Nothing Special   »   [go: up one dir, main page]

WO2024148538A1 - 一种移相器、天线及电子设备 - Google Patents

一种移相器、天线及电子设备 Download PDF

Info

Publication number
WO2024148538A1
WO2024148538A1 PCT/CN2023/071804 CN2023071804W WO2024148538A1 WO 2024148538 A1 WO2024148538 A1 WO 2024148538A1 CN 2023071804 W CN2023071804 W CN 2023071804W WO 2024148538 A1 WO2024148538 A1 WO 2024148538A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hand
electrode
phase shifter
microstrip
Prior art date
Application number
PCT/CN2023/071804
Other languages
English (en)
French (fr)
Inventor
张士桥
方家
曲峰
郑洋
潘成
罗宇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/071804 priority Critical patent/WO2024148538A1/zh
Priority to CN202380008171.6A priority patent/CN118648187A/zh
Publication of WO2024148538A1 publication Critical patent/WO2024148538A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a phase shifter, an antenna and an electronic device.
  • phase shifter is an important core component of the phased array antenna.
  • a typical phased array is composed of thousands of antenna units connected to the phase shifter.
  • Miniaturized, flexible and lightweight phase shifters are essential for phased array antennas.
  • the transmission lines currently used are generally right-handed transmission lines, that is, transmission lines in which the electric field, magnetic field and wave vector follow the right-hand rule.
  • the phase of the output end of the right-handed transmission line is lagging compared to the input end, that is, the phase generated by a 1/4 wavelength transmission line is -90°. As a result, it is not conducive to the miniaturization and integrated design of microwave devices.
  • the present disclosure provides a phase shifter, an antenna and an electronic device, which are used to realize the functional design of a right transmission line compounding a left transmission line and ensure the miniaturized design of the phase shifter.
  • an embodiment of the present disclosure provides a phase shifter, comprising:
  • a first substrate and a second substrate are arranged opposite to each other, and a plurality of phase shifting units are arranged between the first substrate and the second substrate, wherein each of the phase shifting units includes a right-hand microstrip unit, and the plurality of right-hand microstrip units are arranged along a first direction to form a right-hand microstrip line, and each of the phase shifting units includes a left-hand microstrip unit connected in series with the corresponding right-hand microstrip unit, and the plurality of right-hand microstrip units and the plurality of left-hand microstrip units form a composite left-hand and right-hand transmission line.
  • each of the left-hand microstrip units includes a left-hand series capacitor connected in series with the corresponding right-hand microstrip unit, and a left-hand parallel inductor connected in parallel with the left-hand series capacitor.
  • a third substrate is further included between the first substrate and the second substrate, and each of the left-handed series capacitors includes a first electrode located on a side of the first substrate close to the third substrate, and a second electrode located on a side of the third substrate away from the first substrate, and the orthographic projections of the first electrode and the second electrode on the third substrate at least partially overlap.
  • a third electrode adjacent to the first electrode is further provided on a side of the first substrate close to the third substrate, and the third electrode is connected to the second electrode through a via hole penetrating the right-hand microstrip unit corresponding to the second electrode.
  • the second electrode and the right-hand microstrip unit corresponding to the second electrode, the orthographic projection on the third substrate includes a first sub-portion, a second sub-portion, and a third sub-portion connected in sequence, the first sub-portion and the third sub-portion are extended along the first direction, and the second sub-portion is extended along a second direction intersecting with the first direction.
  • each of the left-handed shunt inductors includes a bending line connected to the second electrode and extending along a second direction intersecting the first direction, and an orthographic projection of the bending line on the second substrate is arranged in a non-linear shape.
  • the orthographic projection of the bending line on the second substrate includes at least one repeatedly arranged rectangular unit.
  • the cross-sectional shape of the orthographic projection of the bending line on the second substrate includes a first strip structure, a second strip structure, a third strip structure, a fourth strip structure and a fifth strip structure connected in sequence, and the first strip structure, the second strip structure, the third strip structure, the fourth strip structure and the fifth strip structure form a "6"-shaped structure.
  • the orthographic projection of the bending line on the second substrate includes at least one ring structure arranged in a spiral shape.
  • it further includes a grounding electrode located on a side of the second substrate close to the third substrate, and the orthographic projections of the first electrode and the second electrode on the second substrate completely fall within the range of the orthographic projection of the grounding electrode on the second substrate.
  • each of the right-hand microstrip units includes A right-hand series inductor connected in series with the left-hand microstrip unit, and a right-hand shunt capacitor connected in parallel with the right-hand series inductor; wherein the right-hand series inductor is connected in series with the left-hand series capacitor, and the right-hand shunt capacitor is connected in parallel with the left-hand shunt inductor.
  • an adjustable dielectric layer is further provided between the second electrode and the ground electrode, each of the right-handed parallel capacitors is composed of the corresponding second electrode, the adjustable dielectric layer and the ground electrode, and each of the right-handed series inductors is composed of the corresponding right-handed microstrip unit.
  • an embodiment of the present disclosure further provides an antenna, comprising:
  • a phase shifter as described in any of the above items and a feeding unit and a radiating unit respectively coupled to the phase shifter;
  • the feeding unit is configured to couple the received radio frequency signal to the phase shifter
  • the phase shifter is configured to phase shift the radio frequency signal to obtain a phase-shifted signal, and couple the phase-shifted signal to the radiating unit so that the radiating unit radiates the electromagnetic wave signal corresponding to the phase-shifted signal.
  • an embodiment of the present disclosure further provides an electronic device, comprising:
  • the antennas are arranged in an array as described above.
  • FIG1 is a schematic diagram of a planar distribution of a phase shifter provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a cross-sectional structure along the direction indicated by MM in FIG1 ;
  • FIG. 3 is a schematic diagram of a top view of a composite left-handed transmission line in a phase shifting unit in a phase shifter provided by an embodiment of the present disclosure on a second substrate;
  • FIG4 is a schematic diagram of an equivalent circuit of a left-handed microstrip unit in a phase shifter provided by an embodiment of the present disclosure
  • FIG5 is a schematic diagram of a cross-sectional structure along the direction indicated by NN in FIG1 ;
  • FIG6 is a schematic diagram of a laminate structure of area A in FIG1 ;
  • FIG7 is a schematic diagram of a top view of a second electrode and a right-hand microstrip unit corresponding to the second electrode in a phase shifter provided by an embodiment of the present disclosure on a third substrate;
  • FIG8 is a schematic diagram of a top view of a first electrode on a third substrate in a phase shifter provided by an embodiment of the present disclosure
  • FIG9 is an enlarged view of one structure of area B in FIG7 ;
  • FIG10 is a schematic diagram of a top view of a bending line in a phase shifter provided in an embodiment of the present disclosure
  • FIG11 is a schematic diagram of a top view of a bending line in a phase shifter provided in an embodiment of the present disclosure
  • FIG12 is an equivalent circuit diagram of a right-handed microstrip unit in a phase shifter provided by an embodiment of the present disclosure
  • FIG13 is an equivalent circuit diagram of a phase shifter in a phase shifter provided in an embodiment of the present disclosure.
  • FIG14 is a schematic diagram of a reflection coefficient S11 of a phase shifter including 11 phase shifting units provided by an embodiment of the present disclosure
  • FIG15 is a schematic diagram of a transmission coefficient S21 of a phase shifter including 11 phase shifting units provided by an embodiment of the present disclosure
  • FIG16 is a schematic diagram of a phase shifter including 11 phase shifting units provided in an embodiment of the present disclosure.
  • FIG17 is a schematic diagram of a reflection coefficient S11 of a phase shifter including 9 phase shifting units provided by an embodiment of the present disclosure
  • FIG18 is a schematic diagram of a phase shifter including nine phase shift units provided in an embodiment of the present disclosure.
  • FIG19 is a schematic diagram of a reflection coefficient S11 of a phase shifter including seven phase shifting units provided by an embodiment of the present disclosure
  • FIG20 is a schematic diagram of a phase shifter including seven phase shift units provided in an embodiment of the present disclosure
  • FIG21 is a structural block diagram of an antenna provided in an embodiment of the present disclosure.
  • FIG. 22 is a structural block diagram of an electronic device provided in an embodiment of the present disclosure.
  • right-handed transmission lines i.e., general microstrip lines
  • the phase of the output end of the right-handed transmission line lags behind that of the input end, i.e., the phase generated by a 1/4 wavelength transmission line is -90°.
  • the left-handed transmission line is just the opposite, and the phase of its output end is ahead of that of its input end, i.e., the phase generated by a 1/4 wavelength transmission line is +90°.
  • a 3/4 wavelength transmission line is required; while for the left-handed transmission line, to achieve a phase shift of -270°, only a 1/4 wavelength transmission line is required.
  • the embodiments of the present disclosure provide a phase shifter, an antenna, and an electronic device for realizing the functional design of a right transmission line compounding a left transmission line, thereby ensuring the miniaturized design of the phase shifter.
  • Figure 1 is a schematic diagram of a planar distribution of a phase shifter provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a cross-sectional structure along the direction indicated by MM in Figure 1
