WO2024217073A1 - 一种可低温烧结银铜复合导电浆料及其制备方法和应用 - Google Patents
一种可低温烧结银铜复合导电浆料及其制备方法和应用 Download PDFInfo
- Publication number
- WO2024217073A1 WO2024217073A1 PCT/CN2024/070668 CN2024070668W WO2024217073A1 WO 2024217073 A1 WO2024217073 A1 WO 2024217073A1 CN 2024070668 W CN2024070668 W CN 2024070668W WO 2024217073 A1 WO2024217073 A1 WO 2024217073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- conductive paste
- composite conductive
- copper composite
- low
- Prior art date
Links
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000002245 particle Substances 0.000 claims abstract description 43
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims description 19
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 18
- 238000009766 low-temperature sintering Methods 0.000 claims description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 239000004570 mortar (masonry) Substances 0.000 claims description 7
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 3
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 claims description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 229940116411 terpineol Drugs 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 15
- 239000004332 silver Substances 0.000 abstract description 15
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract 2
- 239000002060 nanoflake Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000005022 packaging material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- RRKGBEPNZRCDAP-UHFFFAOYSA-N [C].[Ag] Chemical compound [C].[Ag] RRKGBEPNZRCDAP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002381 microspectrum Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to the technical field of electronic power device packaging interface materials, in particular to a silver-copper composite conductive paste capable of being sintered at low temperature, and a preparation method and application thereof.
- silicon carbide and gallium nitride are usually used in relatively harsh high temperature or high radiation conditions, so the requirements for packaging materials are higher than those for traditional semiconductor devices or integrated circuits.
- the packaging materials of power devices are required to have good thermal conductivity.
- nanosilver particles can not only achieve low-temperature sintering, but also avoid the problem of intermetallic compound growth caused by excessively high temperatures, and has a good application prospect.
- Low-temperature sintering by nanosilver has been reported before, but the problem with previous research is that the cost of using all nanosilver is too high, and the water-based solvent used is too easy to volatilize, which is not conducive to large-scale industrial application. After adding metallic copper, the cost can be effectively reduced, and the performance of the slurry can also be improved.
- Chinese patent application number CN202110494206.4 discloses a glass material, a conductive paste and its application in the preparation of ceramic dielectric filter electrodes.
- the conductive paste mainly includes glass material, an organic carrier and conductive particles; the conductive particles include silver powder and copper powder; the silver powder includes flaky silver powder, nano silver powder and spherical silver powder with a particle size of 0.8-1.6 ⁇ m, wherein the flaky silver powder accounts for 7-15% of the total mass of the silver powder, and the nano silver powder accounts for 3-7% of the total mass of the silver powder; the conductive paste will form a layer structure with good density, Q value and smooth surface during the curing process.
- the conductive paste also uses nano silver powder, micron silver flakes, micron silver particles and a small amount of copper powder to prepare the conductive paste, the copper powder accounts for 3% of the metal particles. The proportion is small, the cost is high, and the slurry composition contains high melting point materials such as glass powder, which greatly increases the sintering temperature.
- a silver-coated copper-silver paste and its preparation method disclosed in Chinese patent application number CN202210779926.X includes the following components in parts by weight: 22 to 25 parts of micron silver powder, 40 to 50 parts of nano silver powder, 20 to 22 parts of silver-coated copper powder, 2.5 to 9 parts of epoxy resin, 0.1 to 0.5 parts of epoxy curing accelerator, 2 to 4 parts of organic solvent and 0.5 to 1 part of silane coupling agent; its preparation method includes: accurately weighing each component, mixing and stirring each component in order, and obtaining a silver-carbon mixed slurry.
- the silver-coated copper-silver paste of the present application can reduce the production cost of silver paste, and at the same time can also improve the conductive properties of silver paste, thereby expanding the application range of HJT heterojunction solar cells.
- the silver-coated copper-silver paste can also be cured at low temperature, its resistivity is relatively high, with a resistivity of the order of 1 ⁇ 10 -5 ⁇ cm, and the preparation of silver-coated copper powder is complicated, resulting in difficulties in the process flow.
- the present invention provides a silver-copper composite conductive paste that can be sintered at low temperature, and a preparation method and application thereof.
- the first object of the present invention is to provide a silver-copper composite conductive paste that can be sintered at low temperature, comprising the following components in weight percentage:
- micron copper particles are spherical in shape, and have an average particle size of 1-10 ⁇ m.
