WO2024131688A1 - 感知方法、感知装置及通信设备 - Google Patents
感知方法、感知装置及通信设备 Download PDFInfo
- Publication number
- WO2024131688A1 WO2024131688A1 PCT/CN2023/139331 CN2023139331W WO2024131688A1 WO 2024131688 A1 WO2024131688 A1 WO 2024131688A1 CN 2023139331 W CN2023139331 W CN 2023139331W WO 2024131688 A1 WO2024131688 A1 WO 2024131688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- measurement value
- perception
- signal
- configuration information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 175
- 238000004891 communication Methods 0.000 title claims abstract description 128
- 230000006854 communication Effects 0.000 title claims abstract description 128
- 238000005259 measurement Methods 0.000 claims abstract description 723
- 230000008447 perception Effects 0.000 claims description 570
- 230000015654 memory Effects 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 29
- 230000008859 change Effects 0.000 claims description 23
- 238000005516 engineering process Methods 0.000 abstract description 11
- 230000006870 function Effects 0.000 description 59
- 230000008569 process Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 9
- 230000010354 integration Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 238000000605 extraction Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004984 smart glass Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
Definitions
- perception nodes in mobile communication networks can realize perception measurement of the state of perception targets or perception environment by sending and receiving perception signals.
- IRC Integrated Sensing and Communication
- the non-ideal factors of the devices and hardware circuits of the user equipment (UE) will significantly affect the measurement accuracy.
- the perception method of sending and receiving perception signals between the base station and the terminal extracting the channel state information (CSI) for perception is one of the main implementation methods of communication perception integration.
- some non-ideal factors will cause errors in CSI measurement, which will significantly affect the accuracy of perception.
- the uplink channel estimation on the base station side is discontinuous in phase in time, that is, there is a random phase offset between channel estimates at different uplink moments. If the user equipment (UE) has more than one RF channel, different random phases will be introduced in different RF channels. This random phase has almost no effect on communication performance, but will introduce uplink perception errors, and even make it impossible to perform perception services.
- the embodiments of the present application provide a perception method, a perception device and a communication device, which can determine a random phase estimation value of a transmitter of a perception signal based on a reference path parameter measurement value obtained by measuring a downlink reference path parameter, and calibrate a random phase in a perception measurement value based on the random phase estimation value, so as to reduce the deviation between the calibrated perception measurement value and the true value of the perception measurement value, thereby improving the accuracy of a perception result obtained based on the calibrated perception measurement value, and thus improving the perception performance.
- a perception method comprising:
- the first node sends a first signal and receives an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or,
- the first node sends a first signal and receives an echo signal corresponding to the first signal, obtains a random phase measurement value and/or a reference path parameter measurement value of an antenna port of the first node, and the first node sends a second signal, wherein: The first perceptual measurement value is obtained based on perceptual measurement of the second signal;
- the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service.
- a sensing device which is applied to a first node, and includes:
- a first transmission module is configured to send a first signal and receive an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or
- a second transmission module configured to send a first signal, receive an echo signal corresponding to the first signal, obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on a perception measurement of the second signal;
- the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service.
- a perception method comprising:
- the second node receives the second signal from the first node and obtains a first perception measurement value
- the second signal is used for the first service
- the first service is a perception service and/or a communication-perception integrated service
- the target perception result of the first service is determined based on the random phase measurement value or the reference path parameter measurement value of the antenna port
- the first perception measurement value is determined based on the echo signal of the first signal received by the first node.
- a sensing device which is applied to a second node, and includes:
- a first receiving module is used to receive a second signal from the first node to obtain a first perception measurement value
- the second signal is used for the first service
- the first service is a perception service and/or a communication-perception integrated service
- the target perception result of the first service is determined based on the random phase measurement value or the reference path parameter measurement value of the antenna port
- the first perception measurement value is determined based on the echo signal of the first signal received by the first node.
- a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect or the third aspect are implemented.
- a communication device including a processor and a communication interface
- the communication interface is used to send a first signal and receive an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or, the communication interface is used to send a first signal and receive an echo signal corresponding to the first signal to obtain a random phase measurement value and/or a reference path parameter measurement value of an antenna port of the first node, and the first node sends a second Signal, wherein the first perception measurement value is obtained based on the perception measurement of the second signal; wherein the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service;
- the communication interface is used to receive a second signal from a first node to obtain a first perception measurement value; wherein the second signal is used for a first service, the first service is a perception service and/or a communication-perception integrated service, and the target perception result of the first service is determined based on an antenna port random phase measurement value or a reference path parameter measurement value, and the first perception measurement value, and the antenna port random phase measurement value or the reference path parameter measurement value is determined based on an echo signal of the first signal received by the first node.
- a readable storage medium on which a program or instruction is stored.
- the program or instruction is executed by a processor, the steps of the method described in the first aspect or the third aspect are implemented.
- a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect or the third aspect.
- a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect or the third aspect.
- a first node sends a first signal and receives an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or, a first node sends a first signal and receives an echo signal corresponding to the first signal to obtain a random phase measurement value and/or a reference path parameter measurement value of an antenna port of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on a perception measurement of the second signal; wherein the random phase measurement value of the antenna port or the reference path parameter measurement value, and the first perception measurement value are used to determine a target perception result of a first service, and the first service is a perception service and/or a communication-perception integrated service.
- the random phase measurement value and/or the reference path parameter measurement value of the antenna port of the first node can be obtained.
- the perception measurement value or the perception result with random phase interference can be subjected to random phase calibration or the random phase deflection in the perception measurement value or the perception result can be eliminated, thereby improving the accuracy of the obtained target perception measurement value or the target perception result, and thus improving the perception accuracy.
- FIG1 is a schematic diagram of the structure of a wireless communication system to which an embodiment of the present application can be applied;
- Figure 2 is a schematic diagram of the perception method
- FIG3a is a schematic diagram of the position of a random phase measurement signal in the time and frequency domain
- FIG3b is one of the schematic diagrams of reference path parameter extraction
- FIG4a is a schematic diagram of random phases of different antenna ports
- FIG4b is a second schematic diagram of reference path parameter extraction
- FIG4c is a second schematic diagram of random phase deflection
- FIG5 is a flow chart of a sensing method provided in an embodiment of the present application.
- FIG6 is a flow chart of another sensing method provided in an embodiment of the present application.
- FIG7a is a schematic diagram of the interaction process of application scenario 1;
- FIG7 b is a schematic diagram of the interaction process of application scenario 2;
- FIG7c is a schematic diagram of the interaction process of application scenario three;
- FIG7d is a schematic diagram of the interaction process of application scenario 4.
- FIG7e is a schematic diagram of the interaction process of application scenario five;
- FIG8 is a schematic diagram of the structure of a sensing device provided in an embodiment of the present application.
- FIG9 is a schematic diagram of the structure of another sensing device provided in an embodiment of the present application.
- FIG10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- FIG. 11 is a schematic diagram of the hardware structure of a terminal provided in an embodiment of the present application.
- FIG12 is a schematic diagram of the structure of a network side device provided in an embodiment of the present application.
- first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
- the first object can be one or more.
- “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency Division Multiple Access
- NR new radio
- FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
- the wireless communication system includes a terminal 11 and a network side device 12.
- the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device , robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian user equipment (PUE), smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service machines and other terminal side devices, wearable devices include: smart watches, smart bracelets, smart headphones,
- the network side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be called wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
- the access network equipment may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
- WLAN wireless local area network
- the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home node B, a home evolved node B, a transmission reception point (TRP) or some other appropriate term in the field.
- eNB evolved node B
- BTS base transceiver station
- BSS basic service set
- ESS extended service set
- home node B a home evolved node B
- TRP transmission reception point
- the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
- MME mobility management entity
- AMF Access and Mobility Management Function
- SMF Session Management Function
- SMF Session Management Function
- UPF User Plane Function
- Policy Control Function Policy Control Function
- PCRF Policy and Charging Rules Function
- edge application service discovery function Edge Application Server Discovery ...
- Wireless communication and radar sensing have been developing in parallel, but with limited overlap. They have a lot in common in terms of signal processing algorithms, equipment, and to some extent, system architecture. In recent years, traditional radars are moving towards more general wireless sensing.
- Wireless sensing can broadly refer to the acquisition of information from received radio signals.
- the dynamic parameters such as the target signal reflection delay, arrival angle, departure angle, Doppler frequency, etc. can be estimated through common signal processing methods; for sensing the physical characteristics of the target, it can be achieved by measuring the inherent signal pattern of the device/object/activity.
- the two sensing methods can be called perception parameter estimation and pattern recognition. In this sense, wireless sensing refers to more general sensing technologies and applications using radio signals.
- Integrated Sensing And Communication has the potential to integrate wireless sensing into large-scale mobile networks, which are called Perceptive Mobile Networks (PMNs).
- PMNs Perceptive Mobile Networks
- Perception mobile networks are able to provide both communication and wireless perception services, and are expected to become a ubiquitous wireless sensing solution due to their large broadband coverage and strong infrastructure. Perception mobile networks can be widely used for communication and sensing in the fields of transportation, communication, energy, precision agriculture, and security. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation capabilities, and the ability to penetrate fog, leaves, and even solid objects. Some common perception services are shown in Table 1 below:
- a base station in a mobile communication network including one or more transmission reception points (TRP) on the base station
- a user equipment (UE) including one or more antenna subarrays/panels on the UE
- TRP transmission reception points
- UE user equipment
- the perception service can be supported. For example, a perception measurement quantity or a perception result can be obtained by receiving the signal.
- the sensing signal may be a signal that does not contain transmission information, such as an existing LTE/NR synchronization and reference signal (including
- the reference signals include: synchronization signal and physical broadcast channel (Synchronization Signal and PBCH block, SSB) signal, channel state information reference signal (CSI-RS), demodulation reference signal (DMRS), channel sounding reference signal (SRS), positioning reference signal (PRS), phase tracking reference signal (PTRS), etc.), and can also be single-frequency continuous wave (CW), frequency modulated continuous wave (FMCW), and ultra-wideband Gaussian pulse commonly used by radar.
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- SRS channel sounding reference signal
- PRS positioning reference signal
- PTRS phase tracking reference signal
- CW single-frequency continuous wave
- FMCW frequency modulated continuous wave
- FMCW ultra-wideband Gaussian pulse commonly used by radar.
- the perception signal can also be a newly designed dedicated perception signal with good correlation characteristics and low peak-to-average power ratio (PAPR), or a newly designed synaesthesia integrated signal, which not only carries certain information but also has good perception performance.
- the new signal is at least one dedicated perception signal/reference signal and at least one communication signal spliced/combined/superimposed in the time domain and/or frequency domain.
- the type of perception signal is not specifically limited here, and for the sake of convenience, the above-mentioned signals are uniformly referred to as perception signals or second signals in the following embodiments.
- the nodes that send and/or receive the second signal are collectively referred to as sensing nodes.
- the sending node of the second signal is referred to as the first node
- the receiving node of the second signal is referred to as the second node.
- the first node also sends and receives the first signal to obtain the reference path parameter measurement value.
- the sending node and the receiving node of the second signal may be the same device or different devices, for example: sensing node A sends the second signal, and sensing node B receives the second signal.
- the sensing node A and sensing node B are not the same device and are physically separated; or, the sensing node A sends and receives the second signal by itself, that is, the sending and receiving of the sensing signal are performed by the same device, and the sensing node senses by receiving the signal echo sent by itself.
- the sensing methods can be divided into the following six types:
- Mode 1 Base station self-transmitting and self-receiving sensing.
- base station A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
- Mode 2 Air interface sensing is performed between base stations. At this time, base station B receives the sensing signal sent by base station A and performs sensing measurement.
- Mode 3 Uplink air interface perception: At this time, base station A receives the perception signal sent by terminal A and performs perception measurement.
- Mode 4 Downlink air interface perception: At this time, terminal B receives the perception signal sent by base station B and performs perception measurement.
- Terminals send and receive sensing autonomously.
- terminal A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
- Mode 6 Sidelink sensing between terminals: At this time, terminal B receives the sensing signal sent by terminal A and performs sensing measurement.
- the same perception service may adopt any one or at least two of the above-mentioned perception methods 1 to 6.
- the same perception service adopts one perception method.
- the sending node of the perception signal is usually referred to as the first node
- the receiving node of the perception signal is referred to as the second node, which does not constitute a specific limitation herein.
- first node and the second node in the embodiment of the present application may be the same node, that is, the first node sends a second signal and receives an echo signal of the second signal to obtain a measurement value of the first perception measurement quantity.
- the first node in the embodiments of the present application is usually a terminal, such as a mobile phone, a computer, smart glasses, etc. Due to the limited volume and cost of the terminal, the hardware and/or software of the terminal will introduce random phase deviation.
- the purpose of the embodiments of the present application is to eliminate or reduce the interference of the random phase deviation on the perception results to improve the perception accuracy.
- CSI channel state information
- PAU Power Amplifier Uncertainty
- LNAs low noise amplifiers
- PGAs programmable gain amplifiers
- I and Q branch devices The in-phase (I) and quadrature (Q) paths are unbalanced.
- the performance limitations of the I and Q branch devices mean that the phase of the local oscillator signal cannot be guaranteed to be strictly 90° apart, there is a difference in the gain of the two signals, and there is a DC bias, which in turn destroys the orthogonality of the baseband signal and causes CSI deterioration.
- Antenna/array amplitude and phase errors This includes when using beamforming for perception, the beamforming amplitude and phase errors will cause the formed beam shape (beam gain, beam width, sidelobe level) to be inconsistent with the actual situation, which will lead to a decrease in accuracy when perceiving based on the channel information after beamforming, resulting in errors in angle and reflected power estimation.
- beam switching delays will also increase the impact of interference and noise on the perception results.
- the impact of the transmitter on CSI is summarized, mainly including windowing, precoding, beamforming and other processing that is unknown to the receiver, resulting in the receiver being unable to obtain the real channel information.
- Random phase in the time domain comes from the change of state of at least one of the transmitter antenna, RF module (including various devices connected to the RF channel), digital processing module, and clock module during the signal transmission and reception process (such as turning on, off, changing from one state to another, etc.). If the device has more than one set of transmitters, each set of transmitters may generate an independent random phase. If each set of transmitters is connected to at least one antenna, the antennas/antenna subarrays connected to different transmitters have different random phases. The random phase is generally consistent within the bandwidth of the transmitted signal, but the random phase values generated at different times are different, showing a random distribution within a certain arc range.