  • Figure 3 is a schematic diagram of a top view of a composite left-right-handed transmission line 40 in a phase shift unit 30 on a second substrate 20.
  • the phase shifter includes:
  • a first substrate 10 and a second substrate 20 are arranged opposite to each other, and a plurality of phase shifting units 30 are arranged between the first substrate 10 and the second substrate 20, wherein each of the phase shifting units 30 includes a right-handed microstrip unit 32, and the plurality of right-handed microstrip units 32 are arranged along a first direction to form a right-handed microstrip line 31, and each of the phase shifting units 30 includes a left-handed microstrip unit 33 connected in series with the corresponding right-handed microstrip unit 32, and the plurality of right-handed microstrip units 32 and the plurality of left-handed microstrip units 33 form a composite left-handed transmission line 40.
  • the phase shifter provided by the embodiment of the present disclosure includes a first substrate 10 and a second substrate 20 arranged relatively to each other, and a plurality of phase shift units 30 arranged between the first substrate 10 and the second substrate 20.
  • the first substrate 10 and the second substrate 20 can be glass substrates, or polyimide (PI), or liquid crystal polymer (LCP), or printed circuit board (PCB), or ceramic, etc.
  • the first substrate 10 and the second substrate 20 can also be arranged according to actual application needs, which is not limited here.
  • the plurality of phase shift units 30 arranged between the first substrate 10 and the second substrate 20 can be arranged in a linear array.
  • the specific number of the plurality of phase shift units 30 can be set according to actual application needs, which is not limited here.
  • FIG. 1 illustrates a case where the plurality of phase shift units 30 are 11, but is not limited thereto.
  • each phase shift unit 30 includes a right-hand microstrip unit 32, and a plurality of right-hand microstrip units 32 are arranged along a first direction to form a right-hand microstrip line 31. Moreover, each right-hand microstrip unit 32 is arranged corresponding to the corresponding phase shift unit 30. In particular, in combination with FIG1 , the direction indicated by the arrow X is the first direction, and each right-hand microstrip unit 32 is independently arranged. Accordingly, each adjacent two right-hand microstrip units 32 are spaced apart by a preset distance from each other; in one exemplary embodiment, each right-hand microstrip unit 32 can be arranged at an equal distance.
  • each phase shift unit 30 includes a left-hand microstrip unit 33 connected in series with the corresponding right-hand microstrip unit 32, and accordingly, the phase shifter includes a plurality of left-hand microstrip units 33.
  • the plurality of right-hand microstrip units 32 and the plurality of left-hand microstrip units 33 form a composite left-handed transmission line 40. That is to say, the composite left-handed transmission line 40 has both the characteristics of the left-handed transmission line and the characteristics of the right-handed transmission line. Compared with the conventional right-handed transmission line, the composite left-handed transmission line 40 realizes the left-handed transmission line.
  • the combination of transmission lines has certain advantages in the miniaturization design of microwave devices, thus ensuring the miniaturization and integrated design of phase shifters.
  • each right-handed microstrip unit 32 its electric field, magnetic field and wave vector follow the right-hand rule, and the phase of the corresponding output end is lagging compared with the input end.
  • each left-handed microstrip unit 33 its electric field, magnetic field and wave vector follow the left-hand rule, and the phase of the corresponding output end is leading compared with the input end.
  • each left-hand microstrip unit 33 includes a left-hand series capacitor CL connected in series with the corresponding right-hand microstrip unit 32, and a left-hand parallel inductor LL connected in parallel with the left-hand series capacitor CL .
  • each left-hand microstrip unit 33 includes a left-hand series capacitor CL and a left-hand parallel inductor LL connected in parallel with the left-hand series capacitor CL .
  • Each left-hand microstrip unit 33 is arranged in series with the corresponding right-hand microstrip unit 32.
  • the specific values of the left-hand series capacitor CL and the left-hand parallel inductor LL can be set according to actual application needs and are not limited here.
  • Fig. 5 is a schematic diagram of a cross-sectional structure along the direction indicated by NN in Fig. 1.
  • the phase shifter further includes a third substrate 50 located between the first substrate 10 and the second substrate 20, and each of the left-handed series capacitors CL includes a first electrode 51 located on a side of the first substrate 10 close to the third substrate 50, and a second electrode 52 located on a side of the third substrate 50 away from the first substrate 10, and the orthographic projections of the first electrode 51 and the second electrode 52 on the third substrate 50 at least partially overlap.
  • the phase shifter also includes a third substrate 50 located between the first substrate 10 and the second substrate 20.
  • the third substrate 50 can be a glass substrate, or PI, or LCP, or PCB, or ceramic, etc.
  • the third substrate 50 can also be provided according to the actual application needs, which is not limited here.
  • each left-handed series capacitor CL includes a first electrode 51 located on the side of the first substrate 10 close to the third substrate 50, and a second electrode 52 located on the side of the third substrate 50 away from the first substrate 10. The orthographic projections of the first electrode 51 and the second electrode 52 on the third substrate 50 at least partially overlap.
  • the phase shifter also includes a third substrate 50, and a third substrate 50.
  • the first electrode 51 and the second electrode 52 form a corresponding left-handed series capacitor CL .
  • each first electrode 51 may be periodically disposed on a surface of one side of the first substrate 10 close to the third substrate 50.
  • a third electrode 53 adjacent to the first electrode 51 is further provided on one side of the first substrate 10 close to the third substrate 50 , and the third electrode 53 is connected to the second electrode 52 through a via H penetrating the right-hand microstrip unit 32 corresponding to the second electrode 52 .
  • FIG6 it is a schematic diagram of one of the laminated structures of a single phase shifting unit 30 in the phase shifter. Specifically, a third electrode 53 adjacent to the first electrode 51 is also provided on the side of the first substrate 10 close to the third substrate 50, and the third electrode 53 is connected to the second electrode 52 through a via H penetrating the second electrode 52.
  • FIG6 is a schematic diagram of one of the laminated structures shown in area A in FIG1 .
  • the via H mentioned is actually a metallized via H. In one exemplary embodiment, it can be a structure with a metal film layer attached to the inner wall; in one exemplary embodiment, it can be a structure with a metal material inside. In addition, the via H passes through the third substrate 50.
  • first substrate 10, the second substrate 20 and the third substrate 50 can be PCB insulating materials such as polytetrafluoroethylene glass fiber pressboard, phenolic paper laminate, phenolic glass cloth laminate, etc., or can be hard materials with low microwave loss such as quartz and glass.
  • FIG. 7 it is a schematic diagram of a top view structure of the second electrode 52 and the right-hand microstrip unit 32 corresponding to the second electrode 52 on the third substrate 50.
  • the orthographic projection of the second electrode 52 and the right-hand microstrip unit 32 corresponding to the second electrode 52 on the third substrate 50 includes a first sub-portion 60, a second sub-portion 70 and a third sub-portion 80 connected in sequence, the first sub-portion 60 and the third sub-portion 80 are extended along the first direction, and the second sub-portion 70 is extended along the second direction intersecting the first direction.
  • the orthographic projection of the second electrode 52 and the right-hand microstrip unit 32 corresponding to the second electrode 52 on the third substrate 50 includes a first sub-portion 60, a second sub-portion 70 and a third sub-portion 80 connected in sequence, wherein the first sub-portion 60 and the third sub-portion 80 are extended along a first direction, and the second sub-portion 70 is extended along a second direction intersecting the first direction.
  • the direction indicated by arrow Y is the second direction.
  • the first sub-section 60, the second sub-section 70 and the third sub-section 80 are arranged in a "Z" shape, and the orthographic projection of the first electrode 51 on the third substrate 50 is arranged in a rectangular shape.
  • FIG8 is a schematic diagram of a top view of the structure of the first electrode 51 on the third substrate 50, wherein L c1 represents the length of the rectangle corresponding to the first electrode 51, W c1 represents the width of the rectangle corresponding to the first electrode 51, and P represents the distance between the center points of two adjacent first electrodes 51.
  • L c1 can be 1/8 of the wavelength of the medium with the highest frequency in the working frequency band of the phase shifter
  • W c1 can be 1/10 of the wavelength of the medium with the highest frequency in the working frequency band
  • P can be 1/4 of the wavelength of the medium with the highest frequency in the working frequency band.
  • FIG9 it is a structural enlargement diagram of one of the areas B in FIG7 , wherein W ms represents the width of the right-hand microstrip line 31 , and its specific width can be the width of the 50 ohm impedance corresponding to the highest frequency in the working frequency band, and its specific value can be determined by the impedance calculation software, which will not be described in detail here.
  • the specific values of the relevant structural parameters can also be set according to the actual application needs, which will not be described in detail here.
  • the aforementioned via H can be opened at the end of the third sub-section 80 .
  • each of the left-handed parallel inductors LL includes a bending line 90 connected to the second electrode 52 and extending along a second direction intersecting the first direction, and the orthographic projection of the bending line 90 on the second substrate 20 is non-linear.
  • each left-handed parallel inductor LL includes a meander line 90 connected to the second electrode 52 and extending in a second direction intersecting the first direction.
  • the phase shifter includes a plurality of meander lines 90, each of which constitutes a corresponding left-handed parallel inductor LL .
  • the orthographic projection of the meander line 90 on the second substrate 20 is arranged in a non-linear shape.