- the shape of the nano silver flakes is flake-shaped, and the average diameter of the nano silver flakes is 100-2000nm, average thickness is 5-500nm, and the ratio of its flake plane diameter to thickness is greater than 2.
- the nano silver particles are spherical in shape, and have an average particle size of 1-100 nm.
- the organic carrier may include an organic solvent selected from the group consisting of 1,2-propylene glycol, ethylene glycol, terpineol, and DBE, or a mixed organic solvent of multiple combinations thereof.
- the organic carrier may further include one or more combinations of organic resin, rheological agent, and surfactant, and the weight percentage of the one or more combinations of organic resin, rheological agent, and surfactant in the organic carrier is 0-3%.
- the average particle size of the nanosilver particles is 3-8 nm.
- the second object of the present invention is to provide a method for preparing a silver-copper composite conductive paste that can be sintered at low temperature, comprising the following steps:
- Micron copper particles, nano silver flakes, nano silver particles, and an organic carrier are weighed according to weight percentage, the micron copper particles, nano silver flakes, and nano silver particles are added to the organic carrier, and then ground evenly with a mortar or a three-roll mill to obtain a silver-copper composite conductive slurry that can be sintered at a low temperature.
- the third object of the present invention is to provide an application of a low-temperature sinterable silver-copper composite conductive paste as a chip packaging and connection material for power semiconductor devices.
- the low-temperature sinterable silver-copper composite conductive paste is encapsulated on the chip of the semiconductor device by a hot pressing process, and the process conditions are: pressure 0.1MPa-1MPa, sintering temperature 180-250°C, sintering time 15-30 minutes, and insulation time 10 minutes.
- the present invention has the following beneficial effects:
- the low-temperature sinterable silver-copper composite conductive paste provided by the present invention adopts silver and copper of various sizes and morphologies, uses large-sized silver sheets and micron copper particles as a skeleton, and small-sized nano silver particles as fillers, thereby reducing gaps and improving performance.
- the silver-copper composite conductive paste capable of being sintered at low temperature of the present invention adopts a large amount of micron copper particles, which improves The slurry has good thermal and electrical conductivity, while also effectively reducing costs.
- the silver-copper composite conductive paste capable of low-temperature sintering of the present invention realizes low-temperature sintering due to the addition of small-sized nano silver particles.
- the sintering temperature is 180-250° C., which is lower than the sintering temperature of traditional device packaging materials.
- the silver-copper composite conductive paste capable of low-temperature sintering of the present invention is added with an organic solvent having a boiling point below 250° C., and can ensure that the organic solvent is completely decomposed and volatilized at a sintering temperature of 180-250° C., thereby reducing the influence of organic matter on performance.
- FIG1 is a TEM image of nanosilver particles added in Examples 1-4 and Comparative Example 1;
- FIG2 is a SEM image of the nanosilver flakes added in Examples 1-4 and Comparative Example 1;
- FIG3 is a SEM image of micron copper particles added in Examples 1-4;
- FIG4 is a SEM image of the microstructure of the sintered body of Example 5.
- FIG5 is a SEM image of the microstructure of the sintered body of Example 6;
- FIG6 is a SEM image of the microstructure of the sintered body of Example 7.
- FIG. 7 is a SEM image of the microstructure of the sintered body of Example 8.
- the reagent information is shown in Table 1, and the experimental instruments used are commercially available unless otherwise stated.
- the morphology and size of the nanosilver particles are shown in Figure 1
- the morphology and size of the nanosilver flakes are shown in Figure 2
- the morphology and size of the micron copper particles are shown in Figure 3.
- 10g of pinene alcohol is weighed, and then 10g of nano silver particles with a size of 3-8nm are added to the pinene alcohol (i.e., the main component of the organic carrier is pinene alcohol, and of course 0-3% of organic resin, rheological agent, surfactant, etc. can also be added as needed to adjust the physical properties required by the slurry under the use process conditions); 20g of nano silver sheets with a side length of 300-800nm and a thickness of 30-80nm are added; 60g of micron copper powder with a size of 2-8 ⁇ m is added, and then ground evenly with a mortar to obtain a silver-copper composite conductive slurry that can be sintered at a low temperature.