- the uplink channel estimation on the base station side is discontinuous in phase in time, that is, there is a random phase offset between channel estimates at different uplink moments. If the UE has more than one RF channel, different random phases will be introduced in different RF channels. This random phase has almost no effect on communication performance, but will introduce uplink perception errors, and even make it impossible to perform perception services.
- reference signals such as SRS
- the first node that sends the perception signal performs measurement by self-transmitting and self-receiving a first signal for reference path measurement or random phase measurement of an antenna port, and obtains a reference path parameter measurement value or an antenna port random phase measurement value, thereby determining an uplink random phase when the first node sends the perception signal and/or random phase information corresponding to the reference path parameter measurement value or the antenna port random phase measurement value, performing random phase calibration or elimination on the perception measurement value carrying the random phase offset, reducing interference of random phase deviation on the perception measurement value and/or perception result, and effectively reducing the impact of the uplink random phase on the uplink perception performance, thereby improving the perception/synaesthesia integration performance.
- the first node may not need to perform signaling interaction with other nodes, or may only need to perform a small amount of signaling interaction with the reference node to achieve reference path measurement or antenna port random phase measurement, which can reduce the signaling overhead of the first node performing reference path measurement or antenna port random phase measurement.
- the sensing signal transmitter or sensing signal receiver has multiple antennas. Since multiple antennas often use the same clock source, the channel delay and Doppler calibration can be achieved through the CSI quotient or CSI conjugate product method to eliminate the errors introduced by frequency offset or random phase.
- the explanation of CSI quotient can be found in reference [5]: Zeng, Youwei, et al. "FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.3 (2019): 1-26.
- This method is simple to implement and has a small amount of computation, but requires that at least one of the transmitter and the receiver has multiple antennas, and the non-ideal factors (frequency deviation or random phase) introduced into the measured values of the perception measurement quantity obtained by each antenna are the same.
- the channel estimate for antenna 1 of the sensing signal receiver is where H 1 (f,t) is the actual CSI of antenna 1, is the phase difference introduced by non-ideal factors.
- the channel estimation of antenna 2 is H 2 (f, t) is the real CSI of antenna 2. Then the CSI quotient can be expressed as the following formula:
- the phase difference introduced by non-ideal factors in channel estimation is eliminated through the CSI quotient or the CSI conjugate product.
- the phase difference can be eliminated based on the phase difference. or
- the perception measurement quantity measurement value extraction is performed to achieve random phase calibration of the perception measurement quantity measurement value, which will not be described in detail here.
- the transmitted baseband signal is s 0 (t)
- the carrier frequency is f c
- the transmitted signal is Also assume that the wireless channel between the transmitter and the receiver is Where L is the total number of multipaths in the channel, ⁇ l is the delay of the lth multipath, and f d,l is the Doppler frequency of the lth multipath.
- the signal received by the receiver antenna is
- the signal s 0 (t) and the carrier frequency f c are known, and H(f,t) can be obtained based on the received signal r(t), that is, the CSI matrix containing the perceptual information can be obtained. Furthermore, the perceptual measurement quantity, such as ⁇ l , f d,l, etc., can be obtained using parameter estimation algorithms such as Fast Fourier Transform (FFT) or Multiple Signal Classification (MUSIC).
- FFT Fast Fourier Transform
- MUSIC Multiple Signal Classification
- the antenna received signal can be expressed as follows:
- the Doppler frequency estimated based on the adjacent two channels can be expressed as follows:
- FFT Fast Fourier Transform
- MUSIC Multiple Signal Classification
- any l-th multipath is known to be ⁇ ′ l (generally also a line-of-sight (LOS) path, and in some cases it can also be any non-line-of-sight (NLOS) path, such as the NLOS reflection path of a known perception reference node (such as a reconfigurable intelligent surface (RIS) or a backscatter tag (BSC)).
- ⁇ ′ l generally also a line-of-sight (LOS) path, and in some cases it can also be any non-line-of-sight (NLOS) path, such as the NLOS reflection path of a known perception reference node (such as a reconfigurable intelligent surface (RIS) or a backscatter tag (BSC)).
- RIS reconfigurable intelligent surface
- BSC backscatter tag
- Doppler calibration is performed based on the CSI matrix after delay calibration.
- the calibrated CSI at time ts (where ts is the time difference relative to the reference time) within the time period T can be obtained, that is:
- pilots (reference signals)/sensing signals for random phase estimation are placed on at least two different uplink time slots in the same uplink cycle, as shown in FIG3a.
- at least two uplink time slots are required in one uplink cycle.
- each RF link is required to have at least two uplink time slots.
- the receiving end obtains a channel estimate based on the pilot (reference signal)/sensing signal of the random phase estimate, and performs an inverse fast Fourier transform (IFFT) on the channel estimate in the frequency domain to obtain the impulse response of the channel.
- Multiple uplink time slots correspond to multiple impulse responses at different times, as shown in FIG3b.
- the purpose of the IFFT operation is to obtain the reference path parameters of the channel (generally the LOS path or the NLOS path constructed by the reference node (RIS/BSC)), such as the delay, amplitude, phase, etc. of the reference path.
- the reference path phase at the uplink time slot of the next uplink cycle can be easily extrapolated based on the phase of the channel reference path of at least 2 different uplink time slots in the uplink cycle.
- the reference path phase at the uplink time slot of the next uplink cycle introduces a random phase deflection (random phase difference).
- the phase difference between the extrapolated phase of the reference path and the actual measured phase is the random phase value to be estimated.
- the random phase estimation method of the line port is as follows.
- the receiver estimates the signal departure angle (taking the departure azimuth as an example, represented by ⁇ ) based on the received 4-port transmission signals, it is necessary to obtain the phase difference of the transmission signal of each port.
- the signal transmission direction of each antenna port is different (that is, the "equivalent signal transmission direction" in Figure 4a).
- the receiving end obtains the channel estimates of multiple transmit antenna ports based on the pilot (reference signal)/sensing signal used for random phase estimation, and performs IFFT on the channel estimates of each port in the frequency domain to obtain the impulse response of the channel, as shown in Figure 4b.
- the purpose of the IFFT operation is to obtain the reference path (usually the LOS path or the NLOS path constructed by the reference node (RIS/BSC)) parameters of the channel, such as the delay, amplitude, phase, etc. of the reference path.
- the reference path phase ⁇ 0 (t) of antenna port 0 is taken as the reference phase, and assuming that the departure angle of the reference path is known to be ⁇ , the reference path phase of antenna port n should be
- d 0 , d n are the distances of antenna port 0 and antenna port n from the reference position of the antenna array, respectively
- ⁇ is the signal wavelength, as shown in FIG4c .
- the slope of the broken line in FIG4c can be positive, negative, or 0.
- the perception method provided in the embodiment of the present application is applicable to the random phase measurement, estimation, and calibration of different uplink moments of at least one antenna port of the first node, and also to the random phase measurement, estimation, and calibration between at least two different antenna ports of the first node. It should be understood that the random phase measurement, estimation, and calibration operation can achieve at least one of the following two effects:
- the channel reference path phase of a certain antenna port and a certain uplink time is used as the reference phase, so that the channel reference path phases of other antenna ports and/or other uplink times of the antenna port maintain continuity/consistency with the reference phase, thereby eliminating the influence of random phase on Doppler measurement and/or angle measurement.
- random phase in the embodiment of the present application also includes the difference between random phases.
- the embodiment of the present application is used to measure the random phase of at least one antenna port of the first node at different uplink times.
- the influence of the random phase on Doppler measurement can be eliminated;
- the embodiment of the present application is used to measure, estimate, and calibrate the random phase between at least two different antenna ports of the first node, the influence of the random phase on angle (including azimuth and elevation) measurement can be eliminated.
- the estimation method of the random phase of at least one antenna port of the first node at different uplink times refer to the above-mentioned random phase calibration principle 2) based on the reference path and the random phase estimation method 3) at different times; for the estimation method of the random phase between at least two different antenna ports of the first node, refer to the above-mentioned random phase calibration principle 2) based on the reference path and the random phase estimation method 4) for different antenna ports.
- an embodiment of the present application provides a perception method, the execution subject of which may be a first node, which is not specifically limited here.
- a sensing method provided in an embodiment of the present application may include any one of the following steps:
- Step 501 A first node sends a first signal and receives an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value.
- the reference diameter parameter measurement value may be a measurement value obtained by measuring the reference diameter parameter.
- the reference path may be a reflection path of the first signal from a reference node, or an echo path of the first signal.
- the reference path parameter may include at least one of the following:
- the Doppler frequency of the reference path or the Doppler frequency and the rate of change of the Doppler frequency;
- the delay of the reference path or the delay and the rate of change of the delay
- the departure pitch angle of the reference path or the departure pitch angle and the rate of change of the departure pitch angle
- the arrival azimuth of the reference path or the arrival azimuth and the rate of change of the arrival azimuth;
- the arrival pitch angle of the reference path or the arrival pitch angle and the rate of change of the arrival pitch angle
- the amplitude of the reference path or the amplitude and rate of change of the amplitude
- phase of the reference path or the phase and rate of change of phase.
- Step 502 The first node sends a first signal and receives an echo signal corresponding to the first signal to obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on the perception measurement of the second signal.
- the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service.
- the sensing method includes step 501 and step 502.
- the first node may only execute one of step 501 and step 502. Perform step 501 and step 502.
- a first node sends a first signal and receives an echo signal corresponding to the first signal.
- the first node may send a first signal, and the first signal is reflected by a third node to generate an echo signal, which is transmitted to the first node.
- the third node may be a reference node with a reflection function, such as a reconfigurable intelligent surface (RIS) or a backscatter (BSC) tag, or the third node may be other passive devices or objects for auxiliary perception.
- RIS reconfigurable intelligent surface
- BSC backscatter
- the first node sends a second signal
- the second node receives the second signal or the second signal reflected by a reference node to obtain a measurement value of the first perception measurement quantity.
- the first node sends a second signal, and the first node receives an echo signal or a reflection signal of the second signal to obtain a measurement value of the first perception measurement quantity.
- the first signal is used for both perception measurement and antenna port random phase measurement and/or reference path parameter measurement.
- the antenna port random phase measurement is used to measure the random phase measurement value of the antenna port of the first node when sending the first signal, that is, to obtain the antenna port random phase measurement value.
- the random phase of the antenna port of the first node used to send the perception signal can be calibrated; and/or, when the first node has at least two antenna ports used to send the perception signal, based on the antenna port random phase measurement values of the two antenna ports, the random phases of the two antenna ports can be eliminated.
- the reference path parameter measurement may represent the measurement of the channel reference path of a certain antenna port and/or a certain uplink moment, and the phase value of the reference path may be determined based on the measurement result. In this way, the influence of random phase on Doppler measurement and/or angle measurement may be eliminated by making the channel reference path phase of other antenna ports and/or other uplink moments of the antenna port maintain continuity/consistency with the reference phase.
- the first signal in the embodiment of the present application can be understood as a signal transmitted and received by the first node, and the first node can at least measure the random phase measurement value and/or the reference path parameter measurement value of the antenna port based on the first signal transmitted and received by the first node.
- the first node when the first node performs a self-transmitted and self-received perception measurement, the first node can also obtain the first perception measurement value based on the first signal measurement.
- the second signal in the embodiment of the present application can be understood as a signal sent by the first node specifically for performing perception measurement, and the receiving node of the second signal can be the first node or the second node.
- the antenna port random phase measurement is used to measure the random phase introduced when the first node sends a perception signal (ie, the first signal or the second signal).
- the reference path parameter measurement is used to measure the parameter measurement value of the reference path corresponding to the first signal sent by the first node. Based on the parameter measurement value of the reference path, the random phase introduced by the first node when sending the perception signal (ie, the first signal or the second signal) can be estimated.
- the first signal is only used for antenna port random phase measurement and/or reference path parameter measurement, and the second signal is used for perception measurement.
- the first node sends a first signal, and receives an echo signal corresponding to the first signal, to obtain first information, including:
- the first node sends the first signal based on the first configuration information, and receives an echo signal corresponding to the first signal, to obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node; and/or,
- the first node sends the first signal based on the second configuration information, and receives an echo signal corresponding to the first signal to obtain a measurement value of the first perception measurement quantity;
- the first configuration information is used to configure reference path parameter measurement and/or antenna port random phase measurement
- the second configuration information is used to configure perception measurement
- the first configuration information may include: relevant configuration information for configuring reference path parameter measurement or antenna port random phase measurement, and/or relevant configuration information of a first signal for reference path parameter measurement or antenna port random phase measurement. Based on the first configuration information, the reference path parameter measurement or antenna port random phase measurement can be implemented to obtain the reference path parameter measurement value or antenna port random phase measurement value.
- the second configuration information may include relevant configuration information for configuring the perception measurement, and/or relevant configuration information of the perception signal for the perception measurement. Based on the second configuration information, the perception measurement can be implemented to obtain the first perception measurement quantity measurement value, wherein a difference between the first perception measurement quantity measurement value and a true value is caused by a random phase deviation when the first node sends the perception signal.
- the contents of the first configuration information and the second configuration information may be the same or similar, and the first configuration information and the second configuration information may be the same configuration information.
- the same or similar contents of the first configuration information and the second configuration information may indicate that there are two configuration information with the same or similar contents, which are respectively the first configuration information and the second configuration information; the first configuration information and the second configuration information are the same configuration information, which may indicate that there is one configuration information, which is jointly the first configuration information and the second configuration information.
- first configuration information and the second configuration information are illustrated by taking the second configuration information as an example.
- first configuration information reference may be made to the relevant description of the second configuration information in the following embodiments.
- the second configuration information includes at least one of the following:
- the waveform type of the second signal for example, Orthogonal Frequency Division Multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA), Orthogonal Time Frequency and Space (OTFS), FMCW, pulse signal, etc.;
- OFDM Orthogonal Frequency Division Multiplex
- SC-FDMA Single-carrier Frequency-Division Multiple Access
- OTFS Orthogonal Time Frequency and Space
- FMCW Frequency and Space
- pulse signal etc.
- the subcarrier spacing of the second signal for example, the subcarrier spacing of the OFDM system is 30KHz;
- the guard interval of the second signal i.e., the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received, is proportional to the maximum perception distance.
- the guard interval can be calculated by 2d max /c, where d max is the maximum perception distance (belongs to the perception requirement).
- d max represents the maximum distance from the second signal receiving and transmitting point to the signal reflection point.