  • the second electrode 52, the right-hand microstrip unit 32 corresponding to the second electrode 52, and the bending line 90 can be structures made in the same layer, and can also be an integrally formed structure, thereby simplifying the manufacturing process.
  • the bending line 90 can be arranged in the following ways, but is not limited to the following ways.
  • the orthographic projection of the bending line 90 on the second substrate 20 includes at least one repeatedly arranged rectangular unit. Accordingly, the orthographic projection of the bending line 90 on the second substrate 20 is arranged in a "bow" shape, which can effectively increase the inductance value of the corresponding left-handed parallel inductor LL , which is conducive to ensuring the miniaturization design of the phase shifter.
  • the orthographic projection of the bending line 90 on the second substrate 20 includes a first strip structure 91, a second strip structure 92, a third strip structure 93, a fourth strip structure 94 and a fifth strip structure 95 connected in sequence, and the first strip structure 91, the second strip structure 92, the third strip structure 93, the fourth strip structure 94 and the fifth strip structure 95 form a "6"-shaped structure.
  • the bending line 90 is easier to design and simpler to manufacture.
  • the orthographic projection of the bending line 90 on the second substrate 20 includes at least one ring structure arranged in a spiral shape.
  • the bending line 90 is complex in design and difficult to manufacture, the size of the phase shifter can be reduced to a certain extent.
  • the phase shifter also includes a ground electrode 100 located on a side of the second substrate 20 close to the third substrate 50, and the orthographic projections of the first electrode 51 and the second electrode 52 on the second substrate 20 completely fall within the range of the orthographic projection of the ground electrode 100 on the second substrate 20.
  • the phase shifter also includes a grounding electrode 100 located on the side of the second substrate 20 close to the third substrate 50.
  • the first electrode 51, the second electrode 52 and the grounding electrode 100 can be made of low-resistance, low-power metal materials such as copper, gold, and silver. In actual preparation, magnetron sputtering, thermal evaporation, electroplating, etc. can be used for preparation.
  • the corresponding electrode can be prepared according to the required thickness of the corresponding electrode. The specific implementation process is not described in detail here.
  • the thickness of the metal film layer corresponding to the first electrode 51, the second electrode 52 and the grounding electrode 100 is Greater than the corresponding skin depth.
  • the skin depth is ⁇ represents angular frequency
  • represents magnetic permeability
  • represents electrical conductivity.
  • the orthographic projections of the first electrode 51 and the second electrode 52 on the second substrate 20 completely fall within the range of the orthographic projection of the ground electrode 100 on the second substrate 20 .
  • FIG. 12 is one of the equivalent circuit diagrams of each right-hand microstrip unit 32
  • FIG. 13 is one of the equivalent circuit diagrams of the phase shifter
  • block diagram C represents the equivalent circuit diagram corresponding to a phase shift unit 30.
  • each right-hand microstrip unit 32 includes a right-hand series inductor LR connected in series with the corresponding left-hand microstrip unit 33, and a right-hand parallel capacitor CR1 connected in parallel with the right-hand series inductor LR ; wherein the right-hand series inductor LR is connected in series with the left-hand series capacitor CL , and the right-hand parallel capacitor CR1 is connected in parallel with the left-hand parallel inductor LL . It should be noted that, since two adjacent phase shift units 30 are spaced a certain distance apart, a certain capacitance is formed, as shown by CR2 in FIG. 13.
  • an adjustable dielectric layer 110 is further provided between the second electrode 52 and the ground electrode 100, each of the right-handed parallel capacitors CR1 is composed of the corresponding second electrode 52, the adjustable dielectric layer 110 and the ground electrode 100, and each of the right-handed series inductors LR is composed of the corresponding right-handed microstrip unit 32.
  • the adjustable dielectric layer 110 can be a liquid crystal layer made of liquid crystal material, or a film layer made of graphene material.
  • the adjustable dielectric layer 110 can be a polymer dispersed liquid crystal (PDLC), thereby improving the response time of the phase shifter.
  • PDLC polymer dispersed liquid crystal
  • the thickness of the liquid crystal layer can be 8.6 ⁇ m.
  • each right-hand parallel capacitor CR1 is composed of a corresponding second electrode 52, an adjustable dielectric layer 110 and a ground electrode 100
  • each right-handed series inductor LR is composed of a corresponding right-handed microstrip unit 32 .
  • the left-hand balance condition needs to be met, that is, the left-hand impedance With right hand impedance equal, thus ensuring that there is no stop band between the left-hand frequency band and the right-hand frequency band of the composite left-hand and right-hand transmission line 40.
  • Z represents the series impedance of a single phase shift unit 30
  • Y1 and Y2 represent the parallel admittance of a single phase shift unit 30
  • represents the phase shift constant of a single phase shift unit 30
  • a schematic diagram of its reflection coefficient (Reflection Coefficient) S11 is shown in FIG14, wherein the horizontal axis represents the frequency (Frequency) and the vertical axis represents the reflection coefficient S11. It can be seen that the reflection coefficient S11 of the phase shifter in the working frequency band is less than -15dB; a schematic diagram of the transmission coefficient S21 of the phase shifter is shown in FIG15, wherein the horizontal axis represents the frequency (Frequency) and the vertical axis represents the transmission coefficient (Transmission Coefficient) S21.
  • the insertion loss of the phase shifter is less than -4.15dB; the phase shift amount of the phase shifter is shown in FIG16, wherein the horizontal axis represents the frequency (Frequency) and the vertical axis represents the angle. It can be seen that at the center frequency, the phase shift amount can reach 440°.
  • the schematic diagram of its reflection coefficient S11 is shown in Figure 17. It can be seen that the reflection coefficient S11 of the phase shifter in the working frequency band is less than -15dB; the phase shift amount of the phase shifter is shown in Figure 18, wherein the horizontal axis represents the frequency (Frequency) and the vertical axis represents the angle. It can be seen that the phase shifter can achieve a phase shift of 360° at the center frequency.
  • the schematic diagram of the reflection coefficient S11 is shown in FIG. 19. It can be seen that the reflection coefficient of the phase shifter in the working frequency band is less than -15 dB.
  • the phase shift amount of the phase shifter is shown in FIG. 20, where the horizontal axis represents the frequency and the vertical axis represents the angle. It can be seen that the phase shifter can achieve a phase shift of 280° at the center frequency.
  • impedance mismatch will not occur by changing the number of phase shift units 30 of the liquid crystal phase shifter of the composite left-handed and right-handed transmission line 40, for example, increasing the number of phase shift units 30; or reducing the number of phase shift units 30.
  • DK in the relevant figures represents the dielectric constant of the adjustable dielectric layer 110.
  • the phase shift range of the phase shifter can be changed by changing the number of phase shift units 30, thereby ensuring flexible design of the phase shifter.
  • the number of phase shift units 30 included in the phase shifter can be adjusted according to actual conditions and is not limited here.
  • patterns of related metal film layers can be made on the first substrate 10, the second substrate 20 and the third substrate 50 respectively; the specific manufacturing process can be implemented in the relevant technology and will not be described in detail here. Then, the substrates are aligned and pressed together; taking the adjustable medium layer 110 in the phase shifter as liquid crystal as an example, the liquid crystal is poured in; then, the phase shifter of the required size is cut.
  • an antenna which includes:
  • the feeding unit 300 is configured to couple the received radio frequency signal to the phase shifter 200
  • the phase shifter 200 is configured to phase shift the radio frequency signal to obtain a phase-shifted signal, and couple the phase-shifted signal to the radiating unit 400, so that the radiating unit 400 radiates the electromagnetic wave signal corresponding to the phase-shifted signal.
  • the specific structure of the phase shifter 200 in the antenna provided by the embodiment of the present disclosure can refer to the description of the above-mentioned relevant parts.
  • the principle of solving the problem by the antenna is similar to that of the above-mentioned phase shifter 200. Therefore, the implementation of the antenna can refer to the implementation of the above-mentioned phase shifter 200, and the repeated parts will not be repeated.
  • the antenna provided by the embodiment of the present disclosure further includes a feeding unit 300 and a radiating unit 400 respectively coupled to the phase shifter 200, wherein the feeding unit 300 is configured to couple the received RF signal to the phase shifter 200, so that the phase shifter 200 can shift the phase of the RF signal to obtain a phase-shifted signal. Then, the phase shifter 200 can couple the phase-shifted signal to the radiating unit 400.
  • the radiating unit 400 can radiate the electromagnetic wave signal corresponding to the phase-shifted signal, thereby realizing the communication function of the antenna.
  • an embodiment of the present disclosure further provides an electronic device, which includes antennas 500 arranged in an array.
  • the principle of solving the problem by the electronic device is similar to that of the aforementioned phase shifter, so the implementation of the electronic device can refer to the implementation of the aforementioned phase shifter, and the repeated parts will not be repeated.
  • the electronic device provided by the embodiment of the present disclosure can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a laptop computer, a digital photo frame, a navigator, etc.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a laptop computer, a digital photo frame, a navigator, etc.
  • Other essential components of the electronic device should be understood by ordinary technicians in the field, and will not be described here, nor should they be used as a limitation of the present disclosure.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本公开提供了一种移相器、天线及电子设备,其中,该移相器包括:相对设置的第一基底和第二基底,以及设置在所述第一基底和所述第二基底之间的多个移相单元,其中,各个所述移相单元包括右手微带单元,多个所述右手微带单元沿第一方向排列,构成右手微带线,且各个所述移相单元包括与相应的所述右手微带单元串接的左手微带单元,所述多个右手微带单元和多个所述左手微带单元组成复合左右手传输线。用于实现右传输线复合左传输线的功能设计,保证移相器的小型化设计。

