Nothing Special   »   [go: up one dir, main page]

WO2024203716A1 - Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex - Google Patents

Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex Download PDF

Info

Publication number
WO2024203716A1
WO2024203716A1 PCT/JP2024/011009 JP2024011009W WO2024203716A1 WO 2024203716 A1 WO2024203716 A1 WO 2024203716A1 JP 2024011009 W JP2024011009 W JP 2024011009W WO 2024203716 A1 WO2024203716 A1 WO 2024203716A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloroprene
unsaturated nitrile
nitrile copolymer
mass
parts
Prior art date
Application number
PCT/JP2024/011009
Other languages
French (fr)
Japanese (ja)
Inventor
渉 西野
遼太郎 安藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024203716A1 publication Critical patent/WO2024203716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F236/16Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • C08F236/18Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • C08L11/02Latex

Definitions

  • the present invention relates to a chloroprene-unsaturated nitrile copolymer latex, a rubber component, a rubber composition, a vulcanized molded product, and a method for producing the chloroprene-unsaturated nitrile copolymer latex.
  • Chloroprene latex and chloroprene rubber which contain chloroprene polymers, have excellent mechanical properties, ozone resistance, and chemical resistance, and these properties are used in a wide range of fields, including automotive parts, adhesives, and various industrial rubber parts.
  • Patent Document 1 discloses a copolymer in which the proportions of the monomers constituting the polymer are, when the total amount of all monomers is taken as 100% by mass, 80 to 97% by mass of 2-chloro-1,3-butadiene (chloroprene) (C-1) and 20 to 3% by mass of 2,3-dichloro-1,3-butadiene (C-2); or a copolymer in which 79.8 to 96.8% by mass of 2-chloro-1,3-butadiene (chloroprene) (C-1), 20 to 3% by mass of 2,3-dichloro-1,3-butadiene (C-2) and 0.2 to 17% by mass of a monomer (C-3) copolymerizable therewith are
  • the present invention discloses a composition for chloroprene-based vulcanized rubber, which comprises 100 parts by mass of a polymer for chloroprene-based vulcanized rubber, the polymer being a copo
  • Patent Document 2 discloses a rubber composition for a flame-retardant hose, which contains a rubber component, carbon black, and silica, and in which the rubber component is composed only of chloroprene rubber, or is composed only of chloroprene rubber and styrene-butadiene rubber.
  • Patent Document 3 discloses a statistical copolymer latex containing chloroprene monomer units and unsaturated nitrile monomer units, with an unsaturated nitrile monomer unit content of 5 to 20% by mass, and wherein the toluene-insoluble portion of the statistical copolymer obtained by freeze-drying the statistical copolymer latex is 50 to 100% by mass relative to 100% by mass of the statistical copolymer.
  • chloroprene-based latexes have room for improvement in terms of storage stability at high temperatures for long periods of time.
  • the present invention has been made in consideration of these circumstances, and provides a chloroprene-unsaturated nitrile copolymer latex that has excellent storage stability at high temperatures for long periods of time, and that has excellent oil resistance in a vulcanized molded product of a rubber composition using the rubber component of the chloroprene-unsaturated nitrile copolymer latex and generates little heat in a dynamic environment.
  • the present invention also provides a rubber component of the chloroprene-unsaturated nitrile copolymer latex, a rubber composition containing the rubber component, a vulcanized molded product of the rubber composition, and a method for producing the chloroprene-unsaturated nitrile copolymer latex.
  • a chloroprene-unsaturated nitrile copolymer latex containing a chloroprene-unsaturated nitrile copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, the chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method, the chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1), and the content of the unsaturated nitrile hydrolyzate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
  • R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
  • [2] The chloroprene-unsaturated nitrile copolymer latex according to [1], wherein the unsaturated nitrile monomer unit is an acrylonitrile monomer unit, the chloroprene-unsaturated nitrile copolymer has an acrylonitrile bond amount of 2 mass% or more measured in accordance with JIS K6451-1, and the chloroprene-unsaturated nitrile copolymer latex has a content of acrylonitrile hydrolysate of 0.10 to 9.00 mass parts relative to 100 mass parts of the chloropren
  • a rubber composition comprising the rubber component according to [3].
  • the vulcanization molded article according to [5] which is a power transmission belt, a conveyor belt, a hose, a wiper, a dipping product, a sealing part, an adhesive, a boot, a rubber-coated cloth, a rubber roll, a vibration-proof rubber or a sponge product.
  • a method for producing a chloroprene-unsaturated nitrile copolymer latex containing a chloroprene-unsaturated nitrile copolymer containing a chloroprene monomer unit and an unsaturated nitrile monomer unit comprising a polymerization step of polymerizing raw material monomers containing a chloroprene monomer and an unsaturated nitrile monomer in an aqueous solution containing water in the presence of a xanthogen compound to obtain the chloroprene-unsaturated nitrile copolymer, and the amount of the water is less than 150 parts by mass when the total amount of the raw material monomers used in the polymerization step is taken as 100 parts by mass.
  • the chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent storage stability at high temperatures for long periods of time.
  • a vulcanized molded product of a rubber composition containing the rubber component of the chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent oil resistance and generates little heat in dynamic environments.
  • the chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent storage stability at high temperatures for long periods of time, it can be stored while maintaining its excellent quality in the state of the chloroprene-unsaturated nitrile copolymer latex, and since a vulcanized molded product of a rubber composition using the rubber component has excellent oil resistance and generates little heat in dynamic environments, these properties can be utilized for a variety of applications and components.
  • Chloroprene-unsaturated nitrile copolymer latex contains a chloroprene-unsaturated nitrile copolymer.
  • the chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method, has a functional group having a structure represented by chemical formula (1), and the content of the unsaturated nitrile hydrolysate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • the chloroprene-unsaturated nitrile copolymer according to the present invention may have a structure derived from a monomer unit other than the chloroprene monomer unit and the unsaturated nitrile monomer unit, as long as the object of the present invention is not impaired.
  • 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity.
  • 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in this embodiment.
  • unsaturated nitriles examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, and phenylacrylonitrile.
  • the unsaturated nitriles may be used alone or in combination of two or more. It is preferable that the unsaturated nitrile contains acrylonitrile, from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product.
  • the chloroprene-unsaturated nitrile copolymer according to the present invention has a nitrogen content of 0.5% by mass or more as measured by a combustion method.
  • the nitrogen content may be, for example, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, or 7.0% by mass, and may be within a range between any two of the values exemplified here.
  • the nitrogen content of the chloroprene-unsaturated nitrile copolymer can be determined by analyzing the chloroprene-unsaturated nitrile copolymer obtained by freeze-drying or methanol precipitation from the chloroprene-unsaturated nitrile copolymer latex using an elemental analyzer by a combustion method. Specifically, the analysis can be performed by the method described in the Examples.
  • the nitrogen in the chloroprene-unsaturated nitrile copolymer can be derived from the unsaturated nitrile monomer units in the chloroprene-unsaturated nitrile copolymer, and can be controlled by adjusting the amount of unsaturated nitrile in the raw material monomer during polymerization of the chloroprene-unsaturated nitrile copolymer.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably has an unsaturated nitrile monomer unit content of 2.0% by mass or more.
  • the unsaturated nitrile monomer unit content may be, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably has an acrylonitrile bond content (content of acrylonitrile monomer units) of 2 mass% or more, measured in accordance with JIS K 6451-1.
  • the acrylonitrile bond content (content of acrylonitrile monomer units) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mass%, and may be within a range between any two of the numerical values exemplified here.
  • the content of unsaturated nitrile monomer units and the content of acrylonitrile monomer units in the chloroprene-unsaturated nitrile copolymer can be calculated based on the nitrogen content measured by the combustion method, and in particular, the amount of acrylonitrile bonds (content of acrylonitrile monomer units) can be calculated based on JIS K 6451-1. Specifically, it can be analyzed by the method described in the Examples.
  • the resulting rubber composition and vulcanized molded product will have sufficient oil resistance.
  • the resulting rubber composition and vulcanized molded product will have improved water resistance and cold resistance.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably contains 60 to 100% by mass of chloroprene monomer units when the chloroprene-unsaturated nitrile copolymer is taken as 100% by mass.
  • the content of chloroprene monomer units in the chloroprene-unsaturated nitrile copolymer may be, for example, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may also have a monomer unit other than the chloroprene monomer and the unsaturated nitrile monomer.
  • the monomer unit other than the chloroprene monomer and the unsaturated nitrile monomer is not particularly limited as long as it is copolymerizable with the chloroprene monomer or the chloroprene monomer and the unsaturated nitrile monomer, and examples of the monomer unit include esters of (meth)acrylic acid (methyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 2,3-dichloro-1,3-butadiene, 1-chlor
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may contain 0 to 20% by mass of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer when the chloroprene-unsaturated nitrile copolymer is taken as 100% by mass.
  • the content of the monomer units other than the chloroprene monomer and the unsaturated nitrile monomer in the chloroprene-unsaturated nitrile copolymer may be, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may be composed only of chloroprene monomer units and unsaturated nitrile monomer units.
  • the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention may contain one kind of chloroprene-unsaturated nitrile copolymer, or may contain two or more kinds of chloroprene-unsaturated nitrile copolymers.
  • the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention contains two or more kinds of chloroprene-unsaturated nitrile copolymers, it is preferable that the content based on the total mass of total nitrogen, total unsaturated nitrile monomer units, total acrylonitrile monomer units, etc.
  • chloroprene-unsaturated nitrile copolymers contained in the two or more kinds of chloroprene-unsaturated nitrile copolymers is within the above-mentioned numerical range with respect to 100% by mass of the two or more kinds of chloroprene-unsaturated nitrile copolymers in total contained in the chloroprene-unsaturated nitrile copolymer latex.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention has a functional group having a structure represented by chemical formula (1).
  • R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
  • the functional group having the structure represented by chemical formula (1) can be introduced by carrying out the polymerization process of the chloroprene-unsaturated nitrile copolymer in the presence of a xanthogen compound.
  • Xanthogen compounds that can be used to introduce the functional group having the structure represented by chemical formula (1) will be described later in the section on the production method.
  • the vulcanized molded article of the rubber composition containing the rubber component of the chloroprene-unsaturated nitrile copolymer latex according to the present invention has excellent oil resistance and generates little heat under dynamic environments because the chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1).
  • the content of the hydrolyzate of the unsaturated nitrile in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • unsaturated nitriles are hydrolyzed to amides, alcohols, and ethers, and are finally decomposed to carboxylic acids and ammonia.
  • the hydrolyzate of the unsaturated nitrile may contain amides, nitriles, alcohols, ethers, carboxylic acids, and ammonia derived from the unsaturated nitrile.
  • the hydrolyzate of the unsaturated nitrile may be a compound derived from the unsaturated nitrile, and may be a compound containing a cyano group, a compound containing an amide group, a compound containing a carboxy group, and a compound containing an amino group (including ammonia).
  • the hydrolysate of the unsaturated nitrile may contain acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, and ammonia, and may be acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, and ammonia.
  • the hydrolysate of the unsaturated nitrile may contain methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, and ammonia, and may be methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, and ammonia.
  • phenylacrylonitrile in the case of phenylacrylonitrile, it can contain 3-phenylpropionamide, ⁇ -(hydroxymethyl)benzeneacetonitrile, ⁇ , ⁇ '-[oxybis(methylene)]bis[ ⁇ -methylbenzeneacetonitrile], 2-phenylpropionic acid, and ammonia, and can be 3-phenylpropionamide, ⁇ -(hydroxymethyl)benzeneacetonitrile, ⁇ , ⁇ '-[oxybis(methylene)]bis[ ⁇ -methylbenzeneacetonitrile], 2-phenylpropionic acid, and ammonia.
  • the chloroprene-unsaturated nitrile copolymer according to the present invention has a content of unsaturated nitrile hydrolysate in the chloroprene-unsaturated nitrile copolymer latex relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer, which is 0.10 to 9.00 parts by mass, for example, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, or 9.00% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may have a total content of amide, nitrile, alcohol, ether, carboxylic acid, and ammonia derived from unsaturated nitrile within the above numerical range, and the content of amide, nitrile, alcohol, and ether derived from unsaturated nitrile may be within the above numerical range.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may have a total content of acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, ammonia, methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, 3-phenylpropionamide, ⁇ -(hydroxymethyl)benzeneacetonitrile, ⁇ , ⁇ '-[oxybis(methylene)]bis[ ⁇ -methylbenzeneacetonitrile], and 2-phenylpropionic acid within the above-mentioned numerical range, and the total content of acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, 3-phenylpropionamide, ⁇ -(hydroxymethyl)benzeneacetonitrile,
  • the chloroprene-unsaturated nitrile copolymer according to the present invention is preferably such that the content of acrylonitrile hydrolysates per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer in the chloroprene-unsaturated nitrile copolymer latex is within the above numerical range.
  • the content of unsaturated nitrile hydrolysates can be the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide
  • the content of acrylonitrile hydrolysates can be the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide.
  • the chloroprene-unsaturated nitrile copolymer according to the present invention is preferably such that the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer in the chloroprene-unsaturated nitrile copolymer latex is within the above numerical range.
  • the chloroprene-unsaturated nitrile copolymer latex may have a 2-cyanoethanol content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • the 2-cyanoethanol content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer latex may have a 2-cyanoethyl ether content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • the 2-cyanoethyl ether content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer latex may have an acrylamide content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  • the acrylamide content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention has an unsaturated nitrile hydrolysate content within the above numerical range, and therefore has excellent storage stability at high temperatures for long periods of time, and a vulcanized molded product of a rubber composition containing a rubber component of the chloroprene-unsaturated nitrile copolymer latex has excellent oil resistance and generates little heat in a dynamic environment.
  • the content of unsaturated nitrile hydrolysates can be controlled by adjusting the production conditions during polymerization of the chloroprene-unsaturated nitrile copolymer, in particular the amount of water and the amount of alkali relative to the raw material monomers used in polymerization, the type and amount of the raw material monomers mixed, as well as the timing of addition, polymerization temperature, and the concentration of each monomer in the polymerization liquid.
  • the content of unsaturated nitrile hydrolysates in the chloroprene-unsaturated nitrile copolymer latex can be determined by analyzing a solution obtained by diluting the chloroprene-unsaturated nitrile copolymer latex with tetrahydrofuran using gas chromatography, for example, a gas chromatograph (GC) system. Specifically, the analysis can be performed using the method described in the Examples. As another method, since ammonia, one of the hydrolysates of unsaturated nitriles, has a strong irritating odor, the presence or absence of the generation of ammonia can be confirmed by the presence or absence of an irritating odor in the polymerization liquid.
  • gas chromatography for example, a gas chromatograph (GC) system.
  • GC gas chromatograph
  • carboxylic acid is considered to be generated simultaneously with ammonia based on the mechanism of decomposition, the presence or absence of carboxylic acid generation can be confirmed by the presence or absence of ammonia generation.
  • concentration of ammonia in the chloroprene-unsaturated nitrile copolymer latex is 1 ppm or more, the irritating odor can be detected in the working environment.
  • concentration of ammonia in the chloroprene-unsaturated nitrile copolymer latex can be less than 1 ppm.
  • the concentration of ammonia can also be analyzed by ion chromatography.
  • carboxylic acid can also be analyzed by ion chromatography, liquid chromatography, or gas chromatography.
  • the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention can contain compounds used in the polymerization of the chloroprene-unsaturated nitrile copolymer, in addition to the chloroprene-unsaturated nitrile copolymer and the hydrolyzate of the unsaturated nitrile.
  • the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention can have a solid content adjusted according to the application.
  • the solid content is not particularly limited, and may be, for example, 40, 45, 50, 55, 60, 65, or 70% by mass, or may be within a range between any two of the values exemplified here.
  • the viscosity is less than 1000 cps.
  • the viscosity after storage at 40°C for four months may be, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 950 cps, or may be within a range between any two of the values exemplified here.
  • the viscosity can be measured using a B-type viscometer, and specifically, can be analyzed by the method described in the examples.
  • a method for producing a chloroprene-unsaturated nitrile copolymer latex including a chloroprene-unsaturated nitrile copolymer including a chloroprene monomer unit and an unsaturated nitrile monomer unit can include a polymerization step of polymerizing raw material monomers including a chloroprene monomer and an unsaturated nitrile monomer in an aqueous solution containing water in the presence of a xanthogen compound to obtain a chloroprene-unsaturated nitrile copolymer.
  • the total raw material monomers used in the polymerization step are taken as 100 parts by mass, the amount of the water can be less
  • raw material monomers including chloroprene monomer and unsaturated nitrile monomer are polymerized in an aqueous solution containing water to obtain a chloroprene-unsaturated nitrile copolymer.
  • the raw material monomers include chloroprene monomer and unsaturated nitrile monomer, and may include other monomers in addition to chloroprene monomer and unsaturated nitrile monomer.
  • the other monomers are as described above. It is preferable to adjust the blending ratio of each monomer in the raw material monomers so that the content of chloroprene monomer units, unsaturated nitrile monomer units, and other monomer units in the resulting chloroprene-unsaturated nitrile copolymer falls within the numerical ranges described above.
  • a portion of the raw material monomers can be added initially, and a portion can be added in portions after the start of polymerization.
  • the polymerization process can include a first addition step of adding at least a portion of the raw material monomers including chloroprene and unsaturated nitrile, and a second addition step of adding the remaining raw material monomers.
  • the total amount of chloroprene monomers added in the polymerization step is taken as 100 parts by mass, at least 10 parts by mass of chloroprene monomer can be added, for example, 10, 20, 30, 40, 50, 60, 70 parts by mass can be added, and it may be within a range between any two of the numerical values exemplified here.
  • the first addition step when the total amount of unsaturated nitriles added in the polymerization step is taken as 100 parts by mass, at least 50 parts by mass of unsaturated nitrile can be added, for example, 50, 60, 70, 80, 90, 100 parts by mass can be added, and it may be within a range between any two of the numerical values exemplified here.
  • the raw material monomer, emulsifier, and optionally RAFT agent and molecular weight are added to water in the above amounts. Then, a polymerization initiator is added to start polymerization.
  • the second addition step when the total amount of chloroprene monomer added in the polymerization step is 100 parts by mass, at least 30 parts by mass of chloroprene monomer can be added, for example, 30, 40, 50, 60, or 70 parts by mass can be added, and may be within a range between any two of the numerical values exemplified here.
  • the total amount of unsaturated nitrile added in the polymerization step is 100 parts by mass, 0, 10, 20, or 30 parts by mass of unsaturated nitrile can be added, and may be within a range between any two of the numerical values exemplified here.
  • the remaining raw material monomer in two or more separate portions.
  • the remaining raw material monomer can be added in separate portions, for example, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 portions, and the number of separate additions may be within a range between any two of the numerical values exemplified here.
  • the remaining raw material monomers can also be added continuously at a constant flow rate.
  • the raw material monomers in portions so that the amount of unsaturated nitrile monomer in the polymerization liquid is maintained at 20 to 90 parts by mass when the amount of unreacted monomer in the polymerization liquid (e.g., the total of chloroprene monomer and acrylonitrile monomer) is 100 parts by mass.
  • the amount of unsaturated nitrile monomer relative to 100 parts by mass of unreacted monomer in the polymerization liquid is, for example, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the amount of water can be less than 150 parts by mass when the total amount of raw material monomers used in the polymerization step is 100 parts by mass.
  • the amount of water can be, for example, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 149 parts by mass, or can be within a range between any two of the values exemplified here.
  • the amount of hydrolyzed unsaturated nitriles produced can be reduced by reducing the amount of water compared to conventional production methods.
  • hydrolyzed unsaturated nitriles such as acrylamide, 2-cyanoethanol, and 2-cyanoethyl ether
  • acrylamide, 2-cyanoethanol, and 2-cyanoethyl ether impose a large burden on wastewater treatment, and therefore reducing the production of these hydrolyzed products is also advantageous in terms of reducing the environmental load and the effort and cost required for wastewater treatment.
  • the emulsifier used in emulsion polymerization is not particularly limited, and any known emulsifier generally used in emulsion polymerization of chloroprene polymers can be used.
  • emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (e.g. potassium rosinate), and alkali metal salts of formalin condensates of ⁇ -naphthalenesulfonic acid (e.g. sodium salt).
  • the amount of emulsifier added is preferably 0.2 to 20 parts by mass, and more preferably 2 to 10 parts by mass, per 100 parts by mass of the total raw material monomers used in the polymerization process.
  • At least a xanthogen compound is used as a molecular weight regulator in emulsion polymerization.
  • a known molecular weight regulator that is generally used in emulsion polymerization of chloroprene can be used in combination.
  • Other molecular weight regulators include, for example, mercaptan compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds.
  • the terminal structure represented by chemical formula (1) can be introduced into the chloroprene-unsaturated nitrile copolymer by carrying out the polymerization in the presence of a xanthogen compound.
  • R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
  • xanthogen compounds include dialkyl xanthogen disulfides such as dimethyl xanthogen disulfide, diethyl xanthogen disulfide, diisopropyl xanthogen disulfide, and dibutyl xanthogen trisulfide.
  • dialkyl xanthogen trisulfides such as diethyl xanthogen trisulfide, diisopropyl xanthogen trisulfide, and dibutyl xanthogen trisulfide.
  • dialkyl xanthogens having four or more sulfur atoms linking xanthogens such as dialkyl xanthogen polysulfides such as diethyl xanthogen polysulfide, diisopropyl xanthogen polysulfide, and dibutyl xanthogen polysulfide, can also be used.
  • dialkyl xanthogen polysulfides such as diethyl xanthogen polysulfide, diisopropyl xanthogen polysulfide, and dibutyl xanthogen polysulfide
  • the number of carbon atoms in the alkyl group of these dialkyl xanthogen sulfide compounds is preferably 1 to 10, and more preferably 1 to 6.
  • the amount of molecular weight modifier added is not particularly limited, but is preferably 0.002 to 20 parts by mass per 100 parts by mass of the chloroprene monomer and the unsaturated nitrile monomer combined.
  • the amount of xanthogen compound added is preferably 0.002 to 20 parts by mass per 100 parts by mass of the chloroprene monomer and the unsaturated nitrile monomer combined.
  • a known radical polymerization initiator can be used, such as potassium persulfate, benzoyl peroxide, hydrogen peroxide, and azo compounds.
  • a known RAFT agent can also be used during polymerization. In one embodiment of the present invention, a RAFT agent does not need to be used during polymerization.
  • the polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C.
  • the polymerization may be carried out so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass.
  • a polymerization terminator that stops the polymerization reaction may be added to terminate the polymerization when the desired conversion rate is reached.
  • polymerization terminator there are no particular limitations on the polymerization terminator, and any known polymerization terminator commonly used in emulsion polymerization of chloroprene can be used.
  • polymerization terminators include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, and 2,2-methylenebis-4-methyl-6-t-butylphenol.
  • freezing stabilizers emulsion stabilizers, viscosity modifiers, antioxidants, preservatives, etc. can be added as desired after polymerization, within the scope that does not impair the effects of the present invention.
  • Rubber component of chloroprene-unsaturated nitrile copolymer latex is the rubber component of the chloroprene-unsaturated nitrile copolymer.
  • the method for obtaining the rubber component of the chloroprene-unsaturated nitrile copolymer latex is not particularly limited.
  • the rubber component of the chloroprene-unsaturated nitrile copolymer can be obtained by mixing the chloroprene-unsaturated nitrile copolymer latex with a large amount of methanol, precipitating, filtering, and drying.
  • the rubber component of the chloroprene-unsaturated nitrile copolymer can be obtained by freeze-drying the chloroprene-unsaturated nitrile copolymer latex, specifically, by adjusting the pH of the chloroprene-unsaturated nitrile copolymer latex, freeze-drying, washing with water, and drying with hot air.
  • the rubber component of the chloroprene-unsaturated nitrile copolymer includes a methanol precipitate of the chloroprene-unsaturated nitrile copolymer latex and a freeze-dried product of the chloroprene-unsaturated nitrile copolymer latex.
  • a rubber composition having the composition described in the examples is prepared, and the rubber composition is press-vulcanized at 170°C for 20 minutes in accordance with JIS K 6250 to produce a vulcanized molded product.
  • a test oil high-grade automotive lubricating oil, ASTM No. 3, IRM 903 oil
  • the volume change is preferably less than 45% by mass.
  • a rubber composition having the composition described in the Examples is prepared, and the rubber composition is press-vulcanized at 170°C for 20 minutes to produce a cylindrical vulcanized molded product having a diameter of 15 mm and a height of 25 mm.
  • the vulcanized molded product is then evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute.
  • the heat generation ( ⁇ T) is preferably less than 45°C.
  • the heat generation property can be evaluated by a Goodrich Flexometer (JIS K 6265:2018).
  • the Goodrich Flexometer is a test method for evaluating fatigue properties due to heat generation inside a test piece of vulcanized rubber or the like by applying a dynamic repeated load to the test piece, and more specifically, a static initial load is applied to the test piece under constant temperature conditions, and a sine vibration of a constant amplitude is further applied to measure the heat generation temperature and creep amount of the test piece that change over time.
  • the rubber composition according to one embodiment of the present invention includes the above-mentioned rubber component.
  • the rubber composition according to the present invention may include a vulcanizing agent, a vulcanization accelerator, an antioxidant, a filler, a reinforcing material, a silane coupling agent, a plasticizer, a softener, a lubricant, a processing aid, and may further include components such as a stabilizer, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired.
  • the rubber composition according to the present invention may contain a vulcanizing agent.
  • the type of vulcanizing agent is not particularly limited as long as it does not impair the effects of the present invention.
  • the vulcanizing agent is preferably a vulcanizing agent that can be used for vulcanizing chloroprene-based rubber.
  • One or more vulcanizing agents may be freely selected and used. Examples of the vulcanizing agent include sulfur, zinc oxide, and organic peroxide.
  • metal oxide is zinc oxide.
  • the metal oxide preferably contains zinc oxide, and more preferably is zinc oxide.
  • organic peroxides include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, t- Hexyl peroxypivalate, t-butyl peroxypivalate, di
  • At least one selected from dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, t-butyl- ⁇ -cumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3 is preferred, with 1,4-bis[(t-butylperoxy)isopropyl]benzene being particularly preferred.
  • the rubber composition according to the present invention preferably contains 3 to 15 parts by mass of a vulcanizing agent relative to the rubber component contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a good vulcanizate.
  • the content of the vulcanizing agent is, for example, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention may contain an acid acceptor.
  • the acid acceptor include magnesium oxide, lead oxide, lead tetroxide, iron trioxide, titanium dioxide, calcium oxide, and hydrotalcite.
  • hydrotalcite one represented by the following formula may be used. [M 2+ 1-x M 3+ x (OH) 2 ] x+ [A n-x/n ⁇ mH 2 O] x-
  • M 2+ at least one divalent metal ion selected from Mg 2+ , Zn 2+ , etc.
  • M 3+ at least one trivalent metal ion selected from Al 3+ , Fe 3+ , etc.
  • a n- at least one n-type anion selected from CO 3 2- , Cl - , NO 3 2- , etc.
  • X 0 ⁇ X ⁇ 0.33.
  • hydrotalcite examples include Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 (OH) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 ( OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , and Mg3Al2 ( OH ) 10CO3.1.7H2O .
  • Particularly preferred is Mg4.3 Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O .
  • the amount of acid acceptor added may be 0.1 to 15 parts by mass per 100 parts by mass of the rubber component.
  • the amount of hydrotalcite added may be, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here. Hydrotalcite may be used alone or in combination of two or more types.
  • the rubber composition according to the present invention may contain a vulcanization accelerator, and may contain 0.3 to 5.0 parts by mass of the vulcanization accelerator relative to 100 parts by mass of the rubber composition contained in the rubber composition.
  • the content of the vulcanization accelerator is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may not contain a vulcanization accelerator.
  • the type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention.
  • the vulcanization accelerator is preferably one that can be used for vulcanization of chloroprene-based rubber.
  • One or more vulcanization accelerators can be freely selected and used. Examples of vulcanization accelerators include thiuram-based, dithiocarbamate-based, thiourea-based, guanidine-based, xanthogenate-based, and thiazole-based.
  • thiuram vulcanization accelerators examples include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
  • TMTD tetramethylthiuram disulfide
  • TMTD tetraethylthiuram disulfide
  • tetrabutylthiuram disulfide examples include tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
  • dithiocarbamate vulcanization accelerator examples include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and tellurium diethyldithiocarbamate.
  • thiourea-based vulcanization accelerator examples include thiourea compounds such as ethylene thiourea, diethyl thiourea (N,N'-diethyl thiourea), trimethyl thiourea, diphenyl thiourea (N,N'-diphenyl thiourea), and 1,3-trimethylene-2-thiourea.
  • guanidine-based vulcanization accelerator include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salts of dicatechol borate.
  • Examples of the xanthogenate-based vulcanization accelerator include zinc butylxanthogenate and zinc isopropylxanthogenate.
  • Examples of the thiazole-based vulcanization accelerator include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, cyclohexylamine salt of 2-mercaptobenzothiazole, 2-(4'-morpholinodithio)benzothiazole, and N-cyclohexylbenzothiazole-2-sulfenamide. These may be used alone or in combination of two or more.
  • the rubber composition according to the present invention may contain a filler.
  • the filler (reinforcing material) include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, and SRF, modified carbon black such as hydrophilic carbon black, channel black, lamp black, thermal carbon such as FT and MT, acetylene black, ketjen black, silica, clay, talc, and calcium carbonate. These may be used alone or in combination of two or more.
  • the rubber composition according to one embodiment of the present invention may contain 5 to 130 parts by mass of a filler per 100 parts by mass of the rubber component.
  • the filler content may be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, or 130 parts by mass, or may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention can appropriately adjust the hardness of the vulcanized molded body.
  • the rubber composition according to one embodiment of the present invention may contain a silane coupling agent.
  • a silane coupling agent is not particularly limited, and those used in commercially available rubber compositions can be used, for example, vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents.
  • vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents that start reacting under high temperature conditions during crosslinking are preferred.
  • the rubber composition according to one embodiment of the present invention may contain 0.5 to 15 parts by mass of a silane coupling agent per 100 parts by mass of silica contained in the rubber composition, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here. These may be used alone or in combination of two or more.
  • the plasticizer is not particularly limited as long as it is compatible with the chloroprene-unsaturated nitrile copolymer rubber, and examples thereof include vegetable oils such as rapeseed oil, phthalate-based plasticizers, DOS (dioctyl sebacate), DBS (dibutyl sebacate), DOA (dioctyl adipate), ester-based plasticizers, ether ester-based plasticizers, thioether-based plasticizers, aromatic oils, naphthenic oils, and the like. These can be used alone or in combination of two or more.
  • vegetable oils such as rapeseed oil, phthalate-based plasticizers, DOS (dioctyl sebacate), DBS (dibutyl sebacate), DOA (dioctyl adipate), ester-based plasticizers, ether ester-based plasticizers, thioether-based plasticizers, aromatic oils, naphthenic oils,
  • the amount of plasticizer added can be 0 to 50 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 parts by mass, and may be within the range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may further contain a lubricant and/or a processing aid.
  • the lubricant and processing aid are mainly added to improve processability, such as making the rubber composition easier to peel off from rolls, molding dies, extruder screws, etc.
  • Examples of the lubricant and processing aid include fatty acids such as stearic acid, paraffin processing aids such as polyethylene, fatty acid amides, vaseline, factice, etc. These may be used alone or in combination of two or more.
  • the rubber composition according to the present invention may contain 0.5 to 15 parts by mass of the lubricant and processing aid per 100 parts by mass of the rubber component, and may also be 1 to 10 parts by mass.
  • the content of the lubricant and processing aid may be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may further contain components such as an antiaging agent, an antioxidant, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired.
  • the antiaging agent and the antioxidant include ozone antiaging agents, phenolic antiaging agents, amine antiaging agents, acrylate antiaging agents, imidazole antiaging agents, aromatic secondary amine antiaging agents, carbamic acid metal salts, waxes, phosphorus antiaging agents, and sulfur antiaging agents.
  • the imidazole antiaging agents include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and zinc salts of 2-mercaptobenzimidazole.
  • the rubber composition according to the present invention may contain 0.1 to 10 parts by mass of the antiaging agent and the antioxidant in total, relative to 100 parts by mass of the rubber component contained in the rubber composition.
  • the rubber composition according to one embodiment of the present invention is obtained by kneading the rubber component of the chloroprene-unsaturated nitrile copolymer latex and other necessary components at a temperature equal to or lower than the vulcanization temperature.
  • the device for kneading the raw material components include conventional kneading devices such as a mixer, a Banbury mixer, a kneader mixer, and an open roll.
  • Unvulcanized molded body, vulcanized product, and vulcanized molded body uses the rubber composition according to one embodiment of the present invention, and is a molded body (molded product) of the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the manufacturing method of the unvulcanized molded body according to one embodiment of the present invention includes a step of molding the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the unvulcanized molded body according to one embodiment of the present invention is made of the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the vulcanizate according to one embodiment of the present invention is a vulcanizate of the rubber composition according to one embodiment of the present invention.
  • the method for producing the vulcanizate according to one embodiment of the present invention includes a step of vulcanizing the rubber composition according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention is a vulcanized molded product of a rubber composition according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention uses a vulcanizate according to one embodiment of the present invention, and is a molded product (molded article) of the vulcanizate according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention is made of a vulcanizate according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention can be obtained by molding a vulcanized product obtained by vulcanizing a rubber composition (unvulcanized state) according to one embodiment of the present invention, and can also be obtained by vulcanizing a molded product obtained by molding a rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention can be obtained by vulcanizing a rubber composition according to one embodiment of the present invention after or during molding.
  • the method for producing a vulcanized molded product according to one embodiment of the present invention includes a step of molding a vulcanized product according to one embodiment of the present invention, or a step of vulcanizing an unvulcanized molded product according to one embodiment of the present invention.
  • the vulcanized molded article according to one embodiment of the present invention preferably has a volume change of less than 45% by mass when immersed in a test oil (high-strength lubricating oil for automobiles, ASTM No. 3, IRM 903 oil) at 130°C for 72 hours.
  • a test oil high-strength lubricating oil for automobiles, ASTM No. 3, IRM 903 oil
  • the vulcanized molded article according to one embodiment of the present invention is preferably cylindrical with a diameter of 15 mm and a height of 25 mm, and has a heat generation ( ⁇ T) of less than 45°C as determined by evaluation using a constant strain flexometer test based on JIS K 6265:2018 under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute.
  • the unvulcanized molded body, vulcanized product, and vulcanized molded body according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles.
  • the rubber composition according to the present invention has excellent oil resistance and generates little heat in dynamic environments, so it can be used as various components where these properties are required.
  • the rubber composition, vulcanized product, and vulcanized molded body according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles, and can be used for rubber parts such as automotive rubber parts (e.g., automotive seal materials), hose materials, rubber molded products, gaskets, rubber rolls, industrial cables, industrial conveyor belts, and sponges.
  • automotive rubber parts e.g., automotive seal materials
  • hose materials e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • Rubber components for automobiles include gaskets, oil seals, and packings, which are components that prevent leakage of liquids and gases and intrusion of garbage and foreign objects such as rainwater and dust into machines and devices.
  • gaskets used for fixed applications and oil seals and packings used for moving parts and movable parts.
  • various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets.
  • packings are used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc.
  • the rubber composition of the present invention can increase oil resistance and reduce heat generation in dynamic environments. This makes it possible to manufacture automobile parts that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
  • Hose materials are flexible pipes, and specifically include high- and low-pressure hoses for water supply, oil supply, air supply, steam, and hydraulic use.
  • the rubber composition of the present invention can improve the oil resistance of the hose material and reduce heat generation in a dynamic environment while maintaining the processability of the unvulcanized product. This makes it possible to manufacture, for example, a hose material that has excellent oil resistance and generates little heat in a dynamic environment, which was difficult to achieve with conventional rubber compositions.
  • the rubber molded products include anti-vibration rubber, vibration-damping materials, boots, etc.
  • Anti-vibration rubber and vibration-damping materials are rubbers that prevent the transmission and spread of vibrations, and specifically include torsional dampers, engine mounts, muffler hangers, etc. for automobiles and various vehicles that absorb vibrations during engine operation to prevent noise.
  • the rubber composition of the present invention can increase the oil resistance of anti-vibration rubber and vibration-damping materials and reduce heat generation in dynamic environments. This makes it possible to produce anti-vibration rubber and vibration-damping materials that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to do with conventional rubber compositions.
  • a boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end, and specific examples include boots for constant velocity joint covers, boots for ball joint covers (dust cover boots), and boots for rack and pinion gears, which are used to protect drive parts such as automobile drive systems.
  • the rubber composition of the present invention can improve oil resistance and reduce heat generation in dynamic environments. This makes it possible to manufacture boots that can be used in harsher environments than conventional rubber compositions.
  • Gaskets, oil seals and packings are components that prevent leakage of liquids or gases and intrusion of garbage or foreign objects such as rainwater or dust into machines or equipment.
  • gaskets used for fixed applications and oil seals and packings used for moving parts.
  • various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets.
  • Packings are also used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc.
  • the rubber composition of the present invention can increase the oil resistance of these members and reduce heat generation in dynamic environments. This makes it possible to manufacture sealing members that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
  • Rubber roll A rubber roll is manufactured by adhesively covering a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core. Rubber materials such as NBR, EPDM, and CR are used for rubber rolls according to the required characteristics of various applications such as papermaking, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as rice hullers, and food processing. CR has good mechanical strength that can withstand the friction of the objects being transported, so it is used in a wide range of rubber roll applications. Furthermore, there is a problem that rubber rolls that transport heavy objects are deformed by load, and improvements are required.
  • the rubber composition of the present invention can increase the oil resistance of the rubber roll and reduce heat generation in a dynamic environment. This makes it possible to manufacture an embossing rubber roll that has excellent oil resistance and generates little heat in a dynamic environment, which was difficult to achieve with conventional rubber compositions.
  • Industrial cables are linear components for transmitting electrical or optical signals. They are made by covering a good conductor such as copper or a copper alloy, or an optical fiber, with an insulating covering layer, and a wide variety of industrial cables are manufactured depending on their structure and installation location.
  • the rubber composition of the present invention can increase the oil resistance of industrial cables and reduce heat generation in dynamic environments. This makes it possible to manufacture industrial cables that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
  • Industrial conveyor belts are available in rubber, resin, and metal, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used, but when used in an environment where there is a lot of friction and collision with the transported goods, they have been damaged due to deterioration.
  • the rubber composition of the present invention can increase the oil resistance of industrial conveyor belts and reduce heat generation in dynamic environments. This makes it possible to manufacture industrial conveyor belts that have excellent oil resistance and generate little heat in dynamic environments, which can be used in harsh environments that were difficult to achieve with conventional rubber compositions.
  • a sponge is a porous material with numerous fine holes inside, and is specifically used in vibration-proofing materials, sponge seal parts, wet suits, shoes, etc.
  • the rubber composition of the present invention can improve the acid resistance and water resistance of the sponge.
  • a chloroprene-unsaturated nitrile copolymer rubber is used, it is also possible to improve the flame retardancy of the sponge. This makes it possible to produce a sponge with excellent oil resistance and low heat generation in dynamic environments, which are used in harsh environments that were difficult to achieve with conventional rubber compositions, and a sponge with excellent flame retardancy.
  • the hardness of the sponge obtained can be appropriately adjusted by adjusting the content of the foaming agent, etc.
  • Methods for molding the rubber composition (unvulcanized state) and vulcanized product according to one embodiment of the present invention include press molding, extrusion molding, calendar molding, and the like.
  • the temperature for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, and may be 140 to 220°C, or 160 to 190°C.
  • the vulcanization time for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, the shape of the unvulcanized molded product, and the like.
  • Example 1 A 3-liter polymerization vessel equipped with a heating/cooling jacket and a stirrer was charged with 23 parts by mass of chloroprene monomer, 35 parts by mass of acrylonitrile monomer, 100 parts by mass of pure water, 5.0 parts by mass of disproportionated potassium rosinate (manufactured by Harima Chemicals Co., Ltd.), 0.4 parts by mass of potassium hydroxide, 1.0 part by mass of sodium salt of ⁇ -naphthalenesulfonic acid formalin condensate (manufactured by Kao Corporation), and 0.5 parts by mass of diisopropyl xanthogen disulfide.
  • 0.1 parts by mass of potassium persulfate was added as a polymerization initiator, and emulsion polymerization was carried out under a nitrogen stream at a polymerization temperature of 40° C.
  • the chloroprene monomer was added in portions so that the amount of the unsaturated nitrile monomer in the polymerization liquid was maintained at 70 parts by mass ⁇ 20 parts by mass when the amount of unreacted monomers in the polymerization liquid (the total of the chloroprene monomer and the acrylonitrile monomer) was taken as 100 parts by mass.
  • the chloroprene monomer was added in portions 20 seconds after the start of polymerization, and the amount of the portion added was adjusted with an electromagnetic valve based on the change in the heat quantity of the refrigerant for 10 seconds from the start of polymerization, and the flow rate was readjusted every 10 seconds thereafter, so that the polymerization was carried out continuously.
  • the polymerization rate relative to the total amount of chloroprene and acrylonitrile reached 65%, 0.02 parts by mass of phenothiazine, a polymerization terminator, was added to terminate the polymerization.
  • unreacted monomers, organic solvents, etc. were removed by distillation under reduced pressure, and the residue was concentrated to obtain a chloroprene-unsaturated nitrile copolymer latex 1 having a solid content of 50% by mass.
  • Example 2 Chloroprene-unsaturated nitrile copolymer latexes 2 to 6 were obtained in the same manner as in Example 1, except that the amount of chloroprene monomer initially added, the amount of acrylonitrile monomer, the amount of water, the amount of chloroprene monomer added in portions, and the amount of unsaturated nitrile monomer relative to the unreacted monomer in the polymerization liquid maintained during polymerization were as shown in Table 1.
  • the evaluation was based on the following criteria. ⁇ : Less than 1000 cps ⁇ : 1000 cps or more
  • the nitrogen content in the chloroprene-unsaturated nitrile copolymer was measured by a combustion method using the chloroprene-acrylonitrile copolymers 1 to 7, and the amount of bound acrylonitrile was calculated from the nitrogen content.
  • the analysis method was based on JIS K6451-1:2016, and an automatic analyzer was used to calculate the nitrogen content in the sample by the combustion method (Dumas method), and the content of acrylonitrile monomer units (bound acrylonitrile amount) was calculated from the nitrogen content.
  • an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.) was used to measure the nitrogen atom content in 100 mg of chloroprene-unsaturated nitrile copolymer, and the content of acrylonitrile monomer units was calculated. Elemental analysis was performed as follows. The electric furnace temperatures were set at 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector, and oxygen gas was flowed at 0.2 mL/min as the combustion gas and helium gas was flowed at 80 mL/min as the carrier gas. A calibration curve was created using aspartic acid (10.52%), which has a known nitrogen content, as the standard substance.
  • Rubber compositions were prepared using the rubber components (chloroprene-acrylonitrile copolymers 1 to 7) in the chloroprene-unsaturated nitrile copolymer latexes obtained by freeze-drying the chloroprene-acrylonitrile copolymer latexes 1 to 7 as described above.
  • Antiaging agent (4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine (Nocrac CD, manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)) 3 parts by mass, Antiaging agent (N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Nocrac 6C)) 1 part by mass, Acid acceptor (magnesium oxide (Kyowamag 150, manufactured by Kyowa Chemical Industry Co., Ltd.)) 4 parts by mass, Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide type 2) 5 parts by mass, - 1 part by mass of vulcanization accelerator (trimethylthiourea (manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TMU)), Filler (carbon black FEF (Asahi
  • the above rubber compositions 1 to 7 were used to prepare vulcanized molded articles. Specifically, the obtained rubber compositions 1 to 7 were press-vulcanized at 170°C for 20 minutes based on JIS K 6250 to prepare sheet-shaped vulcanized molded articles having a thickness of 2 mm. The rubber compositions 1 to 7 were also press-vulcanized at 170°C for 20 minutes to prepare vulcanized molded articles for Goodrich tests (cylindrical vulcanized molded articles having a diameter of 15 mm and a height of 25 mm).
  • test piece measuring 25 mm in length and 20 mm in width was punched out from the sheet-like vulcanized molded product.
  • the test piece was immersed in a test oil (high-grade lubricating oil for automobiles, ASTM No. 3, IRM 903 oil) at 130°C for 72 hours.
  • the volume change rate ⁇ V was calculated according to JIS K 6258.
  • the volume change rate ⁇ V was evaluated according to the following criteria. ⁇ : Less than 45% by weight ⁇ : 45% by weight or more
  • the heat generation was evaluated using a Goodrich Flexometer (JIS K 6265:2018).
  • the Goodrich Flexometer is a test method for evaluating fatigue properties due to heat generation inside a test piece by applying a dynamic repeated load to a test piece such as vulcanized rubber.
  • a static initial load is applied to the test piece under a constant temperature condition, and a sine vibration of a constant amplitude is further applied to measure the heat generation temperature and creep amount of the test piece that change over time.
  • the test method conforms to JIS K 6265:2018, and heat generation ( ⁇ T) was measured under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and evaluated according to the following evaluation criteria.
  • Less than 45°C ⁇ : 45°C or higher