- the OFDM signal cyclic prefix (CP) can play the role of the minimum guard interval;
- the bandwidth of the second signal which is inversely proportional to the distance resolution, can be obtained by c/(2 ⁇ d), where ⁇ d is the distance resolution (perceived requirement); c is the speed of light;
- the data burst duration of the second signal is inversely proportional to the rate resolution (belonging to the perception requirement).
- this parameter is the time span of the second signal, mainly for calculating the Doppler frequency deviation, this parameter can be calculated by c/(2f c ⁇ v); where ⁇ v is the velocity resolution; f c is the carrier frequency of the perception signal;
- the time domain interval of the second signal which can be calculated by c/(2f c v range ), where v range is the target maximum speed minus the minimum speed (belonging to the perception requirement), and this parameter is the time interval between two adjacent perception signals;
- the transmission signal power of the second signal is a value ranging from -20dBm to 23dBm with an interval of 2dBm;
- the signal format of the second signal for example, the signal format is SRS, DMRS, PRS, etc., or other predefined signals, and related sequence format and other information;
- the signal direction of the second signal for example, the direction or beam information of the second signal
- the time resource of the second signal for example: the time slot index or the symbol index of the time slot where the second signal is located.
- time resources There are two types of time resources: one is a one-time time resource, for example, one symbol sends an omnidirectional perception signal; the other is a non-one-time time resource, for example, multiple groups of periodic time resources or discontinuous time resources (which may include a start time and an end time), each group of periodic time resources sends a perception signal in the same direction, and different groups of periodic time resources have different beam directions;
- the frequency resources of the second signal for example, the center frequency point, bandwidth, resource block (RB) or subcarrier, frequency domain reference position (Point A), starting bandwidth position, etc. of the second signal;
- a quasi co-location (QCL) relationship of the second signal for example, the second signal includes a plurality of resources, each resource is associated with an SSB QCL, and the QCL type includes: Type A, Type B, Type C or Type D;
- Antenna configuration information of a node (a first node or a second node) participating in the first service.
- the antenna configuration information includes at least one of the following:
- an antenna array element identity used to send the second signal
- An antenna panel ID and an antenna element ID for sending the second signal are an antenna panel ID and an antenna element ID for sending the second signal
- An antenna panel ID and an antenna element ID for receiving the second signal are an antenna panel ID and an antenna element ID for receiving the second signal
- the position information of the antenna array element used to send the second signal relative to the target local reference point on the antenna array which can be expressed in Cartesian coordinates (x, y, z) or spherical coordinates express;
- the position information of the antenna array element for receiving the second signal relative to the target local reference point on the antenna array can be expressed in Cartesian coordinates (x, y, z) or spherical coordinates express;
- a first bitmap information of the antenna array element wherein the first bitmap information is used to indicate the antenna array element that sends the second signal and/or the antenna array element that does not send the second signal, for example: the bitmap uses "1" to indicate the corresponding The antenna array element is selected to send and/or receive the perception signal, and "0" is used to indicate that the corresponding array element is not selected.
- the bitmap uses "0" to indicate that the corresponding antenna array element is selected to send and/or receive the perception signal, and uses "1" to indicate that the corresponding array element is not selected;
- the second bitmap information of the antenna panel is used to indicate the antenna panel that sends the second signal and/or the antenna panel that does not send the second signal, for example: the bitmap uses "1" to indicate that the corresponding panel is selected for sending and/or receiving the perception signal, and uses "0" to indicate that the corresponding panel is not selected. Of course, it can also be vice versa, that is, the bitmap uses "0" to indicate that the corresponding panel is selected for sending and/or receiving the perception signal, and uses "1" to indicate that the corresponding panel is not selected; for the selected panel, the antenna configuration information can also include the first bitmap information of the antenna array element in the selected panel.
- Antenna array element amplitude, phase and gain information, that is, antenna array element pattern information.
- the perception measurement value includes at least one of the following perception measurement values:
- the first-level measurement quantity can be a received signal/original channel information, which specifically includes at least one of the following: a complex response result of the received signal, a complex response result of the received channel, an amplitude, a phase, an I path and its operation result, and a Q path and its operation result; wherein, the operation in the operation result of the I path/Q path can include at least one of the following: addition, subtraction, multiplication, division, matrix addition, matrix subtraction, matrix multiplication, matrix transposition, trigonometric relationship operation, square root operation and power operation, etc., as well as threshold detection results, maximum/minimum value extraction results, etc.
- the operation can also include FFT/IFFT, Discrete Fourier Transform (Discrete Fourier Transform, DFT)/Inverse Discrete Fourier Transform (Inverse Discrete Fourier Transform, IDFT), two-dimensional fast Fourier transform (2D-FFT), three-dimensional fast Fourier transform (3D-FFT), matched filtering, autocorrelation operation, wavelet transform and digital filtering, etc., as well as threshold detection results, maximum/minimum value extraction results, etc. of the above operation results
- the second-level measurement quantity may be a basic measurement quantity, which may specifically include at least one of the following: time delay, Doppler frequency shift, angle, intensity, and a multi-dimensional combination of at least two of the time delay, Doppler frequency shift, angle, and intensity;
- the third-level measurement quantity may be a basic attribute/state, which may specifically include at least one of the following: distance, speed, direction, spatial position, acceleration;
- the fourth-level measurement quantity may be an advanced attribute/state, which may specifically include at least one of the following: trajectory, action, expression, vital sign, quantity, imaging result, weather, air quality, shape, material, composition, and whether the perception target corresponding to the first service exists.
- the perception measurement may further include corresponding label information, such as at least one of the following:
- Perceived service information such as perceived service ID
- Measurement quantity usage such as: communication, perception, communication and perception;
- Node information participating in the first service such as the ID, location, device orientation, etc. of the first node;
- Perceive link information such as: perceive link sequence number, sender and receiver node identification;
- the measurement quantity description information may include the form of the measurement quantity, such as: amplitude value, phase value, complex value of amplitude and phase combination; the measurement quantity description information may also include resource type, such as: time domain measurement result, frequency domain resource measurement result;
- Measurement indicator information such as signal-to-noise ratio (SNR) and perceived SNR.
- SNR signal-to-noise ratio
- the reference path parameter may include at least one of the following:
- the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
- the delay of the reference path or the delay of the reference path and the rate of change of the delay
- the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
- the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
- the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
- phase of a reference path or the phase of a reference path and the rate of change of the phase.
- the reference diameter parameter measurement value may be a value obtained by measuring the above-mentioned reference diameter parameter.
- the channel Doppler calibration can be achieved through the CSI quotient or CSI conjugate product method to eliminate the error introduced by the random phase to the perception signal transmitter or the perception signal receiver, and obtain the target perception measurement value.
- the specific process can refer to the explanation in the above-mentioned random phase calibration principle based on CSI quotient/CSI conjugate product 1), which will not be repeated here.
- the random phase measurement value of the antenna port may include a real phase value of the perception measurement, or a phase difference introduced by a non-ideal factor, for example: determining the phase of the actual perception measurement based on the random phase measurement value of the antenna port.
- the first node sending the second signal includes:
- the first node sends a second signal to the second node based on second configuration information, where the second configuration information is used to configure perception measurement.
- the second configuration information and the first configuration information may be two different pieces of configuration information. That is, the reference path parameter measurement and/or antenna port random phase measurement of the self-transmitting and self-receiving configuration is configured through the first configuration information, and the first node is configured to send through the second configuration information, and the second node obtains the first perception measurement value by perceiving and measuring the second signal.
- the first node may also receive an echo signal of the second signal to obtain a first perception measurement value.
- the second configuration information and the first configuration information may be the same two pieces of configuration information.
- the first node sends a first signal, receives an echo signal corresponding to the first signal, and obtains an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node, including:
- the first node sends a first signal based on the first configuration information, and receives an echo signal corresponding to the first signal, to obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node;
- the method further comprises:
- the first node sends the antenna port random phase measurement value and/or the reference path parameter measurement value of the first node to the second node.
- a first node sends a random phase measurement value of an antenna port and/or a reference path parameter measurement value to a second node.
- the second node performs perception measurement on a second signal sent by the first node to obtain a first perception measurement value
- the second node can perform random phase calibration or elimination on the first perception measurement value based on the random phase measurement value of the antenna port and/or the reference path parameter measurement value to obtain a target perception measurement value.
- the target perception result calculated based on the target perception measurement value can reduce interference caused by random phase deflection, thereby improving perception accuracy.
- the second node after receiving the random phase measurement value and/or the reference path parameter measurement value of the antenna port and obtaining the first perception measurement value, the second node can send the random phase measurement value and/or the reference path parameter measurement value of the antenna port and the first perception measurement value to other computing nodes, such as the perception function network element in the core network, so as to perform random phase calibration and calculate the perception results through other computing nodes.
- other computing nodes such as the perception function network element in the core network
- the second node after receiving the random phase measurement value and/or the reference path parameter measurement value of the antenna port and obtaining the first perception measurement value, the second node can perform random phase calibration or elimination on the first perception measurement value based on the random phase measurement value and/or the reference path parameter measurement value of the antenna port to obtain the target perception measurement value, and then send the target perception measurement value to other computing nodes so that accurate perception results can be calculated through the other computing nodes.
- the method further includes:
- the first node obtains a first perception measurement value and/or the first perception result
- the first node performs random phase calibration on the first perception measurement value and/or the first perception result based on the random phase measurement value of the antenna port of the first node and/or the reference path parameter measurement value to obtain the target perception measurement value and/or the target perception result.
- the first perception measurement value obtained by the first node and/or the first perception result may be the first perception measurement value obtained by the first node through its own perception measurement and/or the first perception result calculated based on the first perception measurement value, and the first perception result has a random phase deflection.
- the first node obtaining the first perception measurement value and/or the first perception result may be the first node receiving the first perception measurement value and/or the first perception result from the second node.
- the first node performs random phase calibration on the first perception measurement value and/or the first perception result based on the random phase measurement value of the antenna port of the first node and/or the reference path parameter measurement value. Obtain a target perception measurement value and/or the target perception result.
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal;
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal.
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal.
- there are two configuration information as the first configuration information and the second configuration information but the contents of the two configuration information may be the same, and there are two signals as the first signal and the second signal, but the types, time-frequency patterns, etc. of the two signals may be the same.
- the first node sends a first signal for reference path parameter measurement and/or antenna port random phase measurement based on the first configuration information, and sends a second signal for perception measurement based on the second configuration information.
- the first node receiving an echo signal corresponding to the first signal includes:
- the first node receives an echo signal of the first signal after being reflected by the third node
- the first node sends the first configuration information to the third node.
- the first node sends the first configuration information to the third node, so that the third node reflects the first signal based on the first configuration information, so that the first node can receive the echo signal of the first signal after being reflected by the third node.
- the first node sending the first configuration information to the third node may be that the first node directly or indirectly sends the first configuration information to the third node, such as: the first node sends the first configuration information to the base station, and the base station sends the first configuration information to the third node.
- the first node and the third node may respectively obtain the first configuration information from the base station.
- the method further includes:
- the first node receives the first configuration information from a fourth node; and/or,
- the first node receives the second configuration information from a fourth node.
- the fourth node may send one configuration information to the first node as the first configuration information and the second configuration information.
- the fourth node may send the first configuration information and/or the second configuration information to the first node.
- the method further includes:
- the first node obtains second information of the third node, wherein the second information is used to assist the first node in obtaining the first configuration information.
- the second information includes at least one of the following:
- Channel state information between the first node and the third node such as uplink channel state information, downlink channel state information, and channel coherence time;
- the above-mentioned communication signal parameter configuration information can refer to the parameter configuration information about the communication signal in the second configuration information, such as: waveform type, subcarrier spacing, protection interval, bandwidth, Burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency resources, etc.
- the first node may determine whether the first signal is a LOS path or an NLOS path, select a third node that reflects the first signal, the signal strength of the first signal, and other configuration information based on the second information.
- the first configuration information is determined by the first node.
- the first node may send the first configuration information to the second node and/or the third node.
- the method further includes:
- the first node obtains third information of the third node, wherein the third information is used to assist the first node in obtaining the antenna port random phase measurement value or the reference path parameter measurement value.
- the third information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the first node may receive third information sent by the third node.
- the first node may receive third information sent by the second node, wherein the second node may be a device that obtains information such as the position, speed, speed direction, and antenna panel orientation information of the third node in advance.
- At least one item of information such as the position, velocity magnitude, velocity direction, antenna panel orientation information, etc. of the third node can help obtain the random phase measurement value of the antenna port or the reference path parameter measurement value.
- the method further includes:
- the first node sends at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, the first perception result, and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value.
- the target perception measurement value is a measurement value obtained after random phase calibration is performed on the first perception measurement value based on the random phase measurement value of the antenna port or the reference path parameter measurement value.
- the fifth node may be a base station or a perception function network element.
- the fifth node may be the second node.
- the first node sends the random phase measurement value of the antenna port or the reference path parameter measurement value to the fifth node, and the fifth node performs random phase calibration on the first perception measurement value received from the first node or the second node based on the random phase measurement value of the antenna port or the reference path parameter measurement value to obtain the target perception measurement value, and calculates the target perception result based on the target perception measurement value.
- the first node when the fifth node is the second node, the first node sends the random phase measurement value of the antenna port or the reference path parameter measurement value to the fifth node, and the fifth node performs random phase calibration on the first perception measurement value obtained by its own perception measurement of the second signal based on the random phase measurement value of the antenna port or the reference path parameter measurement value to obtain the target perception measurement value, and calculates the target perception result based on the target perception measurement value.
- the fifth node may also send the target perception result to the application server that initiates the perception demand corresponding to the first service.
- the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
- the transmission state of the antenna port of the first node does not switch, that is, within the uplink cycle, the antenna port of the first node will not switch from the uplink state to the downlink state.
- the interval time of different uplink time slots satisfies the phase of the reference path of the channel to change approximately linearly, based on the phase of the channel reference path of at least 2 different uplink time slots within the uplink cycle, the reference path phase of the uplink time slot of the next uplink cycle can be easily extrapolated, thereby realizing random phase estimation at different times.
- the random phase of at least one antenna port of the first node at different uplink times can be eliminated.
- the random phase estimation method 3 at different times mentioned above, which will not be repeated here.
- reference path measurement may be performed independently for each antenna port, that is, N reference path measurements may be performed to obtain first random phase information of each antenna port, or to obtain the difference in random phases of any at least two antenna ports.