Description

一种移相器、天线及电子设备 技术领域
本公开涉及通信技术领域,特别涉及一种移相器、天线及电子设备。
背景技术
随着科技的快速发展,人们对无线通信技术的要求越来越高。无线通信设备的性能不仅需要满足用户使用需求,还要更加的小型化、轻薄化和可集成化。其中,移相器作为相控阵天线的重要核心组成部件,一个典型的相控阵是由数千个连接移相器的天线单元构成,小型化、灵活化和轻薄化的移相器对于相控阵天线至关重要。目前所采用的传输线一般都是右手传输线,即电场、磁场和波矢量遵循右手定则的传输线,右手传输线的输出端和输入端的相位相比是滞后的,即一段1/4波长的传输线产生的相位是-90°。如此一来,不利于微波器件的小型化和集成化设计。
发明内容
本公开提供了一种移相器、天线及电子设备,用于实现右传输线复合左传输线的功能设计,保证移相器的小型化设计。
第一方面,本公开实施例提供了一种移相器,其中,包括:
相对设置的第一基底和第二基底,以及设置在所述第一基底和所述第二基底之间的多个移相单元,其中,各个所述移相单元包括右手微带单元,多个所述右手微带单元沿第一方向排列,构成了右手微带线,且各个所述移相单元包括与相应的所述右手微带单元串接的左手微带单元,所述多个右手微带单元和多个所述左手微带单元组成复合左右手传输线。
在一种可能的实现方式中,各个所述左手微带单元包括与相应的所述右手微带单元串联的左手串联电容,以及与所述左手串联电容并联的左手并联电感。
在一种可能的实现方式中,还包括位于所述第一基底和所述第二基底之间的第三基底,各个所述左手串联电容包括位于所述第一基底靠近所述第三基底一侧的第一电极,以及位于所述第三基底背离所述第一基底一侧的第二电极,所述第一电极与所述第二电极在所述第三基底上的正投影至少部分交叠。
在一种可能的实现方式中,所述第一基底靠近所述第三基底的一侧还设置有与所述第一电极相邻的第三电极,所述第三电极通过贯穿与所述第二电极对应的所述右手微带单元的过孔与所述第二电极连接。
在一种可能的实现方式中,所述第二电极和与所述第二电极对应的所述右手微带单元,在所述第三基底上的正投影包括依次连接的第一子部、第二子部和第三子部,所述第一子部和所述第三子部沿所述第一方向延伸设置,所述第二子部沿与所述第一方向相交的第二方向延伸设置。
在一种可能的实现方式中,各个所述左手并联电感包括与所述第二电极连接且沿与所述第一方向相交的第二方向延伸的弯折线,所述弯折线在所述第二基底上的正投影呈非直线型设置。
在一种可能的实现方式中,所述弯折线在所述第二基底上的正投影包括至少一个重复设置的矩形单元。
在一种可能的实现方式中,所述弯折线在所述第二基底上的正投影截面形状包括依次连接的第一条形结构、第二条形结构、第三条形结构、第四条形结构和第五条形结构,且所述第一条形结构、所述第二条形结构、所述第三条形结构、所述第四条形结构和所述第五条形结构围成“6”字形结构。
在一种可能的实现方式中,所述弯折线在所述第二基底上的正投影包括呈螺旋形设置的至少一圈环形结构。
在一种可能的实现方式中,还包括位于所述第二基底靠近所述第三基底的一侧的接地电极,所述第一电极和所述第二电极在所述第二基底上的正投影完全落入所述接地电极在所述第二基底上的正投影的范围内。
在一种可能的实现方式中,各个所述右手微带单元包括与相应的所述左 手微带单元串联的右手串联电感,以及与所述右手串联电感并联的右手并联电容;其中,所述右手串联电感与所述左手串联电容串联,所述右手并联电容与所述左手并联电感并联。
在一种可能的实现方式中,所述第二电极和所述接地电极之间还设置有可调介质层,各个所述右手并联电容由相应的所述第二电极、所述可调介质层和所述接地电极组成,各个所述右手串联电感由相应的所述右手微带单元组成。
第二方面,本公开实施例还提供了一种天线,其中,包括:
如上面任一项所述的移相器,以及分别与所述移相器耦接的馈电单元和辐射单元;所述馈电单元被配置为将接收到的射频信号耦合到所述移相器,所述移相器被配置为将所述射频信号进行移相,获得移相后的信号,并将所述移相后的信号耦合到所述辐射单元,以使所述辐射单元将所述移相后的信号所对应的电磁波信号辐射出去。
第三方面,本公开实施例还提供了一种电子设备,其中,包括:
阵列排布的如上面所述的天线。
附图说明
图1为本公开实施例提供的一种移相器的其中一种平面分布示意图;
图2为沿图1中MM所示方向的其中一种剖面结构示意图;
图3为本公开实施例提供的一种移相器中移相单元中复合左右手传输线在第二基底上的其中一种俯视结构示意图;
图4为本公开实施例提供的一种移相器中左手微带单元的其中一种等效电路示意图;
图5为沿图1中NN所示方向的其中一种剖面结构示意图;
图6为图1中区域A的其中一种叠层结构示意图;
图7为本公开实施例提供的一种移相器中第二电极和与第二电极对应的右手微带单元在第三基底上的其中一种俯视结构示意图;
图8为本公开实施例提供的一种移相器中第一电极在第三基底上的其中一种俯视结构示意图;
图9为图7中区域B的其中一种结构放大图;
图10为本公开实施例提供的一种移相器中弯折线的其中一种俯视结构示意图;
图11为本公开实施例提供的一种移相器中弯折线的其中一种俯视结构示意图;
图12为本公开实施例提供的一种移相器中右手微带单元的其中一种等效电路图;
图13为本公开实施例提供的一种移相器中移相器的其中一种等效电路图;
图14为本公开实施例提供的一种移相器包括11个移相单元的反射系数S11的示意图;
图15为本公开实施例提供的一种移相器包括11个移相单元的传输系数S21的示意图;
图16为本公开实施例提供的一种移相器包括11个移相单元的移相量的示意图;
图17为本公开实施例提供的一种移相器包括9个移相单元的反射系数S11的示意图;
图18为本公开实施例提供的一种移相器包括9个移相单元的移相量的示意图;
图19为本公开实施例提供的一种移相器包括7个移相单元的反射系数S11的示意图;
图20为本公开实施例提供的一种移相器包括7个移相单元的移相量的示意图;
图21为本公开实施例提供的一种天线的其中一种结构框图;
图22为本公开实施例提供的一种电子设备的其中一种结构框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
在相关技术中,常采用右手传输线,即一般的微带线,其中,右手传输线的输出端与输入端的相位相比是滞后的,即一段1/4波长的传输线产生的相位是-90°。而左手传输线刚好相反,其输出端和输入端的相位相比是超前的,即一段1/4波长的传输线产生的相位是+90°。这样的话,通过右手传输线实现-270°的相移,需要3/4波长的传输线;而对于左手传输线要实现-270°的相移,只需要1/4波长的传输线即可。可见,如何保证移相器的小型化设计成为急需解决的技术问题。
