Nothing Special   »   [go: up one dir, main page]

WO2024217187A1 - 天线和电子设备 - Google Patents

天线和电子设备 Download PDF

Info

Publication number
WO2024217187A1
WO2024217187A1 PCT/CN2024/081348 CN2024081348W WO2024217187A1 WO 2024217187 A1 WO2024217187 A1 WO 2024217187A1 CN 2024081348 W CN2024081348 W CN 2024081348W WO 2024217187 A1 WO2024217187 A1 WO 2024217187A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
feeding
electrode layer
substructures
opening
Prior art date
Application number
PCT/CN2024/081348
Other languages
English (en)
French (fr)
Inventor
潘成
张士桥
方家
罗宇
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024217187A1 publication Critical patent/WO2024217187A1/zh

Links

Definitions

  • the present disclosure belongs to the field of communication technology, and particularly relates to an antenna and an electronic device.
  • microwave circuits With the development of modern communication systems, the requirements for the integration and low loss of microwave circuits are getting higher and higher. In microwave circuits, only one transmission line structure cannot meet the needs of microwave device and circuit design. Therefore, in the same microwave system, it is necessary to include multiple transmission lines and microwave components.
  • an electrical signal needs to be applied to a signal transmission line in the antenna through a feeding structure.
  • the feeding structure is fed through a slit to achieve electrical connection between the feeding structure and the signal transmission line, and the design of the slit affects the feeding effect.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provides an antenna and an electronic device.
  • an embodiment of the present disclosure provides an antenna, which includes a first dielectric substrate and a second dielectric substrate, a phase adjustment structure located between the first dielectric substrate and the second dielectric substrate, a reference electrode layer disposed on the first dielectric substrate, and at least one feeding structure; wherein,
  • the reference electrode layer has at least one opening, and the phase adjustment structure has a feeding end; one of the feeding structures is electrically connected to a feeding end of the phase adjustment structure through one of the openings;
  • the opening includes at least one first substructure; at least part of the first substructure has a width in the middle position that is not greater than the width at both ends in the length direction thereof.
  • the orthographic projection of the feeding end on the first dielectric substrate passes through a middle position of an orthographic projection of the first substructure on the first dielectric substrate.
  • the opening includes two first substructures; the middle positions of the two first substructures intersect, and the width of the middle positions of the two first substructures in the length direction is not greater than Width at both ends.
  • the opening is an H-shaped opening.
  • the H-shaped opening includes three first substructures, and the width of the three first substructures of the H-shaped opening at the middle position is not greater than the width at both ends in their respective length directions.
  • the H-shaped opening includes three first substructures, and the width of two parallel first substructures in the middle position in the length direction thereof is not greater than the width at both ends.
  • the H-shaped opening includes three first substructures, and the first substructure located between two parallel first substructures has a width in the middle position in the length direction that is no greater than the widths at both ends.
  • the H-shaped opening includes three first substructures, and the first substructure located between two parallel first substructures has two ends that overlap with the middle positions of the two parallel first substructures.
  • the first substructure is a straight-line structure, with a first side edge and a second side edge extending in the length direction and arranged opposite to each other; at least one of the first side edge and the second side edge is a curve or a broken line.
  • the reference electrode layer is located on a side of the first dielectric substrate away from the second dielectric substrate; the antenna further includes a third dielectric substrate, which is arranged on a side of the reference electrode layer away from the first dielectric substrate; and the feeding structure is arranged on a side of the third dielectric substrate away from the reference electrode layer.
  • the phase adjustment structure includes: a first electrode layer arranged on a side of the first dielectric substrate close to the second dielectric substrate, a second electrode layer arranged on a side of the second dielectric substrate close to the first dielectric substrate, and an adjustable dielectric layer located between the first electrode layer and the second electrode layer.
  • the phase adjustment structure includes: a second electrode layer arranged on a side of the first dielectric substrate close to the second dielectric substrate, a first electrode layer arranged on a side of the second dielectric substrate close to the first dielectric substrate, and an adjustable dielectric layer located between the first electrode layer and the second electrode layer; the second electrode layer is used as the reference electrode layer.
  • the phase adjustment structure includes two feeding ends, namely a first feeding end and a second feeding end;
  • the reference electrode layer includes two openings, namely a first opening and a second opening;
  • the feeding structure includes two feeding structures, namely a first feeding structure and a second feeding structure; the first feeding structure is connected to the first feeding end through the first opening, and the second feeding structure is connected to the second feeding end through the second opening;
  • the first electrode layer includes a first transmission structure and a second transmission structure, a first transmission line and a second transmission line; the main circuit of the first transmission structure is used as the first feeding end, and the two branches of the first transmission structure are respectively connected to the first end of the first transmission line and the first end of the second transmission line; the main circuit of the second transmission structure is used as the second feeding end, and the two branches of the second transmission structure are respectively connected to the second end of the first transmission line and the second end of the second transmission line;
  • the second electrode layer includes a plurality of patch electrodes, and the patch electrodes overlap with orthographic projections of the first transmission line and the second transmission line on the first dielectric substrate.
  • the first transmission line includes a first trunk line and a plurality of first branches connected to one side of the extending direction of the first trunk line
  • the second transmission line includes a second trunk line and a plurality of second branches connected to one side of the extending direction of the second trunk line;
  • the orthographic projections of one of the patch electrodes, one of the first branch nodes, and one of the second branch nodes on the first dielectric substrate overlap.
  • an embodiment of the present disclosure provides an electronic device, comprising any one of the antennas described above.
  • FIG. 1 is a cross-sectional view of an antenna provided in an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of an antenna provided in an embodiment of the present disclosure.
  • FIG. 3 is a top view of the antenna provided in an embodiment of the present disclosure.
  • FIG. 4 is another top view of the antenna provided in an embodiment of the present disclosure.
  • FIG. 5 is a top view of the phase adjustment structure in an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view taken along the line AA′ of FIG. 5 .
  • FIG. 7 is another top view of the phase adjustment structure in the embodiment of the present disclosure.
  • Fig. 8 is a cross-sectional view taken along the B-B' direction of Fig. 7 .
  • 9-13 are top views of the openings provided in the embodiments of the present disclosure.
  • microwave circuits With the development of modern communication systems, the requirements for the integration and low loss of microwave circuits are getting higher and higher. In microwave circuits, only one transmission line structure cannot meet the needs of microwave device and circuit design. Therefore, in the same microwave system, it is necessary to include multiple transmission lines and microwave components.
  • the antenna includes a first dielectric substrate and a second dielectric substrate, a phase adjustment structure located between the first dielectric substrate and the second dielectric substrate, a reference electrode layer arranged on the first dielectric substrate, and at least one feeding structure.
  • the reference electrode layer has at least one opening, and the phase adjustment structure has a feeding end; a feeding structure is electrically connected to a feeding end of the phase adjustment structure through an opening.
  • Waveguides are usually used for feeding, and common transmission schemes include metal waveguides, dielectric waveguides, and air waveguides. However, for metal waveguide type signal transmission devices, due to their large size and sturdy structure, they are difficult to integrate with other electronic devices.
  • an embodiment of the present disclosure provides an antenna, which includes a first dielectric substrate and a second dielectric substrate, a phase adjustment structure located between the first dielectric substrate and the second dielectric substrate, a reference electrode layer arranged on the first dielectric substrate, and at least one feeding structure.
  • the reference electrode layer has at least one opening, the phase adjustment structure has a feeding end; a feeding structure is electrically connected to a feeding end of the phase adjustment structure through an opening.
  • the opening includes at least one first substructure, and at least part of the first substructure has a width in the middle position in the length direction that is not greater than the width at both ends.
  • FIG. 1 is a cross-sectional view of the antenna provided by the embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the antenna provided by the embodiment of the present disclosure
  • FIG. 3 is a top view of the antenna provided by the embodiment of the present disclosure
  • FIG. 4 is another top view of the antenna provided by the embodiment of the present disclosure. As shown in FIGS.
  • the antenna comprises a first dielectric substrate 1 and a second dielectric substrate 2, a phase adjustment structure located between the first dielectric substrate and the second dielectric substrate 2, a reference electrode layer 4 arranged on the first dielectric substrate 1, and at least one feeding structure 7; wherein the reference electrode layer 4 has at least one opening 10, and the phase adjustment structure has a feeding end 501; a feeding structure 7 is electrically connected to a feeding end 501 of the phase adjustment structure through an opening 10; the opening 10 comprises at least one first substructure 101; and at least part of the first substructure 101 has a width in the middle position in the length direction that is not greater than the width at both ends.
  • the reference electrode layer 4 is located on the side of the first dielectric substrate 1 away from the second dielectric substrate 2; the antenna further includes a third dielectric substrate 3, which is disposed on the reference electrode layer 4.
  • the feeding structure 7 is arranged on the side of the third dielectric substrate 3 away from the reference electrode layer 4.
  • the phase adjustment structure includes: a first electrode layer 5 disposed on a side of the first dielectric substrate 1 close to the second dielectric substrate 2, a second electrode layer 6 disposed on a side of the second dielectric substrate 2 close to the first dielectric substrate 1, and an adjustable dielectric layer 8 located between the first electrode layer 5 and the second electrode layer 6.
  • the adjustable dielectric layer 8 may be a liquid crystal layer, which deflects under a certain voltage to achieve signal phase shifting.
  • the antenna in the embodiment of the present disclosure may be an antenna based on a liquid crystal phase shifter.
  • the opening 10 is used to couple the signal of the feeding structure 7 to the feeding end 501 of the phase adjustment unit.
  • the opening 10 includes at least one first substructure 101, and at least one first substructure 101 has a width in the middle position that is smaller than the width at both ends in its length direction.
  • the opening 10 may be formed by one first substructure 101 or by multiple first substructures 101, and the specific adjustment may be made according to the actual usage scenario.
