, Step 1 means that the processing continues for only 0.5 seconds with the exposure width adjusted to 1.1 mm when the circumferential position Xθ is in the range from 0° to 1°. Below, several examples of control according to the exposure map shown in Table 2 will be described.
 (例1)露光制御部206は、1つのStepと、次のStepとが連続して実行されるように、ウェハWの回転を継続させたまま、マスク部材123の駆動等によって露光幅を変化させてもよい。1つ前のStepから露光幅の変化がある場合には、露光制御部206は、現在のStepの開始時点になると、露光幅を変化させるためのマスク部材123の駆動等を開始してもよい。マスク部材123の駆動等とは、露光幅を変化させるためのマスク部材123の駆動、露光幅を変化させるためのシャッター125の駆動、又は、露光幅を変化させるための保持台111の駆動を意味する。露光制御部206は、全てのStepにおいて、一定の回転速度でウェハWが回転するように、保持台111を回転駆動する駆動機構112を制御してもよい。全てのStepにおいて、一定の照度を有する露光用の光が露光ユニット120によりウェハWの表面Waにおける露光箇所に照射されてもよい。 (Example 1) The exposure control unit 206 may change the exposure width by driving the mask member 123, etc., while continuing the rotation of the wafer W so that one step and the next step are executed consecutively. If there is a change in the exposure width from the previous step, the exposure control unit 206 may start driving the mask member 123 to change the exposure width at the start of the current step. Driving the mask member 123, etc. means driving the mask member 123 to change the exposure width, driving the shutter 125 to change the exposure width, or driving the holding table 111 to change the exposure width. The exposure control unit 206 may control the drive mechanism 112 that rotates and drives the holding table 111 so that the wafer W rotates at a constant rotation speed in all steps. In all steps, the exposure unit 120 may irradiate the exposure point on the front surface Wa of the wafer W with exposure light having a constant illuminance.
 (例2)露光マップでは、所定の角度ごとに、露光幅とウェハWの回転速度とが設定されてもよい。露光制御部206は、被膜F2に対して露光する際に、露光マップに従ってウェハWの回転を継続した状態で露光幅を変更しつつ、露光ユニット120により表面Waに対して露光用の光を照射してもよい。露光マップの設定において、露光マップ設定部203は、連続する2つの角度同士の露光幅の差を評価することを、角度を1つずつ変化させながら、繰り返してもよい。ここで、評価対象である2つの角度の最初に露光用の光が照射される一方を「第1角度」とし、その第1角度に連続する他方の角度を「第2角度」とする。露光マップ設定部203は、第1角度での露光幅と、第1角度に連続する第2角度での露光幅との差を算出することを、第2角度を上記所定の角度ずつ変化させながら繰り返してもよい。そして、露光マップ設定部203は、上記差(第1角度及び第2角度の間での露光幅の差)が所定レベルよりも小さい条件が、連続する所定数以上の角度を含む範囲において満たされる場合に、当該範囲での回転速度を速度基準値よりも大きい値に設定してもよい。所定レベル及び所定数のそれぞれは、露光マップの設定時点において予め任意に設定されている。 (Example 2) In the exposure map, the exposure width and the rotation speed of the wafer W may be set for each predetermined angle. When exposing the coating F2, the exposure control unit 206 may change the exposure width while continuing to rotate the wafer W according to the exposure map, and irradiate the surface Wa with exposure light by the exposure unit 120. In setting the exposure map, the exposure map setting unit 203 may repeatedly evaluate the difference in exposure width between two consecutive angles while changing the angle one by one. Here, one of the two angles to be evaluated at which the exposure light is first irradiated is set as the "first angle", and the other angle consecutive to the first angle is set as the "second angle". The exposure map setting unit 203 may repeatedly calculate the difference between the exposure width at the first angle and the exposure width at the second angle consecutive to the first angle while changing the second angle by the above-mentioned predetermined angle. Then, when the condition that the difference (the difference in exposure width between the first angle and the second angle) is smaller than a predetermined level is satisfied in a range that includes a predetermined number or more of consecutive angles, the exposure map setting unit 203 may set the rotation speed in that range to a value larger than the speed reference value. The predetermined level and the predetermined number are each arbitrarily set in advance at the time of setting the exposure map.
 一例では、露光マップ設定部203は、表2のような露光マップを作成した後に、対象のStepでの露光幅(第2角度での露光幅)と、その対象のStepよりも1つ前のStepでの露光幅(第1角度での露光幅)との差を算出することを、対象のStepを1つずつ増加させながら繰り返す。具体的には、露光マップ設定部203は、Step1での露光幅とStep2での露光幅との差を算出し、次に、Step2での露光幅とStep3での露光幅とを差を算出する。以降、露光マップ設定部203は、同様にして、連続する2つのStepの間での露光幅の差を算出することを繰り返す。 In one example, the exposure map setting unit 203 creates an exposure map such as that shown in Table 2, and then repeatedly calculates the difference between the exposure width at the target Step (exposure width at the second angle) and the exposure width at the Step immediately preceding the target Step (exposure width at the first angle) while incrementing the target Step by one. Specifically, the exposure map setting unit 203 calculates the difference between the exposure width at Step 1 and the exposure width at Step 2, and then calculates the difference between the exposure width at Step 2 and the exposure width at Step 3. Thereafter, the exposure map setting unit 203 repeatedly calculates the difference in exposure width between two successive Steps in a similar manner.
 露光マップ設定部203は、連続する2つのStepの間での露光幅の差が、所定レベル以下である条件が、連続する所定数(例えば、3~7)以上の対象のStepを含む範囲で満たされた場合には、その所定数以上の対象のStepを含む範囲において、回転速度を速度基準値よりも大きい値に設定する。具体例を用いて説明すると、上記所定数を5と仮定したときに、Step2~6の範囲において、1つ前のStepとの露光幅の差が所定レベル(例えば、±0.3mm)以内であり、Step6とStep7との間で露光幅の差が所定レベルよりも大きい場合を想定する。この場合、露光マップ設定部203は、Step2~6の範囲において、回転速度を速度基準値(例えば、10rpm)よりも大きい値(例えば、12rpm)に設定する。なお、所定数が5である場合に、連続する6以上のStepで上記条件が満たされる場合には、その6以上のStepにおいて、回転速度が速度基準値よりも大きい値に設定される。 When the condition that the difference in exposure width between two consecutive steps is equal to or less than a predetermined level is satisfied in a range including a predetermined number (e.g., 3 to 7) or more consecutive target steps, the exposure map setting unit 203 sets the rotation speed to a value greater than the speed reference value in the range including the predetermined number or more target steps. To explain using a specific example, let us assume that the above-mentioned predetermined number is 5, and in the range of steps 2 to 6, the difference in exposure width from the previous step is within a predetermined level (e.g., ±0.3 mm), and the difference in exposure width between steps 6 and 7 is greater than the predetermined level. In this case, the exposure map setting unit 203 sets the rotation speed to a value (e.g., 12 rpm) greater than the speed reference value (e.g., 10 rpm) in the range of steps 2 to 6. Note that when the predetermined number is 5, if the above condition is satisfied in six or more consecutive steps, the rotation speed is set to a value greater than the speed reference value in the six or more steps.
 露光マップ設定部203は、回転速度を速度基準値よりも大きい値に設定した範囲以外のStep(角度)においては、回転速度を速度基準値(又は速度基準値以下)に設定してもよい。露光マップでの露光幅の設定によっては、上記条件を満たす、連続する所定数以上のStepが存在しない場合がある。この場合、露光マップ設定部203は、全てのStepのそれぞれにおいて、回転速度を速度基準値(又は速度基準値以下)に設定してもよい。 The exposure map setting unit 203 may set the rotation speed to the speed reference value (or less than the speed reference value) for steps (angles) outside the range in which the rotation speed is set to a value greater than the speed reference value. Depending on the exposure width setting in the exposure map, there may not be a predetermined number of consecutive steps that satisfy the above condition. In this case, the exposure map setting unit 203 may set the rotation speed to the speed reference value (or less than the speed reference value) for each of all steps.
 (例3)上述した例2のように、露光幅の変動が連続して小さい範囲で回転速度を増加させる場合において、露光マップでは、所定の角度ごとに、露光用の光の照度が更に設定されてもよい。露光制御部206は、被膜F2に対して露光する際に、露光マップに従って照度を調節しつつ、表面Waに対して露光用の光を照射するように露光ユニット120を制御してもよい。この場合、露光ユニット120は、露光用の光の照度(露光用の光が当たる領域でのドーズ量)を調節可能に構成されてもよい。露光用の光の照度によって、表面Waの露光用の光が当たる領域でのドーズ量が変化する。 (Example 3) As in Example 2 above, when the rotation speed is increased in a range where the variation in the exposure width is continuously small, the illuminance of the exposure light may be further set for each predetermined angle in the exposure map. When exposing the coating F2, the exposure control unit 206 may control the exposure unit 120 to irradiate the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map. In this case, the exposure unit 120 may be configured to be able to adjust the illuminance of the exposure light (the dose amount in the area where the exposure light hits). The dose amount in the area where the exposure light hits the surface Wa changes depending on the illuminance of the exposure light.