鉴于此,本公开实施例提供了一种移相器、天线及电子设备,用于实现右传输线复合左传输线的功能设计,保证移相器的小型化设计。
结合图1至图3所示,其中,图1为本公开实施例提供的一种移相器的其中一种平面分布示意图,图2为沿图1中MM所示方向的其中一种剖面结构示意图,图3为移相单元30中复合左右手传输线40在第二基底20上的其中一种俯视结构示意图。该移相器包括:
相对设置的第一基底10和第二基底20,以及设置在所述第一基底10和所述第二基底20之间的多个移相单元30,其中,各个所述移相单元30包括右手微带单元32,多个所述右手微带单元32沿第一方向排列,构成右手微带线31,且各个所述移相单元30包括与相应的所述右手微带单元32串接的左手微带单元33,所述多个右手微带单元32和多个所述左手微带单元33组成复合左右手传输线40。
在具体实施过程中,本公开实施例提供的移相器包括相对设置的第一基底10和第二基底20,以及设置在第一基底10和第二基底20之间的多个移相单元30。其中,第一基底10和第二基底20可以为玻璃基板,还可以为聚酰亚胺(Polyimide,PI),还可以为液晶高分子聚合物(Liquid Crystal Polymer,LCP),还可以为印刷电路板(Printed Circuit Board,PCB),还可以为陶瓷等。当然,还可以根据实际应用需要来设置第一基底10和第二基底20,在此不做限定。此外,设置在第一基底10和第二基底20之间的多个移相单元30可以呈线阵排列。对于多个移相单元30的具体数量,可以根据实际应用需要来设置,在此不做限定。图1中示意出了多个移相单元30为11个的情况,并不仅限于此。
在具体实施过程中,各个移相单元30包括右手微带单元32,多个右手微带单元32沿第一方向排列,构成右手微带线31。而且,各个右手微带单元32与相应的移相单元30对应设置。其中,结合图1所示,箭头X所示方向为第一方向,各个右手微带单元32独立设置,相应地,每相邻两个右手微带单元32彼此间间隔一预设距离;在其中一种示例性实施例中,各个右手微带单元32可以是等距离设置。此外,对于多个右手微带单元32的个数可以根据实际应用需要来设置,在此不做限定。而且,各个移相单元30包括与相应的右手微带单元32串接的左手微带单元33,相应地,该移相器包括多个左手微带单元33。如此一来,多个右手微带单元32和多个左手微带单元33组成复合左右手传输线40,也就是说,该复合左右手传输线40兼具左手传输线的特性以及右手传输线的特性,相较于常规的右手传输线来说,实现了对左传 输线的复合,这在微波器件的小型化设计上具有一定的优势,从而保证了移相器的小型化和集成化设计。
需要说明的是,在本公开实施例中,对于各个右手微带单元32,其电场、磁场和波矢量遵循右手定则,相应的输出端和输入端的相位相比是滞后的。对于各个左手微带单元33,其电场、磁场和波矢量遵循左手定则,相应的输出端和输入端的相位相比是超前的。
在本公开实施例中,如图4所示,各个所述左手微带单元33包括与相应的所述右手微带单元32串联的左手串联电容CL,以及与所述左手串联电容CL并联的左手并联电感LL
仍结合图4所示的各个左手微带单元33的等效电路图,具体来讲,各个左手微带单元33包括左手串联电容CL和与该左手串联电容CL并联的左手并联电感LL。其中,各个左手微带单元33与相应的右手微带单元32串联设置。对于左手串联电容CL和左手并联电感LL的具体数值可以根据实际应用需要来设置,在此不做限定。
在本公开实施例中,如图5所示为沿图1中NN所示方向的其中一种剖面结构示意图。具体来讲,该移相器还包括位于所述第一基底10和所述第二基底20之间的第三基底50,各个所述左手串联电容CL包括位于所述第一基底10靠近所述第三基底50一侧的第一电极51,以及位于所述第三基底50背离所述第一基底10一侧的第二电极52,所述第一电极51与所述第二电极52在所述第三基底50上的正投影至少部分交叠。
在具体实施过程中,仍结合图5所示,该移相器还包括位于第一基底10和第二基底20之间的第三基底50,该第三基底50可以为玻璃基板,还可以为PI,还可以为LCP,还可以为PCB,还可以为陶瓷等。当然,还可以根据实际应用需要来设置第三基底50,在此不做限定。此外,各个左手串联电容CL包括位于第一基底10靠近第三基底50一侧的第一电极51,以及位于第三基底50背离第一基底10一侧的第二电极52,该第一电极51与第二电极52在第三基底50上的正投影至少部分交叠,如此一来,通过至少部分交叠的第 一电极51和第二电极52形成了相应的左手串联电容CL。在其中一种示例性实施例中,各个第一电极51可以是周期性设置在第一基底10靠近第三基底50的一侧表面。
在本公开实施例中,所述第一基底10靠近所述第三基底50的一侧还设置有与所述第一电极51相邻的第三电极53,所述第三电极53通过贯穿与所述第二电极52对应的所述右手微带单元32的过孔H与所述第二电极52连接。
在具体实施过程中,如图6所示为移相器中单个移相单元30的其中一种叠层结构示意图。具体来讲,第一基底10靠近第三基底50的一侧还设置有与第一电极51相邻的第三电极53,该第三电极53通过贯穿与第二电极52的过孔H与第二电极52连接。需要说明的是,图6为图1中区域A所示的其中一种叠层结构示意图。所提及到的过孔H实际上为金属化过孔H,在其中一种示例性实施例中,其可以是内壁附有金属膜层的结构;在其中一种示例性实施例中,其可以是内部被金属材料的结构。此外,该过孔H贯穿第三基底50。
需要说明的是,第一基底10、第二基底20和第三基底50,可以是聚四氟乙烯玻璃纤维压板、酚醛纸层压板、酚醛玻璃布层压板等PCB绝缘板材,还可以是石英、玻璃等具有较低微波损耗的硬性材质。
在本公开实施例中,如图7所示为第二电极52和与第二电极52对应的右手微带单元32在第三基底50上的其中一种俯视结构示意图。具体来讲,所述第二电极52和与所述第二电极52对应的所述右手微带单元32,在所述第三基底50上的正投影包括依次连接的第一子部60、第二子部70和第三子部80,所述第一子部60和所述第三子部80沿所述第一方向延伸设置,所述第二子部70沿与所述第一方向相交的第二方向延伸设置。