- the pinene alcohol i.e., the main component of the organic carrier is pinene alcohol, and of course 0-3% of organic resin, rheological agent, surfactant, etc. can also be added as needed to adjust the physical properties required by the slurry under the use process conditions
- DBE i.e., the main component of the organic carrier is DBE, and of course, 0-3% of organic resin, rheological agent, surfactant, etc. can also be added as needed to adjust the physical properties of the slurry required under the use process conditions
- 10g of nano silver particles with a size of 3-8nm to the DBE
- ethylene glycol i.e., the main component of the organic carrier is ethylene glycol, and of course 0-3% of organic resin, rheological agent, surfactant, etc. can also be added as needed to adjust the physical properties required by the slurry under the use process conditions
- 10g of nano silver particles with a size of 3-8nm to the ethylene glycol
- 1,2-propylene glycol i.e., the main component of the organic carrier is 1,2-propylene glycol, of course, it can also be based on 0-3% of organic resin, rheological agent, surfactant, etc. are added as needed to adjust the physical properties of the slurry under the process conditions of use), and then 10g of nanosilver particles with a size of 3-8nm are added to 1,2-propylene glycol; 20g of nanosilver flakes with a side length of 300-800nm and a thickness of 30-80nm are added; 60g of micron copper powder with a size of 2-8 ⁇ m is added, and then ground evenly with a mortar to obtain a silver-copper composite conductive slurry that can be sintered at a low temperature.
- 1,2-propylene glycol i.e., the main component of the organic carrier is 1,2-propylene glycol, and of course, 0-3% of organic resin, rheological agent, surfactant, etc. can also be added as needed to adjust the physical properties required by the slurry under the use process conditions
- 30g of nano silver particles with a size of 3-8nm to the 1,2-propylene glycol
- add 60g of nano silver sheets with a side length of 300-800nm and a thickness of 30-80nm and then grind evenly with a mortar to obtain a silver-copper composite conductive slurry that can be sintered at a low temperature.
- the silver-copper composite conductive paste capable of low-temperature sintering prepared in the above embodiments and comparative examples was subjected to hot pressing process to prepare samples, as follows.
- the low-temperature sinterable silver-copper composite conductive paste prepared in Example 1 was sintered using a mold and a hot press at a pressure of 0.5 MPa and a sintering temperature of 200°C for 20 minutes. After the sintering, the pressure was removed and the mixture was kept warm for 10 minutes to obtain sample A.
- the microstructure of the sintered sample of sample A is shown in Figure 4.
- the silver-copper composite conductive paste capable of low-temperature sintering obtained in step Example 2 was sintered using a mold and a hot press at a pressure of 0.5 MPa and a sintering temperature of 200°C for 20 minutes. After the sintering, the pressure was removed and the paste was kept warm for 10 minutes to obtain sample B.
- the microstructure of the sintered sample of sample B is shown in Figure 5.
- the silver-copper composite conductive paste capable of low-temperature sintering obtained in step Example 3 was sintered using a mold and a hot press at a pressure of 0.5 MPa and a sintering temperature of 200°C for 20 minutes. After the sintering, the pressure was removed and the paste was kept warm for 10 minutes to obtain sample C.
- the microstructure of the sintered sample of sample C is shown in Figure 6.
- the silver-copper composite conductive paste capable of low-temperature sintering obtained in step Example 4 was sintered using a mold and a hot press at a pressure of 0.5 MPa and a sintering temperature of 200°C for 20 minutes. After the sintering, the pressure was removed and the paste was kept warm for 10 minutes to obtain sample D.
- the microstructure of the sintered sample of sample D is shown in Figure 7.
- the low-temperature sinterable silver-copper composite conductive paste prepared in Comparative Example 1 was sintered using a mold and a hot press at a pressure of 0.5 MPa and a sintering temperature of 200°C for 20 minutes. After the sintering was completed, the pressure was removed and the heat was maintained for 10 minutes to obtain Sample E.
- the nanosilver flakes have melted to varying degrees. This is because small-sized nanosilver particles have been added. This extremely small nanosilver has a very high specific surface area and surface activity. The size effect can significantly reduce the melting point and form a eutectic phenomenon with the nanosilver flakes, driving the melting of the nanosilver flakes. At the same time, the nano-size effect forms a synergistic effect with the micron copper, forming a connected heat conduction channel with the micron copper particles. The more such connection structures, the stronger the thermal and electrical conductivity of the sample.
- Example 5 to Example 8 and Comparative Example 2 were sent to Shanghai Microspectra Testing Technology Group Co., Ltd., and the thermal conductivity was tested according to the reference standard ASTM E1461-2013.
- the resistivity was obtained by testing with the electrical transport property measurement system of this unit, and then the conductivity was obtained by calculation.
- the resistivity and conductivity are the reciprocals of each other. The results are shown in Table 2.