 露光マップ設定部203は、露光マップを設定する際に、ウェハWの回転速度が速度基準値よりも大きい値に設定されている範囲において、露光用の光の照度を照度基準値よりも大きい値に設定してもよい。具体例を用いて説明すると、表2に示されるような露光マップにおいて、Step2~6の範囲で回転速度が速度基準値よりも大きい値に設定される場合、Step2~6のそれぞれの照度が、照度基準値よりも大きい値に設定される。上記条件を満たす、連続する所定数以上のStepが存在しない場合、露光マップ設定部203は、全てのStepのそれぞれにおいて、露光用の光の照度を照度基準値(又は照度基準値以下)に設定してもよい。 When setting the exposure map, the exposure map setting unit 203 may set the illuminance of the exposure light to a value greater than the illuminance reference value in the range where the rotation speed of the wafer W is set to a value greater than the speed reference value. To explain using a specific example, in an exposure map such as that shown in Table 2, if the rotation speed is set to a value greater than the speed reference value in the range of Steps 2 to 6, the illuminance of each of Steps 2 to 6 is set to a value greater than the illuminance reference value. If there are not a predetermined number or more consecutive Steps that satisfy the above condition, the exposure map setting unit 203 may set the illuminance of the exposure light to the illuminance reference value (or less than the illuminance reference value) in each of all Steps.
 (例4)上述した例2の設定に加えて又は代えて、露光マップ設定部203は、第1角度での露光幅と、第1角度に連続する第2角度での露光幅との差が所定レベルよりも大きい条件を満たす角度(第2角度)での回転速度を速度基準値よりも小さい値に設定してもよい。例4においても、露光マップ設定部203は、第1角度での露光幅と、第1角度に連続する第2角度での露光幅との差を算出することを、第2角度を上記所定の角度ずつ変化させながら繰り返す。例4で用いる所定レベルは、例2で用いる所定レベルと異なっていてもよく、露光マップの設定時点において予め任意に設定されている。 (Example 4) In addition to or instead of the settings in Example 2 described above, the exposure map setting unit 203 may set the rotation speed at an angle (second angle) that satisfies the condition that the difference between the exposure width at the first angle and the exposure width at the second angle subsequent to the first angle is greater than a predetermined level to a value smaller than the speed reference value. In Example 4 as well, the exposure map setting unit 203 repeatedly calculates the difference between the exposure width at the first angle and the exposure width at the second angle subsequent to the first angle while changing the second angle by the above-mentioned predetermined angle. The predetermined level used in Example 4 may be different from the predetermined level used in Example 2, and is arbitrarily set in advance at the time of setting the exposure map.
 一例では、露光マップ設定部203は、表2のような露光マップを作成した後に、対象のStepでの露光幅(第2角度での露光幅)と、その対象のStepよりも1つ前のStepでの露光幅(第1角度での露光幅)との差を算出することを、対象のStepを1つずつ増加させながら繰り返す。そして、露光マップ設定部203は、連続する2つのStepの間での露光幅の差が、所定レベルよりも大きい条件を満たす対象のStepにおいて、回転速度を速度基準値よりも小さい値に設定する。 In one example, the exposure map setting unit 203 creates an exposure map such as that shown in Table 2, and then calculates the difference between the exposure width at the target Step (exposure width at the second angle) and the exposure width at the Step immediately preceding the target Step (exposure width at the first angle), repeatedly while increasing the target Step by one. Then, the exposure map setting unit 203 sets the rotation speed to a value smaller than the speed reference value in the target Step that satisfies the condition that the difference in exposure width between two consecutive Steps is greater than a predetermined level.
 具体例を用いて説明すると、表2に示される具体的な数値と異なるが、Step5において、1つ前のStepであるStep4との露光幅の差が所定レベル(例えば、±0.5mm)よりも大きい場合を想定する。この場合、露光マップ設定部203は、Step5において、回転速度を速度基準値(例えば、10rpm)よりも小さい値(例えば、5rpm)に設定する。露光マップ設定部203は、回転速度を速度基準値よりも小さい値に設定した範囲以外のStep(角度)においては、回転速度を速度基準値(又は速度基準値以上)に設定してもよい。露光マップでの露光幅の設定によっては、例4での上記条件を満たすStepが存在しない場合がある。この場合、露光マップ設定部203は、全てのStepのそれぞれにおいて、回転速度を速度基準値(又は速度基準値以上)に設定してもよい。 To explain using a specific example, assume that in Step 5, the difference in exposure width from the previous Step, Step 4, is greater than a predetermined level (e.g., ±0.5 mm), although the numerical values are different from those shown in Table 2. In this case, the exposure map setting unit 203 sets the rotation speed in Step 5 to a value (e.g., 5 rpm) smaller than the speed reference value (e.g., 10 rpm). The exposure map setting unit 203 may set the rotation speed to the speed reference value (or equal to or greater than the speed reference value) in Steps (angles) other than the range in which the rotation speed is set to a value smaller than the speed reference value. Depending on the exposure width setting in the exposure map, there may be no Step that satisfies the above condition in Example 4. In this case, the exposure map setting unit 203 may set the rotation speed to the speed reference value (or equal to or greater than the speed reference value) in each of all Steps.
 (例5)上述した例4のように、露光幅の変動が急となる部分で回転速度を低下させる場合において、露光マップでは、所定の角度ごとに、露光用の光の照度が更に設定されてもよい。露光制御部206は、被膜F2に対して露光する際に、露光マップに従って照度を調節しつつ、表面Waに対して露光用の光を照射するように、露光ユニット120を制御してもよい。この場合、露光ユニット120は、露光用の光の照度(露光用の光が当たる領域でのドーズ量)を調節可能に構成されてもよい。 (Example 5) As in Example 4 above, when the rotation speed is reduced in areas where the exposure width varies rapidly, the exposure map may further set the illuminance of the exposure light for each predetermined angle. When exposing the coating F2, the exposure control unit 206 may control the exposure unit 120 to irradiate the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map. In this case, the exposure unit 120 may be configured to be able to adjust the illuminance of the exposure light (the dose in the area where the exposure light hits).
 露光マップ設定部203は、露光マップを設定する際に、ウェハWの回転速度が速度基準値よりも小さい値に設定されている1以上の角度において、露光用の光の照度を照度基準値よりも小さい値に設定する。具体例を用いて説明すると、表2に示されるような露光マップにおいて、Step5で回転速度が速度基準値よりも小さい値に設定される場合、Step5での照度が、照度基準値よりも小さい値に設定される。例4での上記条件を満たすStepが存在しない場合、露光マップ設定部203は、全てのStepのそれぞれにおいて、露光用の光の照度を照度基準値(又は照度基準値以上)に設定してもよい。 When setting the exposure map, the exposure map setting unit 203 sets the illuminance of the exposure light to a value smaller than the illuminance reference value at one or more angles where the rotation speed of the wafer W is set to a value smaller than the speed reference value. To explain using a specific example, in an exposure map such as that shown in Table 2, if the rotation speed is set to a value smaller than the speed reference value in Step 5, the illuminance in Step 5 is set to a value smaller than the illuminance reference value. If there is no Step that satisfies the above condition in Example 4, the exposure map setting unit 203 may set the illuminance of the exposure light to the illuminance reference value (or greater than the illuminance reference value) in each of all Steps.
 (例6)ウェハWの表面Waにおける反りの状態に応じて、露光用の光が出射される方向におけるマスク部材123の位置が調節されながら、表面Waにおける周辺露光が行われてもよい。図17(a)には、ウェハWに反りが含まれる場合の課題を説明するための模式図が示されている。図17(a)においては、周縁領域の露光対象箇所に反りがない(平らな)ウェハWが「W1」で示され、周縁領域の露光対象箇所が上方に曲がるように反っているウェハWが「W2」で示され、周縁領域の露光対象箇所が下方に曲がるように沿っているウェハWが「W3」で示されている。なお、1つのウェハWにおいて、反りがない部分、上方に曲がる部分、及び下方に曲がる部分のうちの2以上の特徴が混在する場合もあり得る。 (Example 6) Peripheral exposure on the surface Wa of the wafer W may be performed while adjusting the position of the mask member 123 in the direction in which the exposure light is emitted, depending on the state of warpage on the surface Wa of the wafer W. FIG. 17(a) shows a schematic diagram for explaining the problem when the wafer W includes warpage. In FIG. 17(a), a wafer W with no warpage (flat) in the peripheral region to be exposed is shown as "W1", a wafer W with the peripheral region to be exposed warped so as to bend upward is shown as "W2", and a wafer W with the peripheral region to be exposed warped so as to bend downward is shown as "W3". Note that a single wafer W may have a mixture of two or more of the characteristics of no warpage, upward bending, and downward bending.
 図17(a)において、多数のドットが付された領域が、マスク部材123の開口から照射される光の範囲を表している。マスク部材123の開口から照射される光の範囲は、光学系部材122によって光路が調整されても、光が進むにつれて広がっている。マスク部材123の位置が固定されている場合、ウェハW1、ウェハW2、及びウェハW3の間で、マスク部材123と表面Waの露光対象箇所との間のZ軸方向における距離(以下、「照射距離Id」という。図17(b)を参照)が異なっている。照射距離Idが互いに異なると、露光幅の設定値が同じであっても、実際に露光される幅が変化してしまう。 In Figure 17(a), the area marked with many dots represents the range of light irradiated from the opening of mask member 123. The range of light irradiated from the opening of mask member 123 expands as the light advances, even if the optical path is adjusted by optical system member 122. When the position of mask member 123 is fixed, the distance in the Z-axis direction between mask member 123 and the area to be exposed on front surface Wa (hereinafter referred to as "irradiation distance Id"; see Figure 17(b)) differs between wafers W1, W2, and W3. If the irradiation distances Id differ from one another, the actual exposed width will change even if the exposure width setting is the same.