仍结合图7所示,第二电极52和与该第二电极52对应的右手微带单元32,在第三基底50上的正投影包括依次连接的第一子部60、第二子部70和第三子部80,其中,第一子部60和第三子部80沿第一方向延伸设置,第二子部70沿与第一方向相交的第二方向延伸设置。箭头Y所示方向为第二方向。 在其中一种示例性实施例中,第一子部60、第二子部70和第三子部80呈“Z”字型排布,第一电极51在第三基底50上的正投影呈矩形设置。如图8所示为第一电极51在第三基底50上的其中一种俯视结构示意图,其中,Lc1表示第一电极51对应矩形的长度,Wc1表示第一电极51对应矩形的宽度,P表示相邻两个第一电极51中心点之间的距离。在其中一种示例性实施例中,Lc1可以为移相器工作频带内最高频率的介质波长的1/8,Wc1可以为工作频带内最高频率的介质波长的1/10,P可以为工作频带内最高频率的介质波长的1/4。
如图9所示为图7中区域B的其中一种结构放大图,其中,Wms表示右手微带线31的宽度,其具体宽度可以为工作频带内最高频率所对应的50欧姆阻抗的宽度,对于其具体数值可以通过阻抗计算软件来确定,在此不做详述。仍结合图9所示,Lcs1表示第一子部60沿第一方向的延伸长度,其具体数值可以为工作频带内最高频率的介质波长的1/30;Wcs1表示第二子部70沿第二方向的延伸长度,其具体数值可以为工作频带内最高频率的介质补偿的1/35,G表示相邻两个右手微带单元之间的间距,G的长度可以为工作频带内最高频率的介质波长的1/60。当然,还可以根据实际应用需要来设置相关结构参数的具体数值,在此不做详述。此外,需要说明的是,前述提及的过孔H可以开设在第三子部80的末端。
在本公开实施例中,仍结合图7所示,各个所述左手并联电感LL包括与所述第二电极52连接且沿与所述第一方向相交的第二方向延伸的弯折线90,所述弯折线90在所述第二基底20上的正投影呈非直线型设置。
在具体实施过程中,各个左手并联电感LL包括与第二电极52连接且沿第一方向相交的第二方向延伸的弯折线90,相应地,移相器包括多条弯折线90,各条弯折线90构成了相应的左手并联电感LL。而且,该弯折线90在第二基底20上的正投影呈非直线型设置。
需要说明的是,在其中一种示例性实施例中,第二电极52、与第二电极52对应的右手微带单元32以及弯折线90,可以是同层制作的结构,而且还可以是一体成型的结构,从而简化了制作工艺。
在本公开实施例中,弯折线90可以有以下几种设置方式,但又并不仅限于以下几种设置方式。
在其中一种示例性实施例中,仍结合图9所示,所述弯折线90在所述第二基底20上的正投影包括至少一个重复设置的矩形单元。相应地,该弯折线90在第二基底20上的正投影呈“弓”字型设置,可以有效提高相应左手并联电感LL的电感值,有利于保证移相器的小型化设计。
在其中一种示例性实施例中,如图10所示,所述弯折线90在所述第二基底20上的正投影包括依次连接的第一条形结构91、第二条形结构92、第三条形结构93、第四条形结构94和第五条形结构95,且所述第一条形结构91、所述第二条形结构92、所述第三条形结构93、所述第四条形结构94和所述第五条形结构95围成“6”字形结构。在该示例性实施例中,尽管会在一定程度上增加移相器的尺寸,但是该弯折线90更容易设计,加工制作更简单。
在其中一种示例性实施例中,如图11所示,所述弯折线90在所述第二基底20上的正投影包括呈螺旋形设置的至少一圈环形结构。在该示例性实施例中,尽管该弯折线90设计复杂,加工制作困难,但是可以在一定程度上缩小移相器的尺寸。
在本公开实施例中,仍结合图6所示,该移相器还包括位于所述第二基底20靠近所述第三基底50的一侧的接地电极100,所述第一电极51和所述第二电极52在所述第二基底20上的正投影完全落入所述接地电极100在所述第二基底20上的正投影的范围内。
在具体实施过程中,移相器还包括位于第二基底20靠近第三基底50的一侧的接地电极100。对于第一电极51、第二电极52和接地电极100,可以是由铜、金、银等低电阻、低功耗的金属材料制成,在实际制备中可以采用磁控溅射、热蒸镀、电镀等方式来制备,在其中一种示例性实施例中,可以根据相应电极所需厚度来制备相应的电极,具体的实现过程在此不做详述。此外,对于第一电极51、第二电极52和接地电极100对应的金属膜层的厚度 大于相应的趋肤深度。其中,趋肤深度为ω表示角频率,μ表示磁导率,γ表示电导率。而且,第一电极51和第二电极52在第二基底20上的正投影完全落入接地电极100在第二基底20上的正投影的范围内。
在本公开实施例中,结合图12和图13所示,其中,图12为各个右手微带单元32的其中一种等效电路图,图13为移相器的其中一种等效电路图,框图C表示一个移相单元30对应的等效电路图。具体来讲,各个所述右手微带单元32包括与相应的所述左手微带单元33串联的右手串联电感LR,以及与所述右手串联电感LR并联的右手并联电容CR1;其中,所述右手串联电感LR与所述左手串联电容CL串联,所述右手并联电容CR1与所述左手并联电感LL并联。需要说明的是,由于相邻两个移相单元30之间间隔一定的距离,从而形成一定的电容,如图13中CR2所示。
在本公开实施例中,仍结合图6所示,所述第二电极52和所述接地电极100之间还设置有可调介质层110,各个所述右手并联电容CR1由相应的所述第二电极52、所述可调介质层110和所述接地电极100组成,各个所述右手串联电感LR由相应的所述右手微带单元32组成。
在具体实施过程中,可调介质层110可以为由液晶材料制成的液晶层,还可以是由石墨烯材料制成膜层。特别是在可调介质层110为液晶层时,保证了移相器低剖面、易于与其他微波器件和电路相集成的优点,提高了实用性。在其中一种示例性实施例中,可调介质层110可以为聚合物分散液晶(Polymer Dispersed Liquid Crystal,PDLC),从而提高了移相器的响应时间。在实际应用中,由于液晶层的厚度对耦合强度有一定的影响,液晶层的厚度不易过大,在其中一种示例性实施例中,液晶层的厚度可以为8.6μm。需要说明的是,不同类型的液晶的可调介电常数是不同的,可以根据所需的介电常数选择合适的液晶。在其中一种示例性实施例中,可以采用LC446款液晶。当然,还可以采用其它介电常数可调的介质来制作该可调介质层110,在此不做限定。此外,各个右手并联电容CR1由相应的第二电极52、可调介质层110 和接地电极100组成,各个右手串联电感LR由相应的右手微带单元32组成。
需要说明的是,在实际制备移相器的过程中,需要满足左右手平衡条件,即左手阻抗与右手阻抗相等,如此一来,保证了复合左右手传输线40的左手频带和右手频带之间没有阻带。以图13所示的等效电路为例,Z表示单个移相单元30的串联阻抗,Y1和Y2表示单个移相单元30的并联导纳,β表示单个移相单元30的相移常数,则可以得到以下表达式:

Y2=jwCR2
采用周期性边界条件,可以得到相应移相单元30相移常数的表达式:
本发明人发现,采用本公开实施例所提供的移相器,以移相器包括11个移相单元30为例,其反射系数(Reflection Coefficient)S11的示意图如图14所示,其中,横坐标表示频率(Frequency),纵坐标表示反射系数S11,可以看出该移相器在工作频带的反射系数S11均小于-15dB;该移相器的传输系数S21的示意图如图15所示,其中,横坐标表示频率(Frequency),纵坐标表示传输系数(Transmission Coefficient)S21可以看出该移相器的插入损耗小于-4.15dB;该移相器的移相量如图16所示,其中,横坐标表示频率(Frequency),纵坐标表示角度,可以看出在中心频率,移相量可达440°。
以移相器包括9个移相单元30为例,其反射系数S11的示意图如图17所示,可以看出移相器在工作频带的反射系数S11均小于-15dB;该移相器的移相量如图18所示,其中,横坐标表示频率(Frequency),纵坐标表示角度,可以看出该移相器在中心频率,移相量可达360°。
以移相器包括7个移相单元30为例,其反射系数S11的示意图如图19所示,可以看出移相器在工作频带的反射系数均小于-15dB;该移相器的移相量如图20所示,其中,横坐标表示频率(Frequency),纵坐标表示角度,可 以看出该移相器在中心频率,移相量可达280°。对比图14、17和图19可知,可以通过改变复合左右手传输线40的液晶移相器的移相单元30的个数,比如,增加移相单元30个数;再比如,减少移相单元30个数,均不会发生阻抗失配的情况。需要说明的是,相关附图中的DK表示可调介质层110的介电常数。
在实际应用中,在不会发生阻抗失配的前提下,可以通过改变移相单元30的个数来改变移相器的移相范围,从而保证了移相器灵活设计。对于移相器所包括的移相单元30的个数可以根据实际情况来调整,在此不做限定。
需要说明的是,可以分别在第一基底10、第二基底20和第三基底50上制作相关金属膜层的图案;具体制作工艺可以采用相关技术中的实现,在此不做详述。然后,将各个基底对位并压合在一起;以移相器中的可调介质层110为液晶为例,然后,灌入液晶;然后,切割获得所需尺寸的移相器。
基于同一公开构思,如图21所示,本公开实施例还提供了一种天线,该天线包括:
如上面任一项所述的移相器200,以及分别与所述移相器200耦接的馈电单元300和辐射单元400;所述馈电单元300被配置为将接收到的射频信号耦合到所述移相器200,所述移相器200被配置为将所述射频信号进行移相,获得移相后的信号,并将所述移相后的信号耦合到所述辐射单元400,以使所述辐射单元400将所述移相后的信号所对应的电磁波信号辐射出去。
在具体实施过程中,对于本公开实施例提供的天线中的移相器200的具体结构可以参照前述相关部分的描述。该天线解决问题的原理与前述移相器200相似,因此,该天线的实施可以参照前述移相器200的实施,重复之处不再赘述。
本公开实施例提供的天线还包括分别与移相器200耦接的馈电单元300和辐射单元400,其中,馈电单元300被配置为将接收到的射频信号耦合到移相器200,这样的话,移相器200可以将射频信号进行移相,从而获得移相后的信号。然后,移相器200可以将移相后的信号耦合到辐射单元400。后续辐 射单元400可以将该移相后的信号所对应的电磁波信号辐射出去,从而实现了天线的通信功能。
基于同一公开构思,如图22所示,本公开实施例还提供了一种电子设备,该电子设备包括阵列排布的天线500。
该电子设备解决问题的原理与前述移相器相似,因此该电子设备的实施可以参见前述移相器的实施,重复之处不再赘述。
在具体实施过程中,本公开实施例提供的电子设备可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该电子设备的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此就不做赘述,也不应作为对本公开的限制。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种移相器,其中,包括:
    相对设置的第一基底和第二基底,以及设置在所述第一基底和所述第二基底之间的多个移相单元,其中,各个所述移相单元包括右手微带单元,多个所述右手微带单元沿第一方向排列,构成右手微带线,且各个所述移相单元包括与相应的所述右手微带单元串接的左手微带单元,所述多个右手微带单元和多个所述左手微带单元组成复合左右手传输线。
  2. 如权利要求1所述的移相器,其中,各个所述左手微带单元包括与相应的所述右手微带单元串联的左手串联电容,以及与所述左手串联电容并联的左手并联电感。
  3. 如权利要求2所述的移相器,其中,还包括位于所述第一基底和所述第二基底之间的第三基底,各个所述左手串联电容包括位于所述第一基底靠近所述第三基底一侧的第一电极,以及位于所述第三基底背离所述第一基底一侧的第二电极,所述第一电极与所述第二电极在所述第三基底上的正投影至少部分交叠。
  4. 如权利要求3所述的移相器,其中,所述第一基底靠近所述第三基底的一侧还设置有与所述第一电极相邻的第三电极,所述第三电极通过贯穿与所述第二电极对应的所述右手微带单元的过孔与所述第二电极连接。
  5. 如权利要求4所述的移相器,其中,所述第二电极和与所述第二电极对应的所述右手微带单元,在所述第三基底上的正投影包括依次连接的第一子部、第二子部和第三子部,所述第一子部和所述第三子部沿所述第一方向延伸设置,所述第二子部沿与所述第一方向相交的第二方向延伸设置。
  6. 如权利要求4所述的移相器,其中,各个所述左手并联电感包括与所述第二电极连接且沿与所述第一方向相交的第二方向延伸的弯折线,所述弯折线在所述第二基底上的正投影呈非直线型设置。
  7. 如权利要求6所述的移相器,其中,所述弯折线在所述第二基底上的 正投影包括至少一个重复设置的矩形单元。
  8. 如权利要求6所述的移相器,其中,所述弯折线在所述第二基底上的正投影包括依次连接的第一条形结构、第二条形结构、第三条形结构、第四条形结构和第五条形结构,且所述第一条形结构、所述第二条形结构、所述第三条形结构、所述第四条形结构和所述第五条形结构围成“6”字形结构。
  9. 如权利要求6所述的移相器,其中,所述弯折线在第二基底上的正投影包括呈螺旋形设置的至少一圈环形结构。
  10. 如权利要求3-9任一项所述的移相器,其中,还包括位于所述第二基底靠近所述第三基底的一侧的接地电极,所述第一电极和所述第二电极在所述第二基底上的正投影完全落入所述接地电极在所述第二基底上的正投影的范围内。
  11. 如权利要求10所述的移相器,其中,各个所述右手微带单元包括与相应的所述左手微带单元串联的右手串联电感,以及与所述右手串联电感并联的右手并联电容;其中,所述右手串联电感与所述左手串联电容串联,所述右手并联电容与所述左手并联电感并联。
  12. 如权利要求11所述的移相器,其中,所述第二电极和所述接地电极之间还设置有可调介质层,各个所述右手并联电容由相应的所述第二电极、所述可调介质层和所述接地电极组成,各个所述右手串联电感由相应的所述右手微带单元组成。
  13. 一种天线,其中,包括:
    如权利要求1-12任一项所述的移相器,以及分别与所述移相器耦接的馈电单元和辐射单元;所述馈电单元被配置为将接收到的射频信号耦合到所述移相器,所述移相器被配置为将所述射频信号进行移相,获得移相后的信号,并将所述移相后的信号耦合到所述辐射单元,以使所述辐射单元将所述移相后的信号所对应的电磁波信号辐射出去。
  14. 一种电子设备,其中,包括:
    阵列排布的如权利要求13所述的天线。
PCT/CN2023/071804 2023-01-11 2023-01-11 一种移相器、天线及电子设备 WO2024148538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/071804 WO2024148538A1 (zh) 2023-01-11 2023-01-11 一种移相器、天线及电子设备
CN202380008171.6A CN118648187A (zh) 2023-01-11 2023-01-11 一种移相器、天线及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/071804 WO2024148538A1 (zh) 2023-01-11 2023-01-11 一种移相器、天线及电子设备