- the specific process may refer to the explanation in the above-mentioned random phase estimation method based on different antenna ports 4), which will not be repeated here.
- the random phase measurement value of each antenna port can be measured, so that random phase calibration can be performed based on the random phase measurement value of the antenna port that sends the perception signal to eliminate the random phase of at least two different antenna ports of the first node, thereby eliminating the influence of the random phase on the Doppler measurement and/or angle measurement.
- a first node sends a first signal and receives an echo signal corresponding to the first signal.
- Obtain first information wherein the first information includes at least one of the following: a random phase measurement value of the antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or, the first node sends a first signal, and receives an echo signal corresponding to the first signal, to obtain a random phase measurement value and/or a reference path parameter measurement value of the antenna port of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on a perception measurement of the second signal; wherein the random phase measurement value of the antenna port or the reference path parameter measurement value, and the first perception measurement value are used to determine a target perception result of a first service, and the first service is a perception service and/or a communication-perception integrated service.
- the random phase measurement value and/or the reference path parameter measurement value of the antenna port of the first node can be obtained.
- the perception measurement value or the perception result with random phase interference can be subjected to random phase calibration or the random phase deflection in the perception measurement value or the perception result can be eliminated, thereby improving the accuracy of the obtained target perception measurement value or the target perception result, and thus improving the perception accuracy.
- the execution subject of which may include a second node
- the second node may include at least one of a communication device such as a terminal, a base station, a core network device, etc.
- the perception method may include the following steps:
- Step 601 A second node receives a second signal from a first node to obtain a first perception measurement value; wherein the second signal is used for a first service, the first service is a perception service and/or a communication perception integrated service, and the target perception result of the first service is determined based on an antenna port random phase measurement value or a reference path parameter measurement value, and the first perception measurement value is determined, and the antenna port random phase measurement value or the reference path parameter measurement value is determined based on an echo signal of the first signal received by the first node.
- the above-mentioned second node may be a node that performs perception measurement based on the second signal sent by the first node in the method embodiment shown in FIG. 5 , which will not be described in detail here.
- first signal reference path parameter measurement value, antenna port random phase measurement value, first service, first perception measurement value, and target perception result in the embodiment of the present application are the same as the meanings and functions of the first signal, reference path parameter measurement value, antenna port random phase measurement value, first service, first perception measurement value, and target perception result in the method embodiment shown in Figure 5, and will not be repeated here.
- the second node is used to perform perception measurement based on the second signal sent by the first node to obtain a first perception measurement value.
- the process and beneficial effects of the second node in executing the perception method can refer to the relevant description in the method embodiment shown in Figure 5, which will not be repeated here.
- the method further includes:
- the second node receives the antenna port random phase measurement value or the reference path parameter measurement value from the first node
- the second node performs random phase calibration on the first perception measurement value or the first perception result based on the random phase measurement value of the antenna port or the reference path parameter measurement value to obtain a target perception measurement value or the target perception result, wherein the target perception measurement value is a measurement value corresponding to the target perception result, and the first perception result is a perception result determined based on the first perception measurement value.
- the method further includes:
- the second node sends the first perception measurement value or a first perception result to the first node, wherein the first perception result is a perception result determined based on the first perception measurement value.
- the method further includes:
- the second node sends first configuration information to the third node, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the method further includes:
- the second node acquires first configuration information, wherein the first configuration information is used to configure measurement of a random phase measurement value or a reference path parameter measurement value of the antenna port;
- the second node sends the first configuration information to the first node.
- the method further includes:
- the second node acquires second configuration information, where the second configuration information is used to configure a perception measurement of the first perception measurement amount;
- the second node sends the second configuration information to the first node.
- the method further includes:
- the second node obtains fourth information, where the fourth information is used to assist the second node in determining second configuration information, where the second configuration information is used to configure perception measurement of the first perception measurement quantity.
- the fourth information includes at least one of the following:
- Channel state information between the first node and the second node such as uplink channel state information, downlink channel state information, and channel coherence time;
- Cascade channel state information between the first node and the third node, and between the third node and the second node for example: uplink cascade channel state information, downlink cascade channel state information, cascade channel coherence time;
- the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for assisting perception; wherein the echo signal of the first signal is a signal reflected by the third node;
- RIS Reconfigurable Intelligent Surface
- BSC backscatter tag
- the communication signal configuration information of the second node may include uplink communication signal parameter configuration information and/or downlink communication signal parameter configuration information between the first node and the second node.
- the uplink communication signal parameter configuration information may be the communication signal parameter configuration information of the link sent by the second node and received by the first node
- the downlink communication signal parameter configuration information may be the communication signal parameter configuration information of the link sent by the first node and received by the second node.
- the communication signal of the second node may also include uplink communication signal parameter configuration information and/or downlink communication signal parameter configuration information between the second node and the third node.
- the uplink communication signal parameter configuration information may be the communication signal parameter configuration information of the link sent by the second node and received by the third node
- the downlink communication signal parameter configuration information may be the communication signal parameter configuration information of the link sent by the third node and received by the second node.
- the method further includes:
- the second node sends second information to the first node, wherein the second information is used to assist the first node in determining first configuration information, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the second information includes at least one of the following:
- the method further includes:
- the second node obtains fifth information of the third node, wherein the fifth information is used to assist the second node in obtaining the reference path parameter measurement value.
- the fifth information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the meaning and function of the above-mentioned fifth information are the same as the meaning and function of the third information in the method embodiment shown in Figure 5.
- the third information is obtained by the first node, and is used as one of the bases for the first node to determine the reference path parameter measurement value
- the fifth information is obtained by the second node, and is used as one of the bases for the second node to determine the reference path parameter measurement value.
- the method further includes:
- the first node sends at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, a first perception result and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value, and the target perception measurement value is a measurement value obtained after random phase calibration of the first perception measurement value based on the antenna port random phase measurement value or the reference path parameter measurement value.
- the second node is used to perform perception measurement on the second signal sent by the first node to obtain a first perception measurement value, wherein since the second signal introduces a random phase in the transmitter, the first perception measurement value has a random phase deflection.
- the random phase of the first perception measurement value is calibrated and/or eliminated, thereby obtaining a more accurate target perception measurement value and/or target perception result.
- the perception process based on the perception method provided in the embodiment of the present application may include the following steps:
- Step 1a The base station sends second configuration information to the UE, where the second configuration information is used to perform a perception/synaesthesia integrated service.
- the base station obtains second information, where the second information is used to assist in determining the first configuration information.
- the second information includes at least one of the following:
- Channel state information between the UE and the base station such as uplink channel state information, downlink channel state information, and channel coherence time;
- the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception;
- RIS Reconfigurable Intelligent Surface
- BSC backscatter tag
- Communication signal parameter configuration information including uplink communication signal parameter configuration information and downlink communication signal parameter configuration information.
- the base station obtains third information of the reference node.
- the third information is used to assist the base station in obtaining the reference path parameter measurement value.
- the third information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node.
- the base station or the UE sends second configuration information to the reference node.
- Step 2a the UE sends first configuration information to the reference node, where the first configuration information is used by the UE to perform random phase measurement of the antenna port based on a self-transmitting and self-receiving manner.
- the UE obtains fourth information, where the fourth information is used to assist in determining the second configuration information.
- the fourth information includes at least one of the following:
- Channel state information between the UE and the reference node for example: cascaded channel state information from the UE to the reference node and then to the UE, channel state information from the UE to the reference node, channel state information from the reference node to the UE, cascaded channel coherence time from the UE to the reference node and then to the UE, channel coherence time between the UE and the reference node;
- the communication signal parameter configuration information includes the communication signal parameter configuration information from the UE to the reference node and the communication signal parameter configuration information from the reference node to the UE.
- the UE obtains third information of the reference node.
- the third information is used to assist the UE in obtaining the random phase measurement value of its own antenna port.
- the third information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node;
- the manner in which the UE obtains the third information may also be: the base station obtains the third information of the reference node, and then sends the third information to the UE.
- Step 3a The UE sends a second signal based on the second configuration information, and the base station receives the second signal.
- the UE sends the first signal based on the first configuration information and receives the echo signal of the first signal; or, the UE sends the first signal based on the first configuration information and receives the first signal reflected by the third node.
- the second configuration information is the same as the first configuration information
- the second signal is the same as the first signal
- the second configuration information and the first configuration information are the same configuration information, and the second signal and the first signal are the same signal.
- Step 4a The UE obtains a random phase measurement value (random phase estimation value) of the antenna port based on the received first signal, and sends the random phase measurement value to the base station.
- a random phase measurement value random phase estimation value
- Step 5a The base station further obtains a target perception measurement value/target perception result based on the received second signal and the antenna port random phase measurement value.
- the base station may also send the perception measurement value/perception result to the perception function network element.
- steps 1a to 5a can be repeated until the obtained multiple sets of channel estimates/received second signals meet the perception service requirements.
- step 1a and step 2a can be to execute step 1a first and then step 2a, or to execute step 2a first and then step 1a, or to execute them simultaneously.
- the second information also includes: channel state information from the base station to the perception target, channel state information from the perception target to the base station, channel coherence time between the base station and the perception target, channel state information from the UE to the perception target, channel state information from the perception target to the UE, and channel coherence time between the UE and the perception target.
- the perception process based on the perception method provided in the embodiment of the present application may include the following steps:
- Step 1b UE 2 or the base station sends second configuration information to UE 1, and the second configuration information is used to perform perception/synaesthesia integration service.
- UE 2 obtains fourth information, where the fourth information is used to assist in determining the second configuration information.
- the fourth information includes at least one of the following:
- Channel state information between UE 1 and UE 2 for example: channel state information from UE 1 to UE 2, channel state information from UE 2 to UE 1, channel coherence time between UE 1 and UE 2;
- Cascade channel status information between UE 1, reference node and UE 2 for example: cascade channel status information from UE 1 to reference node, from reference node to UE 2, from UE 2 to reference node, from reference node to UE 1, and coherence time of cascade channel;
- the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception;
- RIS Reconfigurable Intelligent Surface
- BSC backscatter tag
- Communication signal parameter configuration information including communication signal parameter configuration information from UE 1 to UE 2, communication signal parameter configuration information from UE 2 to UE 1, communication signal parameter configuration information from UE 1 to a reference node, and communication signal parameter configuration information from a reference node to UE 1. communication signal parameter configuration information from UE 2 to the reference node, and communication signal parameter configuration information from the reference node to UE 2.
- UE 1 or UE 2 obtains third information of the reference node.
- the third information is used to assist UE 1 or UE 2 in obtaining reference path parameter measurement values.
- the third information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node.
- the way for UE 1 or UE 2 to obtain the third information of the reference node can also be that the base station obtains the third information of the reference node and then sends the third information to UE 1 or UE 2.
- the base station obtains sixth information of UE 1 and/or UE 2, where the sixth information is used to assist in determining a sending device and a receiving device of the second signal.
- the sixth information includes at least one of the following:
- UE 1 and/or UE 2 Information indicating the self-transmitting and self-receiving capabilities of UE 1 and/or UE 2, such as full-duplex capability, self-interference suppression power range, and isolation between the transmitting antenna and the receiving antenna;
- Antenna information of UE 1 and/or UE 2 such as the total number of antenna ports and antenna formation
- Status information of UE 1 and/or UE 2 such as speed, speed direction, antenna panel orientation;
- the base station can select UE 1 and UE 2 for executing the first service from a large number of terminals, and/or decide which UE or UEs send the perception signal and which UE or UEs receive the perception signal UE 2, and/or select a device for performing random phase calibration and/or a device for calculating perception nodes, etc.
- UE 2 or the base station sends second configuration information to the reference node.
- Step 2b UE 1 or UE 2 sends first configuration information to the reference node, where the first configuration information is used for UE 1 to perform random phase measurement of the antenna port based on a self-transmitting and self-receiving manner.
- Channel state information between UE 1 and the reference node for example: cascaded channel state information from UE 1 to the reference node and then to UE 1, channel state information from UE 1 to the reference node, channel state information from the reference node to UE 1, cascaded channel coherence time from UE 1 to the reference node and then to UE 1, channel coherence time between UE 1 and the reference node;
- Communication signal parameter configuration information for example: communication signal parameter configuration information from UE 1 to the reference node, communication signal parameter configuration information from the reference node to UE 1.
- the way for UE 1 to obtain the third information of the reference node may also be that the base station obtains the third information of the reference node and then sends the third information to UE 1.
- Step 3b UE 1 sends a second signal based on the second configuration information, and UE 2 receives the second signal; UE 1 sends a first signal based on the first configuration information, and receives an echo signal of the first signal; or, UE 1 sends a first signal based on the first configuration information, and receives an echo signal of the first signal.
- a first signal is sent, and the first signal reflected by the third node is received.
- the second configuration information is the same as the first configuration information
- the second signal is the same as the first signal
- the second configuration information and the first configuration information are the same configuration information, and the second signal and the first signal are the same signal.
- Step 4b UE 1 obtains a random phase measurement value (random phase estimation value) of the antenna port based on the received first signal.
- UE 1 sends the random phase measurement value to UE 2.
- Step 5b UE 1 or UE 2 further obtains the target perception measurement value/target perception result based on the received second signal and the random phase measurement value.
- UE 1 or UE 2 may also send the target perception measurement value/target perception result to the base station or the perception function network element.
- steps 1b to 5b can be repeated until the obtained multiple sets of channel estimates/received second signals meet the perception service requirements.
- step 1b and step 2b can be to execute step 1b first and then step 2b, or to execute step 2b first and then step 1b, or to execute them simultaneously.
- the fourth information also includes at least one of the following: channel state information from the base station to the perception target, channel state information from the perception target to the base station, channel coherence time between the base station and the perception target, channel state information from UE 1 and/or UE 2 to the perception target, channel state information from the perception target to UE 1 and/or UE 2, and channel coherence time between UE 1 and/or UE 2 and the perception target.
- the perception process based on the perception method provided in the embodiment of the present application may include the following steps:
- Step 1c The UE determines second configuration information, where the second configuration information is used to perform a perception/synaesthesia integration service.
- the UE obtains fourth information, where the fourth information is used to assist in determining the second configuration information.
- the fourth information includes at least one of the following:
- Channel state information between the UE and the reference node for example: cascaded channel state information from the UE to the reference node and then to the UE, channel state information from the UE to the reference node, channel state information from the reference node to the UE, cascaded channel coherence time from the UE to the reference node and then to the UE, channel coherence time between the UE and the reference node;
- the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception;
- the communication signal parameter configuration information includes the communication signal parameter configuration information from the UE to the reference node and the communication signal parameter configuration information from the reference node to the UE.