 図7に示されるように、制御装置100は、機能ブロックとして、反り情報取得部209を有してもよい。反り情報取得部209は、ウェハWの表面Waの周縁領域における反りの状態を示す情報(以下、単に「反り情報」という。)を取得する。反り情報取得部209は、例えば、検査装置U3から、ウェハWの端面Wbを撮像した端面画像を取得し、反りがない基準のウェハとの差から反り情報を取得する。反り情報は、ウェハWの中心まわりの周方向位置Xθと、ウェハWの表面Waの外縁部分の反り量との関係を示す情報であってもよい。 As shown in FIG. 7, the control device 100 may have a warpage information acquisition unit 209 as a functional block. The warpage information acquisition unit 209 acquires information indicating the state of warpage in the peripheral region of the surface Wa of the wafer W (hereinafter simply referred to as "warpage information"). The warpage information acquisition unit 209 acquires, for example, an end face image of the end face Wb of the wafer W from the inspection device U3, and acquires warpage information from the difference with a reference wafer that has no warpage. The warpage information may be information indicating the relationship between the circumferential position Xθ around the center of the wafer W and the amount of warpage in the outer edge portion of the surface Wa of the wafer W.
 反り情報取得部209は、反り情報を生成する際に、周方向における所定の角度ごとに、表面Waの外縁部分の反り量を算出してもよい。反り情報取得部209は、例えば0.5°~5°のうちの任意の角度(例えば、1°)ごとに、表面Waの外縁部分の反り量を算出する。表面Waの外縁部分の反り量を算出する際の角度単位(例えば1°)は、反り情報での分解能ということもできる。反り情報での分解能は、露光マップでの分解能と同じであってもよい。 When generating the warpage information, the warpage information acquisition unit 209 may calculate the amount of warpage of the outer edge portion of the surface Wa for each specified angle in the circumferential direction. The warpage information acquisition unit 209 calculates the amount of warpage of the outer edge portion of the surface Wa for each arbitrary angle (e.g., 1°) between 0.5° and 5°. The angle unit (e.g., 1°) used to calculate the amount of warpage of the outer edge portion of the surface Wa can also be considered the resolution of the warpage information. The resolution of the warpage information may be the same as the resolution of the exposure map.
 マスク部材123に接続された駆動機構124が、マスク部材123のZ軸方向における位置を変化させてもよい。なお、シャッター125を有するマスク部材123が、そのマスク部材123に接続された駆動機構によって昇降してもよい。露光マップでは、所定の角度ごとに、露光用の光が出射される方向におけるマスク部材123の位置が設定されていてもよい。露光制御部206は、露光マップに従って露光用の光が出射される方向におけるマスク部材123の位置を調節しつつ、表面Waに対して露光用の光を照射するように露光ユニット120(例えば、駆動機構124)を制御してもよい。マスク部材123の開口123aからの露光用の光が出射される方向は、Z軸方向であってもよい。すなわち、開口123a(開口123aの開口縁を含む平面)が、Z軸方向に直交していてもよい。 The driving mechanism 124 connected to the mask member 123 may change the position of the mask member 123 in the Z-axis direction. The mask member 123 having the shutter 125 may be raised and lowered by the driving mechanism connected to the mask member 123. In the exposure map, the position of the mask member 123 in the direction in which the exposure light is emitted may be set for each predetermined angle. The exposure control unit 206 may control the exposure unit 120 (e.g., the driving mechanism 124) to irradiate the exposure light onto the surface Wa while adjusting the position of the mask member 123 in the direction in which the exposure light is emitted according to the exposure map. The direction in which the exposure light is emitted from the opening 123a of the mask member 123 may be the Z-axis direction. In other words, the opening 123a (a plane including the opening edge of the opening 123a) may be perpendicular to the Z-axis direction.
 露光マップの設定において、露光マップ設定部203は、反り情報に基づいて、所定の角度ごとに、露光用の光が出射される方向におけるマスク部材123の位置を設定してもよい。露光マップ設定部203は、反り情報によって示される反り量に応じて、角度ごとの照射距離Idの差が縮小するように(例えば、照射距離Idが一定となるように)、Z軸方向におけるマスク部材123の位置を設定してもよい。Z軸方向におけるマスク部材123の位置は、基準位置からの差(すなわちオフセット値)によって特定されてもよい。 When setting the exposure map, the exposure map setting unit 203 may set the position of the mask member 123 in the direction in which the exposure light is emitted for each predetermined angle based on the warp information. The exposure map setting unit 203 may set the position of the mask member 123 in the Z-axis direction so that the difference in the irradiation distance Id for each angle is reduced (e.g., so that the irradiation distance Id is constant) according to the amount of warp indicated by the warp information. The position of the mask member 123 in the Z-axis direction may be specified by the difference from a reference position (i.e., the offset value).
 図17(b)に示されるように、周辺露光装置U4は、位置センサ132及び位置センサ134を有してもよい。位置センサ132は、Z軸方向におけるマスク部材123の位置を示す情報を取得するセンサである。位置センサ132は、例えば、マスク部材123の下面のZ軸方向における位置を示す情報を取得する。位置センサ134は、ウェハWの表面Waの周縁部分(露光対象箇所)のZ軸方向における位置を示す情報を取得するセンサである。位置センサ132及び位置センサ134により取得された位置情報によって、照射距離Idを算出することができる。位置センサ132及び位置センサ134は、位置を示す情報を検出できれば、どのような形式のセンサであってもよいが、例えば、非接触式の位置センサである。 As shown in FIG. 17(b), the peripheral exposure device U4 may have a position sensor 132 and a position sensor 134. The position sensor 132 is a sensor that acquires information indicating the position of the mask member 123 in the Z-axis direction. The position sensor 132 acquires, for example, information indicating the position of the lower surface of the mask member 123 in the Z-axis direction. The position sensor 134 is a sensor that acquires information indicating the position of the peripheral portion (exposure target area) of the front surface Wa of the wafer W in the Z-axis direction. The irradiation distance Id can be calculated based on the position information acquired by the position sensors 132 and 134. The position sensors 132 and 134 may be of any type as long as they can detect information indicating the position, but are, for example, non-contact position sensors.
 制御装置100は、露光マップに従って、表面Waの周縁領域において被膜F2に対して露光するように周辺露光装置U4を制御している最中に、位置センサ132及び位置センサ134から情報を取得してもよい。そして、制御装置100は、位置センサ132及び位置センサ134からの情報に基づいて、周縁領域での被膜F2に対して露光が行われている最中の照射距離Idが適切な範囲であるか否かを評価してもよい。制御装置100は、露光中の照射距離Idが適切な範囲ではないと評価した場合に、アラームを報知してもよい。 The control device 100 may acquire information from the position sensors 132 and 134 while controlling the peripheral exposure device U4 to expose the coating F2 in the peripheral region of the surface Wa in accordance with the exposure map. The control device 100 may then evaluate whether the irradiation distance Id while exposure is being performed on the coating F2 in the peripheral region is within an appropriate range based on the information from the position sensors 132 and 134. The control device 100 may sound an alarm if it evaluates that the irradiation distance Id during exposure is not within an appropriate range.
 コンピュータ内で2つの数値の大小関係を比較する際には、「以上」及び「よりも大きい」という2つの基準のうちのどちらを用いてもよく、「以下」及び「未満」という二つの基準のうちのどちらを用いてもよい。このような基準の選択は、2つの数値の大小関係を比較する処理についての技術的意義を変更するものではない。以上に説明した種々の例のうちの1つの例において、他の例において説明した事項の少なくとも一部が組み合わされてもよい。 When comparing the magnitude relationship of two numerical values within a computer, either of the two criteria "greater than or equal to" and "greater than" may be used, or either of the two criteria "less than or equal to" and "less than". The choice of such criteria does not change the technical significance of the process of comparing the magnitude relationship of two numerical values. In one example of the various examples described above, at least some of the matters described in the other examples may be combined.
[本開示のまとめ]
 [1]表面Waに被膜F1が形成されたウェハWの表面Waにおける周縁領域を撮像して得られる周縁撮像画像に基づいて、ウェハWの中心まわりの周方向位置Xθと、ウェハWの径方向における被膜F1の外縁位置との関係を示すエッジ情報を生成することと、エッジ情報に基づいて、周方向位置Xθと、上記径方向における露光幅の設定値との関係を示す露光マップを設定することと、周縁撮像画像が得られた後に、表面Waのうちの少なくとも周縁領域に被膜F2を形成することと、露光マップに従って、周縁領域において被膜F2に対して露光することと、を含む、基板処理方法。
 この基板処理方法では、エッジ情報に基づいて露光マップが設定される。そのため、露光マップにおいて、被膜F2の下層にある被膜F1の外縁の径方向における位置に合わせて露光幅を設定し、そのような露光マップに従って、周縁領域での露光を行うことができる。従って、下層膜における外縁の状態に合わせた露光を行うことが可能である。
[Summary of the Disclosure]
[1] A substrate processing method including: generating edge information indicating a relationship between a circumferential position Xθ about a center of the wafer W and an outer edge position of the coating F1 in a radial direction of the wafer W, based on a peripheral image obtained by imaging a peripheral region of a surface Wa of a wafer W having a coating F1 formed on the surface Wa; setting an exposure map indicating a relationship between the circumferential position Xθ and a set value of an exposure width in the radial direction, based on the edge information; forming a coating F2 on at least the peripheral region of the surface Wa after the peripheral image is obtained; and exposing the coating F2 in the peripheral region in accordance with the exposure map.
In this substrate processing method, an exposure map is set based on edge information. Therefore, in the exposure map, an exposure width is set according to the radial position of the outer edge of the coating F1 under the coating F2, and exposure can be performed in the peripheral region according to the exposure map. Therefore, exposure can be performed according to the state of the outer edge of the underlying film.