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Problem: To provide a chloroprene/unsaturated nitrile copolymer latex that has excellent storage stability at high temperatures over long periods of time, the chloroprene/unsaturated nitrile copolymer latex being such that vulcanized molded bodies of a rubber composition that uses a rubber component of the chloroprene/unsaturated nitrile copolymer latex have excellent oil resistance and generate little heat. Solution: The present invention provides a chloroprene/unsaturated nitrile copolymer latex that includes a chloroprene/unsaturated nitrile copolymer that includes chloroprene monomer units and unsaturated nitrile monomer units, the nitrogen content of the chloroprene/unsaturated nitrile copolymer as measured by the combustion method being at least 0.5 mass%, the chloroprene/unsaturated nitrile copolymer having a functional group that has the structure represented by chemical formula (1), and the unsaturated nitrile hydrolysate content of the chloroprene/unsaturated nitrile copolymer latex being 0.10–9.00 parts by mass per 100 parts by mass of the chloroprene/unsaturated nitrile copolymer.

Description

クロロプレン-不飽和ニトリル共重合体ラテックス、ゴム成分、ゴム組成物、加硫成形体、及びクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法Chloroprene-unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded product, and method for producing chloroprene-unsaturated nitrile copolymer latex
 本発明は、クロロプレン-不飽和ニトリル共重合体ラテックス、ゴム成分、ゴム組成物、加硫成形体、及びクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法に関する。 The present invention relates to a chloroprene-unsaturated nitrile copolymer latex, a rubber component, a rubber composition, a vulcanized molded product, and a method for producing the chloroprene-unsaturated nitrile copolymer latex.
 クロロプレン系重合体を含むクロロプレン系ラテックス及びクロロプレン系ゴムは、機械特性や耐オゾン性、耐薬品性に優れており、その特性を活かして自動車部品、接着剤、各種工業用ゴム部品など広範囲な分野に用いられている。 Chloroprene latex and chloroprene rubber, which contain chloroprene polymers, have excellent mechanical properties, ozone resistance, and chemical resistance, and these properties are used in a wide range of fields, including automotive parts, adhesives, and various industrial rubber parts.
 例えば、特許文献1には、重合体を構成する各単量体の分率が、全単量体の合計量を100質量%とした時に、2-クロロ-1,3-ブタジエン(クロロプレン)(C-1)80~97質量%及び2,3-ジクロロ-1,3-ブタジエン(C-2)20~3質量%からなる共重合体、または2-クロロ-1,3-ブタジエン(クロロプレン)(C-1)79.8~96.8質量%、2,3-ジクロロ-1,3-ブタジエン(C-2)20~3質量%及びこれらと共重合可能な単量体(C-3)を0.2~17質量%からなる共重合体であって、重合体のムーニー粘度(ML1+4(100℃))が100~135の範囲であるクロロプレン系加硫ゴム用重合体100質量部、受酸剤0.5~6質量部、滑剤0.2~3質量部、老化防止剤1~5質量部、カーボンブラック10~120質量部、カーボンブラック以外の充填材0.1~20質量部、軟化剤2~40質量部、加工助剤0.2~5質量部、金属酸化物0.5~10質量部、および加硫促進剤0.5~5質量部を含むクロロプレン系加硫ゴム用組成物が開示されている。
 また、特許文献2には、ゴム成分とカーボンブラックとシリカとを含有し、前記ゴム成分が、クロロプレンゴムのみである、又は、クロロプレンゴム及びスチレン-ブタジエンゴムのみである、難燃ホース用ゴム組成物が開示されている。
For example, Patent Document 1 discloses a copolymer in which the proportions of the monomers constituting the polymer are, when the total amount of all monomers is taken as 100% by mass, 80 to 97% by mass of 2-chloro-1,3-butadiene (chloroprene) (C-1) and 20 to 3% by mass of 2,3-dichloro-1,3-butadiene (C-2); or a copolymer in which 79.8 to 96.8% by mass of 2-chloro-1,3-butadiene (chloroprene) (C-1), 20 to 3% by mass of 2,3-dichloro-1,3-butadiene (C-2) and 0.2 to 17% by mass of a monomer (C-3) copolymerizable therewith are The present invention discloses a composition for chloroprene-based vulcanized rubber, which comprises 100 parts by mass of a polymer for chloroprene-based vulcanized rubber, the polymer being a copolymer consisting of the above-mentioned copolymer and having a Mooney viscosity (ML1+4(100°C)) in the range of 100 to 135, 0.5 to 6 parts by mass of an acid acceptor, 0.2 to 3 parts by mass of a lubricant, 1 to 5 parts by mass of an antioxidant, 10 to 120 parts by mass of carbon black, 0.1 to 20 parts by mass of a filler other than carbon black, 2 to 40 parts by mass of a softener, 0.2 to 5 parts by mass of a processing aid, 0.5 to 10 parts by mass of a metal oxide, and 0.5 to 5 parts by mass of a vulcanization accelerator.
Furthermore, Patent Document 2 discloses a rubber composition for a flame-retardant hose, which contains a rubber component, carbon black, and silica, and in which the rubber component is composed only of chloroprene rubber, or is composed only of chloroprene rubber and styrene-butadiene rubber.
 特許文献3には、不飽和ニトリル単量体単位含有量が5~20質量%である、クロロプレン単量体単位と不飽和ニトリル単量体単位とを含む統計的共重合体ラテックスであって、前記統計的共重合体ラテックスを凍結乾燥させて得た統計的共重合体のトルエン不溶分が、前記統計的共重合体100質量%に対して50~100質量%である、統計的共重合体ラテックスが開示されている。 Patent Document 3 discloses a statistical copolymer latex containing chloroprene monomer units and unsaturated nitrile monomer units, with an unsaturated nitrile monomer unit content of 5 to 20% by mass, and wherein the toluene-insoluble portion of the statistical copolymer obtained by freeze-drying the statistical copolymer latex is 50 to 100% by mass relative to 100% by mass of the statistical copolymer.
特開2012-211345号公報JP 2012-211345 A 特開2017-019947号公報JP 2017-019947 A WO2019/211975WO2019/211975
 しかしながら、従来のクロロプレン系ラテックスは、高温長時間での保存安定性に改善の余地があった。また、高温長時間での保存安定性に優れるクロロプレン系ラテックスであって、該クロロプレン系ラテックスのゴム成分を用いたゴム組成物の加硫成形体の耐油性に優れ、動的環境下での発熱の少ないクロロプレン系ラテックスを得ることは困難であった。 However, conventional chloroprene-based latexes have room for improvement in terms of storage stability at high temperatures for long periods of time. In addition, it has been difficult to obtain a chloroprene-based latex that has excellent storage stability at high temperatures for long periods of time, has excellent oil resistance in a vulcanized molded product of a rubber composition that uses the rubber component of the chloroprene-based latex, and generates little heat in a dynamic environment.
 本発明は、このような事情に鑑みてなされたものであり、高温長時間での保存安定性に優れるクロロプレン-不飽和ニトリル共重合体ラテックスであって、該クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を用いたゴム組成物の加硫成形体の耐油性に優れ、動的環境下での発熱の少ないクロロプレン-不飽和ニトリル共重合体ラテックスを提供するものである。また、本発明によれば、該クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分、該ゴム成分を含むゴム組成物、該ゴム組成物の加硫成形体、及びクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法が提供される。 The present invention has been made in consideration of these circumstances, and provides a chloroprene-unsaturated nitrile copolymer latex that has excellent storage stability at high temperatures for long periods of time, and that has excellent oil resistance in a vulcanized molded product of a rubber composition using the rubber component of the chloroprene-unsaturated nitrile copolymer latex and generates little heat in a dynamic environment. The present invention also provides a rubber component of the chloroprene-unsaturated nitrile copolymer latex, a rubber composition containing the rubber component, a vulcanized molded product of the rubber composition, and a method for producing the chloroprene-unsaturated nitrile copolymer latex.
 本発明によれば、クロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスであって、前記クロロプレン-不飽和ニトリル共重合体は、燃焼法で測定した窒素含有率が、0.5質量%以上であり、前記クロロプレン-不飽和ニトリル共重合体は、化学式(1)で表される構造の官能基を有し、前記クロロプレン-不飽和ニトリル共重合体ラテックス中の、前記クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が、0.10~9.00質量部である、クロロプレン-不飽和ニトリル共重合体ラテックスが提供される。 According to the present invention, there is provided a chloroprene-unsaturated nitrile copolymer latex containing a chloroprene-unsaturated nitrile copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, the chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method, the chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1), and the content of the unsaturated nitrile hydrolyzate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
 化学式(1)中、Rは水素、塩素、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のメルカプト基、置換もしくは無置換のヘテロシクリル基のいずれかを表す。 In chemical formula (1), R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
 本発明者は、鋭意検討を行ったところ、クロロプレン-不飽和ニトリル共重合体ラテックスの製造条件を調整し、クロロプレン-不飽和ニトリル共重合体中の窒素含有率及び構造、並びにクロロプレン-不飽和ニトリル共重合体ラテックス中の不飽和ニトリルの加水分解物の含有量を制御することで、高温長時間での保存安定性に優れるクロロプレン-不飽和ニトリル共重合体ラテックスであって、該クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を用いたゴム組成物の加硫成形体の耐油性に優れ、動的環境下での発熱の少ないクロロプレン-不飽和ニトリル共重合体ラテックスを得ることができることを見出し、本発明の完成に至った。 The inventors conducted extensive research and discovered that by adjusting the manufacturing conditions for the chloroprene-unsaturated nitrile copolymer latex and controlling the nitrogen content and structure in the chloroprene-unsaturated nitrile copolymer, as well as the content of unsaturated nitrile hydrolysates in the chloroprene-unsaturated nitrile copolymer latex, it is possible to obtain a chloroprene-unsaturated nitrile copolymer latex that has excellent storage stability at high temperatures for long periods of time, that has excellent oil resistance in a vulcanized molded product of a rubber composition that uses the rubber component of the chloroprene-unsaturated nitrile copolymer latex, and that generates little heat in dynamic environments, thereby completing the present invention.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
[1]クロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスであって、前記クロロプレン-不飽和ニトリル共重合体は、燃焼法で測定した窒素含有率が、0.5質量%以上であり、前記クロロプレン-不飽和ニトリル共重合体は、化学式(1)で表される構造の官能基を有し、前記クロロプレン-不飽和ニトリル共重合体ラテックス中の、前記クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が、0.10~9.00質量部である、クロロプレン-不飽和ニトリル共重合体ラテックス。
Various embodiments of the present invention will be described below. The embodiments described below can be combined with each other.
[1] A chloroprene-unsaturated nitrile copolymer latex containing a chloroprene-unsaturated nitrile copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, the chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method, the chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1), and the content of an unsaturated nitrile hydrolyzate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
(化学式(1)中、Rは水素、塩素、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のメルカプト基、置換もしくは無置換のヘテロシクリル基のいずれかを表す。)
[2]前記不飽和ニトリル単量体単位が、アクリロニトリル単量体単位であって、前記クロロプレン-不飽和ニトリル共重合体は、JISK6451-1に準拠して測定したアクリロニトリル結合量が2質量%以上であり、前記クロロプレン-不飽和ニトリル共重合体ラテックス中の、前記クロロプレン-不飽和ニトリル共重合体100質量部に対する、アクリロニトリルの加水分解物の含有量が、0.10~9.00質量部である、[1]に記載のクロロプレン-不飽和ニトリル共重合体ラテックス。
[3][1]又は[2]に記載のクロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分。
[4][3]に記載のゴム成分を含む、ゴム組成物。
[5][4]に記載のゴム組成物の、加硫成形体。
[6]伝動ベルト、コンベアベルト、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロール、防振ゴムまたはスポンジ製品である、[5]に記載の加硫成形体。
[7]クロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法であって、前記製造方法は、水を含む水溶液中で、キサントゲン化合物の存在下で、クロロプレン単量体及び不飽和ニトリル単量体を含む原料単量体を重合してクロロプレン-不飽和ニトリル共重合体を得る重合工程を含み、前記重合工程において用いる全原料単量体を100質量部としたとき、前記水の量が150質量部未満である、製造方法。
(In chemical formula (1), R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.)
[2] The chloroprene-unsaturated nitrile copolymer latex according to [1], wherein the unsaturated nitrile monomer unit is an acrylonitrile monomer unit, the chloroprene-unsaturated nitrile copolymer has an acrylonitrile bond amount of 2 mass% or more measured in accordance with JIS K6451-1, and the chloroprene-unsaturated nitrile copolymer latex has a content of acrylonitrile hydrolysate of 0.10 to 9.00 mass parts relative to 100 mass parts of the chloroprene-unsaturated nitrile copolymer.
[3] A rubber component of the chloroprene-unsaturated nitrile copolymer latex according to [1] or [2].
[4] A rubber composition comprising the rubber component according to [3].
[5] A vulcanized molded article of the rubber composition according to [4].
[6] The vulcanization molded article according to [5], which is a power transmission belt, a conveyor belt, a hose, a wiper, a dipping product, a sealing part, an adhesive, a boot, a rubber-coated cloth, a rubber roll, a vibration-proof rubber or a sponge product.
[7] A method for producing a chloroprene-unsaturated nitrile copolymer latex containing a chloroprene-unsaturated nitrile copolymer containing a chloroprene monomer unit and an unsaturated nitrile monomer unit, the method comprising a polymerization step of polymerizing raw material monomers containing a chloroprene monomer and an unsaturated nitrile monomer in an aqueous solution containing water in the presence of a xanthogen compound to obtain the chloroprene-unsaturated nitrile copolymer, and the amount of the water is less than 150 parts by mass when the total amount of the raw material monomers used in the polymerization step is taken as 100 parts by mass.
 本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、高温長時間での保存安定性に優れる。また、本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を含むゴム組成物の加硫成形体は、優れた耐油性を有し、動的環境下での発熱が少ない。本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、高温長時間での保存安定性に優れるため、クロロプレン-不飽和ニトリル共重合体ラテックスの状態で優れた品質を維持したまま保管可能であり、そのゴム成分を用いたゴム組成物の加硫成形体の耐油性に優れ、動的環境下での発熱の少ないため、これらの特性を活かし、様々な用途や部材に用いることができる。 The chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent storage stability at high temperatures for long periods of time. In addition, a vulcanized molded product of a rubber composition containing the rubber component of the chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent oil resistance and generates little heat in dynamic environments. Since the chloroprene-unsaturated nitrile copolymer latex of the present invention has excellent storage stability at high temperatures for long periods of time, it can be stored while maintaining its excellent quality in the state of the chloroprene-unsaturated nitrile copolymer latex, and since a vulcanized molded product of a rubber composition using the rubber component has excellent oil resistance and generates little heat in dynamic environments, these properties can be utilized for a variety of applications and components.
 以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 The present invention will be described in detail below by illustrating embodiments of the present invention. The present invention is not limited in any way by these descriptions. The features of the embodiments of the present invention shown below can be combined with each other. Furthermore, each feature can be an invention independently.
1.クロロプレン-不飽和ニトリル共重合体ラテックス
 本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、クロロプレン-不飽和ニトリル共重合体を含む。また、クロロプレン-不飽和ニトリル共重合体は、燃焼法で測定した窒素含有率が、0.5質量%以上であり、化学式(1)で表される構造の官能基を有し、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が、0.10~9.00質量部である。
1. Chloroprene-unsaturated nitrile copolymer latex The chloroprene-unsaturated nitrile copolymer latex according to the present invention contains a chloroprene-unsaturated nitrile copolymer. The chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method, has a functional group having a structure represented by chemical formula (1), and the content of the unsaturated nitrile hydrolysate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
1.1 クロロプレン-不飽和ニトリル共重合体
 本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン単量体単位及び不飽和ニトリル単量体単位を含む。すなわち、本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン(2-クロロ-1,3-ブタジエン)に由来する単量体単位(単量体単位=構造単位)を含み、かつ、不飽和ニトリルに由来する単量体単位を含む。本発明に係るクロロプレン-不飽和ニトリル共重合体は、本発明の目的を損なわない範囲において、クロロプレン単量体単位及び不飽和ニトリル単量体単位以外の他の単量体単位に由来する構造を有してしても良い。
1.1 Chloroprene-unsaturated nitrile copolymer The chloroprene-unsaturated nitrile copolymer according to the present invention contains chloroprene monomer units and unsaturated nitrile monomer units. That is, the chloroprene-unsaturated nitrile copolymer according to the present invention contains monomer units (monomer units = structural units) derived from chloroprene (2-chloro-1,3-butadiene) and also contains monomer units derived from an unsaturated nitrile. The chloroprene-unsaturated nitrile copolymer according to the present invention may have a structure derived from a monomer unit other than the chloroprene monomer unit and the unsaturated nitrile monomer unit, as long as the object of the present invention is not impaired.
 なお、市販品の2-クロロ-1,3-ブタジエンには不純物として少量の1-クロロ-1,3-ブタジエンが含まれる場合がある。このような少量の1-クロロ-1,3-ブタジエンを含む2-クロロ-1,3-ブタジエンを、本実施形態のクロロプレン単量体として用いることもできる。 Note that commercially available 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity. 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in this embodiment.
 不飽和ニトリルとしては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等が挙げられる。不飽和ニトリルは、1種単独で又は2種以上を組み合わせて用いることができる。不飽和ニトリルは、優れた成形性が得られやすい観点、並びに、加硫成形体において優れた破断強度、破断伸び、硬さ、引き裂き強度、耐油性が得られやすい観点から、アクリロニトリルを含むことが好ましい。 Examples of unsaturated nitriles include acrylonitrile, methacrylonitrile, ethacrylonitrile, and phenylacrylonitrile. The unsaturated nitriles may be used alone or in combination of two or more. It is preferable that the unsaturated nitrile contains acrylonitrile, from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product.
 本発明に係るクロロプレン-不飽和ニトリル共重合体は、燃焼法で測定した窒素含有率が、0.5質量%以上である。窒素含有率は、例えば、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-unsaturated nitrile copolymer according to the present invention has a nitrogen content of 0.5% by mass or more as measured by a combustion method. The nitrogen content may be, for example, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, or 7.0% by mass, and may be within a range between any two of the values exemplified here.
 クロロプレン-不飽和ニトリル共重合体の窒素含有率は、クロロプレン-不飽和ニトリル共重合体ラテックスから凍結乾燥やメタノール析出して得たクロロプレン-不飽和ニトリル共重合体を、燃焼法により、元素分析装置を用いて分析することで、求めることができる。具体的には、実施例に記載の方法で分析できる。
 クロロプレン-不飽和ニトリル共重合体の窒素は、クロロプレン-不飽和ニトリル共重合体中の不飽和ニトリル単量体単位に由来するものとでき、クロロプレン-不飽和ニトリル共重合体重合時の原料単量体中における不飽和ニトリルの量を調整することより制御することができる。
The nitrogen content of the chloroprene-unsaturated nitrile copolymer can be determined by analyzing the chloroprene-unsaturated nitrile copolymer obtained by freeze-drying or methanol precipitation from the chloroprene-unsaturated nitrile copolymer latex using an elemental analyzer by a combustion method. Specifically, the analysis can be performed by the method described in the Examples.
The nitrogen in the chloroprene-unsaturated nitrile copolymer can be derived from the unsaturated nitrile monomer units in the chloroprene-unsaturated nitrile copolymer, and can be controlled by adjusting the amount of unsaturated nitrile in the raw material monomer during polymerization of the chloroprene-unsaturated nitrile copolymer.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、不飽和ニトリル単量体単位の含有率が、2.0質量%以上であることが好ましい。不飽和ニトリル単量体単位の含有率は、例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably has an unsaturated nitrile monomer unit content of 2.0% by mass or more. The unsaturated nitrile monomer unit content may be, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25% by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、JIS K 6451-1に準拠して測定したアクリロニトリル結合量(アクリロニトリル単量体単位の含有率)が、2質量%以上であることが好ましい。アクリロニトリル結合量(アクリロニトリル単量体単位の含有率)は、例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably has an acrylonitrile bond content (content of acrylonitrile monomer units) of 2 mass% or more, measured in accordance with JIS K 6451-1. The acrylonitrile bond content (content of acrylonitrile monomer units) is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mass%, and may be within a range between any two of the numerical values exemplified here.