- the UE obtains third information of the reference node.
- the third information is used to assist the UE in obtaining the random phase measurement value of its own antenna port.
- the third information includes: the position, speed, speed of the reference node, Degree direction and antenna panel orientation information.
- the UE may also obtain the third information in the following manner: the base station obtains the third information of the reference node, and then sends the second information to the UE.
- the UE sends first configuration information to the reference node.
- the UE obtains second information, where the second information is used to assist in determining the first configuration information.
- the second information includes at least one of the following:
- the channel state information between the UE and the reference node includes at least: the cascaded channel state information from the UE to the reference node and then to the UE, the channel state information from the UE to the reference node, the channel state information from the reference node to the UE, the cascaded channel coherence time from the UE to the reference node and then to the UE, and the channel coherence time between the UE and the reference node.
- the communication signal parameter configuration information includes the communication signal parameter configuration information from the UE to the reference node and the communication signal parameter configuration information from the reference node to the UE.
- the UE obtains third information of the reference node.
- the third information is used to assist the UE in obtaining the random phase measurement value of its own antenna port.
- the third information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node.
- the UE may also obtain the third information in the following manner: the base station obtains the third information of the reference node, and then sends the second information to the UE.
- Step 3c The UE sends a first signal based on the first configuration information and receives an echo signal of the first signal; the UE sends a second signal based on the second configuration information and receives an echo signal of the second signal; or, the UE sends a second signal based on the second configuration information and receives the second signal reflected by the third node.
- the second configuration information is the same as the first configuration information
- the second signal is the same as the first signal
- the second configuration information and the first configuration information are the same configuration information, and the second signal and the first signal are the same signal.
- Step 4c The UE obtains a random phase measurement value of the antenna port based on the received first signal, and further obtains a target perception measurement value/target perception result.
- the UE may also send the perception measurement value/perception result to the base station or the perception function network element.
- steps 1c to 4c can be repeated until the obtained multiple sets of channel estimates/received second signals meet the perception service requirements.
- step 1c and step 2c can be to execute step 1c first and then step 2c, or to execute step 2c first and then step 1c, or to execute them simultaneously.
- the fourth information also includes at least one of the following: the channel from the base station to the sensing target State information, channel state information from the perception target to the base station, channel coherence time between the base station and the perception target, channel state information from the UE to the perception target, channel state information from the perception target to the UE, and channel coherence time between the UE and the perception target.
- the sensing method provided in the embodiment of the present application can be executed by a sensing device.
- the sensing device provided in the embodiment of the present application is described by taking the sensing method executed by the sensing device as an example.
- an embodiment of the present application further provides a sensing device, which is applied to a first node.
- the sensing device 800 includes:
- the first transmission module 801 is configured to send a first signal and receive an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or
- the second transmission module 802 is configured to send a first signal, receive an echo signal corresponding to the first signal, obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on a perception measurement of the second signal;
- the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service.
- the first transmission module 801 includes:
- a first transmission unit configured to send the first signal based on first configuration information, and receive an echo signal corresponding to the first signal, to obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node; and/or,
- a second transmission unit configured to send the first signal based on second configuration information, and receive an echo signal corresponding to the first signal to obtain a measurement value of the first perception measurement quantity
- the first configuration information is used to configure reference path parameter measurement and/or antenna port random phase measurement
- the second configuration information is used to configure perception measurement
- the second transmission module 802 is specifically configured to:
- a second signal is sent to the second node based on second configuration information, where the second configuration information is used to configure perception measurement.
- the first transmission unit is specifically configured to:
- the sensing device 800 further includes:
- the sensing device 800 further includes:
- a first acquisition module configured to acquire a first perception measurement value and/or the first perception result
- a first phase calibration module is configured to perform random phase calibration on the first perception measurement value and/or the first perception result based on the random phase measurement value of the antenna port of the first node and/or the reference path parameter measurement value, Obtain a target perception measurement value and/or the target perception result.
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal;
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal.
- the first transmission module 801 and/or the second transmission module 802 includes:
- the sensing device 800 further includes:
- the second sending module is used to send the first configuration information to the third node.
- the sensing device 800 further includes:
- a second receiving module configured to receive the first configuration information from a fourth node;
- the third receiving module is used to receive the second configuration information from the fourth node.
- the sensing device 800 further includes:
- the second acquisition module is used to acquire second information of the third node, wherein the second information is used to assist the first node in acquiring the first configuration information.
- the sensing device 800 further includes:
- a third acquisition module is used to acquire third information of the third node, wherein the third information is used to assist the first node in acquiring the antenna port random phase measurement value or the reference path parameter measurement value.
- the third information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the sensing device 800 further includes:
- the third sending module is used to send at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, the first perception result and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value, and the target perception measurement value is a measurement value obtained after random phase calibration of the first perception measurement value based on the antenna port random phase measurement value or the reference path parameter measurement value.
- the first node is a terminal.
- the sending time of the first signal includes at least two time units in the same uplink cycle, wherein: The first node performs uplink transmission in the same uplink period, and the transmission state does not change.
- the perception device provided in the embodiment of the present application can implement each process implemented by the first node in the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- an embodiment of the present application further provides a sensing device, which is applied to a second node.
- the sensing device 900 includes:
- a first receiving module 901 is configured to receive a second signal from a first node to obtain a first perception measurement value
- the second signal is used for the first service
- the first service is a perception service and/or a communication-perception integrated service
- the target perception result of the first service is determined based on the random phase measurement value or the reference path parameter measurement value of the antenna port
- the first perception measurement value is determined based on the echo signal of the first signal received by the first node.
- the sensing device 900 further includes:
- a fourth receiving module used to receive the antenna port random phase measurement value or the reference path parameter measurement value from the first node
- the second phase calibration module is used to perform random phase calibration on the first perception measurement value or the first perception result based on the random phase measurement value of the antenna port or the reference path parameter measurement value to obtain a target perception measurement value or the target perception result, wherein the target perception measurement value is a measurement value corresponding to the target perception result, and the first perception result is a perception result determined based on the first perception measurement value.
- the sensing device 900 further includes:
- the fourth sending module is configured to send the first perception measurement value or the first perception result to the first node, wherein the first perception result is a perception result determined based on the first perception measurement value.
- the sensing device 900 further includes:
- the fifth sending module is used to send first configuration information to the third node, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the sensing device 900 further includes:
- a fourth acquisition module used to acquire first configuration information, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port;
- a sixth sending module is used to send the first configuration information to the first node.
- the sensing device 900 further includes:
- a fifth acquisition module configured to acquire second configuration information, wherein the second configuration information is used to configure a perception measurement of the first perception measurement quantity
- a seventh sending module is used to send the second configuration information to the first node.
- the sensing device 900 further includes:
- the sixth acquisition module is used to acquire fourth information, wherein the fourth information is used to assist the second node in determining second configuration information, wherein the second configuration information is used to configure the perception measurement of the first perception measurement quantity.
- the fourth information includes at least one of the following:
- the sensing device 900 further includes:
- An eighth sending module is used to send second information to the first node, wherein the second information is used to assist the first node in determining first configuration information, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the second information includes at least one of the following:
- the sensing device 900 further includes:
- a seventh acquisition module is used to acquire fifth information of the third node, wherein the fifth information is used to assist the second node in acquiring the reference path parameter measurement value.
- the fifth information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the sensing device 900 further includes:
- the ninth sending module is used to send at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, the first perception result and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value, and the target perception measurement value is a measurement value obtained after random phase calibration of the first perception measurement value based on the random phase measurement value of the antenna port or the reference path parameter measurement value.
- an embodiment of the present application further provides a communication device 1000, including a processor 1001 and a memory 1002, wherein the memory 1002 stores a program or instruction that can be run on the processor 1001.
- the communication device 1000 when the communication device 1000 is used as a first node, the program or instruction is executed by the processor 1001 to implement the various steps of the method embodiment shown in FIG5, and the same technical effect can be achieved.
- the communication device 1000 is used as a second node, the program or instruction is executed by the processor 1001 to implement the various steps of the method embodiment shown in FIG6, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a communication device, including a processor and a communication interface.
- the communication interface when the communication is set to the first node, the communication interface is used to:
- a first signal is sent, and an echo signal corresponding to the first signal is received to obtain a random phase measurement value and/or a reference path parameter measurement value of the antenna port of the first node, and the first node sends a second signal, wherein the first perception measurement value is obtained based on the perception measurement of the second signal; wherein the random phase measurement value of the antenna port or the reference path parameter measurement value, and the first perception measurement value are used to determine a target perception result of a first service, and the first service is a perception service and/or a communication-perception integrated service.
- the communication interface is used to receive a second signal from the first node to obtain a first perception measurement value; wherein the second signal is used for a first service, the first service is a perception service and/or a communication-perception integrated service, and the target perception result of the first service is based on an antenna port random phase measurement value or a reference path parameter measurement value, and the first perception measurement value is determined, and the antenna port random phase measurement value or the reference path parameter measurement value is determined based on an echo signal of the first signal received by the first node.
- This communication device embodiment corresponds to the above method embodiment.
- Each implementation process and implementation method of the above method embodiment can be applied to this communication device embodiment and can achieve the same technical effect.
- the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109 and at least some of the components of the processor 1110.
- the terminal 1100 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1110 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
- a power source such as a battery
- the terminal structure shown in FIG11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
- the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
- the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
- the user input unit 1107 includes a touch panel 11071 and at least one of other input devices 11072.
- the touch panel 11071 is also called a touch screen.
- the touch panel 11071 may include two parts: a touch detection device and a touch controller.
- Other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
- the radio frequency unit 1101 after receiving the downlink data from the network side device, the radio frequency unit 1101 can transmit it to the processor. In addition, the radio frequency unit 1101 can send uplink data to the network side device.
- the radio frequency unit 1101 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
- the memory 1109 can be used to store software programs or instructions and various data.
- the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
- the memory 1109 may include a volatile memory or a non-volatile memory, or the memory 1109 may include both volatile and non-volatile memories.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
- the memory 1109 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
- the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1110.
- the radio frequency unit 1101 is used for:
- Send a first signal and receive an echo signal corresponding to the first signal to obtain first information, wherein the first information includes at least one of the following: a random phase measurement value of an antenna port of the first node, a reference path parameter measurement value, and a first perception measurement value; or,
- the antenna port random phase measurement value or the reference path parameter measurement value, and the first perception measurement value are used to determine the target perception result of the first service, and the first service is a perception service and/or a communication perception integrated service.
- the sending of the first signal and receiving an echo signal corresponding to the first signal performed by the radio frequency unit 1101 to obtain the first information includes:
- the first configuration information is used to configure reference path parameter measurement and/or antenna port random phase measurement
- the second configuration information is used to configure perception measurement
- the sending of the second signal performed by the radio frequency unit 1101 includes:
- a second signal is sent to the second node based on second configuration information, where the second configuration information is used to configure perception measurement.
- the sending of the first signal performed by the radio frequency unit 1101, and receiving an echo signal corresponding to the first signal, to obtain an antenna port random phase measurement value and/or a reference path parameter measurement value of the first node includes:
- the processor 1110 or the radio frequency unit 1101 is further configured to obtain a first perception measurement value and/or the first perception result;
- the processor 1110 is also used to perform random phase calibration on the first perception measurement value and/or the first perception result based on the random phase measurement value of the antenna port of the first node and/or the reference path parameter measurement value to obtain the target perception measurement value and/or the target perception result.
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal;
- the first configuration information and the second configuration information are the same configuration information, and the first signal and the second signal are the same signal.
- the receiving, by the radio frequency unit 1101, of an echo signal corresponding to the first signal includes:
- the radio frequency unit 1101 is further configured to send the first configuration information to the third node.
- the radio frequency unit 1101 is further configured to:
- the second configuration information is received from a fourth node.
- the radio frequency unit 1101 is further used to obtain second information of the third node, wherein the second information is used to assist the first node in obtaining the first configuration information.
- the second information includes at least one of the following:
- the radio frequency unit 1101 is also used to obtain third information of the third node, wherein the third information is used to assist the first node in obtaining the random phase measurement value of the antenna port or the reference path parameter measurement value.
- the third information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the radio frequency unit 1101 is also used to send at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, the first perception result and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value, and the target perception measurement value is a measurement value obtained after random phase calibration of the first perception measurement value based on the random phase measurement value of the antenna port or the reference path parameter measurement value.
- the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
- the terminal 1100 can implement the functions performed by each model of the perception device shown in Figure 8, and can achieve the same beneficial effects. To avoid repetition, it will not be repeated here.
- the radio frequency unit 1101 is configured to receive a second signal from the first node and obtain a first perception measurement value
- the second signal is used for the first service
- the first service is a perception service and/or a communication-perception integrated service
- the target perception result of the first service is determined based on the random phase measurement value or the reference path parameter measurement value of the antenna port
- the first perception measurement value is determined based on the echo signal of the first signal received by the first node.
- the radio frequency unit 1101 is further configured to receive the antenna port random phase measurement value or the reference path parameter measurement value from the first node;
- Processor 1110 is used to perform random phase calibration on the first perception measurement value or the first perception result based on the random phase measurement value of the antenna port or the reference path parameter measurement value to obtain a target perception measurement value or the target perception result, wherein the target perception measurement value is a measurement value corresponding to the target perception result, and the first perception result is a perception result determined based on the first perception measurement value.
- the radio frequency unit 1101 is further configured to send the first perception measurement value or a first perception result to the first node, wherein the first perception result is a perception result determined based on the first perception measurement value.
- the reference path parameter measurement value includes a measurement value of a non-line-of-sight reference path between the first node and a third node:
- the radio frequency unit 1101 is also used to send first configuration information to the third node, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the radio frequency unit 1101 is further configured to:
- the first configuration information is used to configure measurement of a random phase measurement value or a reference path parameter measurement value of the antenna port;
- the radio frequency unit 1101 is further configured to:
- the radio frequency unit 1101 is further used to obtain fourth information, wherein the fourth information is used to assist the second node in determining second configuration information, wherein the second configuration information is used to configure the perception measurement of the first perception measurement quantity.
- the fourth information includes at least one of the following:
- the radio frequency unit 1101 is also used to send second information to the first node, wherein the second information is used to assist the first node in determining first configuration information, wherein the first configuration information is used to configure the measurement of the random phase measurement value or the reference path parameter measurement value of the antenna port.