- the silver-copper composite conductive paste capable of low-temperature sintering prepared by the present invention has excellent thermal conductivity and electrical conductivity after sintering. It has development prospects in the application of power electronic devices and provides a way of thinking for packaging materials; and the properties of the sintered body of the silver-copper composite conductive paste capable of low-temperature sintering are different when different organic solvents are added. When 1,2-propylene glycol is used as the organic solvent, the thermal conductivity and electrical conductivity of the sintered body of the silver-copper composite conductive paste capable of low-temperature sintering are the best.
- the silver-copper composite conductive paste capable of low-temperature sintering prepared by the present invention has excellent thermal conductivity and electrical conductivity after low-temperature sintering, and therefore can be used as a chip packaging and connection material for high-speed semiconductor devices.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
Abstract
一种可低温烧结银铜复合导电浆料及其制备方法和应用,第一个目的是要提供一种可低温烧结银铜复合导电浆料,包括以下重量百分比的组分:微米铜颗粒20-80%;纳米银片10-60%;纳米银颗粒1-20%;有机载体1-10%。可低温烧结银铜复合导电浆料采用了多种不同尺寸和不同形貌的银和铜,用大尺寸的银片和微米铜颗粒做骨架,小尺寸的纳米银颗粒作为填充,从而减小间隙提高性能。可低温烧结银铜复合导电浆料采用了大量的微米铜颗粒,改善了浆料的导热性能和导电性能,同时还能有效降低成本。
Description
本发明涉及电子功率器件封装界面材料技术领域,特别是一种可低温烧结银铜复合导电浆料及其制备方法和应用。
随着新能源(电动汽车、风电、光伏)、工业、电源、变频以及IOT设备的需求带动下,第三代半导体碳化硅、氮化镓将占据未来功率器件的主体市场。碳化硅和氮化镓通常都用于较为恶劣的高温或者高辐照条件下,所以对封装材料的要求也比传统的半导体器件或集成电路的要求更高,功率器件的封装材料要求具有良好的导热性。
目前,传统的封装材料都是在高温下进行烧结的,不可避免的会对基底器件造成一些物理损害。采用纳米银颗粒既可以实现低温烧结,还能避免由于温度过高带来的金属间化合物生长问题,具有很好的应用前景。通过纳米银实现低温烧结在之前已有报道,但是前人的研究的问题在于全部使用纳米银成本过高,使用的水基溶剂太易于挥发,不利于大规模产业化应用。加入金属铜后,可以有效的降低成本,并且还可以改善浆料的性能。
如中国专利申请号CN202110494206.4公开的一种玻璃料、导电浆料及在制备陶瓷介质滤波器电极中应用。导电浆料主要包括玻璃料、有机载体以及导电颗粒;导电颗粒包括银粉和铜粉;银粉包括片状银粉和纳米银粉以及粒径为0.8-1.6μm的圆球状银粉,其中,所述片状银粉占所述银粉总质量的7~15%,所述纳米银粉占所述银粉总质量的3~7%;该导电浆料在固化的过程中会形成致密性、Q值均较佳且表面光滑的层结构。该导电浆料虽然也使用了纳米银粉,微米银片,微米银颗粒搭配少量铜粉制备了导电浆料,但是铜粉占金属颗粒的
比例少,成本高,而且浆料成分中有玻璃粉等高熔点材料,大大提高了烧结温度。