 クロロプレン-不飽和ニトリル共重合体中の不飽和ニトリル単量体単位の含有率及びアクリロニトリル単量体単位の含有率は、燃焼法で測定した窒素含有率に基づき算出することができ、特に、アクリロニトリル結合量(アクリロニトリル単量体単位の含有率)は、JIS K 6451-1に基づき算出することができる。具体的には、実施例に記載の方法で分析できる。不飽和ニトリル単量体単位及びアクリロニトリル単量体単位の含有率を上記下限以上とすることにより、得られるゴム組成物及び加硫成形体は十分な耐油性を有するものとなる。また、不飽和ニトリル単量体単位及びアクリロニトリル単量体単位の含有率を上記上限以下とすることにより、得られるゴム組成物及び加硫成形体の耐水性及び耐寒性がより向上する。 The content of unsaturated nitrile monomer units and the content of acrylonitrile monomer units in the chloroprene-unsaturated nitrile copolymer can be calculated based on the nitrogen content measured by the combustion method, and in particular, the amount of acrylonitrile bonds (content of acrylonitrile monomer units) can be calculated based on JIS K 6451-1. Specifically, it can be analyzed by the method described in the Examples. By setting the content of unsaturated nitrile monomer units and acrylonitrile monomer units to the above lower limit or higher, the resulting rubber composition and vulcanized molded product will have sufficient oil resistance. In addition, by setting the content of unsaturated nitrile monomer units and acrylonitrile monomer units to the above upper limit or lower, the resulting rubber composition and vulcanized molded product will have improved water resistance and cold resistance.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体を100質量%としたとき、クロロプレン単量体単位を60~100質量%含むことが好ましい。クロロプレン-不飽和ニトリル共重合体におけるクロロプレン単量体単位の含有率は、例えば、60、65、70、75、80、85、90、95、99、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体単位の含有率を上記数値範囲内とすることにより、硬度、引張強度、及び耐寒性のバランスに優れる成形体を得ることができるゴム組成物とすることができる。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention preferably contains 60 to 100% by mass of chloroprene monomer units when the chloroprene-unsaturated nitrile copolymer is taken as 100% by mass. The content of chloroprene monomer units in the chloroprene-unsaturated nitrile copolymer may be, for example, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. By setting the content of chloroprene monomer units within the above numerical range, a rubber composition can be obtained that can give a molded article with an excellent balance of hardness, tensile strength, and cold resistance.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位を有するものとすることもできる。クロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位としては、クロロプレン単量体、又は、クロロプレン単量体及び不飽和ニトリル単量体と共重合可能であれば特に制限はないが、(メタ)アクリル酸のエステル類((メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等)、ヒドロキシアルキル(メタ)アクリレート(2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等)、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、エチレン、スチレン、硫黄等が挙げられる。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may also have a monomer unit other than the chloroprene monomer and the unsaturated nitrile monomer. The monomer unit other than the chloroprene monomer and the unsaturated nitrile monomer is not particularly limited as long as it is copolymerizable with the chloroprene monomer or the chloroprene monomer and the unsaturated nitrile monomer, and examples of the monomer unit include esters of (meth)acrylic acid (methyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, ethylene, styrene, sulfur, etc.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体を100質量%としたとき、クロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位を0~20質量%含むものとすることができる。クロロプレン-不飽和ニトリル共重合体におけるクロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位の含有率は、例えば、0、2、4、6、8、10、12、14、16、18、20質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体及び不飽和ニトリル単量体以外の単量体の共重合量をこの範囲に調整することで、得られるゴム組成物の特性を損なわずに、これら単量体を共重合させたことによる効果を発現することができる。
 また、本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン単量体単位及び不飽和ニトリル単量体単位のみからなるものとすることもできる。
The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may contain 0 to 20% by mass of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer when the chloroprene-unsaturated nitrile copolymer is taken as 100% by mass. The content of the monomer units other than the chloroprene monomer and the unsaturated nitrile monomer in the chloroprene-unsaturated nitrile copolymer may be, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20% by mass, and may be within a range between any two of the numerical values exemplified here. By adjusting the copolymerization amount of the monomer other than the chloroprene monomer and the unsaturated nitrile monomer to this range, the effect of copolymerizing these monomers can be expressed without impairing the properties of the obtained rubber composition.
Furthermore, the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may be composed only of chloroprene monomer units and unsaturated nitrile monomer units.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、1種のクロロプレン-不飽和ニトリル共重合体を含むこともでき、2種以上のクロロプレン-不飽和ニトリル共重合体を含むこともできる。
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体ラテックスが、2種以上のクロロプレン-不飽和ニトリル共重合体を含む場合、クロロプレン-不飽和ニトリル共重合体ラテックスに含まれる2種以上のクロロプレン-不飽和ニトリル共重合体の合計100質量%に対して、2種以上のクロロプレン-不飽和ニトリル共重合体に含まれる全窒素、全不飽和ニトリル単量体単位、全アクリロニトリル単量体単位等の合計質量に基づく含有率が上記数値範囲内であることが好ましい。
The chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention may contain one kind of chloroprene-unsaturated nitrile copolymer, or may contain two or more kinds of chloroprene-unsaturated nitrile copolymers.
When the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention contains two or more kinds of chloroprene-unsaturated nitrile copolymers, it is preferable that the content based on the total mass of total nitrogen, total unsaturated nitrile monomer units, total acrylonitrile monomer units, etc. contained in the two or more kinds of chloroprene-unsaturated nitrile copolymers is within the above-mentioned numerical range with respect to 100% by mass of the two or more kinds of chloroprene-unsaturated nitrile copolymers in total contained in the chloroprene-unsaturated nitrile copolymer latex.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、化学式(1)で表される構造の官能基を有する。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention has a functional group having a structure represented by chemical formula (1).
 化学式(1)中、Rは水素、塩素、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のメルカプト基、置換もしくは無置換のヘテロシクリル基のいずれかを表す。 In chemical formula (1), R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
 化学式(1)で表される構造の官能基は、クロロプレン-不飽和ニトリル共重合体の重合工程を、キサントゲン化合物の存在下で行うことで導入することができる。化学式(1)で表される構造の官能基の導入に用いることができるキサントゲン化合物については、製造方法の項で後述する。
 本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を含むゴム組成物の加硫成形体は、クロロプレン-不飽和ニトリル共重合体が、化学式(1)で表される構造の官能基を有することにより、優れた耐油性を有し、動的環境下での発熱が少ないものとなる。
The functional group having the structure represented by chemical formula (1) can be introduced by carrying out the polymerization process of the chloroprene-unsaturated nitrile copolymer in the presence of a xanthogen compound. Xanthogen compounds that can be used to introduce the functional group having the structure represented by chemical formula (1) will be described later in the section on the production method.
The vulcanized molded article of the rubber composition containing the rubber component of the chloroprene-unsaturated nitrile copolymer latex according to the present invention has excellent oil resistance and generates little heat under dynamic environments because the chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1).
1.2 不飽和ニトリルの加水分解物
 本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が0.10~9.00質量部である。
 一般に、不飽和ニトリルは、加水分解されアミド、アルコールやエーテルを経て、最終的にはカルボン酸やアンモニアに分解されると考えられる。本発明において、不飽和ニトリルの加水分解物は、不飽和ニトリル由来のアミド、ニトリル、アルコール、エーテル、カルボン酸、アンモニアを含むものとできる。本発明において、不飽和ニトリルの加水分解物は、不飽和ニトリル由来の化合物であって、シアノ基を含む化合物、アミド基を含む化合物、カルボキシ基を含む化合物、及びアミノ基を含む化合物(アンモニアを含む)とできる。
1.2 Hydrolyzate of Unsaturated Nitrile In the chloroprene-unsaturated nitrile copolymer according to the present invention, the content of the hydrolyzate of the unsaturated nitrile in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
In general, it is considered that unsaturated nitriles are hydrolyzed to amides, alcohols, and ethers, and are finally decomposed to carboxylic acids and ammonia. In the present invention, the hydrolyzate of the unsaturated nitrile may contain amides, nitriles, alcohols, ethers, carboxylic acids, and ammonia derived from the unsaturated nitrile. In the present invention, the hydrolyzate of the unsaturated nitrile may be a compound derived from the unsaturated nitrile, and may be a compound containing a cyano group, a compound containing an amide group, a compound containing a carboxy group, and a compound containing an amino group (including ammonia).
 不飽和ニトリルが、アクリロニトリルである場合、不飽和ニトリルの加水分解物は、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテル、アクリル酸、アンモニアを含むものとでき、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテル、アクリル酸、アンモニアとできる。メタクリロニトリルの場合、不飽和ニトリルの加水分解物は、メタクリルアミド、3-ヒドロキシ―2-メチルプロパンニトリル、3-(2-シアノプロポキシ)-2-メチルプロパンニトリル、メタクリル酸、アンモニアを含むものとでき、メタクリルアミド、3-ヒドロキシ―2-メチルプロパンニトリル、3-(2-シアノプロポキシ)-2-メチルプロパンニトリル、メタクリル酸、アンモニアとできる。フェニルアクリロニトリルである場合、3-フェニルプロピオンアミド、α―(ヒドロキシメチル)ベンゼンアセトニトリル、α,α'―[オキシビス(メチレン)]ビス[α-メチルベンゼンアセトニトリル]、2-フェニルプロピオン酸、アンモニアを含むことができ、3-フェニルプロピオンアミド、α―(ヒドロキシメチル)ベンゼンアセトニトリル、α,α'―[オキシビス(メチレン)]ビス[α-メチルベンゼンアセトニトリル]、2-フェニルプロピオン酸、アンモニアとできる。 When the unsaturated nitrile is acrylonitrile, the hydrolysate of the unsaturated nitrile may contain acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, and ammonia, and may be acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, and ammonia. When the unsaturated nitrile is methacrylonitrile, the hydrolysate of the unsaturated nitrile may contain methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, and ammonia, and may be methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, and ammonia. In the case of phenylacrylonitrile, it can contain 3-phenylpropionamide, α-(hydroxymethyl)benzeneacetonitrile, α,α'-[oxybis(methylene)]bis[α-methylbenzeneacetonitrile], 2-phenylpropionic acid, and ammonia, and can be 3-phenylpropionamide, α-(hydroxymethyl)benzeneacetonitrile, α,α'-[oxybis(methylene)]bis[α-methylbenzeneacetonitrile], 2-phenylpropionic acid, and ammonia.
 本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が、0.10~9.00質量部であり、例えば、0.10、0.20、0.50、1.00、1.50、2.00、2.50、3.00、3.50、4.00、4.50、5.00、5.50、6.00、6.50、7.00、7.50、8.00、8.50、9.00質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、不飽和ニトリル由来のアミド、ニトリル、アルコール、エーテル、カルボン酸、アンモニアの合計含有量が上記数値範囲内であってもよく、不飽和ニトリル由来のアミド、ニトリル、アルコール、エーテルの含有量が上記数値範囲内であってもよい。また、本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテル、アクリル酸、アンモニア、メタクリルアミド、3-ヒドロキシ―2-メチルプロパンニトリル、3-(2-シアノプロポキシ)-2-メチルプロパンニトリル、メタクリル酸、3-フェニルプロピオンアミド、α―(ヒドロキシメチル)ベンゼンアセトニトリル、α,α'―[オキシビス(メチレン)]ビス[α-メチルベンゼンアセトニトリル]、2-フェニルプロピオン酸の合計含有量が上記数値範囲内であってもよく、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテル、メタクリルアミド、3-ヒドロキシ―2-メチルプロパンニトリル、3-(2-シアノプロポキシ)-2-メチルプロパンニトリル、3-フェニルプロピオンアミド、α―(ヒドロキシメチル)ベンゼンアセトニトリル、α,α'―[オキシビス(メチレン)]ビス[α-メチルベンゼンアセトニトリル]の合計含有量が上記数値範囲内であってもよい。 The chloroprene-unsaturated nitrile copolymer according to the present invention has a content of unsaturated nitrile hydrolysate in the chloroprene-unsaturated nitrile copolymer latex relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer, which is 0.10 to 9.00 parts by mass, for example, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, or 9.00% by mass, and may be within a range between any two of the numerical values exemplified here. In addition, the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may have a total content of amide, nitrile, alcohol, ether, carboxylic acid, and ammonia derived from unsaturated nitrile within the above numerical range, and the content of amide, nitrile, alcohol, and ether derived from unsaturated nitrile may be within the above numerical range. In addition, the chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention may have a total content of acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, acrylic acid, ammonia, methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, methacrylic acid, 3-phenylpropionamide, α-(hydroxymethyl)benzeneacetonitrile, α,α'-[oxybis(methylene)]bis[α-methylbenzeneacetonitrile], and 2-phenylpropionic acid within the above-mentioned numerical range, and the total content of acrylamide, 2-cyanoethanol, 2-cyanoethyl ether, methacrylamide, 3-hydroxy-2-methylpropanenitrile, 3-(2-cyanopropoxy)-2-methylpropanenitrile, 3-phenylpropionamide, α-(hydroxymethyl)benzeneacetonitrile, and α,α'-[oxybis(methylene)]bis[α-methylbenzeneacetonitrile] may be within the above-mentioned numerical range.
 本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、アクリロニトリルの加水分解物の含有量が、上記数値範囲内であることが好ましい。一例においては、不飽和ニトリルの加水分解物の含有量は、2-シアノエタノール、2-シアノエチルエーテル及びアクリルアミドの合計含有量とでき、アクリロニトリルの加水分解物の含有量は、2-シアノエタノール、2-シアノエチルエーテル、アクリルアミドの合計含有量とできる。本発明に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、2-シアノエタノール、2-シアノエチルエーテル、アクリルアミドの合計含有量が、上記数値範囲内であることが好ましい。 The chloroprene-unsaturated nitrile copolymer according to the present invention is preferably such that the content of acrylonitrile hydrolysates per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer in the chloroprene-unsaturated nitrile copolymer latex is within the above numerical range. In one example, the content of unsaturated nitrile hydrolysates can be the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide, and the content of acrylonitrile hydrolysates can be the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide. The chloroprene-unsaturated nitrile copolymer according to the present invention is preferably such that the total content of 2-cyanoethanol, 2-cyanoethyl ether, and acrylamide per 100 parts by mass of the chloroprene-unsaturated nitrile copolymer in the chloroprene-unsaturated nitrile copolymer latex is within the above numerical range.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、2-シアノエタノールの含有量を、0.05~8.00質量部とできる。2-シアノエタノールの含有量は、例えば、0.05、0.10、0.20、0.50、1.00、1.50、2.00、2.50、3.00、3.50、4.00、4.50、5.00、5.50、6.00、6.50、7.00、7.50、8.00質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In one embodiment of the present invention, the chloroprene-unsaturated nitrile copolymer latex may have a 2-cyanoethanol content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer. The 2-cyanoethanol content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00% by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、2-シアノエチルエーテルの含有量を、0.05~8.00質量部とできる。2-シアノエチルエーテルの含有量は、例えば、0.05、0.10、0.20、0.50、1.00、1.50、2.00、2.50、3.00、3.50、4.00、4.50、5.00、5.50、6.00、6.50、7.00、7.50、8.00質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In one embodiment of the present invention, the chloroprene-unsaturated nitrile copolymer latex may have a 2-cyanoethyl ether content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer. The 2-cyanoethyl ether content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00 parts by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、クロロプレン-不飽和ニトリル共重合体ラテックス中の、クロロプレン-不飽和ニトリル共重合体100質量部に対する、アクリルアミドの含有量を、0.05~8.00質量部とできる。アクリルアミドの含有量は、例えば、0.05、0.10、0.20、0.50、1.00、1.50、2.00、2.50、3.00、3.50、4.00、4.50、5.00、5.50、6.00、6.50、7.00、7.50、8.00質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In one embodiment of the present invention, the chloroprene-unsaturated nitrile copolymer latex may have an acrylamide content of 0.05 to 8.00 parts by mass relative to 100 parts by mass of the chloroprene-unsaturated nitrile copolymer. The acrylamide content may be, for example, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, or 8.00% by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体は、不飽和ニトリルの加水分解物の含有量が上記数値範囲内であることによって、高温長時間での保存安定性に優れ、かつ、クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を含むゴム組成物の加硫成形体は、優れた耐油性を有し、動的環境下での発熱が少ない。不飽和ニトリルの加水分解物の含有量は、クロロプレン-不飽和ニトリル共重合体重合時の製造条件、特には、重合に用いる原料単量体に対する水の量やアルカリの量、原料単量体の配合の種類及び量、並びに分添のタイミング、重合温度、重合液中の各単量体の濃度を調整することによって、制御することができる。 The chloroprene-unsaturated nitrile copolymer according to one embodiment of the present invention has an unsaturated nitrile hydrolysate content within the above numerical range, and therefore has excellent storage stability at high temperatures for long periods of time, and a vulcanized molded product of a rubber composition containing a rubber component of the chloroprene-unsaturated nitrile copolymer latex has excellent oil resistance and generates little heat in a dynamic environment. The content of unsaturated nitrile hydrolysates can be controlled by adjusting the production conditions during polymerization of the chloroprene-unsaturated nitrile copolymer, in particular the amount of water and the amount of alkali relative to the raw material monomers used in polymerization, the type and amount of the raw material monomers mixed, as well as the timing of addition, polymerization temperature, and the concentration of each monomer in the polymerization liquid.
 クロロプレン-不飽和ニトリル共重合体ラテックス中の、不飽和ニトリルの加水分解物の含有量は、クロロプレン-不飽和ニトリル共重合体ラテックスをテトラヒドロフランで希釈した溶液をガスクロマトグラフィー、例えば、ガスクロマトグラフ(GC)システムで分析することにより求めることができる。具体的には、実施例に記載の方法で分析できる。別の方法として、不飽和ニトリルの加水分解物のうち、アンモニアは、強い刺激臭を有するため、重合液における刺激臭の有無 で発生の有無を確認することができる。また、分解のメカニズムから、カルボン酸は、アンモニアと同時に発生すると考えられるため、アンモニアの生成の有無から、カルボン酸の生成の有無を確認することができる。一例として、クロロプレン-不飽和ニトリル共重合体ラテックス中のアンモニアの濃度が1ppm以上であると、作業環境下で刺激臭が感知可能である。一例として、クロロプレン-不飽和ニトリル共重合体ラテックス中のアンモニアの濃度は、1ppm未満とできる。また、アンモニアの濃度は、イオンクロマトグラフィーで分析できる。また、カルボン酸は、イオンクロマトグラフィーや液体クロマトグラフィー、ガスクロマトグラフィーで分析することもできる。 The content of unsaturated nitrile hydrolysates in the chloroprene-unsaturated nitrile copolymer latex can be determined by analyzing a solution obtained by diluting the chloroprene-unsaturated nitrile copolymer latex with tetrahydrofuran using gas chromatography, for example, a gas chromatograph (GC) system. Specifically, the analysis can be performed using the method described in the Examples. As another method, since ammonia, one of the hydrolysates of unsaturated nitriles, has a strong irritating odor, the presence or absence of the generation of ammonia can be confirmed by the presence or absence of an irritating odor in the polymerization liquid. In addition, since carboxylic acid is considered to be generated simultaneously with ammonia based on the mechanism of decomposition, the presence or absence of carboxylic acid generation can be confirmed by the presence or absence of ammonia generation. As an example, if the concentration of ammonia in the chloroprene-unsaturated nitrile copolymer latex is 1 ppm or more, the irritating odor can be detected in the working environment. As an example, the concentration of ammonia in the chloroprene-unsaturated nitrile copolymer latex can be less than 1 ppm. The concentration of ammonia can also be analyzed by ion chromatography. In addition, carboxylic acid can also be analyzed by ion chromatography, liquid chromatography, or gas chromatography.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、クロロプレン-不飽和ニトリル共重合体及び不飽和ニトリルの加水分解物の他、クロロプレン-不飽和ニトリル共重合体重合時に用いる化合物等を含むことができる。 The chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention can contain compounds used in the polymerization of the chloroprene-unsaturated nitrile copolymer, in addition to the chloroprene-unsaturated nitrile copolymer and the hydrolyzate of the unsaturated nitrile.
1.3 クロロプレン-不飽和ニトリル共重合体ラテックスの特性
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体ラテックスは、用途に応じて固形分濃度を調整することができる。固形分濃度は、特に限定されるものではないが、例えば、40、45、50、55、60、65、70質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
1.3 Characteristics of Chloroprene-Unsaturated Nitrile Copolymer Latex The chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention can have a solid content adjusted according to the application. The solid content is not particularly limited, and may be, for example, 40, 45, 50, 55, 60, 65, or 70% by mass, or may be within a range between any two of the values exemplified here.
 本発明の一実施形態に係るクロロプレン-不飽和ニトリル共重合体ラテックスを、固形分濃度50質量%に調整し、40℃で4か月保管したとき、粘度が、1000cps未満であることが好ましい。40℃で4か月保管後の粘度は、例えば、100、200、300、400、500、600、700、800、900、950cpsであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。粘度はB型粘度計により測定することができ、具体的には、実施例に記載の方法で分析できる。 When the chloroprene-unsaturated nitrile copolymer latex according to one embodiment of the present invention is adjusted to a solids concentration of 50% by mass and stored at 40°C for four months, it is preferable that the viscosity is less than 1000 cps. The viscosity after storage at 40°C for four months may be, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 950 cps, or may be within a range between any two of the values exemplified here. The viscosity can be measured using a B-type viscometer, and specifically, can be analyzed by the method described in the examples.
2.クロロプレン-不飽和ニトリル共重合体ラテックスの製造方法
 本発明に係るクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法は特に限定されない。
 本発明の一実施形態に係るクロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法は、水を含む水溶液中で、キサントゲン化合物の存在下で、クロロプレン単量体及び不飽和ニトリル単量体を含む原料単量体を重合してクロロプレン-不飽和ニトリル共重合体を得る重合工程を含むことができる。また、重合工程において用いる全原料単量体を100質量部としたとき、前記水の量を150質量部未満とできる。
2. Method for Producing Chloroprene-Unsaturated Nitrile Copolymer Latex There is no particular limitation on the method for producing the chloroprene-unsaturated nitrile copolymer latex according to the present invention.
A method for producing a chloroprene-unsaturated nitrile copolymer latex including a chloroprene-unsaturated nitrile copolymer including a chloroprene monomer unit and an unsaturated nitrile monomer unit according to one embodiment of the present invention can include a polymerization step of polymerizing raw material monomers including a chloroprene monomer and an unsaturated nitrile monomer in an aqueous solution containing water in the presence of a xanthogen compound to obtain a chloroprene-unsaturated nitrile copolymer. In addition, when the total raw material monomers used in the polymerization step are taken as 100 parts by mass, the amount of the water can be less than 150 parts by mass.
 重合工程では、水を含む水溶液中で、クロロプレン単量体及び不飽和ニトリル単量体を含む原料単量体を重合してクロロプレン-不飽和ニトリル共重合体を得ることができる。 In the polymerization process, raw material monomers including chloroprene monomer and unsaturated nitrile monomer are polymerized in an aqueous solution containing water to obtain a chloroprene-unsaturated nitrile copolymer.
 原料単量体は、クロロプレン単量体及び不飽和ニトリル単量体を含み、クロロプレン単量体及び不飽和ニトリル単量体以外の他の単量体を含んでも良い。他の単量体としては、上記したとおりである。原料単量体中の各単量体の配合比は、得られるクロロプレン-不飽和ニトリル共重合体中の、クロロプレン単量体単位及び不飽和ニトリル単量体単位、並びに他の単量体単位の含有量が、上記した数値範囲になるよう調整することが好ましい。 The raw material monomers include chloroprene monomer and unsaturated nitrile monomer, and may include other monomers in addition to chloroprene monomer and unsaturated nitrile monomer. The other monomers are as described above. It is preferable to adjust the blending ratio of each monomer in the raw material monomers so that the content of chloroprene monomer units, unsaturated nitrile monomer units, and other monomer units in the resulting chloroprene-unsaturated nitrile copolymer falls within the numerical ranges described above.