 図12(b)に示される例を用いて、ネガ型のレジスト材料が用いられて、露光幅が一定に設定される場合を検討する。例えば、図12(b)に示される「Er1」の位置を、露光する範囲の最も中心に近い箇所に設定すると、周方向のある範囲においては、被膜F1の外縁が被膜F2に覆われず、被膜F1のさらに下にある被膜F0が露出する場合がある。この場合、被膜F1のうちの被膜F2に覆われておらず、凹凸パターンが形成されている部分に対して、露出した被膜F0の一部が影響を与える可能性がある。そのため、例えば、図12(b)に示される「Er2」の位置が、露光幅を一定にする際の露光する範囲の最も中心に近い箇所に設定される。なお、ウェハWの個体ごとに、被膜F1の外縁の位置を検出せずに、一定の露光幅に設定されることが通常行われており、この場合、最も条件が悪い場合を想定して、被膜F1の外縁に対して、より内側に露光幅が設定される。このように、「Er2」の位置に露光幅が設定されると、被膜F1の外縁と、露光及び現像後の被膜F2の内縁との間の領域が大きくなってしまう。その結果、周縁領域に形成された環状の被膜F2に起因して、被膜F1において、露出した状態で凹凸パターンが形成されている領域が小さくなってしまう。上記基板処理方法では、被膜F1の外縁の形状に沿って露光幅を設定できるので、被膜F0を露出させることなく、被膜F2に起因して、被膜F1において凹凸パターンを形成できる領域が減少するのを避けることができる。同様に、ポジ型のレジスト材料が用いられる場合においても、そのレジスト材料を用いて形成されるレジスト膜(被膜F2)の周縁部分を必要以上に除去する必要がない。そのため、周縁部分の除去に起因して、被膜F2において凹凸パターンを形成できる領域が減少するのを避けることができる。 Using the example shown in FIG. 12(b), consider the case where a negative resist material is used and the exposure width is set to a constant value. For example, if the position of "Er1" shown in FIG. 12(b) is set to the location closest to the center of the range to be exposed, in a certain range in the circumferential direction, the outer edge of the coating F1 may not be covered by the coating F2, and the coating F0 below the coating F1 may be exposed. In this case, a part of the exposed coating F0 may affect the part of the coating F1 that is not covered by the coating F2 and has an uneven pattern. Therefore, for example, the position of "Er2" shown in FIG. 12(b) is set to the location closest to the center of the range to be exposed when the exposure width is set to a constant value. Note that, for each individual wafer W, it is usually set to a constant exposure width without detecting the position of the outer edge of the coating F1. In this case, assuming the worst case scenario, the exposure width is set further inward with respect to the outer edge of the coating F1. In this way, when the exposure width is set at the position of "Er2", the area between the outer edge of the coating F1 and the inner edge of the coating F2 after exposure and development becomes large. As a result, the area in the coating F1 where the uneven pattern is formed in an exposed state becomes small due to the annular coating F2 formed in the peripheral area. In the above substrate processing method, the exposure width can be set according to the shape of the outer edge of the coating F1, so that it is possible to avoid a reduction in the area in the coating F1 where the uneven pattern can be formed due to the coating F2 without exposing the coating F0. Similarly, even when a positive resist material is used, it is not necessary to remove the peripheral portion of the resist film (coating F2) formed using the resist material more than necessary. Therefore, it is possible to avoid a reduction in the area in the coating F2 where the uneven pattern can be formed due to the removal of the peripheral portion.
 [2]ウェハWの表面Waにおける周縁領域を撮像して周縁撮像画像を得ることを更に含む、上記[1]に記載の基板処理方法。
 この場合においても、下層膜における外縁の状態に合わせた露光を行うことが可能である。
[2] The substrate processing method according to [1] above, further comprising imaging a peripheral region of the front surface Wa of the wafer W to obtain a peripheral image.
Even in this case, it is possible to perform exposure in accordance with the state of the outer edge of the underlying film.
 [3]露光マップでは、所定の角度ごとに、露光する範囲のうちのウェハWの中心に近い一端の位置を、エッジ情報で示される上記外縁位置(被膜F1の外縁位置)から一定値ずらすように、露光幅が設定されている、上記[1]又は[2]に記載の基板処理方法。
 この場合、被膜F1の外縁の形状に、より近い形状で露光幅を設定でき、また、被膜F1の外縁位置に一定値を加算又は減算すればよいので、露光マップ設定時の演算負荷を減少させることができる。
[3] A substrate processing method as described in [1] or [2] above, in which the exposure width is set so that, for each predetermined angle, the position of one end of the exposed range that is closest to the center of the wafer W is shifted by a constant value from the outer edge position (the outer edge position of the coating F1) indicated by the edge information.
In this case, the exposure width can be set to a shape that is closer to the shape of the outer edge of the coating F1, and a constant value can be added or subtracted from the outer edge position of the coating F1, thereby reducing the computational load when setting the exposure map.
 [4]露光マップでは、所定の角度ごとに、露光幅が設定されており、エッジ情報では、上記所定の角度ごとに、上記外縁位置が得られている、上記[1]~[3]のいずれか1つに記載の基板処理方法。
 この場合、露光マップの設定に必要な最低限の角度単位で、被膜F1の外縁位置の算出が行われるので、周縁撮像画像から、被膜F1の外縁の位置を算出する際の演算負荷を低減できる。
[4] A substrate processing method according to any one of [1] to [3] above, wherein an exposure width is set for each predetermined angle in the exposure map, and the edge information provides the outer edge position for each of the predetermined angles.
In this case, the outer edge position of the coating F1 is calculated in the minimum angle unit required for setting the exposure map, so that the computational load when calculating the position of the outer edge of the coating F1 from the captured peripheral image can be reduced.
 [5]露光マップに従った露光が行われた後に、周縁領域に被膜F2が残るように現像を行うことと、被膜F2の現像後のウェハWの表面Waにおける周縁領域を撮像して判定撮像画像を得ることと、判定撮像画像に基づいて、周方向位置Xθと、上記径方向における被膜F2の内縁位置との関係を示すカット情報を生成することと、エッジ情報及び露光マップのいずれか一方と、カット情報とを比較した結果に基づいて、被膜F2に対する露光が正常であるか否かを判定することと、を更に含む、上記[1]~[4]のいずれか1つに記載の基板処理方法。
 この場合、露光後の実際の結果が検査されるので、外周露光が行われたウェハWの信頼性を向上させることができる。
[5] The substrate processing method according to any one of [1] to [4] above, further comprising: performing development so that the coating F2 remains in the peripheral region after exposure according to the exposure map; capturing an image of the peripheral region on the front surface Wa of the wafer W after the development of the coating F2 to obtain a judgment captured image; generating cut information indicating a relationship between the circumferential position Xθ and an inner edge position of the coating F2 in the radial direction based on the judgment captured image; and determining whether or not the exposure of the coating F2 is normal based on a result of comparing the cut information with either the edge information or the exposure map.
In this case, since the actual result after exposure is inspected, the reliability of the wafer W that has been subjected to peripheral exposure can be improved.
 [6]被膜F2は、ネガ型レジスト材料を用いて形成されたレジスト膜である、上記[5]に記載の基板処理方法。
 この場合、ネガ型レジスト材料を用いて形成されたレジスト膜に対する外周露光の結果が適切か否かを評価することができる。
[6] The substrate processing method according to the above [5], wherein the coating F2 is a resist film formed using a negative resist material.
In this case, it is possible to evaluate whether the result of peripheral exposure of a resist film formed using a negative resist material is appropriate.
 [7]露光マップに従った露光が行われた後に、被膜F2のうちの周縁領域に位置する部分が除去されるように現像を行うことと、被膜F2の現像後のウェハWの表面Waにおける周縁領域を撮像して判定撮像画像を得ることと、判定撮像画像に基づいて、周方向位置Xθと、径方向における被膜F2の外縁位置との関係を示すカット情報を生成することと、エッジ情報及び露光マップのいずれか一方と、カット情報とを比較した結果に基づいて、被膜F2に対する露光が正常であるか否かを判定することと、を更に含む、上記[1]~[4]のいずれか1つに記載の基板処理方法。
 この場合、露光後の実際の結果が検査されるので、外周露光が行われたウェハWの信頼性を向上させることができる。
[7] The substrate processing method according to any one of [1] to [4] above, further comprising: performing development so that a portion of the coating F2 located in the peripheral region is removed after exposure according to the exposure map; capturing an image of the peripheral region on the front surface Wa of the wafer W after the development of the coating F2 to obtain a judgment captured image; generating cut information indicating a relationship between the circumferential position Xθ and the outer edge position of the coating F2 in the radial direction based on the judgment captured image; and determining whether or not the exposure of the coating F2 is normal based on a result of comparing the cut information with either the edge information or the exposure map.
In this case, since the actual result after exposure is inspected, the reliability of the wafer W that has been subjected to peripheral exposure can be improved.
 [8]被膜F2は、ポジ型レジスト材料を用いて形成されたレジスト膜である、上記[7]に記載の基板処理方法。
 この場合、ポジ型レジスト材料を用いて形成されたレジスト膜に対する外周露光の結果が適切か否かを評価することができる。
[8] The substrate processing method according to the above [7], wherein the coating F2 is a resist film formed using a positive resist material.
In this case, it is possible to evaluate whether the result of peripheral exposure of a resist film formed using a positive resist material is appropriate.