如中国专利申请号CN202210779926.X公开的一种银包铜银浆及其制备方法,一种银包铜银浆包括以下重量份的组分:微米银粉22~25份、纳米银粉40~50份、银包铜粉20~22份、环氧树脂2.5~9份、环氧固化促进剂0.1~0.5份、有机溶剂2~4份和硅烷偶联剂0.5~1份;其制备方法包括:准确称取各组分,将各组分按照先后顺序混合搅拌,即得银碳混合浆料。本申请的银包铜银浆能够降低银浆的生产成本,同时还能够提升银浆的导电性能,从而扩大HJT异质结太阳能电池的应用范围。该银包铜银浆虽然也能够实现在低温下固化,但是电阻率较高,电阻率数量级达到1×10-5Ωcm,并且银包铜粉制备复杂,造成工艺流程困难。
发明内容
为了解决上述技术问题,本发明提供了一种可低温烧结银铜复合导电浆料及其制备方法和应用。
为达到上述目的,本发明是按照以下技术方案实施的:
本发明的第一个目的是要提供一种可低温烧结银铜复合导电浆料,包括以下重量百分比的组分:
进一步地,所述微米铜颗粒的形状为球形,平均粒径为1-10μm。
进一步地,所述纳米银片的形状为片状,纳米银片的平面平均直径为
100-2000nm,平均厚度为5-500nm,其片状平面直径与厚度之比大于2。
进一步地,所述纳米银颗粒的形状为球形,平均粒径为1-100nm。
进一步地,所述有机载体可以包含有1,2-丙二醇、乙二醇、松油醇、DBE中的一种有机溶剂或者多种组合的混合有机溶剂。
进一步地,所述有机载体还可以包含有机树脂、流变剂、表面活性剂中的一种或多种组合,有机树脂、流变剂、表面活性剂中的一种或多种组合占有机载体的重量百分比为0-3%。
优选地,所述纳米银颗粒的平均粒径为3-8nm。
本发明的第二个目的是要提供一种可低温烧结银铜复合导电浆料的制备方法,包括以下步骤:
按重量百分比称取微米铜颗粒、纳米银片、纳米银颗粒、有机载体,将微米铜颗粒、纳米银片、纳米银颗粒加入有机载体中,然后用研钵或者三辊轧机研磨均匀,得到可低温烧结银铜复合导电浆料。
本发明的第三个目的是要提供一种可低温烧结银铜复合导电浆料在作为功率半导体器件的芯片封装和连接材料中的应用,具体地,采用热压工艺将所述可低温烧结银铜复合导电浆料封装在半导体器件的芯片上,其工艺条件为:压力0.1MPa-1MPa,烧结温度180-250℃,烧结时间为15-30分钟,保温时间为10分钟。
与现有技术相比,本发明具有以下有益效果:
本发明提供的可低温烧结银铜复合导电浆料采用了多种不同尺寸和不同形貌的银和铜,用大尺寸的银片和微米铜颗粒做骨架,小尺寸的纳米银颗粒作为填充,从而减小间隙提高性能。
本发明的可低温烧结银铜复合导电浆料采用了大量的微米铜颗粒,改善了
浆料的导热性能和导电性能,同时还能有效降低成本。
本发明的可低温烧结银铜复合导电浆料由于加入了小尺寸的纳米银颗粒,实现了低温烧结,烧结温度180-250℃,比传统的器件封装材料烧结温度更低。
本发明的可低温烧结银铜复合导电浆料加入了沸点为250℃以下的有机溶剂,在180-250℃的烧结温度下能够确保有机溶剂全部分解挥发,从而减少了有机物对性能的影响。
图1为实施例1-4与对比例1中添加的纳米银颗粒的TEM图;
图2为实施例1-4与对比例1中添加的纳米银片的SEM图;
图3为实施例1-4中添加的微米铜颗粒的SEM图;
图4为实施例5的烧结体微观结构SEM图;
图5为实施例6的烧结体微观结构SEM图;
图6为实施例7的烧结体微观结构SEM图;
图7为实施例8的烧结体微观结构SEM图。
为使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。此处所描述的具体实施例仅用于解释本发明,并不用于限定发明。
以下实施例中,所用试剂信息如表1所示,所用实验仪器除特别申明外均为市购。其中,纳米银颗粒的形貌与大小如图1所示,纳米银片的形貌与大小如图2所示,微米铜颗粒的形貌与大小如图3所示。
表1
实施例1
称取10g松油醇,然后向松油醇(即有机载体主要成分为松油醇,当然也可以根据需要添加0-3%的有机树脂、流变剂、表面活性剂等,以调节浆料在使用工艺条件下所需要的物理特性)中加入10g尺寸为3-8nm的纳米银颗粒;加入20g边长为300-800nm,厚度为30-80nm的纳米银片;加入60g尺寸2-8μm的微米铜粉,然后用研钵研磨均匀,得到可低温烧结银铜复合导电浆料。
实施例2
称取10gDBE(即有机载体主要成分为DBE,当然也可以根据需要添加0-3%的有机树脂、流变剂、表面活性剂等,以调节浆料在使用工艺条件下所需要的物理特性),然后向DBE中加入10g尺寸为3-8nm的纳米银颗粒;加入20g边长为300-800nm,厚度为30-80nm的纳米银片;加入60g尺寸2-8μm的微米铜粉,然后用研钵研磨均匀,得到可低温烧结银铜复合导电浆料。
实施例3
称取10g乙二醇(即有机载体主要成分为乙二醇,当然也可以根据需要添加0-3%的有机树脂、流变剂、表面活性剂等,以调节浆料在使用工艺条件下所需要的物理特性),然后向乙二醇中加入10g尺寸为3-8nm的纳米银颗粒;加入20g边长为300-800nm,厚度为30-80nm的纳米银片;加入60g尺寸2-8μm的微米铜粉,然后用研钵研磨均匀,得到可低温烧结银铜复合导电浆料。
实施例4
称取10g1,2-丙二醇(即有机载体主要成分为1,2-丙二醇,当然也可以根