 原料単量体は、一部を初期添加し、一部を重合開始後に分添することができる。一例として、重合工程は、クロロプレン及び不飽和ニトリルを含む原料単量体の少なくとも一部を添加する第1添加工程と、残りの原料単量体を添加する第2添加工程を含むことができる。 A portion of the raw material monomers can be added initially, and a portion can be added in portions after the start of polymerization. As an example, the polymerization process can include a first addition step of adding at least a portion of the raw material monomers including chloroprene and unsaturated nitrile, and a second addition step of adding the remaining raw material monomers.
 本発明の一実施形態に係る第1添加工程では、重合工程で添加する全クロロプレン単量体を100質量部としたとき、少なくとも10質量部のクロロプレン単量体を添加するものとでき、例えば、10、20、30、40、50、60、70質量部添加することができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、第1添加工程では、重合工程で添加する全不飽和ニトリルを100質量部としたとき、少なくとも50質量部の不飽和ニトリルを添加するものとでき、例えば、50、60、70、80、90、100質量部添加することができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本発明の一実施形態に係る第1添加工程では、上記量の原料単量体、乳化剤、必要に応じてRAFT剤や分子量を水に添加する。この後、重合開始剤を加え、重合を開始する。
In the first addition step according to one embodiment of the present invention, when the total amount of chloroprene monomers added in the polymerization step is taken as 100 parts by mass, at least 10 parts by mass of chloroprene monomer can be added, for example, 10, 20, 30, 40, 50, 60, 70 parts by mass can be added, and it may be within a range between any two of the numerical values exemplified here. In addition, in the first addition step, when the total amount of unsaturated nitriles added in the polymerization step is taken as 100 parts by mass, at least 50 parts by mass of unsaturated nitrile can be added, for example, 50, 60, 70, 80, 90, 100 parts by mass can be added, and it may be within a range between any two of the numerical values exemplified here.
In the first addition step according to one embodiment of the present invention, the raw material monomer, emulsifier, and optionally RAFT agent and molecular weight are added to water in the above amounts. Then, a polymerization initiator is added to start polymerization.
 本発明の一実施形態に係る第2添加工程では、重合工程で添加する全クロロプレン単量体を100質量部としたとき、少なくとも30質量部のクロロプレン単量体を添加するものとでき、例えば、30、40、50、60、70質量部添加することができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、第2添加工程では、重合工程で添加する全不飽和ニトリルを100質量部としたとき、不飽和ニトリルを0、10、20、30質量部添加することができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。第2添加工程では、不飽和ニトリルを添加しなくても良い。第2添加工程では、残りの原料単量体を、2回以上に分け分割添加することが好ましい。第2添加工程では、残りの原料単量体を、例えば、2、4、6、8、10、12、14、16、18、20回に分けて分割添加することができ、分割添加回数は、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、第2添加工程では、残りの原料単量体を一定の流量で連続添加することもできる。 In the second addition step according to one embodiment of the present invention, when the total amount of chloroprene monomer added in the polymerization step is 100 parts by mass, at least 30 parts by mass of chloroprene monomer can be added, for example, 30, 40, 50, 60, or 70 parts by mass can be added, and may be within a range between any two of the numerical values exemplified here. In addition, when the total amount of unsaturated nitrile added in the polymerization step is 100 parts by mass, 0, 10, 20, or 30 parts by mass of unsaturated nitrile can be added, and may be within a range between any two of the numerical values exemplified here. In the second addition step, it is not necessary to add unsaturated nitrile. In the second addition step, it is preferable to add the remaining raw material monomer in two or more separate portions. In the second addition step, the remaining raw material monomer can be added in separate portions, for example, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 portions, and the number of separate additions may be within a range between any two of the numerical values exemplified here. In the second addition step, the remaining raw material monomers can also be added continuously at a constant flow rate.
 重合中は、重合液中の未反応単量体(例えば、クロロプレン単量体とアクリロニトリル単量体の合計)を100質量部としたとき、重合液中の不飽和ニトリル単量体の量が、20~90質量部を維持するように原料単量体を分割添加することが好ましい。重合液中の未反応単量体100質量部に対する不飽和ニトリル単量体の量は、例えば、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 During polymerization, it is preferable to add the raw material monomers in portions so that the amount of unsaturated nitrile monomer in the polymerization liquid is maintained at 20 to 90 parts by mass when the amount of unreacted monomer in the polymerization liquid (e.g., the total of chloroprene monomer and acrylonitrile monomer) is 100 parts by mass. The amount of unsaturated nitrile monomer relative to 100 parts by mass of unreacted monomer in the polymerization liquid is, for example, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 parts by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明の一実施形態に係る重合工程では、重合工程において用いる全原料単量体を100質量部としたとき、水の量を150質量部未満とできる。水の量は、例えば、50、60、70、80、90、100、110、120、130、140、149質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本発明の一実施形態に係る重合工程では、水の量を従来の製造方法に比べて少なくすることにより、不飽和ニトリルの加水分解物の生成量を少なくすることができる。また、不飽和ニトリルの加水分解物、例えば、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテルは、排水処理の負担が大きく、これらの加水分解物の生成が少ないことは、環境負荷の低減、排水処理の手間及びコストの低減の観点からもメリットが大きい。
In the polymerization step according to one embodiment of the present invention, the amount of water can be less than 150 parts by mass when the total amount of raw material monomers used in the polymerization step is 100 parts by mass. The amount of water can be, for example, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 149 parts by mass, or can be within a range between any two of the values exemplified here.
In the polymerization step according to one embodiment of the present invention, the amount of hydrolyzed unsaturated nitriles produced can be reduced by reducing the amount of water compared to conventional production methods. In addition, hydrolyzed unsaturated nitriles, such as acrylamide, 2-cyanoethanol, and 2-cyanoethyl ether, impose a large burden on wastewater treatment, and therefore reducing the production of these hydrolyzed products is also advantageous in terms of reducing the environmental load and the effort and cost required for wastewater treatment.
 乳化重合する場合に用いる乳化剤としては、特に制限はなく、クロロプレン系重合体の乳化重合に一般に用いられる公知の乳化剤を用いることができる。乳化剤としては、炭素数が6~22の飽和又は不飽和の脂肪酸のアルカリ金属塩、ロジン酸又は不均化ロジン酸のアルカリ金属塩(例えばロジン酸カリウム)、β-ナフタレンスルホン酸のホルマリン縮合物のアルカリ金属塩(例えばナトリウム塩)等が挙げられる。 The emulsifier used in emulsion polymerization is not particularly limited, and any known emulsifier generally used in emulsion polymerization of chloroprene polymers can be used. Examples of emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (e.g. potassium rosinate), and alkali metal salts of formalin condensates of β-naphthalenesulfonic acid (e.g. sodium salt).
 乳化剤の添加量は、重合工程で用いる全原料単量体100質量部に対して、0.2~20質量部が好ましく、より好ましくは2~10質量部である。 The amount of emulsifier added is preferably 0.2 to 20 parts by mass, and more preferably 2 to 10 parts by mass, per 100 parts by mass of the total raw material monomers used in the polymerization process.
 乳化重合する場合に用いる分子量調整剤としては、キサントゲン化合物を少なくとも用いる。本発明の一実施形態に係る重合工程では、キサントゲン化合物の他にクロロプレンの乳化重合に一般に用いられる公知の分子量調整剤を併用することができる。その他の分子量調整剤としては、例えば、メルカプタン化合物、ジチオカルボナート化合物、トリチオカルボナート化合物及びカルバメート化合物がある。 At least a xanthogen compound is used as a molecular weight regulator in emulsion polymerization. In the polymerization process according to one embodiment of the present invention, in addition to the xanthogen compound, a known molecular weight regulator that is generally used in emulsion polymerization of chloroprene can be used in combination. Other molecular weight regulators include, for example, mercaptan compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds.
 本発明に係る重合工程では、キサントゲン化合物の存在下で重合を行うことで、化学式(1)で表される末端構造をクロロプレン-不飽和ニトリル共重合体に導入することができる。 In the polymerization process according to the present invention, the terminal structure represented by chemical formula (1) can be introduced into the chloroprene-unsaturated nitrile copolymer by carrying out the polymerization in the presence of a xanthogen compound.
 化学式(1)中、Rは水素、塩素、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のメルカプト基、置換もしくは無置換のヘテロシクリル基のいずれかを表す。 In chemical formula (1), R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.
 キサントゲン化合物としては、例えば、ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、ジブチルキサントゲントリスルフィド、などのジアルキルキサントゲンジスルフィド類が挙げられる。また、ジエチルキサントゲントリスルフィド、ジイソプロピルキサントゲントリスルフィド、ジブチルキサントゲントリスルフィド、などのジアルキルキサントゲントリスルフィド類が挙げられる。さらには、ジエチルキサントゲンポリスルフィド、ジイソプロピルキサントゲンポリスルフィド、ジブチルキサントゲンポリスルフィド、などのジアルキルキサントゲンポリスルフィド類のように、キサントゲンを連結する硫黄原子が4原子以上あるジアルキルキサントゲン類も用いることが出来る。これらジアルキルキサントゲンスルフィド化合物のアルキル基の炭素数は、クロロプレン単量体への溶解性の観点から、1~10であることが好ましく、1~6であることがより好ましい。 Examples of xanthogen compounds include dialkyl xanthogen disulfides such as dimethyl xanthogen disulfide, diethyl xanthogen disulfide, diisopropyl xanthogen disulfide, and dibutyl xanthogen trisulfide. Other examples include dialkyl xanthogen trisulfides such as diethyl xanthogen trisulfide, diisopropyl xanthogen trisulfide, and dibutyl xanthogen trisulfide. Furthermore, dialkyl xanthogens having four or more sulfur atoms linking xanthogens, such as dialkyl xanthogen polysulfides such as diethyl xanthogen polysulfide, diisopropyl xanthogen polysulfide, and dibutyl xanthogen polysulfide, can also be used. From the viewpoint of solubility in chloroprene monomer, the number of carbon atoms in the alkyl group of these dialkyl xanthogen sulfide compounds is preferably 1 to 10, and more preferably 1 to 6.
 分子量調整剤の添加量は、特に限定されないが、クロロプレン単量体及び不飽和ニトリル単量体の合計100質量部に対して0.002~20質量部が好ましい。また、キサントゲン化合物の添加量は、クロロプレン単量体及び不飽和ニトリル単量体の合計100質量部に対して0.002~20質量部が好ましい。このような範囲とすることで、重合反応の制御を容易に行うことができ、化学式(1)で表される官能基を適切な量、クロロプレン-不飽和ニトリル共重合体に導入することができる。 The amount of molecular weight modifier added is not particularly limited, but is preferably 0.002 to 20 parts by mass per 100 parts by mass of the chloroprene monomer and the unsaturated nitrile monomer combined. The amount of xanthogen compound added is preferably 0.002 to 20 parts by mass per 100 parts by mass of the chloroprene monomer and the unsaturated nitrile monomer combined. By setting the amount within such a range, the polymerization reaction can be easily controlled, and an appropriate amount of the functional group represented by chemical formula (1) can be introduced into the chloroprene-unsaturated nitrile copolymer.
 重合開始剤としては、公知のラジカル重合開始剤を用いることができ、例えば過硫酸カリウム、過酸化ベンゾイル、過酸化水素、アゾ系化合物などを挙げることができる。また、重合時には、公知のRAFT剤を用いることもできる。本発明の一実施形態では、重合時にRAFT剤を用いなくても良い。 As the polymerization initiator, a known radical polymerization initiator can be used, such as potassium persulfate, benzoyl peroxide, hydrogen peroxide, and azo compounds. A known RAFT agent can also be used during polymerization. In one embodiment of the present invention, a RAFT agent does not need to be used during polymerization.
 重合温度及び単量体の最終転化率は特に制限するものではないが、重合温度は、例えば0~50℃又は10~50℃であってよい。単量体の最終転化率が40~95質量%の範囲に入るように重合を行ってよい。最終転化率を調整するためには、所望する転化率になった時に、重合反応を停止させる重合停止剤を添加して重合を停止させればよい。 The polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C. The polymerization may be carried out so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass. In order to adjust the final conversion rate, a polymerization terminator that stops the polymerization reaction may be added to terminate the polymerization when the desired conversion rate is reached.
 重合停止剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の重合停止剤を用いることができる。重合停止剤としては、フェノチアジン(チオジフェニルアミン)、4-t-ブチルカテコール、2,2-メチレンビス-4-メチル-6-t-ブチルフェノール等が挙げられる。 There are no particular limitations on the polymerization terminator, and any known polymerization terminator commonly used in emulsion polymerization of chloroprene can be used. Examples of polymerization terminators include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, and 2,2-methylenebis-4-methyl-6-t-butylphenol.
 また、本発明の一実施形態の製造方法により得られるクロロプレン-不飽和ニトリル共重合体ラテックスには、本発明の効果を阻害しない範囲で、重合後に凍結安定剤、乳化安定剤、粘度調整剤、酸化防止剤、防腐剤などを任意に添加することができる。 Furthermore, to the chloroprene-unsaturated nitrile copolymer latex obtained by the manufacturing method of one embodiment of the present invention, freezing stabilizers, emulsion stabilizers, viscosity modifiers, antioxidants, preservatives, etc. can be added as desired after polymerization, within the scope that does not impair the effects of the present invention.
3.クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分
 本発明の一実施形態は、上記のクロロプレン-不飽和ニトリル共重合体のゴム成分である。クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分を得る方法は特に限定されない。一例として、クロロプレン-不飽和ニトリル共重合体のゴム成分は、クロロプレン-不飽和ニトリル共重合体ラテックスを多量のメタノールに混合し、析出させ、濾過、乾燥して得ることができる。また、一例として、クロロプレン-不飽和ニトリル共重合体のゴム成分は、クロロプレン-不飽和ニトリル共重合体ラテックスを凍結乾燥して得ることができ、具体的には、クロロプレン-不飽和ニトリル共重合体ラテックスのpHを調整して、凍結乾燥し、水洗し、熱風乾燥させて得ることができる。クロロプレン-不飽和ニトリル共重合体のゴム成分は、クロロプレン-不飽和ニトリル共重合体ラテックスのメタノール析出物及びクロロプレン-不飽和ニトリル共重合体ラテックスの凍結乾燥物を含む。
3. Rubber component of chloroprene-unsaturated nitrile copolymer latex One embodiment of the present invention is the rubber component of the chloroprene-unsaturated nitrile copolymer. The method for obtaining the rubber component of the chloroprene-unsaturated nitrile copolymer latex is not particularly limited. As an example, the rubber component of the chloroprene-unsaturated nitrile copolymer can be obtained by mixing the chloroprene-unsaturated nitrile copolymer latex with a large amount of methanol, precipitating, filtering, and drying. As an example, the rubber component of the chloroprene-unsaturated nitrile copolymer can be obtained by freeze-drying the chloroprene-unsaturated nitrile copolymer latex, specifically, by adjusting the pH of the chloroprene-unsaturated nitrile copolymer latex, freeze-drying, washing with water, and drying with hot air. The rubber component of the chloroprene-unsaturated nitrile copolymer includes a methanol precipitate of the chloroprene-unsaturated nitrile copolymer latex and a freeze-dried product of the chloroprene-unsaturated nitrile copolymer latex.
 本発明の一実施形態に係るゴム成分は、実施例に記載の組成のゴム組成物を調製し、該ゴム組成物をJIS K 6250に基づき、170℃、20分の条件でプレス加硫し、加硫成形体を作製し、該加硫成形体を130℃の試験油(自動車用高潤滑油、ASTM No.3、IRM 903 oil)に72時間浸漬した際の体積変化が、45質量%未満であることが好ましい。 In one embodiment of the rubber component, a rubber composition having the composition described in the examples is prepared, and the rubber composition is press-vulcanized at 170°C for 20 minutes in accordance with JIS K 6250 to produce a vulcanized molded product. When the vulcanized molded product is immersed in a test oil (high-grade automotive lubricating oil, ASTM No. 3, IRM 903 oil) at 130°C for 72 hours, the volume change is preferably less than 45% by mass.
 本発明の一実施形態に係るゴム成分は、実施例に記載の組成のゴム組成物を調製し、該ゴム組成物を170℃、20分でプレス加硫して、直径15mm、高さ25mmの円柱状の加硫成形体を作製し、該加硫成形体を、JIS K 6265:2018に基づき、50℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱(ΔT)が、45℃未満であることが好ましい。
 発熱性の評価は、グッドリッチフレクソメーター(Goodrich Flexometer:JIS K 6265:2018)により行うことができる。グッドリッチフレクソメーターは、加硫ゴム等の試験片に動的繰り返し負荷を加えて、試験片内部の発熱による疲労特性を評価する試験方法であって、詳しくは、一定の温度条件で試験片に静的初期荷重を加え、更に一定振幅の正弦振動を加え、時間の経過と共に変化する試験片の発熱温度やクリープ量を測定するものである。
In the rubber component according to one embodiment of the present invention, a rubber composition having the composition described in the Examples is prepared, and the rubber composition is press-vulcanized at 170°C for 20 minutes to produce a cylindrical vulcanized molded product having a diameter of 15 mm and a height of 25 mm. The vulcanized molded product is then evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute. The heat generation (ΔT) is preferably less than 45°C.
The heat generation property can be evaluated by a Goodrich Flexometer (JIS K 6265:2018). The Goodrich Flexometer is a test method for evaluating fatigue properties due to heat generation inside a test piece of vulcanized rubber or the like by applying a dynamic repeated load to the test piece, and more specifically, a static initial load is applied to the test piece under constant temperature conditions, and a sine vibration of a constant amplitude is further applied to measure the heat generation temperature and creep amount of the test piece that change over time.
4.ゴム組成物
 本発明の一実施形態に係るゴム組成物は、上記ゴム成分を含む。本発明に係るゴム組成物は、上記ゴム成分の他、必要に応じて、加硫剤、加硫促進剤、老化防止剤、充填材、補強材、シランカップリング剤、可塑剤、軟化剤、滑剤、加工助剤を含むことができ、安定剤、難燃剤、加硫遅延剤等の成分を、本発明の効果を阻害しない範囲でさらに含むことができる。
4. Rubber Composition The rubber composition according to one embodiment of the present invention includes the above-mentioned rubber component. In addition to the above-mentioned rubber component, the rubber composition according to the present invention may include a vulcanizing agent, a vulcanization accelerator, an antioxidant, a filler, a reinforcing material, a silane coupling agent, a plasticizer, a softener, a lubricant, a processing aid, and may further include components such as a stabilizer, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired.
4.1 加硫剤
 本発明に係るゴム組成物は、加硫剤を含むことができる。加硫剤の種類は、本発明の効果を損なわなければ特に限定されない。加硫剤は、クロロプレン系ゴムの加硫に用いることができる加硫剤であることが好ましい。加硫剤は、1種又は2種以上自由に選択して用いることができる。加硫剤としては、硫黄、酸化亜鉛、有機過酸化物を挙げることができる。
4.1 Vulcanizing agent The rubber composition according to the present invention may contain a vulcanizing agent. The type of vulcanizing agent is not particularly limited as long as it does not impair the effects of the present invention. The vulcanizing agent is preferably a vulcanizing agent that can be used for vulcanizing chloroprene-based rubber. One or more vulcanizing agents may be freely selected and used. Examples of the vulcanizing agent include sulfur, zinc oxide, and organic peroxide.
 金属酸化物としては、例えば、酸化亜鉛等を挙げることができる。金属酸化物は、酸化亜鉛を含むことが好ましく、酸化亜鉛であることがより好ましい。 An example of a metal oxide is zinc oxide. The metal oxide preferably contains zinc oxide, and more preferably is zinc oxide.
 有機過酸化物としては、例えば、ジクミルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジコハク酸パーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロへキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンヒドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t-ブチルヒドロパーオキサイドなどがある。この中でも、ジクミルパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、t-ブチルα-クミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3から選ばれる少なくとも1種であることが好ましく、特に好ましくは1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼンである。 Examples of organic peroxides include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, t- Hexyl peroxypivalate, t-butyl peroxypivalate, di(3,5,5-trimethylhexanoyl)peroxide, dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, disuccinic acid peroxide, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, di(4-methylbenzoyl)peroxide, t-butylperoxy-2-ethylhexanoate, di(3-methylbenzoyl)peroxide, benzoyl(3-methylbenzoyl)peroxide, dibenzoyl peroxide, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-di-methyl-2,5-di(benzoylperoxy)hexane, t-butylperoxy butylperoxyacetate, 2,2-di-(t-butylperoxy)butane, t-butylperoxybenzoate, n-butyl 4,4-di-(t-butylperoxy)valerate, 1,4-bis[(t-butylperoxy)isopropyl]benzene, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butyl peroxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide. Among these, at least one selected from dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, t-butyl-α-cumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3 is preferred, with 1,4-bis[(t-butylperoxy)isopropyl]benzene being particularly preferred.
 本発明に係るゴム組成物は、加工安全性が確保され、良好な加硫物を得ることができる観点から、ゴム組成物に含まれるゴム成分に対して、加硫剤を3~15質量部含むことが好ましい。加硫剤の含有量は、ゴム組成物に含まれるゴム成分100質量部に対して、例えば、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The rubber composition according to the present invention preferably contains 3 to 15 parts by mass of a vulcanizing agent relative to the rubber component contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a good vulcanizate. The content of the vulcanizing agent is, for example, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be within a range between any two of the numerical values exemplified here.
4.2 受酸剤
 本発明の一実施形態に係るゴム組成物は受酸剤を含むことができる。受酸剤としては、酸化マグネシウム、酸化鉛、四酸化三鉛、三酸化鉄、二酸化チタン、酸化カルシウム、ハイドロタルサイトを挙げることができる。ハイドロタルサイトとしては、下記式で表されるものを用いることができる。
 [M2+ 1-x3+ (OH)x+[An-x/n・mHO]x-
4.2 Acid Acceptor The rubber composition according to one embodiment of the present invention may contain an acid acceptor. Examples of the acid acceptor include magnesium oxide, lead oxide, lead tetroxide, iron trioxide, titanium dioxide, calcium oxide, and hydrotalcite. As the hydrotalcite, one represented by the following formula may be used.
[M 2+ 1-x M 3+ x (OH) 2 ] x+ [A n-x/n・mH 2 O] x-
 上記式において、
 M2+:Mg2+、Zn2+などから選ばれる少なくとも一つの2価金属イオン
 M3+:Al3+、Fe3+などから選ばれる少なくとも一つの3価金属イオン
 An-:CO 2-、Cl、NO 2-などから選ばれる少なくとも一つのn型アニオン