 [9]被膜F2に対して露光することは、開口123aが設けられたマスク部材123を介して、表面Waに対して露光用の光を照射することと、露光マップに従って露光幅を変更するように、マスク部材123を径方向に移動させることと、を含む、上記[1]~[8]のいずれか1つに記載の基板処理方法。
 この場合、露光用の光を照射するための部材及び光学系を、露光する際の周方向位置によって駆動又は調節する必要がないので、露光幅の変更が容易である。
[9] The substrate processing method according to any one of [1] to [8] above, wherein exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 having an opening 123a, and moving the mask member 123 radially so as to change the exposure width according to an exposure map.
In this case, since it is not necessary to drive or adjust the members and optical system for irradiating the exposure light depending on the circumferential position during exposure, the exposure width can be easily changed.
 [10]被膜F2に対して露光することは、開口123aと開口123aの開度を調節可能なシャッター125とが設けられたマスク部材123を介して、表面Waに対して露光用の光を照射することと、露光マップに従って露光幅を変更するように、シャッターにより開度を調節することと、を含む、上記[1]~[8]のいずれか1つに記載の基板処理方法。
 この場合、露光用の光を照射するための部材及び光学系を、露光する際の周方向位置によって駆動又は調節する必要がないので、露光幅の変更が容易である。
[10] The substrate processing method according to any one of [1] to [8] above, wherein exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 provided with an opening 123a and a shutter 125 capable of adjusting the opening of the opening 123a, and adjusting the opening by the shutter so as to change the exposure width in accordance with an exposure map.
In this case, since it is not necessary to drive or adjust the members and optical system for irradiating the exposure light depending on the circumferential position during exposure, the exposure width can be easily changed.
 [11]被膜F2に対して露光することは、露光用の光を照射可能な照射部(光源121及び光学系部材122)から、保持台111に保持されたウェハWの表面Waに対して露光用の光を照射することと、露光マップに従って露光幅を変更するように、保持台111を移動させることと、を含む、上記[1]~[8]のいずれか1つに記載の基板処理方法。
 この場合、露光用の光を照射するための部材及び光学系を、露光する際の周方向位置によって駆動又は調節する必要がないので、露光幅の変更が容易である。
[11] The substrate processing method according to any one of [1] to [8] above, wherein exposing the coating F2 includes irradiating the surface Wa of the wafer W held on the holding table 111 with exposure light from an irradiation section (light source 121 and optical system member 122) capable of irradiating exposure light, and moving the holding table 111 so as to change the exposure width according to an exposure map.
In this case, since it is not necessary to drive or adjust the members and optical system for irradiating the exposure light depending on the circumferential position during exposure, the exposure width can be easily changed.
 [12]露光マップでは、所定の角度ごとに、露光幅とウェハWの回転速度とが設定されており、被膜F2に対して露光することは、露光マップに従ってウェハWの回転を継続した状態で露光幅を変更しつつ、表面Waに対して露光用の光を照射することを含み、露光マップを設定することは、第1角度での露光幅と、第1角度に連続する第2角度での露光幅との差を算出することを、第2角度を上記所定の角度ずつ変化させながら繰り返すことと、上記差が所定レベルよりも小さい条件が、連続する所定数以上の角度を含む範囲において満たされる場合に、当該範囲での回転速度を速度基準値よりも大きい値に設定することと、を含む、上記[1]~[11]のいずれか1つに記載の基板処理方法。
 ウェハWの回転を継続させつつ周方向位置Xθ(角度)に応じて露光幅を変化させながら、周辺露光を行うことが考えられる。このような周辺露光において、露光幅の変化の程度が連続して小さい場合には、ウェハWの回転が速くなっても、その露光幅の設定値の変化に、露光幅を変化させるための装置又は部材を追従させることが容易である。上記方法では、連続する角度同士の差が所定レベルよりも小さい条件が、所定数だけ連続して満たされると、その範囲において、回転速度が基準値よりも大きい値に設定される。これにより、露光幅を変化させつつ周辺露光を行う場合の処理時間を短縮することができる。従って、下層膜における外縁の状態に合わせた露光と、スループットの維持との両立に有用である。
[12] The substrate processing method according to any one of [1] to [11] above, wherein the exposure map sets an exposure width and a rotation speed of the wafer W for each predetermined angle, exposing the coating F2 includes irradiating the front surface Wa with exposure light while changing the exposure width while continuing to rotate the wafer W in accordance with the exposure map, and setting the exposure map includes calculating a difference between the exposure width at a first angle and the exposure width at a second angle consecutive to the first angle while changing the second angle by the predetermined angle in increments, and setting the rotation speed in the range to a value greater than the speed reference value when a condition that the difference is smaller than a predetermined level is satisfied in a range including a predetermined number or more consecutive angles.
It is conceivable to perform peripheral exposure while continuing to rotate the wafer W and changing the exposure width according to the circumferential position Xθ (angle). In such peripheral exposure, if the degree of change in the exposure width is continuously small, even if the rotation speed of the wafer W increases, it is easy to make the device or member for changing the exposure width follow the change in the set value of the exposure width. In the above method, when the condition that the difference between consecutive angles is smaller than a predetermined level is continuously satisfied a predetermined number of times, the rotation speed is set to a value larger than the reference value in that range. This makes it possible to shorten the processing time when performing peripheral exposure while changing the exposure width. Therefore, it is useful for achieving both exposure according to the state of the outer edge of the underlayer film and maintaining the throughput.
 [13]露光マップでは、所定の角度ごとに、露光用の光の照度が更に設定されており、被膜F2に対して露光することは、露光マップに従って照度を調節しつつ、表面Waに対して露光用の光を照射することを含み、露光マップを設定することは、回転速度が上記速度基準値よりも大きい値に設定されている範囲において、露光用の光の照度を照度基準値よりも大きい値に設定することを更に含む、上記[12]に記載の基板処理方法。
 この場合、回転速度が他の範囲に比べて速くなる範囲と、当該他の範囲との間で、露光用の光による露光量(例えば、ドーズ量)の差を縮小させることができる。従って、回転速度を増加させて処理時間を短縮させる場合でも、1つのウェハWの表面Wa内における露光状態の均一化を図ることができる。
[13] The substrate processing method described in [12] above, wherein the exposure map further sets the illuminance of the exposure light for each predetermined angle, and exposing the coating F2 includes irradiating the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map, and setting the exposure map further includes setting the illuminance of the exposure light to a value greater than the illuminance reference value in a range in which the rotation speed is set to a value greater than the speed reference value.
In this case, the difference in the amount of exposure (e.g., dose) of the exposure light between the range in which the rotation speed is faster than other ranges and the other ranges can be reduced, so that the exposure state within the front surface Wa of one wafer W can be made uniform even when the rotation speed is increased to shorten the processing time.
 [14]露光マップでは、所定の角度ごとに、露光幅とウェハWの回転速度とが設定されており、被膜F2に対して露光することは、露光マップに従ってウェハWの回転を継続した状態で露光幅を変更しつつ、表面Waに対して露光用の光を照射することを含み、露光マップを設定することは、第1角度での露光幅と、第1角度に連続する第2角度での露光幅との差を算出することを、第2角度を上記所定の角度ずつ変化させながら繰り返すことと、上記差が所定レベルよりも大きい条件を満たす角度での回転速度を、速度基準値よりも大きい値に設定することと、を含む、上記[1]~[13]のいずれか1つに記載の基板処理方法。
 ウェハWの回転を継続させつつ周方向位置Xθ(角度)に応じて露光幅を変化させながら、周辺露光を行うことが考えられる。このような周辺露光において、露光幅の変化の程度が大きいと、その露光幅の設定値の変化に、露光幅を変化させるための装置又は部材を追従させること困難である。上記方法では、露光幅の変化が大きい角度では、回転速度が速度基準値よりも小さい値に設定される。これにより、露光幅の変化の程度が大きい箇所があっても、露光幅を変化させるための装置又は部材を、露光幅を変化に追従させることが容易である。従って、当該装置又は部材を簡素化することができる。
[14] The substrate processing method according to any one of [1] to [13] above, wherein the exposure map sets an exposure width and a rotation speed of the wafer W for each predetermined angle, exposing the coating F2 includes irradiating the front surface Wa with exposure light while changing the exposure width while continuing to rotate the wafer W in accordance with the exposure map, and setting the exposure map includes calculating a difference between the exposure width at a first angle and the exposure width at a second angle consecutive to the first angle while changing the second angle by the predetermined angle, and setting the rotation speed at an angle that satisfies a condition that the difference is greater than a predetermined level to a value greater than a speed reference value.
It is conceivable to perform peripheral exposure while continuing to rotate the wafer W and changing the exposure width according to the circumferential position Xθ (angle). In such peripheral exposure, if the degree of change in the exposure width is large, it is difficult to make a device or member for changing the exposure width follow the change in the set value of the exposure width. In the above method, the rotation speed is set to a value smaller than the speed reference value at angles where the change in the exposure width is large. This makes it easy to make a device or member for changing the exposure width follow the change in the exposure width even if there is a location where the change in the exposure width is large. Therefore, the device or member can be simplified.