据需要添加0-3%的有机树脂、流变剂、表面活性剂等,以调节浆料在使用工艺条件下所需要的物理特性),然后向1,2-丙二醇中加入10g尺寸为3-8nm的纳米银颗粒;加入20g边长为300-800nm,厚度为30-80nm的纳米银片;加入60g尺寸2-8μm的微米铜粉,然后用研钵研磨均匀,得到可低温烧结银铜复合导电浆料。
对比例1
称取10g1,2-丙二醇(即有机载体主要成分为1,2-丙二醇,当然也可以根据需要添加0-3%的有机树脂、流变剂、表面活性剂等,以调节浆料在使用工艺条件下所需要的物理特性),然后向1,2-丙二醇中加入30g尺寸为3-8nm的纳米银颗粒;加入60g边长为300-800nm,厚度为30-80nm的纳米银片,然后用研钵研磨均匀,得到可低温烧结银铜复合导电浆料。
进一步地,为验证上述实施例和对比例制备的可低温烧结银铜复合导电浆料是否能够作为功率半导体器件的芯片封装和连接材料,进行以下分别对上述实施例1-4和对比例1制备的可低温烧结银铜复合导电浆料采用热压工艺制成样品,具体如下。
实施例5
将实施例1制得的可低温烧结银铜复合导电浆料用模具和热压机,在0.5MPa的压力下,烧结温度为200℃,烧结20min,烧结结束后撤销压力保温10min,得到样品A,样品A的烧结样品微观结构图如图4所示。
实施例6
将步骤实施例2制得的可低温烧结银铜复合导电浆料用模具和热压机,在0.5MPa的压力下,烧结温度为200℃,烧结20min,烧结结束后撤销压力保温10min,得到样品B,样品B的烧结样品微观结构图如图5所示。
实施例7
将步骤实施例3制得的可低温烧结银铜复合导电浆料用模具和热压机,在0.5MPa的压力下,烧结温度为200℃,烧结20min,烧结结束后撤销压力保温10min,得到样品C,样品C的烧结样品微观结构图如图6所示。
实施例8
将步骤实施例4制得的可低温烧结银铜复合导电浆料用模具和热压机,在0.5MPa的压力下,烧结温度为200℃,烧结20min,烧结结束后撤销压力保温10min,得到样品D,样品D的烧结样品微观结构图如图7所示。
对比例2
将对比例1制得的可低温烧结银铜复合导电浆料用模具和热压机,在0.5MPa的压力下,烧结温度为200℃,烧结20min,烧结结束后撤销压力保温10min,得到样品E。
从图4到图7中能够看出,纳米银片发生了不同程度的熔融现象。这是因为加入了小尺寸的纳米银颗粒,这种极小尺寸的纳米银具有非常高的比表面积和表面活性,通过尺寸效应能够显著的降低熔点,和纳米银片形成共熔现象,带动了纳米银片的熔融;同时,纳米尺寸效应与微米铜形成协同效应,与微米铜颗粒形成了连接的导热通道,这种连接结构越多,样品的导热能力与导电能力越强。
将实施例5-实施例8、对比例2中得到的样品送于上海微谱检测科技集团股份有限公司,按照参考标准ASTM E1461-2013测试导热系数;用本单位的电输运性质测量系统测试得到电阻率,再通过计算得到电导率,电阻率为电导率互为倒数,得到的结果如表2所示。
表2
从表2中的数据能够看出,本发明制备的可低温烧结银铜复合导电浆料烧结后具有优异的热导率和电导率。在功率电子器件应用方面具有发展前景,为封装材料提供了一种思路;而且添加了不同的有机溶剂,可低温烧结银铜复合导电浆料的烧结体的性能不同,使用1,2-丙二醇作为有机溶剂时可低温烧结银铜复合导电浆料烧结体的热导率和电导率最佳。
综述,本发明制备的可低温烧结银铜复合导电浆料低温烧结后具有优异的热导率和电导率,因此,可作为率半导体器件的芯片封装和连接材料。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。
Claims (10)
- 一种可低温烧结银铜复合导电浆料,其特征在于,包括以下重量百分比的组分:
- 根据权利要求1所述的可低温烧结银铜复合导电浆料,其特征在于:所述微米铜颗粒的形状为球形,平均粒径为1-10μm。
- 根据权利要求1所述的可低温烧结银铜复合导电浆料,其特征在于:所述纳米银片的形状为片状,纳米银片的平面平均直径为100-2000nm,平均厚度为5-500nm,其片状平面直径与厚度之比大于2。
- 根据权利要求1所述的可低温烧结银铜复合导电浆料,其特征在于:所述纳米银颗粒的形状为球形,平均粒径为1-100nm。
- 根据权利要求1所述的可低温烧结银铜复合导电浆料,其特征在于:所述有机载体包含有1,2-丙二醇、乙二醇、松油醇、DBE中的一种有机溶剂或者多种组合的混合有机溶剂。
- 根据权利要求1所述的可低温烧结银铜复合导电浆料,其特征在于:所述有机载体还包含有机树脂、流变剂、表面活性剂中的一种或多种组合,有机树脂、流变剂、表面活性剂中的一种或多种组合占有机载体的重量百分比为0-3%。
- 根据权利要求4所述的可低温烧结银铜复合导电浆料,其特征在于:所述纳米银颗粒的平均粒径为3-8nm。
- 一种如权利要求1-7任一所述的可低温烧结银铜复合导电浆料的制备方法,其特征在于,包括以下步骤:按重量百分比称取微米铜颗粒、纳米银片、纳米银颗粒、有机载体,将微米铜颗粒、纳米银片、纳米银颗粒加入有机载体中,然后用研钵或者三辊轧机研磨均匀,得到可低温烧结银铜复合导电浆料。