  • the phase adjustment structure includes two feeding terminals 501, which are respectively the first feeding terminal and the second feeding terminal; the opening 10 of the reference electrode layer 4 includes two, which are respectively the first opening 11 and the second opening 12; the feeding structure 7 includes two, which are respectively the first feeding structure 701 and the second feeding structure 702; the first feeding structure 701 is connected to the first feeding terminal through the first opening 11, and the second feeding structure 702 is connected to the first feeding terminal through the second opening 12.
  • the first feeding structure 701 can be used to input a signal into the first feeding terminal of the phase adjustment structure, so that the phase adjustment structure can shift the phase thereof, and the second feeding structure 702 is used to receive the output signal transmitted from the first feeding terminal after the phase adjustment structure has been phase-shifted, and transmit the output signal to the corresponding position.
  • FIG5 is a top view of the phase adjustment structure in the embodiment of the present disclosure
  • FIG6 is a cross-sectional view of FIG5 along the A-A' direction.
  • the first electrode layer 5 includes a first transmission structure and a second transmission structure, a first transmission line 502 and a second transmission line 503; the main path of the first transmission structure is used as a first feeding end, and the two branches of the first transmission structure are respectively connected to the first end of the first transmission line 502 and the first end of the second transmission line 503; the main path of the second transmission structure is used as a first feeding end, and the second transmission structure
  • the two branches are connected to the second end of the first transmission line 502 and the second end of the second transmission line 503 respectively.
  • the second electrode layer 6 includes a plurality of patch electrodes 601, and the patch electrodes 601 overlap with the orthographic projections of the first transmission line 502 and the second transmission line 503 on the first dielectric substrate 1.
  • the second electrode layer 6 is close to one end of the first transmission structure or the second transmission structure, and is connected to a reference voltage.
  • the plurality of patch electrodes 601 on the second electrode layer 6 can be connected by a signal line, and a reference voltage is applied to all of them.
  • the patch electrode 601 and the transmission line form a capacitor, so that the patch electrode 601 and the transmission line are offset, thereby achieving phase shift.
  • the distance D between the overlapping position N1 of the feeding structure 7, the feeding end 501 and the opening 10 and the edge of the device should be greater than or equal to ⁇ /2.
  • first transmission structure and the second transmission structure can be balun components or other structures, and no further limitation is made here.
  • the first transmission line 502 includes a first trunk line 5021 and a plurality of first branches 5022 connected to one side of the extension direction of the first trunk line 5021
  • the second transmission line 503 includes a second trunk line 5031 and a plurality of second branches 5032 connected to one side of the extension direction of the second trunk line 5031.
  • the orthographic projections of a patch electrode 601, a first branch 5022, and a second branch 5032 on the first dielectric substrate 1 overlap.
  • Arranging a plurality of branches on the first transmission line 502 and the second transmission line 503 to form a capacitor with the patch electrode 601 can increase the capacitance value of the capacitor without affecting the transmission of the signal on the first transmission line 502 and the second transmission line 503.
  • the disclosed embodiment also provides another antenna, which, with continued reference to FIGS. 2-4, includes a first dielectric substrate 1 and a second dielectric substrate 2, a phase adjustment structure located between the first dielectric substrate and the second dielectric substrate 2, a reference electrode layer 4 arranged on the first dielectric substrate 1, and at least one feeding structure 7; wherein, the reference electrode layer 4 has at least one opening 10, the phase adjustment structure has a feeding end 501; a feeding structure 7 is electrically connected to a feeding end 501 of the phase adjustment structure through an opening 10; the opening 10 includes at least one first substructure 101; at least part of the first substructure 101 has a width in the middle position in its length direction that is not greater than the width at both ends.
  • the phase adjustment structure includes: a second electrode layer 6 arranged on the side of the first dielectric substrate 1 close to the second dielectric substrate 2, a first electrode layer 5 arranged on the side of the second dielectric substrate 2 close to the first dielectric substrate 1, and an adjustable dielectric layer 8 located between the first electrode layer 5 and the second electrode layer 6; the second electrode layer 6 is used as the reference electrode layer 4.
  • the antenna in the embodiment of the present disclosure may be an antenna based on a liquid crystal phase shifter.
  • the opening 10 is used to couple the signal of the feeding structure 7 to the feeding end 501 of the phase adjustment unit.
  • the opening 10 includes at least one first substructure 101, and at least one first substructure 101 has a width in the middle position that is smaller than the width at both ends in its length direction.
  • the opening 10 may be formed by one first substructure 101 or by multiple first substructures 101, and the specific adjustment may be made according to the actual usage scenario.
  • the phase adjustment structure includes two feeding terminals 501, which are respectively the first feeding terminal and the second feeding terminal; the opening 10 of the reference electrode layer 4 includes two, which are respectively the first opening 11 and the second opening 12; the feeding structure 7 includes two, which are respectively the first feeding structure 701 and the second feeding structure 702; the first feeding structure 701 is connected to the first feeding terminal through the first opening 11, and the second feeding structure 702 is connected to the first feeding terminal through the second opening 12.
  • the first feeding structure 701 can be used to input a signal into the first feeding terminal of the phase adjustment structure, so that the phase adjustment structure can shift the phase thereof, and the second feeding structure 702 is used to receive the output signal transmitted from the first feeding terminal after the phase adjustment structure has been phase-shifted, and transmit the output signal to the corresponding position.
  • FIG7 is another top view of the phase adjustment structure in the embodiment of the present disclosure
  • FIG8 is a cross-sectional view of FIG7 in the direction of BB'.
  • the first electrode layer 5 includes a first transmission structure and a second transmission structure, a first transmission line 502 and a second transmission line 503; the main path of the first transmission structure is used as a first feeding end, and the two branches of the first transmission structure are respectively connected to the first end of the first transmission line 502 and the first end of the second transmission line 503; the main path of the second transmission structure is used as a first feeding end, and the two branches of the second transmission structure are respectively connected to the second end of the first transmission line 502 and the second end of the second transmission line 503.
  • the second electrode layer 6 includes a plurality of patch electrodes 601, and the patch electrodes 601 are connected to the first transmission line 502.
  • the orthographic projection of the second transmission line 503 on the first dielectric substrate 1 overlaps.
  • the second electrode layer 6 is close to one end of the first transmission structure or the second transmission structure, and is connected to a reference voltage.
  • the multiple patch electrodes 601 on the second electrode layer 6 can be connected by a signal line, and the reference voltage is applied to all of them.
  • the patch electrode 601 and the transmission line form a capacitor, so that the line between the patch electrode 601 and the transmission line is offset to achieve phase shift.
  • the distance D between the overlapping position N1 of the feeding structure 7, the feeding end 501 and the opening 10 and the edge of the device should be greater than or equal to ⁇ /2.
  • first transmission structure and the second transmission structure can be balun components or other structures, and no further limitation is made here.
  • the first transmission line 502 includes a first trunk line 5021 and a plurality of first branches 5022 connected to one side of the extension direction of the first trunk line 5021
  • the second transmission line 503 includes a second trunk line 5031 and a plurality of second branches 5032 connected to one side of the extension direction of the second trunk line 5031.
  • the orthographic projections of a patch electrode 601, a first branch 5022 and a second branch 5032 on the first dielectric substrate 1 overlap.
  • the first transmission line 502 and the second transmission line 503 are provided with a plurality of branches to form a capacitor with the patch electrode 601, so that the capacitance value can be increased without affecting the transmission of the signal on the first transmission line 502 and the second transmission line 503.
  • a fourth dielectric substrate is arranged on the side of the second dielectric substrate 2 away from the first dielectric substrate 1, a radiating portion is arranged on the fourth dielectric substrate, and the phase-shifted signal is coupled to the radiating portion through the opening 10 for the antenna to transmit the signal; or the phase adjustment structure is optimized, the number of substrates or the structure of the electrode layer is changed. Only two exemplary preferred solutions are provided here without specific limitation.
  • the materials of the feeding structure 7, the reference electrode layer 4, the first electrode layer 5 and the second electrode layer 6 can be one or more of low-resistance and low-loss metal materials such as copper, gold and silver.
  • the preparation method can be prepared by magnetron sputtering, thermal evaporation or electroplating or a combination of methods, for example: first sputtering to form a seed layer, and then electroplating to thicken the seed layer to form an electrode layer.
  • the first dielectric substrate 1, the second dielectric substrate 2 and the third dielectric substrate 3 can be made of commonly used PCB insulating materials such as polytetrafluoroethylene glass fiber pressing plate, phenolic paper laminate, phenolic glass cloth laminate, etc., or can be made of hard materials with low microwave loss such as quartz, high-temperature glass, ordinary glass, etc.
  • the materials of different dielectric substrates can be the same or different.
  • the specific material selection is not specifically limited here, and technicians in related fields can adjust it according to actual conditions.
  • the adjustable dielectric layer 8 can also use other dielectrics with adjustable dielectric constants, such as graphene.
  • the thickness and specific materials of the adjustable dielectric layer 8 can also be adjusted according to actual conditions, and are not specifically limited here.
  • Figures 9-13 are top views of the opening provided by the embodiment of the present disclosure.
  • the first substructure 101 is a straight-line structure, with a first side and a second side extending in the length direction and arranged opposite to each other; at least one of the first side and the second side is a curve or a broken line.
  • the first side and/or the second side is a curve, it can be an arc, a parabola or a hyperbola (when both the first side and the second side are curves), or a broken line.
  • the opening 10 is provided with a plurality of first substructures 101
  • the first side and the second side of some of the first substructures 101 can be a straight line.
  • the orthographic projection of the feeding end 501 on the first dielectric substrate 1 passes through the middle position of the orthographic projection of a first substructure 101 on the first dielectric substrate 1.
  • the position where the orthographic projections of the feeding end 501 and the feeding structure 7 on the first dielectric substrate 1 overlap corresponds to at least the middle position of a first substructure 101.
  • the inflection point of the broken line is at the middle position of the first substructure 101, and when the first side and/or the second side of the first substructure 101 is an arc, the top of the arc is at the middle position of the first substructure 101.