 [15]露光マップでは、上記所定の角度ごとに、露光用の光の照度が更に設定されており、被膜F2に対して露光することは、露光マップに従って照度を調節しつつ、表面Waに対して露光用の光を照射することを含み、露光マップを設定することは、回転速度が上記速度基準値より小さい値に設定されている角度での露光用の光の照度を、照度基準値よりも小さい値に設定することを含む、上記[14]に記載の基板処理方法。
 この場合、回転速度が他の範囲に比べて遅くなる角度(範囲)と、当該他の範囲との間で、露光用の光による露光量(例えば、ドーズ量)の差を縮小させることができる。従って、1つのウェハWの表面Wa内における露光状態の均一化を図ることができる。
[15] The substrate processing method described in [14] above, wherein the exposure map further sets the illuminance of the exposure light for each of the specified angles, and exposing the coating F2 includes irradiating the exposure light onto the surface Wa while adjusting the illuminance according to the exposure map, and setting the exposure map includes setting the illuminance of the exposure light at angles at which the rotation speed is set to a value smaller than the speed reference value to a value smaller than the illuminance reference value.
In this case, it is possible to reduce the difference in the amount of exposure (e.g., dose) of the exposure light between the angle (range) where the rotation speed is slower than other ranges and the other ranges, thereby making it possible to uniformize the exposure state within the front surface Wa of one wafer W.
 [16]被膜F2に対して露光することは、開口が設けられたマスク部材123を介して、表面Waに対して露光用の光を照射することを含み、露光マップでは、所定の角度ごとに、露光幅と、露光用の光が出射される方向におけるマスク部材123の位置とが設定されており、被膜F2に対して露光することは、露光マップに従って露光用の光が出射される方向におけるマスク部材123の位置を調節することを更に含み、露光マップを設定することは、表面Waの周縁領域における反りの状態を示す反り情報に基づいて、上記所定の角度ごとに、露光用の光が出射される方向におけるマスク部材123の位置を設定することを含む、上記[1]~[15]のいずれか1つに記載の基板処理方法。
 ウェハWの周縁領域に反っている箇所があると、露光幅の設定値が同じであっても、実際に露光用の光が照射される領域に差が生じ得る。上記方法では、反り情報に基づいて、マスク部材123の位置も変化するので、ウェハWの周縁領域に反っている箇所が含まれても、反りに起因して実際に露光用の光が照射される領域に差が生じるのを抑制できる。従って、より精度良く、下層膜における外縁の状態に合わせた露光を行うことができる。
[16] The substrate processing method according to any one of [1] to [15] above, wherein exposing the coating F2 includes irradiating the surface Wa with exposure light through a mask member 123 having an opening, and the exposure map sets an exposure width and a position of the mask member 123 in the direction in which the exposure light is emitted for each predetermined angle, exposing the coating F2 further includes adjusting the position of the mask member 123 in the direction in which the exposure light is emitted in accordance with the exposure map, and setting the exposure map includes setting the position of the mask member 123 in the direction in which the exposure light is emitted for each of the predetermined angles based on warpage information indicating a state of warpage in the peripheral region of the surface Wa.
If there is a warped portion in the peripheral region of the wafer W, even if the exposure width setting value is the same, a difference may occur in the region actually irradiated with the exposure light. In the above method, the position of the mask member 123 is also changed based on the warp information, so that even if the peripheral region of the wafer W includes a warped portion, it is possible to suppress a difference in the region actually irradiated with the exposure light due to the warp. Therefore, exposure can be performed more accurately in accordance with the state of the outer edge of the underlying film.
 [17]ウェハWの表面Waに被膜の形成を行う被膜形成部(膜処理装置U1及び熱処理装置U2)と、表面Waにおける周縁領域に対する露光を行う周辺露光装置U4と、表面Waに被膜F1が形成された状態のウェハWの表面Waにおける周縁領域を撮像して得られる周縁撮像画像を取得する画像情報取得部201と、周縁撮像画像に基づいて、ウェハWの中心まわりの周方向位置Xθと、ウェハWの径方向における被膜F1の外縁位置との関係を示すエッジ情報を生成するエッジ情報生成部202と、エッジ情報に基づいて、周方向位置Xθと、上記径方向における露光幅の設定値との関係を示す露光マップを設定する露光マップ設定部203と、周縁撮像画像が得られた後に、表面Waのうちの少なくとも周縁領域に被膜F2を形成するように被膜形成部を制御する膜形成制御部205と、露光マップに従って、周縁領域において被膜F2に対して露光するように周辺露光装置U4を制御する露光制御部206と、を備える、基板処理装置(ウェハ処理システム1)。
 この基板処理装置では、上記[1]に記載の基板処理方法と同様に、下層膜における外縁の状態に合わせた露光を行うことが可能である。
[17] A substrate processing apparatus (wafer processing system 1) including: a film forming unit (film processing apparatus U1 and heat processing apparatus U2) that forms a coating on a front surface Wa of a wafer W; a peripheral exposure device U4 that exposes a peripheral region on the front surface Wa; an image information acquisition unit 201 that acquires a peripheral image obtained by imaging the peripheral region on the front surface Wa of the wafer W in a state in which a coating F1 is formed on the front surface Wa; an edge information generation unit 202 that generates edge information indicating a relationship between a circumferential position Xθ around the center of the wafer W and an outer edge position of the coating F1 in a radial direction of the wafer W based on the peripheral image; an exposure map setting unit 203 that sets an exposure map indicating a relationship between the circumferential position Xθ and a set value of an exposure width in the radial direction based on the edge information; a film formation control unit 205 that controls the film forming unit to form a coating F2 on at least the peripheral region of the front surface Wa after the peripheral image is obtained; and an exposure control unit 206 that controls the peripheral exposure device U4 to expose the coating F2 in the peripheral region according to the exposure map.
In this substrate processing apparatus, like the substrate processing method described in [1] above, it is possible to perform exposure in accordance with the state of the outer edge of the underlying film.
 [18]ウェハWの表面Waにおける周縁領域を撮像可能な検査装置U3を更に備え、画像情報取得部201は、検査装置U3から周縁撮像画像を取得する、上記[17]に記載の基板処理装置。
 この場合においても、下層膜における外縁の状態に合わせた露光を行うことが可能である。
[18] The substrate processing apparatus according to [17] above, further comprising an inspection device U3 capable of imaging a peripheral region on the front surface Wa of the wafer W, and the image information acquisition unit 201 acquires a peripheral image from the inspection device U3.
Even in this case, it is possible to perform exposure in accordance with the state of the outer edge of the underlying film.
 [19]露光マップ設定部203は、エッジ情報に基づいて露光マップを設定する際に、所定の角度ごとに、露光する範囲のうちのウェハWの中心に近い一端の位置を、エッジ情報で示される上記外縁位置(被膜F1の外縁位置)から一定値ずらすように、露光幅を設定する、上記[17]又は[18]に記載の基板処理装置。
 この基板処理装置では、上記[3]に記載の基板処理方法と同様に、被膜F1の外縁の形状に、より近い形状で露光幅を設定でき、また、外縁位置に一定値を加算又は減算すればよいので、露光マップ設定時の演算負荷を減少させることができる。
[19] A substrate processing apparatus as described in [17] or [18] above, in which, when setting an exposure map based on edge information, the exposure map setting unit 203 sets an exposure width so that, for each specified angle, the position of one end of the exposed range that is closest to the center of the wafer W is shifted by a fixed value from the outer edge position (the outer edge position of the coating F1) indicated by the edge information.
In this substrate processing apparatus, similar to the substrate processing method described in [3] above, the exposure width can be set to a shape that is closer to the shape of the outer edge of the coating F1, and since it is only necessary to add or subtract a constant value to the outer edge position, the computational load when setting the exposure map can be reduced.
 [20]露光マップ設定部203は、露光マップにおいて、所定の角度ごとに、露光幅を設定し、エッジ情報生成部202は、上記所定の角度ごとに、上記外縁位置を算出する、上記[17]~[19]のいずれか1つに記載の基板処理装置。
 この基板処理装置では、上記[4]に記載の基板処理方法と同様に、露光マップの設定に必要な最低限の角度単位で、被膜F1の外縁位置の算出が行われるので、周縁撮像画像から、被膜F1の外縁の位置を算出する際の演算負荷を低減できる。
[20] The substrate processing apparatus described in any one of [17] to [19] above, wherein the exposure map setting unit 203 sets an exposure width for each predetermined angle in the exposure map, and the edge information generating unit 202 calculates the outer edge position for each of the predetermined angles.
In this substrate processing apparatus, similar to the substrate processing method described in [4] above, the outer edge position of the coating F1 is calculated in the minimum angle unit required for setting the exposure map, thereby reducing the computational load when calculating the position of the outer edge of the coating F1 from the peripheral image.
 1…ウェハ処理システム、W…ウェハ、Wa…表面、U1…膜処理装置、U2…熱処理装置、U3…検査装置、U4…周辺露光装置、110…回転保持ユニット、111…保持台、120…露光ユニット、123…マスク部材、123a…開口、125…シャッター、100…制御装置、201…画像情報取得部、202…エッジ情報生成部、203…露光マップ設定部、205…膜形成制御部、206…露光制御部。

 
1...wafer processing system, W...wafer, Wa...surface, U1...film processing device, U2...heat processing device, U3...inspection device, U4...periphery exposure device, 110...rotating holding unit, 111...holding table, 120...exposure unit, 123...mask member, 123a...opening, 125...shutter, 100...control device, 201...image information acquisition unit, 202...edge information generation unit, 203...exposure map setting unit, 205...film formation control unit, 206...exposure control unit.