- the second information includes at least one of the following:
- the reference path parameter measurement value includes a measurement value of a non-line-of-sight reference path between the first node and a third node:
- the radio frequency unit 1101 is further used to obtain fifth information of the third node, wherein the fifth information is used to assist the second node in obtaining the reference path parameter measurement value.
- the fifth information includes at least one of the position, speed magnitude, speed direction, and antenna panel orientation information of the third node.
- the radio frequency unit 1101 is further used to send at least one of the first perception measurement value, the antenna port random phase measurement value, the reference path parameter measurement value, the target perception measurement value, the first perception result, and the target perception result to the fifth node, wherein the first perception result is a perception result determined based on the first perception measurement value, and the target perception measurement value is a perception result determined based on the antenna port random phase measurement value.
- the first perception result is a perception result determined based on the first perception measurement value
- the target perception measurement value is a perception result determined based on the antenna port random phase measurement value.
- the terminal 1100 can implement the functions performed by each model of the perception device shown in Figure 9, and can achieve the same beneficial effects. To avoid repetition, it will not be repeated here.
- the network side device 1200 includes: an antenna 1201, a radio frequency device 1202, a baseband device 1203, a processor 1204, and a memory 1205.
- the antenna 1201 is connected to the radio frequency device 1202.
- the radio frequency device 1202 receives information through the antenna 1201 and sends the received information to the baseband device 1203 for processing.
- the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202.
- the radio frequency device 1202 processes the received information and sends it out through the antenna 1201.
- the baseband device 1203 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 12, one of which is, for example, a baseband processor, which is connected to the memory 1205 through a bus interface to call the program in the memory 1205 and execute the network device operations shown in the above method embodiment.
- the network side device may also include a network interface 1206, which is, for example, a Common Public Radio Interface (CPRI).
- CPRI Common Public Radio Interface
- the network side device 1200 of the embodiment of the present application also includes: instructions or programs stored in the memory 1205 and executable on the processor 1204.
- the processor 1204 calls the instructions or programs in the memory 1205 to execute the methods executed by the modules shown in Figures 8 and/or 9, and achieves the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
- a program or instruction is stored.
- the various processes of the method embodiment shown in Figure 5 or Figure 6 are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
- the processor is the processor in the terminal described in the above embodiment.
- the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
- An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the method embodiment shown in Figure 5 or Figure 6, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
- the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the method embodiment shown in Figure 5 or Figure 6, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种感知方法、感知装置及通信设备,属于通信技术领域,感知方法包括:第一节点发送第一信号,并接收第一信号对应的回波信号,得到第一信息,第一信息包括以下至少一项:第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,第一节点发送第一信号,并接收第一信号对应的回波信号,得到第一节点的天线端口随机相位测量值和/或参考径参数测量值,且第一节点发送第二信号,第一感知测量量测量值基于对第二信号的感知测量得到;天线端口随机相位测量值或参考径参数测量值,以及第一感知测量量测量值用于确定第一业务的目标感知结果,第一业务为感知业务和/或通信感知一体化业务。
Description
相关申请的交叉引用
本申请主张在2022年12月21日在中国提交的中国专利申请No.202211652063.6的优先权,其全部内容通过引用包含于此。
本申请属于通信技术领域,具体涉及一种感知方法、感知装置及通信设备。
在相关技术中,移动通信网络中的感知节点可以通过发送和接收感知信号,来实现对感知目标的状态或感知环境的感知测量,在通信感知一体化(Integrated Sensing and Communication,ISAC)中,获取精确的测量信息尤为重要。
但是,用户设备(User Equipment,UE)(以下也将UE称之为终端)的器件和硬件电路的非理想因素会显著影响测量精度。在基站和终端之间发送和接收感知信号的感知方式中,提取信道状态信息(Channel State Information,CSI)进行感知,是通信感知一体的主要实现方式之一。然而,一些非理想因素会导致CSI测量存在误差,显著影响感知的精度。例如:目前基于参考信号(例如探测参考信号(Sounding Reference Signal,SRS))进行信道估计时,基站侧上行信道估计在时间上相位不连续,即不同上行时刻信道估计间存在随机相位偏移。若用户设备(User Equipment,UE)具备大于1个射频通道,则在不同射频通道都将引入不同的随机相位。该随机相位对通信性能几乎没影响,但会引入上行感知误差,甚至导致无法进行感知业务。
发明内容
本申请实施例提供一种感知方法、感知装置及通信设备,能够基于下行参考径参数测量得到的参考径参数测量值来确定感知信号的发送端的随机相位估计值,并基于该随机相位估计值对感知测量量测量值中的随机相位进行校准,以缩小校准后的感知测量量测量值与感知测量量真实值之间的偏差,提升了基于该校准后的感知测量量测量值得到的感知结果的准确性,从而提升了感知性能。
第一方面,提供了一种感知方法,该方法包括:
第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,
第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,
所述第一感知测量量测量值基于对所述第二信号的感知测量得到;
其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
第二方面,提供了一种感知装置,应用于第一节点,该装置包括:
第一传输模块,用于发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,
第二传输模块,用于发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;
其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
第三方面,提供了一种感知方法,该方法包括:
第二节点接收来自第一节点的第二信号,得到第一感知测量量测量值;
其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
第四方面,提供了一种感知装置,应用于第二节点,该装置包括:
第一接收模块,用于接收来自第一节点的第二信号,得到第一感知测量量测量值;
其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口;
其中,在所述通信设备为第一节点的情况下,所述通信接口用于发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,所述通信接口用于发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二
信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务;
在所述通信设备为第二节点的情况下,所述通信接口用于接收来自第一节点的第二信号,得到第一感知测量量测量值;其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。这样,基于第一节点自发自收第一信号,可以获取第一节点的天线端口随机相位测量值和/或参考径参数测量值,基于该天线端口随机相位测量值和/或参考径参数测量值,能够对存在随机相位干扰的感知测量量测量值或感知结果进行随机相位校准或者消除感知测量量测量值或感知结果中的随机相位偏转,提升得到的目标感知测量量测量值或目标感知结果的精确度,进而提升了感知精度。
图1是本申请实施例能够应用的一种无线通信系统的结构示意图;
图2是感知方式的示意图;
图3a是随机相位测量信号时频域位置示意图;
图3b是参考径参数提取示意图之一;
图3c随机相位偏转示意图之一;
图4a是不同天线端口随机相位示意图;
图4b是参考径参数提取示意图之二;
图4c是随机相位偏转示意图之二;
图5是本申请实施例提供的一种感知方法的流程图;
图6是本申请实施例提供的另一种感知方法的流程图;
图7a是应用场景一的交互过程示意图;
图7b是应用场景二的交互过程示意图;
图7c是应用场景三的交互过程示意图;
图7d是应用场景四的交互过程示意图;
图7e是应用场景五的交互过程示意图;
图8是本申请实施例提供的一种感知装置的结构示意图;
图9是本申请实施例提供的另一种感知装置的结构示意图;
图10是本申请实施例提供的一种通信设备的结构示意图;
图11是本申请实施例提供的一种终端的硬件结构示意图;
图12是本申请实施例提供的一种网络侧设备的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的系统架构方面都有很多共性。近年来,传统雷达正朝着更通用的无线感知方向发展。无线感知可广泛地指从接收到的无线电信号
中检索信息。对于感知目标位置相关的无线感知,可以通过常用的信号处理方法,对目标信号反射时延、到达角、离开角、多普勒频率等动力学参数进行估计;对于感知目标物理特征,可以通过对设备/对象/活动的固有信号模式进行测量来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
通信和感知一体化(Integrated Sensing And Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里称为感知移动网络(Perceptive Mobile Networks,PMNs),具体可以参考文献[1]:Rahman,Md Lushanur,et al."Enabling joint communication and radio sensing in mobile networks–a survey."arXiv preprint arXiv:2006.07559(2020)。在此不作过多阐述。
感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有望成为一种无处不在的无线传感解决方案。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。一些常见的感知业务如下表1所示:
表1
移动通信网络中的基站(包括基站上的某1个或多个发送接收点(Transmission Reception Point,TRP)、用户设备(User Equipment,UE)(包括UE上1个或多个天线子阵列/面板(Panel)),可以作为参与感知/通感一体化业务的感知节点。通过接收该感知信号可以支持感知业务,例如:通过接收该信号可得到感知测量量或者感知结果。
所述感知信号可以是不包含传输信息的信号,如现有的LTE/NR同步和参考信号(包
括:同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、相位追踪参考信号(Phase-Tracking Reference Signal,PTRS)等),也可以是雷达常用的单频连续波(Continuous Wave,CW)、调频连续波(Frequency Modulated Continuous Wave,FMCW),以及超宽带高斯脉冲等。此外,该感知信号还可以是新设计的专用感知信号,具有良好的相关特性和低峰均功率比(Peak-to-Average Power Ratio,PAPR),或者新设计的通感一体化信号,既承载一定信息,同时具有较好的感知性能,例如,该新信号为至少一种专用感知信号/参考信号,和至少一种通信信号在时域和/或频域上拼接/组合/叠加而成。在此对感知信号的类型不作具体限定,且为了便于说明,以下实施例中将上述信号统一称之为感知信号或第二信号。
为了便于说明,本申请实施例中,将发送和/或接收上述第二信号的节点统一称之为感知节点。具体的,将第二信号的发送节点称之为第一节点,将第二信号的接收节点称之为第二节点,此外,第一节点还自发自收第一信号,以得到参考径参数测量值。
本申请实施例中,第二信号的发送节点和接收节点可以是同一设备或不同的设备,例如:感知节点A发送第二信号,感知节点B接收第二信号,该感知节点A和感知节点B不是同一设备,且物理位置分离;或者,感知节点A自发自收第二信号,即感知信号的发送和接收由同一设备执行,该感知节点通过接收自己发送的信号回波进行感知。
例如:如图2所示,基于感知信号的发送节点和接收节点的不同,可以分为以下6种感知方式:
方式1、基站自发自收感知。在这种感知方式下,基站A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式2、基站间进行空口感知。此时,基站B接收基站A发送的感知信号,进行感知测量。
方式3、上行空口感知。此时,基站A接收终端A发送的感知信号,进行感知测量。
方式4、下行空口感知。此时,终端B接收基站B发送的感知信号,进行感知测量。
方式5、终端自发自收感知。此时,终端A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式6、终端间旁链路(Sidelink)感知。此时,终端B接收终端A发送的感知信号,进行感知测量。
需要说明的是,在一种实施方式中,同一感知业务可以采用上述感知方式1至感知方式6中的任一种或者至少两种,为了便于说明,本申请实施例中,以同一感知业务采用一种感知方式为例进行举例说明,此外,本申请实施例中通常将感知信号的发送节点称之为第一节点,将感知信号的接收节点称之为第二节点,在此不构成具体限定。
此外,本申请实施例中的第一节点和第二节点可能是同一节点,即第一节点发送第二信号并接收第二信号的回波信号,得到第一感知测量量测量值。
此外,本申请实施例中的第一节点通常为终端,如:手机、电脑、智能眼镜等,基于终端的体积成本受限,使得终端的硬件和/或软件会引入随机相位偏转,本申请实施例的目的便是消除或降低该随机相位偏转对感知结果的干扰,以提升感知精度。
在通信感知一体化中,获取精确的测量信息尤为重要,而参与感知业务的节点的器件和硬件电路的非理想因素会显著影响测量精度。例如:在基站和终端之间发送和接收的感知方式中,提取信道状态信息(Channel State Information,CSI)进行感知,是通感一体化的主要实现方式之一。该过程中,获取质量较好的信道信息尤其重要,而一些非理想因素将导致CSI测量存在误差,从而显著影响感知的精度。
例如:如参考文献[2]:Zhuo,Y.,Zhu,H.,Xue,H.,&Chang,S.(2017,May).Perceiving accurate CSI phases with commodity WiFi devices.In IEEE INFOCOM 2017-IEEE Conference on Computer Communications(pp.1-9).IEEE.分析的,接收节点对CSI的影响可以包括:
1)功放不确定性(Power Amplifier Uncertainty,PAU),或信号接收功率的不确定性。由于低噪声放大器(Low Noise Amplifier,LNA),可编程增益放大器(Programmable Gain Amplifier,PGA)等器件的非理想导致实际的增益调整与预期不符,进而使得测量得到的CSI幅度不准确。
2)同相(Inphase,I)和正交(quadrature,Q)路不平衡。I、Q支路器件性能的局限性使得本振信号相位不能保证严格相差90°、两路信号增益存在差异以及存在直流偏置等,进而导致基带信号的正交性被破坏,造成CSI恶化。
3)时频同步偏差。发送节点和接收节点之间的时钟偏差、非理想同步等因素带来载波频率偏移(Carrier Frequency Offset)、取样频率偏移(Sampling Frequency Offset)、符号定时偏移(Symbol Timing Offset)等问题,会影响对速度估计的准确性或导致测距模糊。参考文献[3]:Zhang,J.A.,Wu,K.,Huang,X.,Guo,Y.J.,Zhang,D.,&Heath Jr,R.W.(2022).Integration of Radar Sensing into Communications with Asynchronous Transceivers.arXiv preprint arXiv:2203.16043.中归纳了共用参考时钟,单站中多天线互相关,多站联合消除定时误差等方法,并阐述了可以通过改善GPS时钟、放宽单节点感知需求、多节点测量与目标关联等方式应对时钟偏差对感知的影响。
4)天线/阵列幅相误差。包括在利用波束赋形进行感知时,波束赋形幅度和相位误差,将导致形成的波束形状(波束增益、波束宽度、旁瓣水平)与实际不符,进而在基于波束赋形后的信道信息进行感知时导致精度下降,造成角度和反射功率估计误差。此外,波束切换延迟也会加大干扰和噪声对感知结果的影响。例如:参考文献[4]:Tadayon,N.,Rahman,M.T.,Han,S.,Valaee,S.,&Yu,W.(2019).Decimeter ranging with channel state information.IEEE Transactions on Wireless Communications,18(7),3453-3468.总结了发送端对CSI的影响,主要包括加窗、预编码、波束赋形等对接收端不可知的处理导致接收端无法获取真实
的信道信息。
5)时间域随机相位。该随机相位来自于发射机天线、射频模块(包括连接射频通道上的各种器件)、数字处理模块、时钟模块的其中至少一者在信号发送和接收过程中状态发生了变化(例如开启、关闭、从一个状态转变为另一个状态等)。若设备具有不止1套发射机,则每套发射机可能会产生独立的随机相位。若每套发射机与至少一个天线连接,则不同发射机连接的天线/天线子阵列具有不同的随机相位。该随机相位一般在发射信号带宽内是一致的,但不同时刻上产生的随机相位值是不同的,呈现在某个弧度范围内随机分布。
由上可知,相关技术中,以感知信号的发送端为UE,接收端为基站为例,在基于参考信号(例如SRS)进行信道估计时,基站侧上行信道估计在时间上相位不连续,即不同上行时刻信道估计间存在随机相位偏移。若UE具备大于1个射频通道,则在不同射频通道都将引入不同的随机相位。该随机相位对通信性能几乎没影响,但会引入上行感知误差,甚至导致无法进行感知业务。
本申请实施例中,针对第一节点在发送感知信号时,会引入随机相位偏移,进而造成感知精度低甚至无法进行感知业务的问题,发送感知信号的第一节点通过自发自收用于参考径测量或天线端口随机相位测量的第一信号进行测量,得到参考径参数测量值或天线端口随机相位测量值,从而确定第一节点发送的感知信号时的上行随机相位和/或基于参考径参数测量值对应的随机相位信息或天线端口随机相位测量值,对携带随机相位偏移的感知测量量测量值进行随机相位校准或消除,降低随机相位偏差对感知测量量测量值和/或感知结果的干扰,有效降低上行随机相位对上行感知性能的影响,进而提升了感知/通感一体化性能。
此外,第一节点自发自收用于参考径测量或天线端口随机相位测量的第一信号的过程中,第一节点可以不需要其他节点进行信令交互,或者进行要与参考节点进行少量的信令交互,便可以实现参考径测量或天线端口随机相位测量,能够减少第一节点进行参考径测量或天线端口随机相位测量的信令开销。
为了便于理解,在此先对本申请实施例中的原理进行解释说明:
1)、基于CSI商/CSI共轭乘积的随机相位校准原理:
感知信号发射机或感知信号接收机具备多天线,由于多天线往往使用的是同一个时钟源,可以通过CSI商或CSI共轭乘积的方法实现信道时延、多普勒的校准,消除频偏或随机相位对它们引入的误差。其中,CSI商的解释说明可以参考文献[5]:Zeng,Youwei,et al."FarSense:Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas."Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies 3.3(2019):1-26.