  • the opening 10 includes two first substructures 101; the middle positions of the two first substructures 101 intersect, and the width of the middle position of the two first substructures 101 in the length direction is not greater than the width of the two ends.
  • the position where the feeding end 501 and the feeding structure 7 overlap in the orthographic projection of the first dielectric substrate 1 corresponds to the middle position of a first substructure 101.
  • the arc top of the arc is at the middle position of the first substructure 101 in the length direction.
  • the first substructure 101 includes recessed areas on both sides of the orthographic projection of the first dielectric substrate 1.
  • the length of the first substructure 101 is 2a
  • the maximum width of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is b
  • the width of the narrowest part of the first substructure 101 is w.
  • the narrowest part of the first substructure 101 is in the middle position, so the width of the middle position is w.
  • the opening 10 includes two first substructures 101; the middle positions of the two first substructures 101 intersect, and the width of the middle position of the two first substructures 101 in the length direction is not greater than the width of the two ends.
  • the position where the feeding end 501 and the feeding structure 7 overlap in the orthographic projection of the first dielectric substrate 1 corresponds to the intersection of the two first substructures 101.
  • the arc top of the arc is at the middle position of the first substructure 101 in the length direction.
  • the first substructure 101 includes recessed areas on both sides of the orthographic projection of the first dielectric substrate 1.
  • the length of the first substructure 101 is 2a
  • the maximum width of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is b
  • the width of the narrowest part of the first substructure 101 is w.
  • the narrowest part of the first substructure 101 is in the middle position, so the width of the middle position is w, the middle positions of the two first substructures 101 intersect, and the two first substructures 101 are perpendicular to each other; of course, it can also have a certain angle, such as an acute angle of 45°, 60° or other angles, and the intersection position of the two first substructures 101 may not be the middle position.
  • a certain angle such as an acute angle of 45°, 60° or other angles
  • the intersection position of the two first substructures 101 may not be the middle position.
  • the cross-setting of two first substructures 101 has a better coupling effect, an improved coupling strength, and a relatively larger bandwidth of the antenna or microwave device to which it is applicable; and, compared with the traditional H-shaped slit, its manufacturing process is simpler.
  • the opening 10 is an H-shaped opening 10, that is, the opening 10 includes three first sub-openings 10, wherein the width of at least one first sub-structure 101 in the length direction is not greater than the width of both ends.
  • the H-shaped slit in the prior art is composed of three rectangles, while in the present application, the H-shaped opening 10 is formed by three first sub-structures 101, wherein the width of at least one first sub-structure 101 in the length direction is not greater than the width of both ends.
  • the H-shaped opening 10 includes three first substructures 101, and the width of the middle position of the three first substructures 101 of the H-shaped opening 10 is not greater than the width of the two ends in the length direction of each.
  • the H-shaped opening 10 includes three first substructures 101, and the first substructure 101 located between two parallel first substructures 101 has its two ends overlapped with the middle position of the two parallel first substructures 101.
  • the position where the positive projection of the feeding end 501 and the feeding structure 7 of the first dielectric substrate 1 coincides corresponds to the middle position of the first substructure 101 located in the middle among the three first substructures 101.
  • the shapes of the orthographic projections of the three first substructures 101 on the first dielectric substrate 1 are obtained. Since the first side and the second side of the first substructure 101 are arcs, the first substructure 101 includes recessed areas on both sides of the orthographic projection of the first dielectric substrate 1.
  • the length of the first substructure 101 is 2a
  • the maximum width of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is b
  • the width of the narrowest part of the first substructure 101 is w.
  • the narrowest part of the first substructure 101 is in the middle position, so the width of the middle position is w.
  • the H-shaped opening 10 includes three first substructures 101, and the width of the middle position of two parallel first substructures 101 in the length direction is not greater than the width of the two ends.
  • the first substructure 101 between the substructures 101 has its two ends overlapped with the middle positions of the two parallel first substructures 101.
  • the feeding end 501 and the feeding structure 7 are located at the position where the orthographic projection of the first dielectric substrate 1 overlaps, corresponding to the middle position of the first substructure 101 located in the middle among the three first substructures 101.
  • the shape of the orthographic projection of the two parallel first substructures 101 on the first dielectric substrate 1 is obtained. Since the first side and the second side of the first substructure 101 are arcs, the first substructure 101 includes recessed areas on both sides of the orthographic projection of the first dielectric substrate 1.
  • the length of the two parallel first substructures 101 is 2a
  • the maximum width of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is b
  • the width of the narrowest part of the first substructure 101 is w.
  • the narrowest part of the first substructure 101 is in the middle position, so the width of the middle position is w.
  • the H-shaped opening 10 includes three first substructures 101, and the first substructure 101 located between two parallel first substructures 101 has a width in the middle position that is not greater than the width at both ends in the length direction.
  • the H-shaped opening 10 includes three first substructures 101, and the first substructure 101 located between two parallel first substructures 101 has two ends that overlap with the middle positions of the two parallel first substructures 101.
  • the position where the feeding end 501 and the feeding structure 7 overlap the orthographic projection of the first dielectric substrate 1 corresponds to the middle position of the first substructure 101 located in the middle among the three first substructures 101.
  • the shape of the orthographic projection of the first substructure 101 located between the two parallel first substructures 101 on the first dielectric substrate 1 can be obtained. Since the first side and the second side of the first substructure 101 are arcs, the first substructure 101 includes recessed areas on both sides of the orthographic projection of the first dielectric substrate 1.
  • the length of the first substructure 101 located between the two parallel first substructures 101 is 2a
  • the maximum width of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is b
  • the width of the narrowest part of the first substructure 101 is w.
  • the narrowest part of the first substructure 101 is in the middle position, so the width of the middle position is w.
  • the two first substructures 101 arranged in parallel have the same structural dimensions, with a length of L and a width of W; the values of the length L and the width W need to be in a reasonable range for effective feeding, the range of the length L is ⁇ /4 ⁇ L ⁇ , the range of the width W is ⁇ /100 ⁇ W ⁇ /5, and L>a>b.
  • is the dielectric wavelength corresponding to the working center frequency f of the antenna
  • the preferred value of the length L is ⁇ /2
  • the preferred value of the width W is ⁇ /20.
  • the length 2a of the first substructure 101 located between the two parallel first substructures 101 is equal to the length L of the parallel first substructure 101, and the maximum width b of the recessed area of the orthographic projection of the first substructure 101 on the first dielectric substrate 1 is L/6.
  • the first substructure 101 located between two parallel first substructures 101 has a width in the middle position that is not greater than the width at both ends in the length direction.
  • the H-shaped opening 10 provided in the embodiment of the present disclosure has a certain improvement in the transmission coefficient and reflection coefficient when feeding.
  • the H-shaped opening 10 in the embodiment of the present disclosure has a signal improvement of about 1dB during transmission, and at the same time, the reflected signal is reduced by about 3dB, which reduces the amount of reflected signals and increases the amount of transmitted signals, thereby improving the feeding effect.
  • the designs of the several openings 10 and the first substructure 101 provided in the present disclosure can be adjusted according to actual conditions.
  • the first substructure 101 in the opening 10 is made into a structure with a narrow middle and wide ends in its length direction to improve the feeding effect, or to simplify the manufacturing process while ensuring the feeding effect.
  • the various embodiments described above are only multiple preferred examples, which can be changed and adjusted according to actual conditions, and the above-mentioned opening 10 can be used in any microwave device that needs to be fed.
  • manufacturing the phase adjustment device includes the following specific steps:
  • the medium substrate is sent into a cleaning machine and cleaned with chemical liquid and water to remove impurities and dirt on the surface.
  • a seed layer is sputtered on the dielectric substrate, and its thickness is increased by electroplating to form an electrode layer, the material of which may be MTD-Cu, Mo-Al or Ag.
  • the dielectric substrate in the previous step is cleaned and then coated with glue, such as photoresist; the electrode layer is patterned through exposure and development steps, and then the feeding structure 7, the first transmission structure and the second transmission structure are formed through operations such as cleaning, post-baking and stripping.
  • glue such as photoresist
  • the support pillars are manufactured using patterning processing and are subjected to height testing.
  • two dielectric substrates are arranged opposite to each other, and the Rubbing method can be used to align the dielectric substrates arranged opposite to each other.
  • the Rubbing process can achieve high-precision and high-quality alignment of the two opposite substrates. After alignment, glue is applied to fix, and then liquid crystal is injected, and frame sealing glue is applied, and finally vacuum annealing is performed to complete the preparation.
  • liquid crystal phase shifter antennas can be manufactured at one time, so it can also include processes such as cutting and testing.
  • processes such as cutting and testing.
  • the above only provides an exemplary process flow, and no specific limitation is made here.
  • Technical personnel in related fields can adjust the process and manufacturing process according to actual conditions.
  • the opening 10 for feeding provided in the embodiment of the present disclosure can enhance the coupling strength during the feeding process, and can also widen the working bandwidth of the phase shifter or other types of antennas or microwave devices.
  • the air waveguide formed by the opening 10 has the characteristics of small size, easy integration and easy miniaturization, and the transmission loss during the feeding process can be reduced by designing the opening 10 and the first substructure 101 constituting the opening 10.
  • an embodiment of the present disclosure also provides an electronic device, including the antenna provided in the above embodiment. Therefore, the principle of the problem solved by the electronic device in the embodiment of the present disclosure is similar to the principle of the problem solved by the above antenna embodiment of the embodiment of the present disclosure. Based on this, the specific description of an electronic device in the embodiment of the present disclosure can refer to the specific description of the above antenna embodiment, and the repeated parts will not be repeated.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本公开提供一种天线和电子设备,属于通信技术领域。本公开的天线包括第一介质基板和第二介质基板,位于所述第一介基板和所述第二介质基板之间的相位调整结构,设置在所述第一介质基板上的参考电极层,以及至少一个馈电结构;其中,所述参考电极层上具有至少一个开口,所述相位调整结构具有一个馈电端;一个所述馈电结构通过一个所述开口与所述相位调整结构的一个馈电端电连接;所述开口包括至少一个第一子结构;至少部分所述第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。