Publications (1)

Publication Number Publication Date
WO2024148538A1 true WO2024148538A1 (zh) 2024-07-18

Family

ID=91897611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071804 WO2024148538A1 (zh) 2023-01-11 2023-01-11 一种移相器、天线及电子设备

Country Status (2)

Country Link
CN (1) CN118648187A (zh)
WO (1) WO2024148538A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272006A (zh) * 2008-05-16 2008-09-24 东南大学 基于360度复合移相线的天线阵列
KR20140005739A (ko) * 2012-07-06 2014-01-15 경희대학교 산학협력단 메타물질 전송선 단일 셀을 이용한 위상 천이기
CN104103876A (zh) * 2014-07-15 2014-10-15 哈尔滨工业大学 基于复合左右手传输线的电可调移相器
CN105552485A (zh) * 2015-11-18 2016-05-04 北京邮电大学 一种微波移相器
WO2019244244A1 (ja) * 2018-06-19 2019-12-26 三菱電機株式会社 移相器
CN113451718A (zh) * 2021-06-30 2021-09-28 上海天马微电子有限公司 一种移相器及天线
CN114830433A (zh) * 2020-11-27 2022-07-29 京东方科技集团股份有限公司 移相器及天线
CN115312998A (zh) * 2022-08-15 2022-11-08 华南理工大学 一种基于复合左右手传输线的宽带电调微波移相器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272006A (zh) * 2008-05-16 2008-09-24 东南大学 基于360度复合移相线的天线阵列
KR20140005739A (ko) * 2012-07-06 2014-01-15 경희대학교 산학협력단 메타물질 전송선 단일 셀을 이용한 위상 천이기
CN104103876A (zh) * 2014-07-15 2014-10-15 哈尔滨工业大学 基于复合左右手传输线的电可调移相器
CN105552485A (zh) * 2015-11-18 2016-05-04 北京邮电大学 一种微波移相器
WO2019244244A1 (ja) * 2018-06-19 2019-12-26 三菱電機株式会社 移相器
CN114830433A (zh) * 2020-11-27 2022-07-29 京东方科技集团股份有限公司 移相器及天线
CN113451718A (zh) * 2021-06-30 2021-09-28 上海天马微电子有限公司 一种移相器及天线
CN115312998A (zh) * 2022-08-15 2022-11-08 华南理工大学 一种基于复合左右手传输线的宽带电调微波移相器

Also Published As

Publication number Publication date
CN118648187A (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
Nguyen et al. Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators
CA2432508C (en) High efficiency four port circuit
CA2432471C (en) High efficiency directional coupler
CN212517490U (zh) 天线装置和电子设备
CN212485544U (zh) 天线装置和电子设备
CN108598654A (zh) 一种基于基片集成间隙波导的耦合器
CN212485545U (zh) 天线装置和电子设备
CN212659663U (zh) 天线装置和电子设备
CN212517489U (zh) 天线装置和电子设备
WO2024148538A1 (zh) 一种移相器、天线及电子设备
Hung Maritime Communications Uses Directional Coupler Topology Based on Artificial Transmission Lines
CN113659309A (zh) 天线装置和电子设备
US20210210830A1 (en) Band pass filter, communication device, and resonator
CN110416674B (zh) 基于共面波导的单腔双频带微波滤波器
TW202240974A (zh) 槽孔天線
JP2004350143A (ja) バラントランス
WO2024217187A1 (zh) 天线和电子设备
JP2015192454A (ja) スロットライン共振器を有するフィルタリング回路
CN113659295B (zh) 滤波器、天线装置和电子设备
WO2024000289A1 (zh) 一种移相器单元及移相器
Tošić et al. Compact multilayer bandpass filter with modified hairpin resonators
CN113659308B (zh) 天线装置和电子设备
JPH05243820A (ja) 方向性結合器
CN217691596U (zh) 一种基于石墨烯纳米板具有可调衰减的滤波功分器
CN113659311B (zh) 天线装置和电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380008171.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18686980

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915314

Country of ref document: EP

Kind code of ref document: A1