该方法实现简单、运算量较小,但要求发射机、接收机至少一者具备多天线,且通过各天线获得的感知测量量测量值上引入的非理想因素(频偏,或随机相位)是相同的。
例如,感知信号接收机的天线1的信道估计为其中H1(f,t)为天线1的真实CSI,为非理想因素引入的相位差。同样地,天线2的信道估计为H2(f,t)为天线2的真实CSI。则CSI商可以表示为以下公式:
且CSI共轭乘积可以表示为以下公式:
由上可知,通过CSI商或CSI共轭乘积,信道估计中因非理想因素引入的相位差被消除,本申请实施例中,可以基于消除基于相位差后的或进行感知测量量测量值提取,以实现对感知测量量测量值的随机相位校准,在此不做赘述。
2)、基于参考径的随机相位校准原理:
假设发射基带信号为s0(t),载频为fc,发射信号为同时假设发射机和接收机之间的无线信道为其中L为信道中的多径总数,τl为第l条多径的时延,fd,l为第l条多径的多普勒频率。理想情况下,发射信号经过信道后,接收机天线接收信号为
对于感知接收机,已知信号s0(t)以及载频为fc,基于接收信号r(t)即可得到H(f,t),即得到包含了感知信息的CSI矩阵。进一步地,使用快速傅里叶变换(Fast Fourier Transform,FFT)或者多重信号分类(Multiple Signal Classification,MUSIC)等参数估计算法又可得到感知测量量,例如τl、fd,l等。对于通信接收机,基于已知载频为fc,对接收信号下变频,并完成信道估计获得CSI,则得到即可得到基带发送信号s0(t)。
然而,由于随机相位的引入,发射信号变为其中为随
机相位。
对于感知接收机来说,天线接收信号可以表示为以下公式:
经过下变频,得到的带有随机相位偏转的信道估计为:
当每次采样时刻t引入的随机相位均不一样时,即则不考虑干扰和噪声情况下基于相邻2次信道估计得到的多普勒频率可以表示为以下公式:
基于多次采样使用快速傅里叶变换(Fast Fourier Transform,FFT)或者多重信号分类(Multiple Signal Classification,MUSIC)等参数估计算法将得到很多互不相同的虚假多普勒频率成份,最终导致无法准确估计真实多普勒。
值得注意的是,由于随机相位会作用在CSI的所有多径上,且引入的随机相位值大小对于所有多径都相同(见等式(1)、(2))。一种可选地校准方法过程如下。假设根据感知先验信息,已知任意第l条多径的真实时延值为τ′l(一般也为视距传播(Line Of Sight,LOS)径,在某些情况下也可以为任意非视距传播(Non Line-Of-Sight,NLOS)径,例如已知感知参考节点(比如智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(backscatter,BSC))的NLOS反射径。测量得到的第l条多径的时延为τ′l。这里假设
由于其他非理想因素,Δτ=τ′l-τl,首先对CSI矩阵所有多径进行时延校准即:
另一方面,假设已知某个时间段T内任意第l条多径的真实多普勒频率值为fd,l(一般LOS径,在某些情况下也可以为NLOS径),基于时延校准后的CSI矩阵,进行多普勒校准。首先,需要基于CSI矩阵提取已知时延为τl的多径复振幅(包含多普勒频移),利用最大似然估计得到以下公式:
对该径的多普勒进行校准,可以得到T时间段内时刻ts(其中,ts为相对参考时刻的时间差)的校准后的CSI,即:
其中,Δfd=fd,l-f′d,l。此时第l条多径的感知测量量τl、fd,l的误差已被消除。由于随机相位造成的误差对所有多径的作用相同,所以其它所有多径由于频偏导致的误差也能被消除。需要指出的是,对多普勒频率进行校准时,由于随机误差在每次采样时取值
不同(在某个弧度范围内近似均匀随机分布),需要逐个对每个CSI样本基于等式(6)进行校准。此外,一般我们无法确知T时段内第l条多径的真实复振幅al,因此在校准时,不同ts时刻的样本需要有1个统一的参考时刻(一般可以选择为T时段内第1个样本的采样时刻),进而确定ts大小、确定每个CSI样本的相位校准值。换句话说,上述多普勒校准本质上是多个连续CSI样本之间相对相位的校准。
3)、不同时刻随机相位估计方法:
在上述基于参考径的随机相位校准原理2)的基础上,一种较为实用的不同时刻的随机相位估计方法如下。
假设同1个上行周期内的至少2个不同的上行时隙上,放置了用于随机相位估计的导频(参考信号)/感知信号,如图3a所示。一般地,1个上行周期内,至少要求具有2个上行时隙。对于具备多个发射射频链路的设备,每个射频链路均要求具有至少2个上行时隙。接收端基于所述随机相位估计的导频(参考信号)/感知信号得到的信道估计,并在频域上对信道估计进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),得到信道的冲激响应。多个上行时隙对应得到多个不同时刻的冲激响应,如图3b所示。IFFT操作的目的是获取信道的参考径(一般为LOS径或者参考节点(RIS/BSC)构造的NLOS径)参数,例如参考径的时延、幅度、相位等。
一般地,在同一个上行周期内的不同上行时隙之间,不会存在随机相位偏转。假设不同上行时隙间隔时间满足信道的参考径的相位近似线性变化,基于该上行周期内的至少2个不同上行时隙的信道参考径的相位,可以很容易地外推出下1个上行周期上行时隙时刻的参考径相位。然而,经过上下行切换后,下1个上行周期上行时隙时刻的参考径相位引入了随机相位偏转(随机相位差)。如图3c所示,参考径的外推相位和实际测量相位的相位差,即为需要估计的随机相位值。对不同上行时隙做同样操作,得到所有随机相位值。需要指出的是,根据实际参考径的多普勒取值不同,图3c折线斜率可以是正、负或者0。在所有不同上行时隙信道估计/接收信号中补偿对应随机相位值,即可实现目标信号多普勒的准确测量。
4)、不同天线端口随机相位估计方法:
由于不同射频链路的随机相位不同,不同天线端口间具有随机相位差,导致角度测量存在误差。在上述基于参考径的随机相位校准原理2)的基础上,一种较为实用的不同天
线端口的随机相位估计方法如下。
假设发射机具有4个天线端口(4个独立射频链路),接收端基于接收到的4端口发射信号进行信号离开角(以离开方位角为例说明,用θ表示)估计时,需要获得各端口发射信号的相位差。然而,由于各端口随机相位的影响,从接收机侧看,各天线端口的信号发射方向都不一样(即图4a中的“等效信号发射方向”)。
首先,接收端基于用于随机相位估计的导频(参考信号)/感知信号得到多个发射天线端口的信道估计,并在频域上分别对各端口信道估计进行IFFT,得到信道的冲激响应,如图4b所示。IFFT操作的目的是获取信道的参考径(一般为LOS径或者参考节点(RIS/BSC)构造的NLOS径)参数,例如参考径的时延、幅度、相位等。
假设发射机阵列为线性阵列(其他阵列同理),以天线端口0为的参考径相位φ0(t)为参考相位,且假设已知参考径的离开角为θ,则天线端口n的参考径相位应为其中,d0,dn分别为天线端口0和天线端口n距离天线阵列参考位置的距离,λ为信号波长,如图4c所示。实际天线端口n的参考径相位φn(t),因此天线端口n需要校准的随机相位值为Δφn=φn(t)-φ′n(t)。需要指出的是,根据实际参考径的角度取值不同,图4c折线斜率可以是正、负或者0。依次对天线端口1,2,…,n进行上述操作,即可得到所有天线端口需要校准的随机相位值。在所有天线端口信道估计/接收信号中补偿对应随机相位值,即可实现目标信号角度的准确测量。
需要指出的是,本申请实施例提供的感知方法,既适用于第一节点至少1个天线端口的不同上行时刻的随机相位测量、估计、校准,也适用于第一节点至少2个不同天线端口间的随机相位的测量、估计、校准。应理解的是,所述随机相位测量、估计、校准操作,可以达到以下2种效果中的至少一项:
(1)消除第一节点至少1个天线端口的不同上行时刻的随机相位,或消除第一节点至少2个不同天线端口的随机相位,进而消除随机相位对多普勒测量和/或角度测量的影响;
(2)以某个天线端口、某个上行时刻的信道参考径相位作为参考相位,使其他天线端口和/或该天线端口其他上行时刻的信道参考径相位与该参考相位保持连续性/一致性,进而消除随机相位对多普勒测量和/或角度测量的影响。
基于上述描述,应理解,在本申请实施例中的“随机相位”概念也包括随机相位间的差值。当本申请实施例用于对第一节点至少1个天线端口不同上行时刻的随机相位测量、
估计、校准时,能够消除所述随机相位对多普勒测量的影响;当本申请实施例用于对第一节点至少2个不同天线端口间的随机相位的测量、估计、校准时,能够消除所述随机相位对角度(包括方位角、俯仰角)测量的影响。
其中,对第一节点至少1个天线端口不同上行时刻的随机相位的估计方法,参见上述基于参考径的随机相位校准原理2)和不同时刻随机相位估计方法3);对第一节点至少2个不同天线端口间的随机相位的估计方法,参见上述基于参考径的随机相位校准原理2)和不同天线端口随机相位估计方法4)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知方法、感知装置以及通信设备进行详细地说明。
请参阅图5,本申请实施例提供的一种感知方法,其执行主体可以是第一节点,在此不作具体限定。
如图5所示,本申请实施例提供的一种感知方法可以包括以下步骤中的任一个:
步骤501、第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值。
其中,参考径参数测量值可以是通过对参考径参数进行测量所得到的测量值。
可选地,所述参考径可以是来自参考节点的第一信号反射径,或者是第一信号的回波径。
一种实施方式中,所述参考径参数可以包括以下至少一项:
参考径的多普勒频率,或多普勒频率及多普勒频率的变化速率;
参考径的时延,或时延及时延的变化速率;
参考径的离开方位角,或离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或幅度及幅度的变化速率;
参考径的相位,或相位及相位的变化速率。
步骤502、第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到。
其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
需要说明的是,如图5所示方法流程中,感知方法包括步骤501和步骤502,在实际应用中,第一节点可以仅执行步骤501和步骤502中的一个,在此不限定第一节点需要执
行步骤501和步骤502。
一种实施方式中,第一节点发送第一信号,并接收所述第一信号对应的回波信号,可以是第一节点发送第一信号,该第一信号经第三节点反射后产生的回波信号,向第一节点传输,其中,第三节点可以是具有反射功能的参考节点,如可重构智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射(Backscatter,BSC)标签,或者第三节点可以是其他无源的、用于辅助感知的设备或物体。
一种实施方式中,第一节点发送第二信号,由第二节点接收第二信号或者经参考节点反射后的第二信号,以得到第一感知测量量测量值。
一种实施方式中,第一节点发送第二信号,并由第一节点接收第二信号的回波信号或反射信号,以得到第一感知测量量测量值。
一种实施方式中,第一信号即用于感知测量,也用于天线端口随机相位测量和/或参考径参数测量。
一种实施方式中,天线端口随机相位测量用于测量第一节点的天线端口在发送第一信号时的随机相位测量值,即得到天线端口随机相位测量值。可选地,基于该天线端口随机相位测量值,能够校准第一节点的用于发送感知信号的天线端口的随机相位;和/或,在第一节点用于发送感知信号的天线端口为至少两个的情况下,基于这两个天线端口的天线端口随机相位测量值,能够消除这两个天线端口的随机相位。
一种实施方式中,参考径参数测量可以表示对某个天线端口和/或某个上行时刻的信道参考径进行测量,基于测量结果可以确定该参考径的相位值,这样,可以通过使其他天线端口和/或该天线端口的其他上行时刻的信道参考径相位与该参考相位保持连续性/一致性,进而消除随机相位对多普勒测量和/或角度测量的影响。
需要说明的是,本申请实施例中的第一信号可以理解为第一节点自发自收的信号,第一节点基于自发自收第一信号至少可以测量得到天线端口随机相位测量值和/或参考径参数测量值,此外,在第一节点进行自发自收的感知测量时,第一节点也可以基于第一信号测量得到第一感知测量量测量值。此外,本申请实施例中的第二信号可以理解为第一节点发送的专用于进行感知测量的信号,该第二信号的接收节点可以是第一节点或第二节点。
其中,天线端口随机相位测量,用于测量第一节点发送感知信号(即第一信号或第二信号)时引入的随机相位。
上述参考径参数测量,用于测量第一节点发送第一信号对应的参考径的参数测量值。基于该参考径的参数测量值能够估计第一节点在发送感知信号(即第一信号或第二信号)时引入的随机相位。
一种实施方式中,第一信号仅用于天线端口随机相位测量和/或参考径参数测量,第二信号用于感知测量。
作为一种可选的实施方式,所述第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,包括:
所述第一节点基于第一配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;和/或,
所述第一节点基于第二配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一感知测量量测量值;
其中,所述第一配置信息用于配置参考径参数测量和/或天线端口随机相位测量,所述第二配置信息用于配置感知测量。
一种实施方式中,第一配置信息可以是包括:用于配置参考径参数测量或天线端口随机相位测量的相关配置信息,和/或,用于参考径参数测量或天线端口随机相位测量的第一信号的相关配置信息。基于该第一配置信息可以实现参考径参数的测量或天线端口随机相位测量,得到所述参考径参数测量值或天线端口随机相位测量值。