Description

天线和电子设备 技术领域
本公开属于通信技术领域,具体涉及一种天线和电子设备。
背景技术
随着现代通信系统的发展,对微波电路的集成度和低损耗要求越来越高。在微波电路中,仅凭一种传输线结构无法满足微波器件和电路设计的需要。因此,在同一微波系统中,需要包括多种传输线及微波元器件。
现有技术中,以基于液晶移相器的天线为例,需要通过馈电结构向天线中的信号传输线施加电信号,馈电结构通过一个狭缝进行馈电以实现馈电结构和信号传输线的电连接,而狭缝的设计影响着馈电的效果。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线和电子设备。
第一方面,本公开实施例提供一种天线,其包括第一介质基板和第二介质基板,位于所述第一介基板和所述第二介质基板之间的相位调整结构,设置在所述第一介质基板上的参考电极层,以及至少一个馈电结构;其中,
所述参考电极层上具有至少一个开口,所述相位调整结构具有一个馈电端;一个所述馈电结构通过一个所述开口与所述相位调整结构的一个馈电端电连接;
所述开口包括至少一个第一子结构;至少部分所述第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。
其中,所述馈电端在所述第一介质基板上的正投影穿过一个所述第一子结构在所述第一介质基板上的正投影的中间位置。
其中,所述开口包括两个所述第一子结构;两个所述第一子结构的中间位置相交,且两个所述第一子结构均在其长度方向上,中间位置的宽度不大 于两端的宽度。
其中,所述开口为H型开口。
其中,所述H型开口包括三个所述第一子结构,H型开口的三个所述第一子结构均在各自其长度方向上,中间位置的宽度不大于两端的宽度。
其中,所述H型开口包括三个所述第一子结构,两个平行设置的所述第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。
其中,所述H型开口包括三个所述第一子结构,位于两个平行设置的所述第一子结构之间的所述第一子结构,在其长度方向上,中间位置的宽度不大于两端的宽度。
其中,所述H型开口包括三个所述第一子结构,位于两个平行设置的所述第一子结构之间的所述第一子结构,其两端分别与两个平行设置的所述第一子结构的中间位置重叠。
其中,所述第一子结构为一字形结构,在其长度方向延伸的且相对设置的第一侧边和第二侧边;所述第一侧边和所述第二侧边中的至少一者为曲线或折线。
其中,所述参考电极层位于所述第一介质基板背离所述第二介质基板的一侧;所述天线还包括第三介质基板,所述第三介质基板设置在所述参考电极层背离所述第一介质基板的一侧;馈电结构设置在所述第三介质基板背离所述参考电极层的一侧。
其中,所述相位调整结构包括:设置在第一介质基板靠近所述第二介质基板一侧的第一电极层,设置在所述第二介质基板靠近所述第一介质基板一侧的第二电极层,以及位于所述第一电极层和所述第二电极层之间的可调电介质层。
其中,所述相位调整结构包括:设置在第一介质基板靠近所述第二介质基板一侧的第二电极层,设置在所述第二介质基板靠近所述第一介质基板一侧的第一电极层,以及位于所述第一电极层和所述第二电极层之间的可调电介质层;所述第二电极层用作所述参考电极层。
其中,所述相位调整结构包括两个馈电端分别为第一馈电端和第二馈电端,所述参考电极层的开口包括两个,分别为第一开口和第二开口;所述馈电结构包括两个分别为第一馈电结构和第二馈电结构;所述第一馈电结构通过所述第一开口与所述第一馈电端,所述第二馈电结构通过所述第二开口与所述第二馈电端;
所述第一电极层包括第一传输结构和第二传输结构、第一传输线和第二传输线;所述第一传输结构的主路用作所述第一馈电端,所述第一传输结构的两条支路分别连接所述第一传输线的第一端和所述第二传输线的第一端;所述第二传输结构的主路用作所述第二馈电端,所述第二传输结构的两条支路分别连接所述第一传输线的第二端和所述第二传输线的第二端;
所述第二电极层包括多个贴片电极,所述贴片电极与所述第一传输线和所述第二传输线在第一介质基板上的正投影存在交叠。
其中,所述第一传输线包括第一主干线和连接在所述第一主干线延伸方向一侧的多个第一枝节,所述第二传输线包括第二主干线和连接在所述第二主干线延伸方向一侧的多个第二枝节;
一个所述贴片电极与一个所述第一枝节和一个所述第二枝节在所述第一介质基板上的正投影存在交叠。
第二方面,本公开实施例提供一种电子设备,其包括上述中任一项所述的天线。
附图说明
图1为本公开实施例提供的天线的一种截面图。
图2为本公开实施例提供的天线的一种截面图。
图3为本公开实施例提供的天线的一种俯视图。
图4为本公开实施例提供的天线的另一种俯视图。
图5为本公开实施例中相位调整结构的俯视图。
图6为图5的A-A’方向的截面图。
图7为本公开实施例中相位调整结构的另一种俯视图。
图8为图7的B-B’方向的截面图。
图9-13为本公开实施例提供的开口俯视图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着现代通信系统的发展,对微波电路的集成度和低损耗要求越来越高。在微波电路中,仅凭一种传输线结构无法满足微波器件和电路设计的需要。因此,在同一微波系统中,需要包括多种传输线及微波元器件。
以天线为例,其包括第一介质基板和第二介质基板,位于第一介基板和第二介质基板之间的相位调整结构,设置在第一介质基板上的参考电极层,以及至少一个馈电结构。参考电极层上具有至少一个开口,相位调整结构具有一个馈电端;一个馈电结构通过一个开口与相位调整结构的一个馈电端电连接。通常使用波导进行馈电,常见有金属波导、介质波导和空气波导等传输方案。但对于金属波导类型的信号传输装置,由于其体积大且结构坚固,很难与其他电子设备集成。虽然为了降低波导的体积,提出了介质集成波导的方法,制造出较薄的介质波导,但是由于介质集成波导中堆叠了许多的介 质材料,导致会产生较大的传输损耗。对于空气波导来说,在馈电结构和信号传输线之间的膜层制作一个开口用于馈电,当空气波导非常稀薄的时候,就会出现严重的阻抗失配现象,很难进行微波馈电。空气波导通常在金属材料上制作一个开口,例如狭缝。在馈电结构和馈电端之间制作一个开口,通过开口进行耦合,将馈电结构的电信号传输给相位调整结构的馈电端,或是,将相位调整结构的电信号传输给馈电结构。这个开口的形状和宽度影响着馈电的效果,因此如何提高馈电的效果并且降低信号传输损耗需要对开口进行设计。
鉴于此,本公开实施例提供一种天线,其包括第一介质基板和第二介质基板,位于第一介基板和第二介质基板之间的相位调整结构,设置在第一介质基板上的参考电极层,以及至少一个馈电结构。参考电极层上具有至少一个开口,相位调整结构具有一个馈电端;一个馈电结构通过一个开口与相位调整结构的一个馈电端电连接。开口包括至少一个第一子结构,至少部分第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。
以下结合具体实施例和附图对本公开中的天线和电子设备进行进一步的具体说明。
本公开实施例提供一种天线,图1为本公开实施例提供的天线的一种截面图,图2为本公开实施例提供的天线的一种截面图,图3为本公开实施例提供的天线的一种俯视图,图4为本公开实施例提供的天线的另一种俯视图,如图1-4所示,其包括第一介质基板1和第二介质基板2,位于第一介基板和第二介质基板2之间的相位调整结构,设置在第一介质基板1上的参考电极层4,以及至少一个馈电结构7;其中,参考电极层4上具有至少一个开口10,相位调整结构具有一个馈电端501;一个馈电结构7通过一个开口10与相位调整结构的一个馈电端501电连接;开口10包括至少一个第一子结构101;至少部分第一子结构101在其长度方向上,中间位置的宽度不大于两端的宽度。
继续参考图1,参考电极层4位于第一介质基板1背离第二介质基板2的一侧;天线还包括第三介质基板3,第三介质基板3设置在参考电极层4 背离第一介质基板1的一侧;馈电结构7设置在第三介质基板3背离参考电极层4的一侧。多设置一层基板,可以在每个介质基板的一层表面上制作电极层或是馈电结构7,无需采用双面工艺,因此大大降低了工艺的难度。在制作中,第一介质基板1的厚度大于参考电极层4的厚度。
进一步的,相位调整结构包括:设置在第一介质基板1靠近第二介质基板2一侧的第一电极层5,设置在第二介质基板2靠近第一介质基板1一侧的第二电极层6,以及位于第一电极层5和第二电极层6之间的可调电介质层8。可调电介质层8可以是液晶层,液晶层在一定的电压下发生偏转,实现信号移相。