Claims (20)

  1.  表面に第1被膜が形成された基板の前記表面における周縁領域を撮像して得られる撮像画像に基づいて、前記基板の中心まわりの周方向位置と、前記基板の径方向における前記第1被膜の外縁位置との関係を示すエッジ情報を生成することと、
     前記エッジ情報に基づいて、前記周方向位置と、前記径方向における露光幅の設定値との関係を示す露光マップを設定することと、
     前記撮像画像が得られた後に、前記表面のうちの少なくとも前記周縁領域に第2被膜を形成することと、
     前記露光マップに従って、前記周縁領域において前記第2被膜に対して露光することと、を含む、基板処理方法。
    generating edge information indicating a relationship between a circumferential position around a center of the substrate and an outer edge position of the first coating in a radial direction of the substrate, based on an image obtained by imaging a peripheral region of the surface of the substrate having a first coating formed thereon;
    setting an exposure map indicating a relationship between the circumferential position and a set value of an exposure width in the radial direction based on the edge information;
    forming a second coating on at least the peripheral region of the surface after the captured image is obtained;
    exposing the second coating in the peripheral region according to the exposure map.
  2.  前記基板の前記表面における前記周縁領域を撮像して前記撮像画像を得ることを更に含む、請求項1に記載の基板処理方法。 The substrate processing method of claim 1, further comprising imaging the peripheral region of the surface of the substrate to obtain the captured image.
  3.  前記露光マップでは、所定の角度ごとに、露光する範囲のうちの前記基板の中心に近い一端の位置を、前記エッジ情報で示される前記外縁位置から一定値ずらすように、前記露光幅が設定されている、請求項1に記載の基板処理方法。 The substrate processing method of claim 1, wherein the exposure width is set in the exposure map so that, for each predetermined angle, the position of one end of the exposed range closest to the center of the substrate is shifted by a fixed value from the outer edge position indicated by the edge information.
  4.  前記露光マップでは、所定の角度ごとに、前記露光幅が設定されており、
     前記エッジ情報では、前記所定の角度ごとに、前記外縁位置が得られている、請求項1~3のいずれか一項に記載の基板処理方法。
    In the exposure map, the exposure width is set for each predetermined angle,
    4. The substrate processing method according to claim 1, wherein the edge information includes an outer edge position obtained for each of the predetermined angles.
  5.  前記露光マップに従った露光が行われた後に、前記周縁領域に前記第2被膜が残るように現像を行うことと、
     前記第2被膜の現像後の前記基板の前記表面における前記周縁領域を撮像して第2撮像画像を得ることと、
     前記第2撮像画像に基づいて、前記周方向位置と、前記径方向における前記第2被膜の内縁位置との関係を示すカット情報を生成することと、
     前記エッジ情報及び前記露光マップのいずれか一方と、前記カット情報とを比較した結果に基づいて、前記第2被膜に対する露光が正常であるか否かを判定することと、を更に含む、請求項1~3のいずれか一項に記載の基板処理方法。
    After the exposure according to the exposure map is performed, developing is performed so that the second coating remains in the peripheral region.
    imaging the peripheral region of the surface of the substrate after development of the second coating to obtain a second captured image;
    generating cut information indicating a relationship between the circumferential position and an inner edge position of the second coating in the radial direction based on the second captured image;
    The substrate processing method according to any one of claims 1 to 3, further comprising: determining whether or not exposure to the second coating is normal based on a result of comparing either the edge information or the exposure map with the cut information.
  6.  前記第2被膜は、ネガ型レジスト材料を用いて形成されたレジスト膜である、請求項5に記載の基板処理方法。 The substrate processing method according to claim 5, wherein the second coating is a resist film formed using a negative resist material.
  7.  前記露光マップに従った露光が行われた後に、前記第2被膜のうちの前記周縁領域に位置する部分が除去されるように現像を行うことと、
     前記第2被膜の現像後の前記基板の前記表面における前記周縁領域を撮像して第2撮像画像を得ることと、
     前記第2撮像画像に基づいて、前記周方向位置と、前記径方向における前記第2被膜の外縁位置との関係を示すカット情報を生成することと、
     前記エッジ情報及び前記露光マップのいずれか一方と、前記カット情報とを比較した結果に基づいて、前記第2被膜に対する露光が正常であるか否かを判定することと、を更に含む、請求項1~3のいずれか一項に記載の基板処理方法。
    performing development so as to remove a portion of the second coating located in the peripheral region after the exposure according to the exposure map is performed;
    imaging the peripheral region of the surface of the substrate after development of the second coating to obtain a second captured image;
    generating cut information indicating a relationship between the circumferential position and an outer edge position of the second coating in the radial direction based on the second captured image;
    The substrate processing method according to any one of claims 1 to 3, further comprising: determining whether or not exposure to the second coating is normal based on a result of comparing either the edge information or the exposure map with the cut information.
  8.  前記第2被膜は、ポジ型レジスト材料を用いて形成されたレジスト膜である、請求項7に記載の基板処理方法。 The substrate processing method according to claim 7, wherein the second coating is a resist film formed using a positive resist material.
  9.  前記第2被膜に対して露光することは、
      開口が設けられたマスク部材を介して、前記表面に対して露光用の光を照射することと、
      前記露光マップに従って前記露光幅を変更するように、前記マスク部材を前記径方向に移動させることと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The exposing of the second coating includes:
    irradiating the surface with exposure light through a mask member having an opening;
    4. The substrate processing method according to claim 1, further comprising: moving the mask member in the radial direction so as to change the exposure width in accordance with the exposure map.
  10.  前記第2被膜に対して露光することは、
      開口と当該開口の開度を調節可能なシャッターとが設けられたマスク部材を介して、前記表面に対して露光用の光を照射することと、
      前記露光マップに従って前記露光幅を変更するように、前記シャッターにより前記開度を調節することと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The exposing of the second coating includes:
    irradiating the surface with exposure light through a mask member having an opening and a shutter capable of adjusting the opening size of the opening;
    4. The substrate processing method according to claim 1, further comprising: adjusting the opening degree of the shutter so as to change the exposure width in accordance with the exposure map.
  11.  前記第2被膜に対して露光することは、
      露光用の光を照射可能な照射部から、保持部に保持された前記基板の前記表面に対して前記露光用の光を照射することと、
      前記露光マップに従って前記露光幅を変更するように、前記保持部を移動させることと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The exposing of the second coating includes:
    irradiating the surface of the substrate held by a holder with exposure light from an irradiation unit capable of irradiating the exposure light;
    4. The substrate processing method according to claim 1, further comprising: moving the holding part so as to change the exposure width in accordance with the exposure map.
  12.  前記露光マップでは、所定の角度ごとに、前記露光幅と前記基板の回転速度とが設定されており、
     前記第2被膜に対して露光することは、前記露光マップに従って前記基板の回転を継続した状態で前記露光幅を変更しつつ、前記表面に対して露光用の光を照射することを含み、
     前記露光マップを設定することは、
      第1角度での前記露光幅と、前記第1角度に連続する第2角度での前記露光幅との差を算出することを、前記第2角度を前記所定の角度ずつ変化させながら繰り返すことと、
      前記差が所定レベルよりも小さい条件が、連続する所定数以上の角度を含む範囲において満たされる場合に、当該範囲での前記回転速度を速度基準値よりも大きい値に設定することと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    In the exposure map, the exposure width and the rotation speed of the substrate are set for each predetermined angle,
    exposing the second coating includes irradiating the surface with exposure light while changing the exposure width in a state where the substrate continues to rotate in accordance with the exposure map;
    Establishing the exposure map includes:
    Repeating the calculation of a difference between the exposure width at a first angle and the exposure width at a second angle successive to the first angle while changing the second angle by the predetermined angle;
    and when the condition that the difference is smaller than a predetermined level is satisfied in a range including a predetermined number or more of consecutive angles, setting the rotation speed in the range to a value larger than a speed reference value.
  13.  前記露光マップでは、前記所定の角度ごとに、前記露光用の光の照度が更に設定されており、
     前記第2被膜に対して露光することは、前記露光マップに従って照度を調節しつつ、前記表面に対して前記露光用の光を照射することを含み、
     前記露光マップを設定することは、前記回転速度が前記速度基準値よりも大きい値に設定されている範囲において、前記露光用の光の照度を照度基準値よりも大きい値に設定することを更に含む、請求項12に記載の基板処理方法。
    In the exposure map, an illuminance of the light for exposure is further set for each of the predetermined angles,
    exposing the second coating includes irradiating the surface with the exposing light while adjusting irradiance according to the exposure map;
    13. The substrate processing method of claim 12, wherein setting the exposure map further comprises setting an illuminance of the exposure light to a value greater than an illuminance reference value in a range in which the rotation speed is set to a value greater than the speed reference value.
  14.  前記露光マップでは、所定の角度ごとに、前記露光幅と前記基板の回転速度とが設定されており、
     前記第2被膜に対して露光することは、前記露光マップに従って前記基板の回転を継続した状態で前記露光幅を変更しつつ、前記表面に対して露光用の光を照射することを含み、
     前記露光マップを設定することは、
      第1角度での前記露光幅と、前記第1角度に連続する第2角度での前記露光幅との差を算出することを、前記第2角度を前記所定の角度ずつ変化させながら繰り返すことと、
      前記差が所定レベルよりも大きい条件を満たす角度での前記回転速度を、速度基準値よりも小さい値に設定することと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    In the exposure map, the exposure width and the rotation speed of the substrate are set for each predetermined angle,
    exposing the second coating includes irradiating the surface with exposure light while changing the exposure width in a state where the substrate continues to rotate in accordance with the exposure map;
    Establishing the exposure map includes:
    Repeating the calculation of a difference between the exposure width at a first angle and the exposure width at a second angle successive to the first angle while changing the second angle by the predetermined angle;
    4. The substrate processing method according to claim 1, further comprising: setting the rotation speed at an angle that satisfies a condition in which the difference is greater than a predetermined level to a value smaller than a speed reference value.