 X:0<X≦0.33とすることができる。
In the above formula,
M 2+ : at least one divalent metal ion selected from Mg 2+ , Zn 2+ , etc. M 3+ : at least one trivalent metal ion selected from Al 3+ , Fe 3+ , etc. A n- : at least one n-type anion selected from CO 3 2- , Cl - , NO 3 2- , etc. X: 0<X≦0.33.
 ハイドロタルサイトとしては、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HO、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HOなどがあげられ、特に好ましくは、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HOである。 Examples of hydrotalcite include Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 (OH) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 ( OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , and Mg3Al2 ( OH ) 10CO3.1.7H2O . Particularly preferred is Mg4.3 Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O .
 受酸剤の添加量は、ゴム成分100質量部に対して、0.1~15質量部とすることができる。ハイドロタルサイトの添加量は、例えば、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ハイドロタルサイトは1種単独で又は2種以上を組み合わせて用いることができる。 The amount of acid acceptor added may be 0.1 to 15 parts by mass per 100 parts by mass of the rubber component. The amount of hydrotalcite added may be, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here. Hydrotalcite may be used alone or in combination of two or more types.
4.3 加硫促進剤
 本発明に係るゴム組成物は、加硫促進剤を含むことができ、ゴム組成物に含まれるゴム組成物100質量部に対して、加硫促進剤を0.3~5.0質量部含むことができる。加硫促進剤の含有量は、例えば、0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本発明に係るゴム組成物は、加硫促進剤を含まないものとすることもできる。
4.3 Vulcanization Accelerator The rubber composition according to the present invention may contain a vulcanization accelerator, and may contain 0.3 to 5.0 parts by mass of the vulcanization accelerator relative to 100 parts by mass of the rubber composition contained in the rubber composition. The content of the vulcanization accelerator is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here. The rubber composition according to the present invention may not contain a vulcanization accelerator.
 加硫促進剤の種類は、本発明の効果を損なわなければ特に限定されない。加硫促進剤は、クロロプレン系ゴムの加硫に用いることができる加硫促進剤であることが好ましい。加硫促進剤は、1種又は2種以上自由に選択して用いることができる。加硫促進剤としては、チウラム系、ジチオカルバミン酸塩系、チオウレア系、グアニジン系、キサントゲン酸塩系、チアゾール系等が挙げられる。 The type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention. The vulcanization accelerator is preferably one that can be used for vulcanization of chloroprene-based rubber. One or more vulcanization accelerators can be freely selected and used. Examples of vulcanization accelerators include thiuram-based, dithiocarbamate-based, thiourea-based, guanidine-based, xanthogenate-based, and thiazole-based.
 チウラム系の加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。
 ジチオカルバミン酸塩系の加硫促進剤としては、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等が挙げられる。
 チオウレア系の加硫促進剤としては、エチレンチオウレア、ジエチルチオウレア(N,N'-ジエチルチオウレア)、トリメチルチオウレア、ジフェニルチオウレア(N,N'-ジフェニルチオウレア)、1、3-トリメチレン-2-チオウレア等のチオウレア化合物が挙げられる。
 グアニジン系の加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩等が挙げられる。
 キサントゲン酸塩系の加硫促進剤としては、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛等が挙げられる。
 チアゾール系の加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(4'-モルホリノジチオ)ベンゾチアゾール、N-シクロヘキシルベンゾチアゾール-2-スルフェンアミド等が挙げられる。
 これらは、1種単独で又は2種以上を組み合わせて用いることができる。
Examples of thiuram vulcanization accelerators include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
Examples of the dithiocarbamate vulcanization accelerator include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and tellurium diethyldithiocarbamate.
Examples of the thiourea-based vulcanization accelerator include thiourea compounds such as ethylene thiourea, diethyl thiourea (N,N'-diethyl thiourea), trimethyl thiourea, diphenyl thiourea (N,N'-diphenyl thiourea), and 1,3-trimethylene-2-thiourea.
Examples of the guanidine-based vulcanization accelerator include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salts of dicatechol borate.
Examples of the xanthogenate-based vulcanization accelerator include zinc butylxanthogenate and zinc isopropylxanthogenate.
Examples of the thiazole-based vulcanization accelerator include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, cyclohexylamine salt of 2-mercaptobenzothiazole, 2-(4'-morpholinodithio)benzothiazole, and N-cyclohexylbenzothiazole-2-sulfenamide.
These may be used alone or in combination of two or more.
4.4 充填材(補強材)
 本発明に係るゴム組成物は、充填材を含むことができる。
充填材(補強材)としては、SAF、ISAF、HAF、EPC、XCF、FEF、GPF、HMF、SRFなどのファーネスカーボンブラック、親水性カーボンブラックなどの改質カーボンブラック、チャンネルブラック、油煙ブラック、FT、MTなどのサーマルカーボン、アセチレンブラック、ケッチェンブラック、シリカ、クレー、タルク、炭酸カルシウムを挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
4.4 Filler (reinforcement)
The rubber composition according to the present invention may contain a filler.
Examples of the filler (reinforcing material) include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, and SRF, modified carbon black such as hydrophilic carbon black, channel black, lamp black, thermal carbon such as FT and MT, acetylene black, ketjen black, silica, clay, talc, and calcium carbonate. These may be used alone or in combination of two or more.
 本発明の一実施形態に係るゴム組成物は、ゴム成分100質量部に対して、充填材を5~130質量部含むことができる。充填材の含有量は、例えば、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明の一実施形態に係るゴム組成物は、充填材の含有率を上記数値範囲内含有することにより、加硫成形体の硬度を適度に調整することができる。 The rubber composition according to one embodiment of the present invention may contain 5 to 130 parts by mass of a filler per 100 parts by mass of the rubber component. The filler content may be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, or 130 parts by mass, or may be within a range between any two of the numerical values exemplified here. By containing the filler content within the above numerical range, the rubber composition according to one embodiment of the present invention can appropriately adjust the hardness of the vulcanized molded body.
4.5 シランカップリング剤
 本発明の一実施形態に係るゴム組成物は、シランカップリング剤を含むことができる。本発明の一実施形態に係るゴム組成物は、充填材としてシリカを含む場合、シランカップリング剤を含むことが好ましい。シランカップリング剤としては、特に制限はなく、市販のゴム組成物に使用されているものが使用でき、例えば、ビニル系カップリング剤、エポキシ系カップリング剤、スチリル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤、アミノ系カップリング剤、ポリスルフィド系カップリング剤、メルカプト系カップリング剤がある。特に、耐スコーチ性や補強効果の観点から架橋時の高温条件下で反応が開始されるビニル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤が好ましい。
4.5 Silane coupling agent The rubber composition according to one embodiment of the present invention may contain a silane coupling agent. When the rubber composition according to one embodiment of the present invention contains silica as a filler, it is preferable that the rubber composition contains a silane coupling agent. The silane coupling agent is not particularly limited, and those used in commercially available rubber compositions can be used, for example, vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents. In particular, from the viewpoint of scorch resistance and reinforcing effect, vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents that start reacting under high temperature conditions during crosslinking are preferred.
 本発明の一実施形態に係るゴム組成物は、ゴム組成物に含まれるシリカ100質量部に対して、シランカップリング剤を0.5~15質量部含むことができ、例えば、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。これらは、1種単独で又は2種以上を組み合わせて用いることができる。上記のシランカップリング剤を含み、また、シランカップリング剤の含有率を上記数値範囲内とすることにより、ゴム中へのシリカフィラーの分散性やゴムとシリカフィラー間の補強効果を向上させ、かつ、スコーチの発生を抑制することができる。 The rubber composition according to one embodiment of the present invention may contain 0.5 to 15 parts by mass of a silane coupling agent per 100 parts by mass of silica contained in the rubber composition, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here. These may be used alone or in combination of two or more. By containing the above silane coupling agent and setting the content of the silane coupling agent within the above numerical range, it is possible to improve the dispersibility of the silica filler in the rubber and the reinforcing effect between the rubber and the silica filler, and also to suppress the occurrence of scorch.
4.6 可塑剤
 可塑剤としては、クロロプレン-不飽和ニトリル共重合体ゴムと相溶性のある可塑剤であれば特に制限はないが、例えば、菜種油等の植物油、フタレート系可塑剤、DOS(セバシン酸ジオクチル)、DBS(セバシン酸ジブチル)、DOA(アジピン酸ジオクチル)、エステル系可塑剤、エーテルエステル系可塑剤、チオエーテル系可塑剤、アロマ系オイル、ナフテン系オイル等を挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。可塑剤の添加量は、ゴム組成物に含まれるゴム成分100質量部に対して、0質量部~50質量部とでき、例えば、0、5、10、15、20、25、30、35、40、45、50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
4.6 Plasticizer The plasticizer is not particularly limited as long as it is compatible with the chloroprene-unsaturated nitrile copolymer rubber, and examples thereof include vegetable oils such as rapeseed oil, phthalate-based plasticizers, DOS (dioctyl sebacate), DBS (dibutyl sebacate), DOA (dioctyl adipate), ester-based plasticizers, ether ester-based plasticizers, thioether-based plasticizers, aromatic oils, naphthenic oils, and the like. These can be used alone or in combination of two or more. The amount of plasticizer added can be 0 to 50 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 parts by mass, and may be within the range between any two of the numerical values exemplified here.
4.7 滑剤、加工助剤
 本発明に係るゴム組成物は、さらに滑剤及び/又は加工助剤を含むこともできる。滑剤及び加工助剤は、主に、ゴム組成物がロールや成形金型、押出機のスクリューなどから剥離しやすくなるようにするなど、加工性を向上させるために添加する。滑剤及び加工助剤としては、ステアリン酸等の脂肪酸、ポリエチレン等のパラフィン系加工助剤、脂肪酸アミド、ワセリン、ファクチス等が挙げられる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。本発明に係るゴム組成物は、ゴム成分100質量部に対して、滑剤及び加工助剤を0.5~15質量部含むことができ、1~10質量部とすることもできる。滑剤・加工助剤の含有量は、例えば、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
4.7 Lubricant, Processing Aid The rubber composition according to the present invention may further contain a lubricant and/or a processing aid. The lubricant and processing aid are mainly added to improve processability, such as making the rubber composition easier to peel off from rolls, molding dies, extruder screws, etc. Examples of the lubricant and processing aid include fatty acids such as stearic acid, paraffin processing aids such as polyethylene, fatty acid amides, vaseline, factice, etc. These may be used alone or in combination of two or more. The rubber composition according to the present invention may contain 0.5 to 15 parts by mass of the lubricant and processing aid per 100 parts by mass of the rubber component, and may also be 1 to 10 parts by mass. The content of the lubricant and processing aid may be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.
4.8 その他
 本発明に係るゴム組成物は、上記した成分に加え、老化防止剤、酸化防止剤、難燃剤、加硫遅延剤等の成分を、本発明の効果を阻害しない範囲でさらに含むことができる。老化防止剤及び酸化防止剤としては、オゾン老化防止剤、フェノール系老化防止剤、アミン系老化防止剤、アクリレート系老化防止剤、イミダゾール系老化防止剤、芳香族第二級アミン系老化防止剤、カルバミン酸金属塩、ワックス、リン系老化防止剤、硫黄系老化防止剤などを挙げることができる。イミダゾール系老化防止剤としては、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール及び2-メルカプトベンゾイミダゾールの亜鉛塩を挙げることができる。本発明に係るゴム組成物は、ゴム組成物に含まれるゴム成分100質量部に対して、老化防止剤及び酸化防止剤を合計で0.1~10質量部含むことができる。
4.8 Others In addition to the above-mentioned components, the rubber composition according to the present invention may further contain components such as an antiaging agent, an antioxidant, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired. Examples of the antiaging agent and the antioxidant include ozone antiaging agents, phenolic antiaging agents, amine antiaging agents, acrylate antiaging agents, imidazole antiaging agents, aromatic secondary amine antiaging agents, carbamic acid metal salts, waxes, phosphorus antiaging agents, and sulfur antiaging agents. Examples of the imidazole antiaging agents include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and zinc salts of 2-mercaptobenzimidazole. The rubber composition according to the present invention may contain 0.1 to 10 parts by mass of the antiaging agent and the antioxidant in total, relative to 100 parts by mass of the rubber component contained in the rubber composition.
5.ゴム組成物の製造方法
 本発明の一実施形態に係るゴム組成物は、クロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分及び必要とされるその他の成分を加硫温度以下の温度で混練することで得られる。原料成分を混練する装置としては、従来公知のミキサー、バンバリーミキサー、ニーダーミキサー、オープンロールなどの混練装置を挙げることができる。
5. Method for Producing Rubber Composition The rubber composition according to one embodiment of the present invention is obtained by kneading the rubber component of the chloroprene-unsaturated nitrile copolymer latex and other necessary components at a temperature equal to or lower than the vulcanization temperature. Examples of the device for kneading the raw material components include conventional kneading devices such as a mixer, a Banbury mixer, a kneader mixer, and an open roll.
6.未加硫成形体、加硫物及び加硫成形体
 本発明の一実施形態に係る未加硫成形体は、本発明の一実施形態に係るゴム組成物を用いており、本発明の一実施形態に係るゴム組成物(未加硫状態)の成形体(成形品)である。本発明の一実施形態に係る未加硫成形体の製造方法は、本発明の一実施形態に係るゴム組成物(未加硫状態)を成形する工程を備える。本発明の一実施形態に係る未加硫成形体は、本発明の一実施形態に係るゴム組成物(未加硫状態)からなる。
6. Unvulcanized molded body, vulcanized product, and vulcanized molded body The unvulcanized molded body according to one embodiment of the present invention uses the rubber composition according to one embodiment of the present invention, and is a molded body (molded product) of the rubber composition (unvulcanized state) according to one embodiment of the present invention. The manufacturing method of the unvulcanized molded body according to one embodiment of the present invention includes a step of molding the rubber composition (unvulcanized state) according to one embodiment of the present invention. The unvulcanized molded body according to one embodiment of the present invention is made of the rubber composition (unvulcanized state) according to one embodiment of the present invention.
 本発明の一実施形態に係る加硫物は、本発明の一実施形態に係るゴム組成物の加硫物である。本発明の一実施形態に係る加硫物の製造方法は、本発明の一実施形態に係るゴム組成物を加硫する工程を備える。 The vulcanizate according to one embodiment of the present invention is a vulcanizate of the rubber composition according to one embodiment of the present invention. The method for producing the vulcanizate according to one embodiment of the present invention includes a step of vulcanizing the rubber composition according to one embodiment of the present invention.
 本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物の加硫成形体である。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係る加硫物を用いており、本発明の一実施形態に係る加硫物の成形体(成形品)である。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係る加硫物からなる。 The vulcanized molded product according to one embodiment of the present invention is a vulcanized molded product of a rubber composition according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention uses a vulcanizate according to one embodiment of the present invention, and is a molded product (molded article) of the vulcanizate according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention is made of a vulcanizate according to one embodiment of the present invention.
 本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物(未加硫状態)を加硫して得られる加硫物を成形することにより得ることが可能であり、本発明の一実施形態に係るゴム組成物(未加硫状態)を成形して得られる成形体を加硫することにより得ることもできる。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物を成形後又は成形時に加硫することにより得ることができる。本発明の一実施形態に係る加硫成形体の製造方法は、本発明の一実施形態に係る加硫物を成形する工程、又は、本発明の一実施形態に係る未加硫成形体を加硫する工程を備える。 The vulcanized molded product according to one embodiment of the present invention can be obtained by molding a vulcanized product obtained by vulcanizing a rubber composition (unvulcanized state) according to one embodiment of the present invention, and can also be obtained by vulcanizing a molded product obtained by molding a rubber composition (unvulcanized state) according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention can be obtained by vulcanizing a rubber composition according to one embodiment of the present invention after or during molding. The method for producing a vulcanized molded product according to one embodiment of the present invention includes a step of molding a vulcanized product according to one embodiment of the present invention, or a step of vulcanizing an unvulcanized molded product according to one embodiment of the present invention.
 本発明の一実施形態に係る加硫成形体は、130℃の試験油(自動車用高潤滑油、ASTM No.3、IRM 903 oil)に72時間浸漬した際の体積変化が、45質量%未満であることが好ましい。また、本発明の一実施形態に係る加硫成形体は、直径15mm、高さ25mmの円柱状とし、JIS K 6265:2018に基づき、50℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱(ΔT)が、45℃未満であることが好ましい。 The vulcanized molded article according to one embodiment of the present invention preferably has a volume change of less than 45% by mass when immersed in a test oil (high-strength lubricating oil for automobiles, ASTM No. 3, IRM 903 oil) at 130°C for 72 hours. In addition, the vulcanized molded article according to one embodiment of the present invention is preferably cylindrical with a diameter of 15 mm and a height of 25 mm, and has a heat generation (ΔT) of less than 45°C as determined by evaluation using a constant strain flexometer test based on JIS K 6265:2018 under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute.
 本発明の一実施形態に係る未加硫成形体、加硫物及び加硫成形体は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能である。本発明に係るゴム組成物は、耐油性に優れ、動的環境下での発熱が少ないため、これらの特性が必要とされる様々な部材として用いることができる。本発明の一実施形態に係るゴム組成物、加硫物及び加硫成形体は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能であり、自動車用ゴム部材(例えば自動車用シール材)、ホース材、ゴム型物、ガスケット、ゴムロール、産業用ケーブル、産業用コンベアベルト、スポンジ等のゴム部品用として利用することができる。特には、伝動ベルト、コンベアベルト、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロール、防振ゴムまたはスポンジ製品として用いることができる。 The unvulcanized molded body, vulcanized product, and vulcanized molded body according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles. The rubber composition according to the present invention has excellent oil resistance and generates little heat in dynamic environments, so it can be used as various components where these properties are required. The rubber composition, vulcanized product, and vulcanized molded body according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles, and can be used for rubber parts such as automotive rubber parts (e.g., automotive seal materials), hose materials, rubber molded products, gaskets, rubber rolls, industrial cables, industrial conveyor belts, and sponges. In particular, they can be used as transmission belts, conveyor belts, hoses, wipers, immersion products, seal parts, adhesives, boots, rubber-coated cloth, rubber rolls, anti-vibration rubber, or sponge products.
(自動車用ゴム部材)
 自動車用ゴム部材は、ガスケット、オイルシール及びパッキンなどがあり、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品である。具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明のゴム組成物は、耐油性を高め、動的環境下での発熱を少なくすることができる。これにより、従来のゴム組成物では困難であった、耐油性に優れ、動的環境下での発熱の少ない自動車部品を製造することが可能である。
(Rubber parts for automobiles)
Rubber components for automobiles include gaskets, oil seals, and packings, which are components that prevent leakage of liquids and gases and intrusion of garbage and foreign objects such as rainwater and dust into machines and devices. Specifically, there are gaskets used for fixed applications and oil seals and packings used for moving parts and movable parts. For gaskets in which the sealing part is fixed with bolts or the like, various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. In addition, packings are used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc. The rubber composition of the present invention can increase oil resistance and reduce heat generation in dynamic environments. This makes it possible to manufacture automobile parts that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
(ホース材)
 ホース材は、屈曲可能な管であり、具体的には、送水用、送油用、送気用、蒸気用、油圧用高・低圧ホースなどがある。本発明のゴム組成物は、未加硫物の加工性を維持しつつ、ホース材の耐油性を高め動的環境下での発熱を少なくすることが可能である。これにより、例えば、従来のゴム組成物では困難であった、耐油性に優れ、動的環境下での発熱の少ないホース材を製造することができる。
(Hose material)
Hose materials are flexible pipes, and specifically include high- and low-pressure hoses for water supply, oil supply, air supply, steam, and hydraulic use. The rubber composition of the present invention can improve the oil resistance of the hose material and reduce heat generation in a dynamic environment while maintaining the processability of the unvulcanized product. This makes it possible to manufacture, for example, a hose material that has excellent oil resistance and generates little heat in a dynamic environment, which was difficult to achieve with conventional rubber compositions.
(ゴム型物)
 ゴム型物は、防振ゴム、制振材、ブーツなどがある。防振ゴム及び制振材は、振動の伝達波及を防止するゴムのことであり、具体的には、自動車や各種車両用のエンジン駆動時の振動を吸収して騒音を防止するためのトーショナルダンパー、エンジンマウント、マフラーハンガーなどがある。本発明のゴム組成物は、防振ゴム及び制振材の耐油性を高め、動的環境下での発熱を少なくすることが可能である。これにより、従来のゴム組成物では困難であった、耐油性に優れ、動的環境下での発熱の少ない防振ゴム及び制振材を製造することができる。
 また、ブーツは、一端から他端に向けて外径が次第に大きくなる蛇腹状をなす部材であり、具体的には、自動車駆動系などの駆動部を保護するための等速ジョイントカバー用ブーツ、ボールジョイントカバー用ブーツ(ダストカバーブーツ)、ラックアンドピニオンギア用ブーツなどがある。本発明のゴム組成物は、耐油性を高め、動的環境下での発熱を少なくすることが可能である。これにより、従来のゴム組成物よりも過酷な環境下で使用されるブーツを製造することが可能である。
(Rubber mold)
The rubber molded products include anti-vibration rubber, vibration-damping materials, boots, etc. Anti-vibration rubber and vibration-damping materials are rubbers that prevent the transmission and spread of vibrations, and specifically include torsional dampers, engine mounts, muffler hangers, etc. for automobiles and various vehicles that absorb vibrations during engine operation to prevent noise. The rubber composition of the present invention can increase the oil resistance of anti-vibration rubber and vibration-damping materials and reduce heat generation in dynamic environments. This makes it possible to produce anti-vibration rubber and vibration-damping materials that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to do with conventional rubber compositions.
A boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end, and specific examples include boots for constant velocity joint covers, boots for ball joint covers (dust cover boots), and boots for rack and pinion gears, which are used to protect drive parts such as automobile drive systems. The rubber composition of the present invention can improve oil resistance and reduce heat generation in dynamic environments. This makes it possible to manufacture boots that can be used in harsher environments than conventional rubber compositions.
(ガスケットなど)
 ガスケットや、オイルシール及びパッキンは、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品であり、具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明のゴム組成物は、これら部材の耐油性を高め、動的環境下での発熱を少なくすることができる。これにより、従来のゴム組成物では困難であった耐油性に優れ、動的環境下での発熱の少ないシール部材を製造することが可能である。
(Gaskets, etc.)
Gaskets, oil seals and packings are components that prevent leakage of liquids or gases and intrusion of garbage or foreign objects such as rainwater or dust into machines or equipment. Specifically, there are gaskets used for fixed applications and oil seals and packings used for moving parts. For gaskets where the sealing part is fixed with bolts or the like, various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. Packings are also used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc. The rubber composition of the present invention can increase the oil resistance of these members and reduce heat generation in dynamic environments. This makes it possible to manufacture sealing members that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
(ゴムロール)
 ゴムロールは、鉄芯などの金属製の芯をゴムで接着被覆することによって製造されるものであり、一般に金属鉄芯にゴムシートを渦巻き状に巻き付けて製造される。ゴムロールには、製紙、各種金属製造、フィルム製造、印刷、一般産業用、籾摺りなどの農機具用、食品加工用などの種々の用途の要求特性に応じて、NBRやEPDM、CRなどのゴム材料が用いられている。CRは搬送する物体の摩擦に耐え得る良好な機械強度を有していることから、幅広いゴムロール用途に使用されている。さらに、重量物を搬送するゴムロールは荷重により変形するという課題があり、改良を求められている。本発明のゴム組成物は、ゴムロールの耐油性を高め、動的環境下での発熱を少なくすることが可能である。これにより、従来のゴム組成物では困難であった、耐油性に優れ、動的環境下での発熱の少ないエンボス加工用ゴムロールを製造することが可能である。
(Rubber roll)
A rubber roll is manufactured by adhesively covering a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core. Rubber materials such as NBR, EPDM, and CR are used for rubber rolls according to the required characteristics of various applications such as papermaking, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as rice hullers, and food processing. CR has good mechanical strength that can withstand the friction of the objects being transported, so it is used in a wide range of rubber roll applications. Furthermore, there is a problem that rubber rolls that transport heavy objects are deformed by load, and improvements are required. The rubber composition of the present invention can increase the oil resistance of the rubber roll and reduce heat generation in a dynamic environment. This makes it possible to manufacture an embossing rubber roll that has excellent oil resistance and generates little heat in a dynamic environment, which was difficult to achieve with conventional rubber compositions.
(産業用ケーブル)
 産業用ケーブルは、電気や光信号を伝送するための線状の部材である。銅や銅合金などの良導体や光ファイバなどを絶縁性の被覆層で被覆したものであり、その構造や設置個所によって、多岐にわたる産業用ケーブルが製造されている。本発明のゴム組成物は、産業用ケーブルの耐油性を高め、動的環境下での発熱を少なくすることが可能である。これにより、従来のゴム組成物では困難であった耐油性に優れ、動的環境下での発熱の少ない産業用ケーブルを製造することができる。
(Industrial cables)
Industrial cables are linear components for transmitting electrical or optical signals. They are made by covering a good conductor such as copper or a copper alloy, or an optical fiber, with an insulating covering layer, and a wide variety of industrial cables are manufactured depending on their structure and installation location. The rubber composition of the present invention can increase the oil resistance of industrial cables and reduce heat generation in dynamic environments. This makes it possible to manufacture industrial cables that have excellent oil resistance and generate less heat in dynamic environments, which was difficult to achieve with conventional rubber compositions.
(産業用コンベアベルト)
 産業用コンベアベルトは、ゴム製、樹脂製、金属製のベルトがあり、多種多様な使用方法に合わせて選定されている。これらの中でもゴム製のコンベアベルトは、安価で多用されているが、特に搬送物との摩擦や衝突の多い環境下で使用すると、劣化による破損などが発生していた。本発明のゴム組成物は、産業用コンベアベルトの耐油性を高め動的環境下での発熱を少なくすることが可能である。これにより、従来のゴム組成物では困難であった過酷な環境下で用いられる耐油性に優れ、動的環境下での発熱の少ない産業用コンベアベルトを製造することができる。
(Industrial conveyor belts)
Industrial conveyor belts are available in rubber, resin, and metal, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used, but when used in an environment where there is a lot of friction and collision with the transported goods, they have been damaged due to deterioration. The rubber composition of the present invention can increase the oil resistance of industrial conveyor belts and reduce heat generation in dynamic environments. This makes it possible to manufacture industrial conveyor belts that have excellent oil resistance and generate little heat in dynamic environments, which can be used in harsh environments that were difficult to achieve with conventional rubber compositions.
(スポンジ)
 スポンジは、内部に細かい孔が無数に空いた多孔質の物質であり、具体的には、防振部材、スポンジシール部品、ウェットスーツ、靴などに利用されている。本発明のゴム組成物は、スポンジの耐酸性、耐水性を高めることが可能である。また、クロロプレン-不飽和ニトリル共重合体ゴムを用いているためスポンジの難燃性を高めることも可能である。これにより、従来のゴム組成物では困難であった過酷な環境下で使用される耐油性に優れ、動的環境下での発熱の少ないスポンジや、難燃性に優れたスポンジを製造することができる。さらに、発泡剤の含有量などの調整により得られるスポンジの硬度も適宜調整可能である。
(sponge)
A sponge is a porous material with numerous fine holes inside, and is specifically used in vibration-proofing materials, sponge seal parts, wet suits, shoes, etc. The rubber composition of the present invention can improve the acid resistance and water resistance of the sponge. In addition, since a chloroprene-unsaturated nitrile copolymer rubber is used, it is also possible to improve the flame retardancy of the sponge. This makes it possible to produce a sponge with excellent oil resistance and low heat generation in dynamic environments, which are used in harsh environments that were difficult to achieve with conventional rubber compositions, and a sponge with excellent flame retardancy. Furthermore, the hardness of the sponge obtained can be appropriately adjusted by adjusting the content of the foaming agent, etc.
 本発明の一実施形態に係るゴム組成物(未加硫状態)及び加硫物を成形する方法としては、プレス成形、押出成形、カレンダー成形等が挙げられる。ゴム組成物を加硫する温度は、ゴム組成物の組成に合わせて適宜設定すればよく、140~220℃、又は、160~190℃であってよい。ゴム組成物を加硫する加硫時間は、ゴム組成物の組成、未加硫成形体の形状等によって適宜設定すればよい。 Methods for molding the rubber composition (unvulcanized state) and vulcanized product according to one embodiment of the present invention include press molding, extrusion molding, calendar molding, and the like. The temperature for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, and may be 140 to 220°C, or 160 to 190°C. The vulcanization time for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, the shape of the unvulcanized molded product, and the like.
 以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 The present invention will be explained in more detail below based on examples, but the present invention should not be interpreted as being limited to these.
(実施例1)
 加熱冷却ジャケットと攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体23質量部、アクリロニトリル単量体35質量部、純水100質量部、不均化ロジン酸カリウム(ハリマ化成株式会社製)5.0質量部、水酸化カリウム0.4質量部、βナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)1.0質量部、ジイソプロピルキサントゲンジスルフィド0.5質量部を添加した。重合開始剤として過硫酸カリウム0.1質量部を添加し、重合温度40℃にて窒素気流下で乳化重合を行った。重合中は、重合液中の未反応単量体(クロロプレン単量体とアクリロニトリル単量体の合計)を100質量部としたとき、重合液中の不飽和ニトリル単量体の量が、70質量部±20質量部を維持するように、クロロプレン単量体を分添したクロロプレン単量体は、重合開始20秒後から分添し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン及びアクリロニトリルの合計量に対する重合率が65%となった時点で、重合停止剤であるフェノチアジン0.02質量部を加えて重合を停止させた。
 次いで、減圧蒸留による未反応単量体及び有機溶媒等の除去及び濃縮を行い、固形分50質量%のクロロプレン-不飽和ニトリル共重合体ラテックス1を得た。
Example 1
A 3-liter polymerization vessel equipped with a heating/cooling jacket and a stirrer was charged with 23 parts by mass of chloroprene monomer, 35 parts by mass of acrylonitrile monomer, 100 parts by mass of pure water, 5.0 parts by mass of disproportionated potassium rosinate (manufactured by Harima Chemicals Co., Ltd.), 0.4 parts by mass of potassium hydroxide, 1.0 part by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Corporation), and 0.5 parts by mass of diisopropyl xanthogen disulfide. 0.1 parts by mass of potassium persulfate was added as a polymerization initiator, and emulsion polymerization was carried out under a nitrogen stream at a polymerization temperature of 40° C. During the polymerization, the chloroprene monomer was added in portions so that the amount of the unsaturated nitrile monomer in the polymerization liquid was maintained at 70 parts by mass ± 20 parts by mass when the amount of unreacted monomers in the polymerization liquid (the total of the chloroprene monomer and the acrylonitrile monomer) was taken as 100 parts by mass. The chloroprene monomer was added in portions 20 seconds after the start of polymerization, and the amount of the portion added was adjusted with an electromagnetic valve based on the change in the heat quantity of the refrigerant for 10 seconds from the start of polymerization, and the flow rate was readjusted every 10 seconds thereafter, so that the polymerization was carried out continuously. When the polymerization rate relative to the total amount of chloroprene and acrylonitrile reached 65%, 0.02 parts by mass of phenothiazine, a polymerization terminator, was added to terminate the polymerization.
Next, unreacted monomers, organic solvents, etc. were removed by distillation under reduced pressure, and the residue was concentrated to obtain a chloroprene-unsaturated nitrile copolymer latex 1 having a solid content of 50% by mass.
(実施例2、比較例1~4)
 初期添加するクロロプレン単量体の量、アクリロニトリル単量体の量、水の量、及び分割添加するクロロプレン単量体の量、並びに、重合中に維持する重合液中の未反応単量体に対する不飽和ニトリル単量体の量を表1のとおりとした以外は実施例1と同様に、クロロプレン-不飽和ニトリル共重合体ラテックス2~6を得た。
(Example 2, Comparative Examples 1 to 4)
Chloroprene-unsaturated nitrile copolymer latexes 2 to 6 were obtained in the same manner as in Example 1, except that the amount of chloroprene monomer initially added, the amount of acrylonitrile monomer, the amount of water, the amount of chloroprene monomer added in portions, and the amount of unsaturated nitrile monomer relative to the unreacted monomer in the polymerization liquid maintained during polymerization were as shown in Table 1.
(比較例5)
  初期添加するクロロプレン単量体の量、アクリロニトリル単量体の量、水の量、及び分割添加するクロロプレン単量体の量、並びに、重合中に維持する重合液中の未反応単量体に対する不飽和ニトリル単量体の量を表1のとおりとし、ジイソプロピルキサントゲンジスルフィド0.5質量部にかえて、ベンジルブチルトリチオカーボネート0.2質量部を用いた以外は実施例と同様に、クロロプレン-不飽和ニトリル共重合体ラテックス7を得た。
(Comparative Example 5)
The amount of chloroprene monomer initially added, the amount of acrylonitrile monomer, the amount of water, the amount of chloroprene monomer added in portions, and the amount of unsaturated nitrile monomer relative to the unreacted monomer in the polymerization liquid maintained during polymerization were as shown in Table 1, and chloroprene-unsaturated nitrile copolymer latex 7 was obtained in the same manner as in Example, except that 0.2 part by mass of benzyl butyl trithiocarbonate was used instead of 0.5 part by mass of diisopropyl xanthogen disulfide.
(クロロプレン-不飽和ニトリル共重合体ラテックス中の、不飽和ニトリルの加水分解物の含有量)
 各実施例及び比較例に係るクロロプレン-不飽和ニトリル共重合体ラテックスを、約1g秤量し、テトラヒドロフランで25mlに希釈し、得られた溶液を熱分解ガスクロマトグラムで分析し、クロロプレン-不飽和ニトリル共重合体ラテックス中のクロロプレン-不飽和ニトリル共重合体、アクリルアミド、2-シアノエタノール、2-シアノエチルエーテルの含有率を算出した。
 ガスクロマトグラフィー 装置名:アジレントテクノロジー8890GCシステム
 カラム:DB-1 0.32mmφ×30m(膜厚5.0μm)
 カラム温度:50℃(5min)→50℃/min→100℃→15℃/min→300℃(30min)
 注入口温度:270℃
 検出器温度:300℃
 検出器:FID
 なお、実施例、比較例に係るクロロプレン-不飽和ニトリル共重合体ラテックスは刺激臭がせず、アンモニア及びカルボン酸の発生は確認されなかった。
(Content of Unsaturated Nitrile Hydrolyzate in Chloroprene-Unsaturated Nitrile Copolymer Latex)
About 1 g of the chloroprene-unsaturated nitrile copolymer latex according to each of the Examples and Comparative Examples was weighed out and diluted to 25 ml with tetrahydrofuran. The obtained solution was analyzed by pyrolysis gas chromatography to calculate the contents of the chloroprene-unsaturated nitrile copolymer, acrylamide, 2-cyanoethanol and 2-cyanoethyl ether in the chloroprene-unsaturated nitrile copolymer latex.
Gas chromatography: Instrument name: Agilent Technologies 8890GC system; Column: DB-1 0.32 mmφ x 30 m (film thickness 5.0 μm)
Column temperature: 50°C (5 min) → 50°C/min → 100°C → 15°C/min → 300°C (30 min)
Inlet temperature: 270℃
Detector temperature: 300°C
Detector: FID
The chloroprene-unsaturated nitrile copolymer latexes according to the examples and comparative examples did not give off an irritating odor, and no generation of ammonia or carboxylic acid was observed.
(40℃、4か月保管後の粘度)
 各実施例及び比較例に係るクロロプレン-不飽和ニトリル共重合体ラテックス(固形分濃度50質量%)を、40℃で4か月保管後、B型粘度計により下記条件で粘度測定を行った。
  測定機器:東機産業株式会社製「VISCOMETER TVB-20L」
  スピンドル・ローター:2M(半径19mm×厚み7mの円盤状)
  回転数:30rpm
(Viscosity after storage at 40°C for 4 months)
The chloroprene-unsaturated nitrile copolymer latex (solid content concentration: 50% by mass) according to each of the Examples and Comparative Examples was stored at 40° C. for 4 months, and then the viscosity was measured under the following conditions using a B-type viscometer.
Measuring equipment: "VISCOMETER TVB-20L" manufactured by Toki Sangyo Co., Ltd.
Spindle rotor: 2M (disk-shaped with radius 19mm x thickness 7m)
Rotation speed: 30 rpm
 以下の評価基準で評価した。
 ○:1000cps未満
 ×:1000cps以上
The evaluation was based on the following criteria.
○: Less than 1000 cps ×: 1000 cps or more
<ゴム成分の析出>
 各実施例及び比較例に係るクロロプレン-不飽和ニトリル共重合体ラテックスのpHを、酢酸又は水酸化ナトリウムを用いて7.0に調整した後、-20℃に冷やした金属板上でクロロプレン-アクリロニトリル共重合体ラテックスを凍結凝固させることで乳化破壊してシートを得た。このシートを水洗した後、130℃で15分間乾燥させることにより固形状のクロロプレン-アクリロニトリル共重合体のゴム成分(クロロプレン-アクリロニトリル共重合体1~7)を得た。
<Segregation of rubber components>
The pH of the chloroprene-unsaturated nitrile copolymer latex according to each of the Examples and Comparative Examples was adjusted to 7.0 using acetic acid or sodium hydroxide, and then the chloroprene-acrylonitrile copolymer latex was freeze-coagulated on a metal plate cooled to −20° C. to break the emulsion and obtain a sheet. The sheet was washed with water and then dried at 130° C. for 15 minutes to obtain a solid chloroprene-acrylonitrile copolymer rubber component (chloroprene-acrylonitrile copolymers 1 to 7).
(窒素含有率及びアクリロニトリル結合量)
 クロロプレン-アクリロニトリル共重合体1~7を用いて、燃焼法でクロロプレン-不飽和ニトリル共重合体中の窒素含有率を測定し、窒素含有率から、アクリロニトリル結合量を算出した。分析方法は、JISK6451-1:2016に基づき、燃焼法(デュマ法)による自動分析装置を用いて、試料中の窒素含有率を算出し、窒素含有率から、アクリロニトリルの単量体単位の含有量(結合アクリロニトリル量)を算出した。
(Nitrogen content and acrylonitrile bond amount)
The nitrogen content in the chloroprene-unsaturated nitrile copolymer was measured by a combustion method using the chloroprene-acrylonitrile copolymers 1 to 7, and the amount of bound acrylonitrile was calculated from the nitrogen content. The analysis method was based on JIS K6451-1:2016, and an automatic analyzer was used to calculate the nitrogen content in the sample by the combustion method (Dumas method), and the content of acrylonitrile monomer units (bound acrylonitrile amount) was calculated from the nitrogen content.
 具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて、100mgのクロロプレン-不飽和ニトリル共重合体中における窒素原子の含有量を測定し、アクリロニトリルの単量体単位の含有量を算出した。元素分析は次のとおり行った。電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素ガスを0.2mL/min、キャリアーガスとしてヘリウムガスを80mL/minフローした。検量線は、窒素含有率が既知のアスパラギン酸(10.52%)を標準物質として用いて作成した。 Specifically, an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.) was used to measure the nitrogen atom content in 100 mg of chloroprene-unsaturated nitrile copolymer, and the content of acrylonitrile monomer units was calculated. Elemental analysis was performed as follows. The electric furnace temperatures were set at 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector, and oxygen gas was flowed at 0.2 mL/min as the combustion gas and helium gas was flowed at 80 mL/min as the carrier gas. A calibration curve was created using aspartic acid (10.52%), which has a known nitrogen content, as the standard substance.
<ゴム組成物の調製>
 上記のようにクロロプレン-アクリロニトリル共重合体ラテックス1~7を凍結乾燥することによって得た、クロロプレン-不飽和ニトリル共重合体ラテックス中のゴム成分(クロロプレン-アクリロニトリル共重合体1~7)を用いて、ゴム組成物を調製した。
具体的には、ゴム成分100質量部に、
・老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン(大内新興化学工業株式会社製、ノクラックCD))3質量部、
・老化防止剤(N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業株式会社製、ノクラック6C))1質量部、
・受酸剤(酸化マグネシウム(協和化学工業株式会社製、キョーワマグ150))4質量部、
・酸化亜鉛(堺化学工業株式会社製、酸化亜鉛2種)5質量部、
・加硫促進剤(トリメチルチオウレア(大内新興化学工業株式会社製、ノクセラーTMU))1質量部、
・充填材(カーボンブラックFEF(旭カーボン株式会社製、旭#60))50質量部、
・可塑剤(エーテルエステル系可塑剤(株式会社ADEKA製、アデカサイザーRS-700))10質量部、
・滑剤(ステアリン酸(新日本理化株式会社製、ステアリン酸50S))1質量部
を添加し、8インチオープンロールで混練し、ゴム組成物1~7を得た。
<Preparation of Rubber Composition>
Rubber compositions were prepared using the rubber components (chloroprene-acrylonitrile copolymers 1 to 7) in the chloroprene-unsaturated nitrile copolymer latexes obtained by freeze-drying the chloroprene-acrylonitrile copolymer latexes 1 to 7 as described above.
Specifically, 100 parts by mass of the rubber component,
Antiaging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine (Nocrac CD, manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)) 3 parts by mass,
Antiaging agent (N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Nocrac 6C)) 1 part by mass,
Acid acceptor (magnesium oxide (Kyowamag 150, manufactured by Kyowa Chemical Industry Co., Ltd.)) 4 parts by mass,
Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide type 2) 5 parts by mass,
- 1 part by mass of vulcanization accelerator (trimethylthiourea (manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TMU)),
Filler (carbon black FEF (Asahi Carbon Co., Ltd., Asahi #60)) 50 parts by mass,
Plasticizer (ether ester plasticizer (ADEKA Cizer RS-700, manufactured by ADEKA CORPORATION)) 10 parts by mass,
One part by mass of a lubricant (stearic acid (Stearic Acid 50S, manufactured by New Japan Chemical Co., Ltd.)) was added, and the mixture was kneaded with an 8-inch open roll to obtain Rubber Compositions 1 to 7.
<加硫成形体の作製>
 上記ゴム組成物1~7を用いて加硫成形体を作製した。具体的には、得られたゴム組成物1~7をJIS K 6250に基づき、170℃、20分の条件でプレス加硫し、厚さ2mmのシート状の加硫成形体を作製した。また、ゴム組成物1~7を、170℃、20分の条件でプレス加硫して、グッドリッチ試験用の加硫成形体(直径15mm、高さ25mmの円柱状の加硫成形体)を作製した。
<Preparation of vulcanized molded body>
The above rubber compositions 1 to 7 were used to prepare vulcanized molded articles. Specifically, the obtained rubber compositions 1 to 7 were press-vulcanized at 170°C for 20 minutes based on JIS K 6250 to prepare sheet-shaped vulcanized molded articles having a thickness of 2 mm. The rubber compositions 1 to 7 were also press-vulcanized at 170°C for 20 minutes to prepare vulcanized molded articles for Goodrich tests (cylindrical vulcanized molded articles having a diameter of 15 mm and a height of 25 mm).
(耐油性)
 上述のシート状の加硫成形体から縦25mm、横20mmの試験片を打ち抜き、試験片を得た。得られた試験片を、130℃の試験油(自動車用高潤滑油、ASTM No.3、IRM 903 oil)に72時間浸漬した。JIS K 6258に準拠して体積変化率ΔVを算出した。得られた体積変化率ΔVを以下の基準で評価した。
 ○:45質量%未満
 ×:45質量%以上
(Oil resistance)
A test piece measuring 25 mm in length and 20 mm in width was punched out from the sheet-like vulcanized molded product. The test piece was immersed in a test oil (high-grade lubricating oil for automobiles, ASTM No. 3, IRM 903 oil) at 130°C for 72 hours. The volume change rate ΔV was calculated according to JIS K 6258. The volume change rate ΔV was evaluated according to the following criteria.
○: Less than 45% by weight ×: 45% by weight or more
(発熱性)
 発熱性の評価は、グッドリッチフレクソメーター(Goodrich Flexometer:JIS K 6265:2018)により行った。グッドリッチフレクソメーターは、加硫ゴム等の試験片に動的繰り返し負荷を加えて、試験片内部の発熱による疲労特性を評価する試験方法であって、詳しくは、一定の温度条件で試験片に静的初期荷重を加え、更に一定振幅の正弦振動を加え、時間の経過と共に変化する試験片の発熱温度やクリープ量を測定するものである。試験方法はJIS K 6265:2018に準拠し、50℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で発熱(ΔT)を測定し、以下の評価基準で評価した。
 ○:45℃未満
 ×:45℃以上
(Feverish)
The heat generation was evaluated using a Goodrich Flexometer (JIS K 6265:2018). The Goodrich Flexometer is a test method for evaluating fatigue properties due to heat generation inside a test piece by applying a dynamic repeated load to a test piece such as vulcanized rubber. In detail, a static initial load is applied to the test piece under a constant temperature condition, and a sine vibration of a constant amplitude is further applied to measure the heat generation temperature and creep amount of the test piece that change over time. The test method conforms to JIS K 6265:2018, and heat generation (ΔT) was measured under conditions of 50°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and evaluated according to the following evaluation criteria.
○: Less than 45°C ×: 45°C or higher