- 一种如根据权利要求1-7任一所述的可低温烧结银铜复合导电浆料在作为功率半导体器件的芯片封装和连接材料中的应用。
- 一种如根据权利要求9所述的可低温烧结银铜复合导电浆料在作为功率半导体器件的芯片封装和连接材料中的应用,其特征在于:采用热压工艺将所述可低温烧结银铜复合导电浆料封装在半导体器件的芯片上,其工艺条件为:压力0.1MPa-1MPa,烧结温度180-250℃,烧结时间为15-30分钟,保温时间为10分钟。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310418843.2 | 2023-04-19 | ||
CN202310418843.2A CN116189960B (zh) | 2023-04-19 | 2023-04-19 | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024217073A1 true WO2024217073A1 (zh) | 2024-10-24 |
Family
ID=86434746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/070668 WO2024217073A1 (zh) | 2023-04-19 | 2024-01-04 | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116189960B (zh) |
WO (1) | WO2024217073A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116189960B (zh) * | 2023-04-19 | 2024-02-27 | 佛山科学技术学院 | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 |
CN118248375A (zh) * | 2024-04-02 | 2024-06-25 | 上海电子信息职业技术学院 | 一种低温固化铜基浆料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010106951A (ko) * | 2000-05-24 | 2001-12-07 | 임무현 | 인쇄회로기판의 관통구멍 충진용 은동 페이스트 조성물 |
CN107221373A (zh) * | 2017-06-30 | 2017-09-29 | 华南理工大学 | 一种芯片封装用低温烧结混合型导电银浆及其制备方法 |
CN107833651A (zh) * | 2017-10-25 | 2018-03-23 | 哈尔滨工业大学深圳研究生院 | 一种复合纳米银膏及快速烧结封装方法 |
CN110033877A (zh) * | 2019-04-25 | 2019-07-19 | 中国科学院深圳先进技术研究院 | 一种银基导电浆料及其制备方法和在封装芯片互连中的应用 |
CN112756841A (zh) * | 2020-12-25 | 2021-05-07 | 哈尔滨工业大学(深圳) | 一种用于低温烧结互连的微纳复合银铜合金焊膏及制备方法 |
CN115188522A (zh) * | 2022-08-03 | 2022-10-14 | 芯体素(杭州)科技发展有限公司 | 一种适用于3d打印的铜银复合浆料及其制备方法 |
CN116189960A (zh) * | 2023-04-19 | 2023-05-30 | 佛山科学技术学院 | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770829B (zh) * | 2010-03-16 | 2011-06-01 | 彩虹集团公司 | 一种触摸屏专用银电极浆料及其制备方法 |
KR20130031414A (ko) * | 2011-09-21 | 2013-03-29 | 삼성전기주식회사 | 저온소성용 도전성 페이스트 조성물 |
CN103996433B (zh) * | 2014-04-24 | 2016-05-18 | 安徽为民磁力科技有限公司 | 一种含磷铜合金电路板导电银浆及其制备方法 |
US11040416B2 (en) * | 2015-09-07 | 2021-06-22 | Showa Denko Materials Co., Ltd. | Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device |
CN106981324B (zh) * | 2017-04-26 | 2019-01-29 | 上海安缔诺科技有限公司 | 一种铜导电浆料及其制备方法和用途 |
CN107527671A (zh) * | 2017-08-04 | 2017-12-29 | 郴州国盛新材科技有限公司 | 一种石墨烯纳米银铜浆料 |
-
2023