  15.  前記露光マップでは、前記所定の角度ごとに、前記露光用の光の照度が更に設定されており、
     前記第2被膜に対して露光することは、前記露光マップに従って照度を調節しつつ、前記表面に対して前記露光用の光を照射することを含み、
     前記露光マップを設定することは、前記回転速度が前記速度基準値より小さい値に設定されている角度での前記露光用の光の照度を、照度基準値よりも小さい値に設定することを含む、請求項14に記載の基板処理方法。
    In the exposure map, an illuminance of the light for exposure is further set for each of the predetermined angles,
    exposing the second coating includes irradiating the surface with the exposing light while adjusting irradiance according to the exposure map;
    15. The substrate processing method of claim 14, wherein setting the exposure map includes setting an illuminance of the exposure light at an angle at which the rotation speed is set to a value smaller than the speed reference value to a value smaller than an illuminance reference value.
  16.  前記第2被膜に対して露光することは、開口が設けられたマスク部材を介して、前記表面に対して露光用の光を照射することを含み、
     前記露光マップでは、所定の角度ごとに、前記露光幅と、前記露光用の光が出射される方向における前記マスク部材の位置とが設定されており、
     前記第2被膜に対して露光することは、前記露光マップに従って前記露光用の光が出射される方向における前記マスク部材の位置を調節することを更に含み、
     前記露光マップを設定することは、前記表面の前記周縁領域における反りの状態を示す反り情報に基づいて、前記所定の角度ごとに、前記露光用の光が出射される方向における前記マスク部材の位置を設定することを含む、請求項1~3のいずれか一項に記載の基板処理方法。
    exposing the second coating to light includes irradiating the surface with light for exposure through a mask member having an opening;
    In the exposure map, the exposure width and the position of the mask member in the direction in which the exposure light is emitted are set for each predetermined angle,
    exposing the second coating further includes adjusting a position of the mask member in a direction in which the exposing light is emitted according to the exposure map;
    4. The substrate processing method according to claim 1, wherein setting the exposure map includes setting a position of the mask member in a direction in which the exposure light is emitted for each of the predetermined angles based on warpage information indicating a state of warpage in the peripheral region of the surface.
  17.  基板の表面に被膜の形成を行う被膜形成部と、
     前記表面における周縁領域に対する露光を行う周辺露光部と、
     前記表面に第1被膜が形成された状態の前記基板の前記表面における前記周縁領域を撮像して得られる撮像画像を取得する画像情報取得部と、
     前記撮像画像に基づいて、前記基板の中心まわりの周方向位置と、前記基板の径方向における前記第1被膜の外縁位置との関係を示すエッジ情報を生成するエッジ情報生成部と、
     前記エッジ情報に基づいて、前記周方向位置と、前記径方向における露光幅の設定値との関係を示す露光マップを設定する露光マップ設定部と、
     前記撮像画像が得られた後に、前記表面のうちの少なくとも前記周縁領域に第2被膜を形成するように前記被膜形成部を制御する膜形成制御部と、
     前記露光マップに従って、前記周縁領域において前記第2被膜に対して露光するように前記周辺露光部を制御する露光制御部と、を備える、基板処理装置。
    a film forming unit that forms a film on the surface of the substrate;
    a peripheral exposure unit that exposes a peripheral region of the surface;
    an image information acquisition unit that acquires an image of the peripheral region of the surface of the substrate in a state where a first coating is formed on the surface;
    an edge information generating unit that generates edge information indicating a relationship between a circumferential direction position around a center of the substrate and an outer edge position of the first coating in a radial direction of the substrate based on the captured image;
    an exposure map setting unit that sets an exposure map indicating a relationship between the circumferential position and a set value of an exposure width in the radial direction based on the edge information;
    a film formation control unit that controls the film forming unit to form a second film on at least the peripheral region of the surface after the captured image is obtained;
    an exposure control unit that controls the peripheral exposure unit to expose the second coating in the peripheral region in accordance with the exposure map.
  18.  前記基板の前記表面における前記周縁領域を撮像可能な検査部を更に備え、
     前記画像情報取得部は、前記検査部から前記撮像画像を取得する、請求項17に記載の基板処理装置。
    an inspection unit capable of imaging the peripheral region on the front surface of the substrate;
    The substrate processing apparatus according to claim 17 , wherein the image information acquisition unit acquires the captured image from the inspection unit.
  19.  前記露光マップ設定部は、前記エッジ情報に基づいて前記露光マップを設定する際に、所定の角度ごとに、露光する範囲のうちの前記基板の中心に近い一端の位置を、前記エッジ情報で示される前記外縁位置から一定値ずらすように、前記露光幅を設定する、請求項17に記載の基板処理装置。 The substrate processing apparatus of claim 17, wherein the exposure map setting unit, when setting the exposure map based on the edge information, sets the exposure width so that, for each predetermined angle, the position of one end of the exposed range closest to the center of the substrate is shifted by a fixed value from the outer edge position indicated by the edge information.
  20.  前記露光マップ設定部は、前記露光マップにおいて、所定の角度ごとに、前記露光幅を設定し、
     前記エッジ情報生成部は、前記所定の角度ごとに、前記外縁位置を算出する、請求項17~19のいずれか一項に記載の基板処理装置。

     
    the exposure map setting unit sets the exposure width for each predetermined angle in the exposure map;
    The substrate processing apparatus according to any one of claims 17 to 19, wherein the edge information generating section calculates the outer edge position for each of the predetermined angles.

PCT/JP2024/013834 2023-04-17 2024-04-03 Substrate processing method and substrate processing apparatus WO2024219234A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-067024 2023-04-17
JP2023067024 2023-04-17
JP2024038298 2024-03-12
JP2024-038298 2024-03-12

Publications (1)

Publication Number Publication Date
WO2024219234A1 true WO2024219234A1 (en) 2024-10-24

Family

ID=93152866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013834 WO2024219234A1 (en) 2023-04-17 2024-04-03 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
WO (1) WO2024219234A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098520A (en) * 2006-10-13 2008-04-24 Tokyo Electron Ltd Surroundings exposing apparatus, coating/development apparatus, surroundings exposing method, coating/development method, and memory medium
JP2012114191A (en) * 2010-11-24 2012-06-14 Tokyo Electron Ltd Periphery exposure device and method for the same
JP2014222761A (en) * 2014-07-01 2014-11-27 東京エレクトロン株式会社 Substrate processing method and record medium recorded with program for executing substrate processing method
JP2016134444A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Exposure device, exposure system, and method of manufacturing article
JP2019519818A (en) * 2016-06-30 2019-07-11 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Edge exposure apparatus and method
JP2021015992A (en) * 2020-10-29 2021-02-12 東京エレクトロン株式会社 Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2022184046A (en) * 2021-05-31 2022-12-13 東京エレクトロン株式会社 Outer periphery coating method, substrate processing apparatus, and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098520A (en) * 2006-10-13 2008-04-24 Tokyo Electron Ltd Surroundings exposing apparatus, coating/development apparatus, surroundings exposing method, coating/development method, and memory medium
JP2012114191A (en) * 2010-11-24 2012-06-14 Tokyo Electron Ltd Periphery exposure device and method for the same
JP2014222761A (en) * 2014-07-01 2014-11-27 東京エレクトロン株式会社 Substrate processing method and record medium recorded with program for executing substrate processing method
JP2016134444A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Exposure device, exposure system, and method of manufacturing article
JP2019519818A (en) * 2016-06-30 2019-07-11 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Edge exposure apparatus and method
JP2021015992A (en) * 2020-10-29 2021-02-12 東京エレクトロン株式会社 Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2022184046A (en) * 2021-05-31 2022-12-13 東京エレクトロン株式会社 Outer periphery coating method, substrate processing apparatus, and storage medium

Similar Documents

Publication Publication Date Title
TWI783270B (en) Substrate processing method, substrate processing apparatus and a computer-readable storage medium
JP6244329B2 (en) Substrate inspection method, substrate processing system, and computer storage medium
JP5566265B2 (en) Substrate processing apparatus, program, computer storage medium, and substrate transfer method
JP2002190446A (en) Apparatus and method for forming resist pattern
JP6308958B2 (en) Substrate processing apparatus, substrate processing method, program, and computer storage medium
US20220252507A1 (en) Substrate processing apparatus, substrate inspecting method, and storage medium
US11823922B2 (en) Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and computer-readable recording medium
TWI818077B (en) Substrate inspection method, substrate inspection device and recording medium
KR102437083B1 (en) Assist exposure apparatus and method of obtaining exposure distribution
WO2024219234A1 (en) Substrate processing method and substrate processing apparatus
JP6423064B2 (en) Substrate processing system
JP6524185B2 (en) Substrate processing system
JP2010040748A (en) Liquid-immersion exposure method and liquid-immersion exposure apparatus
JP6322840B2 (en) Resist film removal method, resist film removal apparatus, and storage medium
KR20230100230A (en) Apparutus and method for treating substrate
JP2021015992A (en) Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2007311469A (en) Processing method of substrate, program and substrate processing system
JP2017092306A (en) Substrate processing apparatus and substrate processing method
KR20230100172A (en) Apparatus and method for treating substrate
KR20220167224A (en) Substrate inspection device, substrate inspection method, and storage medium
KR20230038922A (en) Apparatus and method for treating substrate
TW202219463A (en) Warpage estimation device and warpage estimation method
JP2019050417A (en) Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2020025118A (en) Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2006147627A (en) Method of detecting synchronous precision of exposure device and method of detecting aberration