Claims (7)

  1.  クロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスであって、
     前記クロロプレン-不飽和ニトリル共重合体は、燃焼法で測定した窒素含有率が、0.5質量%以上であり、
     前記クロロプレン-不飽和ニトリル共重合体は、化学式(1)で表される構造の官能基を有し、
     前記クロロプレン-不飽和ニトリル共重合体ラテックス中の、前記クロロプレン-不飽和ニトリル共重合体100質量部に対する、不飽和ニトリルの加水分解物の含有量が、0.10~9.00質量部である、クロロプレン-不飽和ニトリル共重合体ラテックス。
    (化学式(1)中、Rは水素、塩素、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のメルカプト基、置換もしくは無置換のヘテロシクリル基のいずれかを表す。)
    A chloroprene-unsaturated nitrile copolymer latex comprising a chloroprene-unsaturated nitrile copolymer comprising chloroprene monomer units and unsaturated nitrile monomer units,
    The chloroprene-unsaturated nitrile copolymer has a nitrogen content of 0.5% by mass or more as measured by a combustion method,
    The chloroprene-unsaturated nitrile copolymer has a functional group having a structure represented by chemical formula (1),
    The chloroprene-unsaturated nitrile copolymer latex has a content of an unsaturated nitrile hydrolysate of 0.10 to 9.00 parts by mass based on 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
    (In chemical formula (1), R 1 represents any one of hydrogen, chlorine, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted mercapto group, and a substituted or unsubstituted heterocyclyl group.)
  2.  前記不飽和ニトリル単量体単位が、アクリロニトリル単量体単位であって、
     前記クロロプレン-不飽和ニトリル共重合体は、JIS K 6451-1に準拠して測定したアクリロニトリル結合量が2質量%以上であり、
     前記クロロプレン-不飽和ニトリル共重合体ラテックス中の、前記クロロプレン-不飽和ニトリル共重合体100質量部に対する、アクリロニトリルの加水分解物の含有量が、0.10~9.00質量部である、請求項1に記載のクロロプレン-不飽和ニトリル共重合体ラテックス。
    The unsaturated nitrile monomer unit is an acrylonitrile monomer unit,
    The chloroprene-unsaturated nitrile copolymer has an acrylonitrile bond amount of 2 mass% or more as measured in accordance with JIS K 6451-1,
    The chloroprene-unsaturated nitrile copolymer latex according to claim 1, wherein the content of the acrylonitrile hydrolyzate in the chloroprene-unsaturated nitrile copolymer latex is 0.10 to 9.00 parts by mass based on 100 parts by mass of the chloroprene-unsaturated nitrile copolymer.
  3.  請求項1又は請求項2に記載のクロロプレン-不飽和ニトリル共重合体ラテックスのゴム成分。 The rubber component of the chloroprene-unsaturated nitrile copolymer latex according to claim 1 or 2.
  4.  請求項3に記載のゴム成分を含む、ゴム組成物。 A rubber composition comprising the rubber component according to claim 3.
  5.  請求項4に記載のゴム組成物の、加硫成形体。 A vulcanized molded article of the rubber composition according to claim 4.
  6.  伝動ベルト、コンベアベルト、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロール、防振ゴムまたはスポンジ製品である、請求項5に記載の加硫成形体。 The vulcanized molded article according to claim 5, which is a transmission belt, a conveyor belt, a hose, a wiper, a dipping product, a sealing part, an adhesive, a boot, a rubber-coated cloth, a rubber roll, a vibration-proof rubber or a sponge product.
  7.  クロロプレン単量体単位及び不飽和ニトリル単量体単位を含むクロロプレン-不飽和ニトリル共重合体を含むクロロプレン-不飽和ニトリル共重合体ラテックスの製造方法であって、
     前記製造方法は、水を含む水溶液中で、キサントゲン化合物の存在下で、クロロプレン単量体及び不飽和ニトリル単量体を含む原料単量体を重合してクロロプレン-不飽和ニトリル共重合体を得る重合工程を含み、
     前記重合工程において用いる全原料単量体を100質量部としたとき、前記水の量が150質量部未満である、製造方法。
    A method for producing a chloroprene-unsaturated nitrile copolymer latex comprising a chloroprene-unsaturated nitrile copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, comprising:
    The production method includes a polymerization step of polymerizing raw material monomers including a chloroprene monomer and an unsaturated nitrile monomer in an aqueous solution containing water in the presence of a xanthogen compound to obtain a chloroprene-unsaturated nitrile copolymer,
    The production method, wherein the amount of the water is less than 150 parts by mass when the total amount of the raw material monomers used in the polymerization step is 100 parts by mass.
PCT/JP2024/011009 2023-03-28 2024-03-21 Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex WO2024203716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-052364 2023-03-28
JP2023052364 2023-03-28