本公开实施例中的天线可以是基于液晶移相器的天线。其开口10用于将馈电结构7的信号耦合至相位调整单元的馈电端501中,开口10包括至少一个第一子结构101,并且至少有一份第一子结构101在其长度方向上,中间位置的宽度小于两端的宽度,可以由一个第一子结构101形成开口10,也可以由多个第一子结构101形成开口10,具体可以根据实际使用场景进行调整。
在一些示例中,继续参考图4,相位调整结构包括两个馈电端501分别为第一馈电端和第一馈电端,参考电极层4的开口10包括两个,分别为第一开口11和第二开口12;馈电结构7包括两个,分别为第一馈电结构701和第二馈电结构702;第一馈电结构701通过第一开口11与第一馈电端,第二馈电结构702通过第二开口12与第一馈电端。其中,第一馈电结构701可以用于将信号输入到相位调整结构的第一馈电端中,用于相位调整结构对其进行移相,第二馈电结构702用于接收相位调整结构经过移相后的由第一馈电端传输出来的输出信号,并将输出信号传输到相应的位置。
图5为本公开实施例中相位调整结构的俯视图,图6为图5的A-A’方向的截面图,如图5、6所示,第一电极层5包括第一传输结构和第二传输结构、第一传输线502和第二传输线503;第一传输结构的主路用作第一馈电端,第一传输结构的两条支路分别连接第一传输线502的第一端和第二传输线503的第一端;第二传输结构的主路用作第一馈电端,第二传输结构的 两条支路分别连接第一传输线502的第二端和第二传输线503的第二端。第二电极层6包括多个贴片电极601,贴片电极601与第一传输线502和第二传输线503在第一介质基板1上的正投影存在交叠。第二电极层6靠近第一传输结构或第二传输结构的一端,连接参考电压,第二电极层6上的多个贴片电极601可以由一根信号线进行连接,并且均被施加参考电压。贴片电极601和传输线形成电容,使贴片电极601和传输线之间的也行发生偏移,实现移相。
优选的,继续参考图3,为了确保馈电结构7可以有效的通过开口10将信号耦合到相位调整结构的馈电端501,馈电结构7、馈电端501和开口10三者的重合位置N1距离器件的边缘的距离D应当大于或等于λ/2。最优选的方案为,D=λ/2,此时馈电结构7向馈电端501耦合信号的效果最好。
需要说明的是,第一传输结构和第二传输结构可以是巴伦组件,也可以是其他结构,在此不做进一步的限定。
进一步的,继续参考图5、6,第一传输线502包括第一主干线5021和连接在第一主干线5021延伸方向一侧的多个第一枝节5022,第二传输线503包括第二主干线5031和连接在第二主干线5031延伸方向一侧的多个第二枝节5032。一个贴片电极601与一个第一枝节5022和一个第二枝节5032在第一介质基板1上的正投影存在交叠。将第一传输线502和第二传输线503设置多个枝节用于与贴片电极601形成电容,可以增大电容容值,并且不会影响到信号在第一传输线502和第二传输线503的传输。
本公开实施例还提供了另一种天线,继续参考图2-4其包括第一介质基板1和第二介质基板2,位于第一介基板和第二介质基板2之间的相位调整结构,设置在第一介质基板1上的参考电极层4,以及至少一个馈电结构7;其中,参考电极层4上具有至少一个开口10,相位调整结构具有一个馈电端501;一个馈电结构7通过一个开口10与相位调整结构的一个馈电端501电连接;开口10包括至少一个第一子结构101;至少部分第一子结构101在其长度方向上,中间位置的宽度不大于两端的宽度。
进一步的,相位调整结构包括:设置在第一介质基板1靠近第二介质基板2一侧的第二电极层6,设置在第二介质基板2靠近第一介质基板1一侧的第一电极层5,以及位于第一电极层5和第二电极层6之间的可调电介质层8;第二电极层6用作参考电极层4。采用本公开实施例中的结构,其可以减少一个介质基板,使整个器件更加紧凑,更便于微波器件的小型化,也可以节省出空间使设备集成其他器件。由于馈电结构7与相位调整结构的馈电端501仅仅间隔一层介质基板,其馈电的效果更好,并且损耗更低。
本公开实施例中的天线可以是基于液晶移相器的天线。其开口10用于将馈电结构7的信号耦合至相位调整单元的馈电端501中,开口10包括至少一个第一子结构101,并且至少有一份第一子结构101在其长度方向上,中间位置的宽度小于两端的宽度,可以由一个第一子结构101形成开口10,也可以由多个第一子结构101形成开口10,具体可以根据实际使用场景进行调整。
在一些示例中,继续参考图4,相位调整结构包括两个馈电端501分别为第一馈电端和第一馈电端,参考电极层4的开口10包括两个,分别为第一开口11和第二开口12;馈电结构7包括两个,分别为第一馈电结构701和第二馈电结构702;第一馈电结构701通过第一开口11与第一馈电端,第二馈电结构702通过第二开口12与第一馈电端。其中,第一馈电结构701可以用于将信号输入到相位调整结构的第一馈电端中,用于相位调整结构对其进行移相,第二馈电结构702用于接收相位调整结构经过移相后的由第一馈电端传输出来的输出信号,并将输出信号传输到相应的位置。
图7为本公开实施例中相位调整结构的另一种俯视图,图8为图7的B-B’方向的截面图,如图7、8所示,第一电极层5包括第一传输结构和第二传输结构、第一传输线502和第二传输线503;第一传输结构的主路用作第一馈电端,第一传输结构的两条支路分别连接第一传输线502的第一端和第二传输线503的第一端;第二传输结构的主路用作第一馈电端,第二传输结构的两条支路分别连接第一传输线502的第二端和第二传输线503的第二端。第二电极层6包括多个贴片电极601,贴片电极601与第一传输线502 和第二传输线503在第一介质基板1上的正投影存在交叠。第二电极层6靠近第一传输结构或第二传输结构的一端,连接参考电压,第二电极层6上的多个贴片电极601可以由一根信号线进行连接,并且均被施加参考电压。贴片电极601和传输线形成电容,使贴片电极601和传输线之间的也行发生偏移,实现移相。
优选的,继续参考图3,为了确保馈电结构7可以有效的通过开口10将信号耦合到相位调整结构的馈电端501,馈电结构7、馈电端501和开口10三者的重合位置N1距离器件的边缘的距离D应当大于或等于λ/2。最优选的方案为,D=λ/2,此时馈电结构7向馈电端501耦合信号的效果最好。
需要说明的是,第一传输结构和第二传输结构可以是巴伦组件,也可以是其他结构,在此不做进一步的限定。
进一步的,第一传输线502包括第一主干线5021和连接在第一主干线5021延伸方向一侧的多个第一枝节5022,第二传输线503包括第二主干线5031和连接在第二主干线5031延伸方向一侧的多个第二枝节5032。一个贴片电极601与一个第一枝节5022和一个第二枝节5032在第一介质基板1上的正投影存在交叠。将第一传输线502和第二传输线503设置多个枝节用于与贴片电极601形成电容,可以增大电容容值,并且不会影响到信号在第一传输线502和第二传输线503的传输。
需要说明的是,上述两种结构为一种示例性的优选结构,可以根据实际情况进行调整,例如在第二介质基板2背离第一介质基板1一侧设置第四介质基板,在第四介质基板设置辐射部,通过开口10将移相后的信号耦合至辐射部用于天线发射信号;亦或是优化相位调整结构,更改基板的数量或是电极层的结构。在此仅提供两种示例性的优选方案,不做具体的限定。
需要说明的是,馈电结构7、参考电极层4、第一电极层5和第二电极层6的材料可以是铜、金和银等低电阻低损耗的金属材料中的一种或几种。其制备方法可以采用磁控溅射、热蒸镀或电镀等方式制备或者组合方式制备,例如:先进行溅射形成种子层,再进行电镀使种子层变厚形成电极层。 第一介质基板1、第二介质基板2和第三介质基板3可以采用聚四氟乙烯玻璃纤维压板、酚醛纸层压板、酚醛玻璃布层压板等常用PCB绝缘板材,也可采用石英、高温玻璃、普通玻璃等具有较低微波损耗的硬性材质,其不同的介质基板的材质可以相同也可以不同,具体的选材在此不做具体限定,相关领域技术人员可以根据实际情况进行调整。可调电介质层8除了可以采用液晶材料之外,还可以采用其他介电常数可调的介质,例如石墨烯。可调电介质层8的厚度和具体材料也可以根据实际情况进行调整,在此不做具体限定。