- 2023-04-19 CN CN202310418843.2A patent/CN116189960B/zh active Active
-
2024
- 2024-01-04 WO PCT/CN2024/070668 patent/WO2024217073A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010106951A (ko) * | 2000-05-24 | 2001-12-07 | 임무현 | 인쇄회로기판의 관통구멍 충진용 은동 페이스트 조성물 |
CN107221373A (zh) * | 2017-06-30 | 2017-09-29 | 华南理工大学 | 一种芯片封装用低温烧结混合型导电银浆及其制备方法 |
CN107833651A (zh) * | 2017-10-25 | 2018-03-23 | 哈尔滨工业大学深圳研究生院 | 一种复合纳米银膏及快速烧结封装方法 |
CN110033877A (zh) * | 2019-04-25 | 2019-07-19 | 中国科学院深圳先进技术研究院 | 一种银基导电浆料及其制备方法和在封装芯片互连中的应用 |
CN112756841A (zh) * | 2020-12-25 | 2021-05-07 | 哈尔滨工业大学(深圳) | 一种用于低温烧结互连的微纳复合银铜合金焊膏及制备方法 |
CN115188522A (zh) * | 2022-08-03 | 2022-10-14 | 芯体素(杭州)科技发展有限公司 | 一种适用于3d打印的铜银复合浆料及其制备方法 |
CN116189960A (zh) * | 2023-04-19 | 2023-05-30 | 佛山科学技术学院 | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN116189960A (zh) | 2023-05-30 |
CN116189960B (zh) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024217073A1 (zh) | 一种可低温烧结银铜复合导电浆料及其制备方法和应用 | |
CN106128555B (zh) | 一种高导电晶硅太阳能电池正面电极银浆及其制备方法 | |
CN113012844B (zh) | 一种可快速固化烧结的hjt低温银浆及其制备方法 | |
CN109777335B (zh) | 一种纳米银修饰碳纳米管制备高导热导电胶的方法 | |
WO2020199638A1 (zh) | 一种多尺寸纳米颗粒混合金属膜及其制备方法 | |
JP2010109334A (ja) | 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール | |
CN111534016B (zh) | 具有导热与电磁屏蔽性能的电子封装材料及其制备方法 | |
CN104021842A (zh) | 一种石墨烯复合铜厚膜导电浆料及其制备方法 | |
CN108695011A (zh) | 背钝化晶体硅太阳能电池用正面银浆及其制备方法和应用 | |
CN110079266A (zh) | 一种纳米银修饰碳纳米管制备高导热导电胶及其制备方法 | |
CN107068240A (zh) | 一种背银浆料 | |
CN113053561B (zh) | 一种以镀银铜粉为导电粒子的异质结太阳能电池用低温浆料及制备方法 | |
CN105655009A (zh) | 一种晶体硅太阳能电池用银浆 | |
CN104200875A (zh) | 一种低银含量石墨烯复合导电银浆及其制备方法 | |
CN111534154A (zh) | 一种银纳米线-硅溶胶改性复合导电油墨及其制备方法 | |
CN113284672B (zh) | 一种银纳米线导电浆料的制备方法 | |
CN106653148A (zh) | 一种晶硅太阳能电池背面电极银浆及其制备方法 | |
CN104178053A (zh) | 一种石墨烯复合导电胶 | |
CN105810284A (zh) | 一种硅太阳能电池用浆料 | |
CN106830691B (zh) | 一种石墨烯掺杂型电子浆料用玻璃粉及其制备方法 | |
CN118280630A (zh) | 一种用于hjt电池的高导电银浆及其制备方法 | |
CN107424660A (zh) | 一种太阳能电池用背银浆料及其制备方法 | |
CN117198592A (zh) | 一种低温导电浆料及其制备方法和应用 | |
CN117711665A (zh) | 一种石墨烯包覆银粉、异质结低温银浆及其制备方法 | |
CN105655007A (zh) | 一种晶体硅太阳能电池用混合浆料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24791661 Country of ref document: EP Kind code of ref document: A1 |