Publications (1)

Publication Number Publication Date
WO2024203716A1 true WO2024203716A1 (en) 2024-10-03

Family

ID=92906111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011009 WO2024203716A1 (en) 2023-03-28 2024-03-21 Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex

Country Status (1)

Country Link
WO (1) WO2024203716A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599907A (en) * 1979-01-27 1980-07-30 Denki Kagaku Kogyo Kk Copolymerization of chloroprene with unsaturated nitrile
JPS5710102B2 (en) * 1971-11-13 1982-02-24
WO2018207940A1 (en) * 2017-05-12 2018-11-15 デンカ株式会社 Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use of same
WO2019017470A1 (en) * 2017-07-21 2019-01-24 デンカ株式会社 Chloroprene polymer and production method therefor
WO2019102898A1 (en) * 2017-11-24 2019-05-31 デンカ株式会社 Sulfur-modified chloroprene rubber composition, vulcanized product, molded article using said vulcanized product and method for producing sulfur-modified chloroprene rubber composition
WO2019211975A1 (en) * 2018-05-02 2019-11-07 デンカ株式会社 Statistical copolymer latex and use thereof, and production method for statistical copolymer latex

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710102B2 (en) * 1971-11-13 1982-02-24
JPS5599907A (en) * 1979-01-27 1980-07-30 Denki Kagaku Kogyo Kk Copolymerization of chloroprene with unsaturated nitrile
WO2018207940A1 (en) * 2017-05-12 2018-11-15 デンカ株式会社 Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use of same
WO2019017470A1 (en) * 2017-07-21 2019-01-24 デンカ株式会社 Chloroprene polymer and production method therefor
WO2019102898A1 (en) * 2017-11-24 2019-05-31 デンカ株式会社 Sulfur-modified chloroprene rubber composition, vulcanized product, molded article using said vulcanized product and method for producing sulfur-modified chloroprene rubber composition
WO2019211975A1 (en) * 2018-05-02 2019-11-07 デンカ株式会社 Statistical copolymer latex and use thereof, and production method for statistical copolymer latex

Similar Documents

Publication Publication Date Title
JP5525817B2 (en) Chloroprene rubber composition and use thereof
JP5814343B2 (en) Chloroprene rubber composition and vulcanized rubber thereof, rubber mold using the vulcanized rubber, anti-vibration rubber member, engine mount and hose
KR102574679B1 (en) Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use thereof
CN110036048B (en) Xanthan-modified chloroprene rubber, rubber composition thereof, and vulcanized molded body thereof
KR100463474B1 (en) Chloroprene-based rubber composition
JP5465387B2 (en) Anti-vibration rubber material and automotive engine mount using the same
JP2017114958A (en) Acrylic rubber and rubber crosslinked article thereof
WO2023136318A1 (en) Composition, vulcanizate, and vulcanized molded body
WO2024203716A1 (en) Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex
CN117881734A (en) Rubber composition, sulfide, and vulcanized molded article
WO2024203715A1 (en) Chloroprene-unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molding, and method for producing chloroprene-unsaturated nitrile copolymer latex
JP5180996B2 (en) Chloroprene rubber composition
WO2024203824A1 (en) Rubber composition, vulcanization molded body, and rubber roll
JP2024141770A (en) Rubber composition, vulcanized molded product, and rubber roll
JP2024141772A (en) Rubber composition, vulcanized molded product, and rubber roll
JP2024101958A (en) Rubber composition, vulcanized material, and vulcanized molded body
JP2024100049A (en) Rubber composition, vulcanized material, and vulcanized molded body
WO2023189908A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2023153405A1 (en) Rubber composition, vulcanizate, and vulcanized molded body
WO2023042727A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2023157827A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
JP7422266B1 (en) Rubber composition and tire bladder
WO2024101276A1 (en) Rubber composition, vulcanized product, and vulcanized molded body
WO2023210519A1 (en) Rubber composition, vulcanized molded body, and vulcanizate
JP2023151665A (en) Acryl rubber composition