在本公开实施例中,图9-13为本公开实施例提供的开口俯视图,如图9-13所示,第一子结构101为一字形结构,在其长度方向延伸的且相对设置的第一侧边和第二侧边;第一侧边和第二侧边中的至少一者为曲线或折线。第一侧边和/或第二侧边在是曲线时,可以是弧线、抛物线或是双曲线(第一侧边和第二侧边均为曲线时),也可以是折线,当然,在开口10设置有多个第一子结构101时,部分第一子结构101的第一侧边和第二侧边可以是直线。
在一些示例中,继续参考图3,馈电端501在第一介质基板1上的正投影穿过一个第一子结构101在第一介质基板1上的正投影的中间位置。为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置至少对应一个第一子结构101的中间位置。当第一子结构101的第一侧边和/或第二侧边为折线时,折线的拐点在第一子结构101的中间位置,当第一子结构101的第一侧边和/或第二侧边为弧线时,弧线的弧顶在第一子结构101的中间位置。
在一些示例中,如图9所示,开口10包括两个第一子结构101;两个第一子结构101的中间位置相交,且两个第一子结构101均在其长度方向上,中间位置的宽度不大于两端的宽度。为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置对应一个第一子结构101的中间位置。以第一子结构101的第一侧边和第二侧边为弧线为例,弧线的弧顶在第一子结构101在其长度方向上的中间位置。
优选的,从第一子结构101在第一介质基板1的正投影的形状可得,第一子结构101由于第一侧边和第二侧边为弧线,因此第一子结构101在第一介质基板1的正投影的两侧包括凹陷区域。第一子结构101的长度为2a,第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度为b,第一子结构101最窄部分的宽度为w。本示例中,第一子结构101的最窄部分在中间位置,因此中间位置的宽度为w。为了保证天线的馈电结构7和相位调整结构的馈电端501的耦合效果,需要满足λ≥a>b≥λ/100,λ/2≥w≥λ/100;其中,λ为天线的工作的中心频率f对应的介质波长。仅设置一个第一子结构101,其制作工艺简单,由于耦合效果相对较弱,适用于带宽较窄的微波器件;当天线或是其他微波器件为窄带宽类的器件时,可以制作一个一字型的第一子结构101,以在不影响器件效果的前提下使制作工艺更加简单。
在一些示例中,如图10所示,开口10包括两个第一子结构101;两个第一子结构101的中间位置相交,且两个第一子结构101均在其长度方向上,中间位置的宽度不大于两端的宽度。为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置对应两个第一子结构101的相交的位置。以第一子结构101的第一侧边和第二侧边为弧线为例,弧线的弧顶在第一子结构101在其长度方向上的中间位置。
优选的,从两个第一子结构101在第一介质基板1的正投影的形状可得,第一子结构101由于第一侧边和第二侧边为弧线,因此第一子结构101在第一介质基板1的正投影的两侧包括凹陷区域。第一子结构101的长度为2a,第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度为b,第一子结构101最窄部分的宽度为w。本示例中,第一子结构101的最窄部分在中间位置,因此中间位置的宽度为w,两个第一子结构101的中间位置相交,并且两个第一子结构101互相垂直;当然,也可以带有一定角度,例如锐角夹角为45°、60°或是其他角度,两个第一子结构101的相交位置也可以不是中间位置,在此仅仅给出一种示例,具体的设计可以根据实际需求进行调整。为了保证天线的馈电结构7和相位调整结构的馈电端501的耦合效果, 需要满足λ≥a>b≥λ/100,λ/2≥w≥λ/100;其中,λ为天线的工作的中心频率f对应的介质波长。交叉设置两个第一子结构101相较于设置一个一字型的第一子结构101,其耦合效果更好,耦合强度得到提升,其适用的天线或是微波器件的带宽相对也可以更大;并且,相较于传统的H型狭缝,其制作工艺更加简单。
在一些示例中,开口10为H型开口10,即开口10包括三个第一子开口10,其中,至少一个第一子结构101在其长度方向上,中间位置的宽度不大于两端的宽度。现有技术中的H型狭缝,由三个矩形组成,而本申请中,由三个第一子结构101形成H型开口10,其中至少一个第一子结构101在其长度方向上,中间位置的宽度不大于两端的宽度。
在一些示例中,如图11所示,H型开口10包括三个第一子结构101,H型开口10的三个第一子结构101均在各自其长度方向上,中间位置的宽度不大于两端的宽度。H型开口10包括三个第一子结构101,位于两个平行设置的第一子结构101之间的第一子结构101,其两端分别与两个平行设置的第一子结构101的中间位置重叠。其中,为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置,对应三个第一子结构101中位于中间的第一子结构101的中间位置。
优选的,三个第一子结构101在第一介质基板1的正投影的形状可得,第一子结构101由于第一侧边和第二侧边为弧线,因此第一子结构101在第一介质基板1的正投影的两侧包括凹陷区域。第一子结构101的长度为2a,第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度为b,第一子结构101最窄部分的宽度为w。本示例中,第一子结构101的最窄部分在中间位置,因此中间位置的宽度为w。为了保证天线的馈电结构7和相位调整结构的馈电端501的耦合效果,需要满足λ≥a>b≥λ/100,λ/2≥w≥λ/100;其中,λ为天线的工作的中心频率f对应的介质波长。
在一些示例中,如图12所示,H型开口10包括三个第一子结构101,两个平行设置的第一子结构101在其长度方向上,中间位置的宽度不大于两端的宽度。H型开口10包括三个第一子结构101,位于两个平行设置的第一 子结构101之间的第一子结构101,其两端分别与两个平行设置的第一子结构101的中间位置重叠。其中,为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置,对应三个第一子结构101中位于中间的第一子结构101的中间位置。
优选的,两个平行设置的第一子结构101在第一介质基板1的正投影的形状可得,第一子结构101由于第一侧边和第二侧边为弧线,因此第一子结构101在第一介质基板1的正投影的两侧包括凹陷区域。平行设置的两个第一子结构101的长度为2a,第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度为b,第一子结构101最窄部分的宽度为w。本示例中,第一子结构101的最窄部分在中间位置,因此中间位置的宽度为w。为了保证天线的馈电结构7和相位调整结构的馈电端501的耦合效果,需要满足λ≥a>b≥λ/100,λ/2≥w≥λ/100;其中,λ为天线的工作的中心频率f对应的介质波长。
在一些示例中,如图13所示,H型开口10包括三个第一子结构101,位于两个平行设置的第一子结构101之间的第一子结构101,在其长度方向上,中间位置的宽度不大于两端的宽度。H型开口10包括三个第一子结构101,位于两个平行设置的第一子结构101之间的第一子结构101,其两端分别与两个平行设置的第一子结构101的中间位置重叠。其中,为了提高馈电的效果,馈电端501和馈电结构7在第一介质基板1正投影重合的位置,对应三个第一子结构101中位于中间的第一子结构101的中间位置。
优选的,位于两个平行设置的第一子结构101之间的第一子结构101在第一介质基板1的正投影的形状可得,第一子结构101由于第一侧边和第二侧边为弧线,因此第一子结构101在第一介质基板1的正投影的两侧包括凹陷区域。位于两个平行设置的第一子结构101之间的第一子结构101的长度为2a,第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度为b,第一子结构101最窄部分的宽度为w。本示例中,第一子结构101的最窄部分在中间位置,因此中间位置的宽度为w。为了保证天线的馈电结构7和相位调整结构的馈电端501的耦合效果,需要满足λ≥a>b≥λ/100,λ/2≥w ≥λ/100;平行设置的两个第一子结构101的结构尺寸相同,其长度为L,宽度为W;长度L和宽度W的数值需要在一个合理的范围才可以有效馈电,长度L的范围在λ/4≤L≤λ,宽度W的范围在λ/100≤W≤λ/5,且L>a>b。其中,λ为天线的工作的中心频率f对应的介质波长,长度L的优选值为λ/2,宽度W的优选值为λ/20。进一步的,位于两个平行设置的第一子结构101之间的第一子结构101的长度2a与平行设置的第一子结构101的长度L相等,且第一子结构101在第一介质基板1的正投影的凹陷区域最大宽度b为L/6。
在本公开实施例中,H型开口10中,位于两个平行设置的第一子结构101中间的第一子结构101,在其长度方向上,中间位置的宽度不大于两端的宽度。采用本公开实施例中提供的H型开口10,相比于现有技术中,由三个矩形部分组成的H型缝隙,在进行馈电时,其传输系数和反射系数都有一定的改善。采用本公开实施中的开口10用于进行馈电的天线,在λ=10Ghz的工作频率下进行实验,本公开实施例中的H型开口10相比于传统的H型缝隙,其传输时信号提升大约1dB,同时,被反射回来的信号降低大约3dB,其降低了信号被反射的量,并增加了透过的信号的量,改善了馈电的效果。
需要说明的是,本公开中提供的几种开口10的设计和第一子结构101的设计均可以根据实际情况进行调整,在制作过程中,将开口10中的第一子结构101制作成在其长度方向上,中间窄两端款的结构,实现对馈电效果的改善,或是在保证了馈电效果的前提下,简化制作工艺。上述中的各个实施例仅仅为多个优选例子,可以根据实际情况进行改变和调整,并且上述的开口10可以用于任何需要进行馈电的微波器件中。
在本公开实施例中,制作相位调整装置包括以下具体步骤:
S1:将介质基板进行清洗。
具体的,将介质基板送入清洗机中,利用化学液体和水进行清洗,去除表面的杂质和污垢
S2:在介质基板上进行溅射和电镀。
具体的,在介质基板上溅射一层种子层,并通过电镀的方式增加其厚度,使其形成电极层。其材料可以是MTD-Cu、Mo-Al或Ag。
S3:图案化处理。
具体的,对上一步骤中的介质基板进行清洗,之后进行涂胶,例如:光刻胶;通过曝光显影的步骤将电极层进行图案化处理,再经过清洗、后烘和剥离等操作形成馈电结构7、第一传输结构和第二传输结构。
S4:制作支撑柱。
具体的,采用图案化处理制作支撑柱并且进行高度测试。
S5:注入液晶并对盒。
具体的,两个介质基板相对设置,可以采用Rubbing的方法将相对设置的介质基板进行对齐,Rubbing工艺可以实现高精度和高质量的将两个相对的基板进行对盒。对盒后进行涂胶固定,然后液晶注入,并涂覆封框胶,最后进行真空退火,完成制备。
需要说明的是,可以一次制作多个液晶移相器天线,因此还可以包括切割和测试等工艺,上述仅仅提供一种示例性的工艺流程,在此不做具体的限定,相关领域技术人员可以根据实际情况调整工艺和制作流程。
本公开实施例中提供的用于进行馈电的开口10可以增强在馈电过程中的耦合强度,还可以展宽移相器或是其他类型的天线或微波器件的工作带宽。相比于金属波导,这种开口10形成的空气波导,具有体积小,易于集成并易于小型化的特点,并且通过对开口10以及组成开口10的第一子结构101的设计可以降低馈电过程中的传输损耗。
基于同一发明构思,本公开实施例还提供了一种电子设备,包括上述实施例提供的天线,因此,本公开实施例中电子设备所解决问题的原理,与本公开实施例上述一种天线的实施例所解决问题的原理相似,基于此,本公开实施例一种电子设备的具体说明,可以参见上述一种天线实施例的具体说明,重复之处不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种天线,其包括第一介质基板和第二介质基板,位于所述第一介基板和所述第二介质基板之间的相位调整结构,设置在所述第一介质基板上的参考电极层,以及至少一个馈电结构;其中,
    所述参考电极层上具有至少一个开口,所述相位调整结构具有一个馈电端;一个所述馈电结构通过一个所述开口与所述相位调整结构的一个馈电端电连接;
    所述开口包括至少一个第一子结构;至少部分所述第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。
  2. 根据权利要求1所述的天线,其中,所述馈电端在所述第一介质基板上的正投影穿过一个所述第一子结构在所述第一介质基板上的正投影的中间位置。
  3. 根据权利要求1所述的天线,其中,所述开口包括两个所述第一子结构;两个所述第一子结构的中间位置相交,且两个所述第一子结构均在其长度方向上,中间位置的宽度不大于两端的宽度。
  4. 根据权利要求1所述的天线,其中,所述开口为H型开口。
  5. 根据权利要求4所述的天线,其中,所述H型开口包括三个所述第一子结构,H型开口的三个所述第一子结构均在各自其长度方向上,中间位置的宽度不大于两端的宽度。
  6. 根据权利要求4所述的天线,其中,所述H型开口包括三个所述第一子结构,两个平行设置的所述第一子结构在其长度方向上,中间位置的宽度不大于两端的宽度。
  7. 根据权利要求4所述的天线,其中,所述H型开口包括三个所述第一子结构,位于两个平行设置的所述第一子结构之间的所述第一子结构,在其长度方向上,中间位置的宽度不大于两端的宽度。
  8. 根据权利要求4所述的天线,其中,所述H型开口包括三个所述第一子结构,位于两个平行设置的所述第一子结构之间的所述第一子结构,其 两端分别与两个平行设置的所述第一子结构的中间位置重叠。
  9. 根据权利要求1-8中任一所述的天线,其中,所述第一子结构为一字形结构,在其长度方向延伸的且相对设置的第一侧边和第二侧边;所述第一侧边和所述第二侧边中的至少一者为曲线或折线。
  10. 根据权利要求1所述的天线,其中,所述参考电极层位于所述第一介质基板背离所述第二介质基板的一侧;所述天线还包括第三介质基板,所述第三介质基板设置在所述参考电极层背离所述第一介质基板的一侧;馈电结构设置在所述第三介质基板背离所述参考电极层的一侧。
  11. 根据权利要求10所述的天线,其中,所述相位调整结构包括:设置在第一介质基板靠近所述第二介质基板一侧的第一电极层,设置在所述第二介质基板靠近所述第一介质基板一侧的第二电极层,以及位于所述第一电极层和所述第二电极层之间的可调电介质层。
  12. 根据权利要求1所述的天线,其中,所述相位调整结构包括:设置在第一介质基板靠近所述第二介质基板一侧的第二电极层,设置在所述第二介质基板靠近所述第一介质基板一侧的第一电极层,以及位于所述第一电极层和所述第二电极层之间的可调电介质层;所述第二电极层用作所述参考电极层。
  13. 根据权利要求11或12所述的天线,其中,所述相位调整结构包括两个馈电端分别为第一馈电端和第二馈电端,所述参考电极层的开口包括两个,分别为第一开口和第二开口;所述馈电结构包括两个分别为第一馈电结构和第二馈电结构;所述第一馈电结构通过所述第一开口与所述第一馈电端,所述第二馈电结构通过所述第二开口与所述第二馈电端;
    所述第一电极层包括第一传输结构和第二传输结构、第一传输线和第二传输线;所述第一传输结构的主路用作所述第一馈电端,所述第一传输结构的两条支路分别连接所述第一传输线的第一端和所述第二传输线的第一端;所述第二传输结构的主路用作所述第二馈电端,所述第二传输结构的两条支路分别连接所述第一传输线的第二端和所述第二传输线的第二端;
    所述第二电极层包括多个贴片电极,所述贴片电极与所述第一传输线和所述第二传输线在第一介质基板上的正投影存在交叠。
  14. 根据权利要求13所述的天线,其中,所述第一传输线包括第一主干线和连接在所述第一主干线延伸方向一侧的多个第一枝节,所述第二传输线包括第二主干线和连接在所述第二主干线延伸方向一侧的多个第二枝节;
    一个所述贴片电极与一个所述第一枝节和一个所述第二枝节在所述第一介质基板上的正投影存在交叠。
  15. 一种电子设备,其包括权利要求1-14中任一项所述的天线。
PCT/CN2024/081348 2023-04-19 2024-03-13 天线和电子设备 WO2024217187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310423073.0 2023-04-19
CN202310423073.0A CN118825632A (zh) 2023-04-19 2023-04-19 天线和电子设备

Publications (1)

Publication Number Publication Date
WO2024217187A1 true WO2024217187A1 (zh) 2024-10-24

Family

ID=93079354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/081348 WO2024217187A1 (zh) 2023-04-19 2024-03-13 天线和电子设备

Country Status (2)

Country Link
CN (1) CN118825632A (zh)
WO (1) WO2024217187A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187281A (ja) * 2002-11-18 2004-07-02 Matsushita Electric Ind Co Ltd 伝送線路接続装置
JP2007311944A (ja) * 2006-05-16 2007-11-29 Murata Mfg Co Ltd スロットアンテナ,高周波モジュール及び無線通信機
KR101248670B1 (ko) * 2011-10-25 2013-03-28 숭실대학교산학협력단 병렬 스터브를 가지는 개구부 결합 급전을 이용한 마이크로스트립 패치 안테나
US20220140800A1 (en) * 2020-03-24 2022-05-05 Boe Technology Group Co., Ltd. Phase shifter and antenna
US20220352623A1 (en) * 2020-11-10 2022-11-03 Boe Technology Group Co., Ltd. Antenna and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187281A (ja) * 2002-11-18 2004-07-02 Matsushita Electric Ind Co Ltd 伝送線路接続装置
JP2007311944A (ja) * 2006-05-16 2007-11-29 Murata Mfg Co Ltd スロットアンテナ,高周波モジュール及び無線通信機
KR101248670B1 (ko) * 2011-10-25 2013-03-28 숭실대학교산학협력단 병렬 스터브를 가지는 개구부 결합 급전을 이용한 마이크로스트립 패치 안테나
US20220140800A1 (en) * 2020-03-24 2022-05-05 Boe Technology Group Co., Ltd. Phase shifter and antenna
US20220352623A1 (en) * 2020-11-10 2022-11-03 Boe Technology Group Co., Ltd. Antenna and manufacturing method thereof

Also Published As

Publication number Publication date
CN118825632A (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
US11119364B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
EP4016724B1 (en) Phase shifter and antenna
US11158916B2 (en) Phase shifter and liquid crystal antenna
US11978942B2 (en) Feeding structure, microwave radio frequency device and antenna
US11637369B2 (en) Signal conditioner, antenna device and manufacturing method
KR100582548B1 (ko) 강유전체 박막을 이용한 pbg 구조의 위상 변위기
CN108598654A (zh) 一种基于基片集成间隙波导的耦合器
CN109301424A (zh) 一种基片集成间隙波导耦合器设计方法
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
CN113950772B (zh) 移相器及其制备方法、天线
WO2024217187A1 (zh) 天线和电子设备
WO2024020792A1 (zh) 一种可调谐移相器、电子设备
JP5217947B2 (ja) 高周波機能素子構造及び高周波機能部品
WO2023159635A1 (zh) 移相器和天线
WO2024000289A1 (zh) 一种移相器单元及移相器
WO2024148538A1 (zh) 一种移相器、天线及电子设备
JP2001203501A (ja) 可変型移相器
CN114678674B (zh) 一种混合阶级联宽带大功率电桥
WO2024098275A1 (zh) 移相器、移相器阵列、天线阵列及电子设备
US11843154B2 (en) Balun assembly, microwave radio frequency device and antenna
CN115548621B (zh) 一种基于硅基工艺的片上平行线耦合器
WO2023246542A1 (zh) 移相器及电子设备
CN108511868A (zh) 一种基于类梳状线基片集成波导的多层3dB定向耦合器
US20230024122A1 (en) Small-size millimeter wave on-chip 90-degree 3db couplers based on solenoid structures
Chang et al. Reflective Liquid-Crystal Phase Shifter based on Periodically Loaded Differential Microstrip Lines