一种实施方式中,第二配置信息可以包括用于配置感知测量的相关配置信息,和/或,用于感知测量的感知信号的相关配置信息。基于该第二配置信息可以实现感知测量,得到所述第一感知测量量测量值,其中,基于第一节点发送感知信号时存在随机相位偏差,造成第一感知测量量测量值与真实值之间存在差异。
一种实施方式中,上述第一配置信息和第二配置信息的内容可以相同或相似,甚至第一配置信息和第二配置信息可以是同一个配置信息。其中,第一配置信息和第二配置信息的内容相同或相似,可以表示存在两个内容相同或相似的配置信息,分别作为第一配置信息和第二配置信息;第一配置信息和第二配置信息是同一个配置信息,可以表示存在一个配置信息,共同作为第一配置信息和第二配置信息。
为了便于说明,以第二配置信息为例对第一配置信息和第二配置信息的内容进行举例说明,对于第一配置信息,则可以参考以下实施例中对第二配置信息的相关说明。
可选地,所述第二配置信息包括以下至少一项:
所述第二信号的波形类型,例如:正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)、正交时频空调制(Orthogonal Time Frequency and Space,OTFS)、FMCW、脉冲信号等;
所述第二信号的子载波间隔,例如:OFDM系统的子载波间隔为30KHz;
所述第二信号的保护间隔,即从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔,该参数正比于最大感知距离,例如:可以通过2dmax/c计算得到该保护间隔,其中,dmax是最大感知距离(属于感知需求),例如对于自发自收的第二信号,dmax代表第二信号收发点到信号反射点的最大距离,在某些情况下,OFDM信号循环前缀(Cyclic Prefix,CP)可以起到最小保护间隔的作用;
所述第二信号的带宽,该参数反比于距离分辨率,可以通过c/(2Δd)得到,其中Δd是距离分辨率(属于感知需求);c是光速;
所述第二信号的数据突发(Burst)持续时间,该参数反比于速率分辨率(属于感知需
求),该参数是第二信号的时间跨度,主要为了计算多普勒频偏,该参数可通过c/(2fcΔv)计算得到;其中,Δv是速度分辨率;fc是感知信号的载频;
所述第二信号的时域间隔,该参数可通过c/(2fcvrange)计算得到,其中,vrange是目标最大速度减去最小速度(属于感知需求),该参数是相邻的两个感知信号之间的时间间隔;
所述第二信号的发送信号功率,例如:从-20dBm到23dBm每隔2dBm取一个值;
所述第二信号的信号格式,例如:信号格式是SRS、DMRS、PRS等,或者其他预定义的信号,以及相关的序列格式等信息;
所述第二信号的信号方向,例如:第二信号的方向或者波束信息;
所述第二信号的时间资源,例如:第二信号所在的时隙索引或者时隙的符号索引。其中,时间资源分为两种:一种是一次性的时间资源,例如,一个符号发送一个全向的感知信号;一种是非一次性的时间资源,例如,多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同;
所述第二信号的频率资源,例如:第二信号的中心频点、带宽、资源块(Resource Block,RB)或者子载波、频域参考位置(Point A),起始带宽位置等;
所述第二信号的准共址(Quasi co-location,QCL)关系,例如:第二信号包括多个资源,每个资源与一个SSB QCL,QCL类型包括:Type A、Type B、Type C或者Type D;
参与所述第一业务的节点(第一节点或第二节点)的天线配置信息。
可选地,所述天线配置信息包括以下至少一项:
用于发送所述第二信号的天线阵元标识(identity,ID);
用于发送所述第二信号的天线端口ID;
用于接收所述第二信号的天线阵元ID;
用于接收所述第二信号的天线端口ID;
用于发送所述第二信号的天线面板(panel)ID和天线阵元ID;
用于接收所述第二信号的天线面板ID和天线阵元ID;
用于发送所述第二信号的天线阵元相对天线阵列上的目标局部参考点的位置信息,该位置信息可以用笛卡尔坐标(x,y,z)或者球坐标表示;
用于接收所述第二信号的天线阵元相对天线阵列上的目标局部参考点的位置信息,该位置信息可以用笛卡尔坐标(x,y,z)或者球坐标表示;
用于发送所述第二信号的天线面板相对天线阵列上的目标局部参考点的位置信息,以及目标天线面板中用于发送所述第二信号的天线阵元相对所述目标天线面板上的统一参考点的位置信息,其中,所述目标天线面板为选中的用于发送所述第二信号的天线面,统一参考点可以是天线面板(panel)的中心点;
天线阵元的第一比特图(bitmap)信息,所述第一比特图信息用于指示发送所述第二信号的天线阵元和/或不发送所述第二信号的天线阵元,例如:该bitmap使用“1”指示对应
的天线阵元被选择用于发送和/或接收感知信号,使用“0”表示对应的阵元未被选择,当然,也可反过来,即bitmap使用“0”指示对应的天线阵元被选择用于发送和/或接收感知信号,使用“1”表示对应的阵元未被选择;
天线面板的第二比特图信息,所述第二比特图信息用于指示发送所述第二信号的天线面板和/或不发送所述第二信号的天线面板,例如:该bitmap使用“1”指示对应的panel被选择用于发送和/或接收感知信号,使用“0”表示对应的panel未被选择,当然,也可反过来,即bitmap使用“0”指示对应的panel被选择用于发送和/或接收感知信号,使用“1”表示对应的panel未被选择;对于被选择的panel,天线配置信息还可以包括选择的panel内的天线阵元的第一比特图信息。
天线阵元幅相增益信息,即天线阵元模式(pattern)信息。
一种实施方式中,所述感知测量量测量值包括以下至少一项感知测量量的测量值:
第一级测量量,所述第一级测量量可以是接收信号/原始信道信息,其具体包括以下至少一项:接收信号的响应复数结果、接收信道的响应复数结果、幅度、相位、I路及其运算结果、Q路及其运算结果;其中,I路/Q路的运算结果中的运算可以包括以下至少一项:加、减、乘、除、矩阵加、矩阵减、矩阵乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等;此外,该运算还可以包括FFT/IFFT、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、二维快速傅里叶变换(2D-FFT)、三维快速傅里叶变换(3D-FFT)、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等
第二级测量量,所述第二级测量量可以是基本测量量,其具体可以包括以下至少一项:时延、多普勒频移、角度、强度,以及时延、多普勒频移、角度、强度中至少两项的多维组合表示;
第三级测量量,所述第三级测量量可以是基本属性/状态,其具体可以包括以下至少一项:距离、速度、朝向、空间位置、加速度;
第四级测量量,所述第四级测量量可以是进阶属性/状态,其具体可以包括以下至少一项:轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分、所述第一业务对应的感知目标是否存在。
可选地,所述感知测量量还可以包括对应的标签信息,如以下至少一项:
感知信号标识信息;
感知测量配置标识信息;
感知业务信息,如感知业务ID;
数据订阅ID;
测量量用途,如:通信、感知、通信和感知;
时间信息;
参与所述第一业务的节点信息,例如:第一节点的ID、位置、设备朝向等;
感知链路信息,例如:感知链路序号、收发节点标识;
测量量说明信息,所述测量量说明信息可以包括测量量的形式,如:幅度值、相位值、幅度和相位结合的复数值;所述测量量说明信息也可以包括资源类型,如:时域测量结果、频域资源测量结果;
测量量指标信息,例如:信噪比(Signal-to-Noise Ratio,SNR)、感知SNR。
可选地,参考径参数可以包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
其中,参考径参数测量值可以是对上述参考径参数进行测量所得到的值。
一种实施方式中,基于上述参考径参数测量值,可以通过CSI商或CSI共轭乘积的方法,实现信道多普勒的校准,消除随机相位对感知信号发射机或感知信号接收机引入的误差,得到目标感知测量量测量值,该过程具体可以参考上述基于CSI商/CSI共轭乘积的随机相位校准原理1)中的解释说明,在此不再赘述。
一种实施方式中,天线端口随机相位测量值可以包括感知测量的真实的相位值,或者是非理想因素引入的相位差,例如:基于天线端口随机相位测量值确定实际感知测量的相位。
作为一种可选的实施方式,所述第一节点发送第二信号,包括:
所述第一节点基于第二配置信息向第二节点发送第二信号,所述第二配置信息用于配置感知测量。
该第二配置信息的含义和作用可以参考本申请以上实施方式中的说明。
本实施方式中,第二配置信息与第一配置信息可以是不同的两条配置信息。即通过第一配置信息配置自发自收的配置参考径参数测量和/或天线端口随机相位测量,通过第二配置信息配置第一节点发送,第二节点通过对第二信号进行感知测量得到第一感知测量量测量值。
一种实施方式中,所述第一节点还可以接收第二信号的回波信号,以得到第一感知测量量测量值。此时,第二配置信息与第一配置信息可以是相同的两条配置信息
作为一种可选的实施方式,所述第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,包括:
所述第一节点基于第一配置信息发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;
所述方法还包括:
所述第一节点向所述第二节点发送所述第一节点的天线端口随机相位测量值和/或参考径参数测量值。
一种实施方式中,第一节点将天线端口随机相位测量值和/或参考径参数测量值发送给第二节点,该第二节点在对第一节点发送的第二信号进行感知测量得到第一感知测量量测量值的情况下,可以基于天线端口随机相位测量值和/或参考径参数测量值对该第一感知测量量测量值进行随机相位校准或消除,得到目标感知测量量测量值,并基于目标感知测量量测量值计算的目标感知结果能够降低随机相位偏转所造成的干扰,从而提升感知精度。
一种实施方式中,第二节点在接收天线端口随机相位测量值和/或参考径参数测量值,并获取第一感知测量量测量值后,可以将该天线端口随机相位测量值和/或参考径参数测量值以及第一感知测量量测量值发送给其他计算节点,如核心网中的感知功能网元,以通过其他计算节点来进行随机相位校准以及计算感知结果。
一种实施方式中,第二节点在接收天线端口随机相位测量值和/或参考径参数测量值,并获取第一感知测量量测量值后,可以基于天线端口随机相位测量值和/或参考径参数测量值对该第一感知测量量测量值进行随机相位校准或消除,得到目标感知测量量测量值,然后将目标感知测量量测量值发送给其他计算节点,以通过其他计算节点来进行计算准确的感知结果。
作为一种可选的实施方式,所述方法还包括:
所述第一节点获取第一感知测量量测量值和/或所述第一感知结果;
所述第一节点基于所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,对所述第一感知测量量测量值和/或所述第一感知结果进行随机相位校准,得到目标感知测量量测量值和/或所述目标感知结果。
一种实施方式中,在第一节点基于自发自收第一信号或第二信号,以得到第一感知测量量测量值的情况下,所述第一节点获取第一感知测量量测量值和/或所述第一感知结果可以是第一节点获取自身感知测量得到的第一感知测量量测量值和/或基于该第一感知测量量测量值计算得到的第一感知结果,该第一感知结果存在随机相位偏转。
一种实施方式中,在第一节点向第二节点发送第二信号,以使第二节点基于对第二信号的感知测量得到第一感知测量量测量值的情况下,所述第一节点获取第一感知测量量测量值和/或所述第一感知结果可以是第一节点接收来自所述第二节点的第一感知测量量测量值和/或第一感知结果。
本实施方式中,由第一节点基于所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,对所述第一感知测量量测量值和/或所述第一感知结果进行随机相位校准,
得到目标感知测量量测量值和/或所述目标感知结果。
作为一种可选的实施方式,所述第一配置信息和所述第二配置信息为相同的配置信息,所述第一信号和所述第二信号为相同的信号;
和/或,
所述第一配置信息和所述第二配置信息为同一配置信息,所述第一信号和所述第二信号为同一信号。
一种实施方式中,所述第一配置信息和所述第二配置信息为相同的配置信息,所述第一信号和所述第二信号为相同的信号,此时,有两个配置信息分别作为第一配置信息和第二配置信息,但两个配置信息的内容可以相同,有两个信号分别作为第一信号和第二信号,但两个信号的类型、时频图样等可以相同。例如:第一节点基于第一配置信息发送用于参考径参数测量和/或天线端口随机相位测量的第一信号,并基于第二配置信息发送用于感知测量的第二信号。
一种实施方式中,所述第一配置信息和所述第二配置信息为同一配置信息,所述第一信号和所述第二信号为同一信号,此时,只有一个配置信息,该配置信息即作为第一配置信息也作为第二配置信息,且只有一个信号,共同作为第一信号和第二信号。例如:第一节点基于目标配置信息发送第一信号,该第一信号用于感知测量,以及用于参考径参数测量和/或天线端口随机相位测量。
作为一种可选的实施方式,第一节点接收所述第一信号对应的回波信号,包括:
第一节点接收所述第一信号经第三节点反射后的回波信号;
在所述第一节点发送第一信号之前,所述方法还包括:
所述第一节点向所述第三节点发送所述第一配置信息。
本实施方式中,第一节点通过向第三节点发送第一配置信息,以使第三节点基于第一配置信息对第一信号进行反射,使得第一节点能够接收第一信号经第三节点反射后的回波信号。
需要说明的是,在实施中,所述第一节点向所述第三节点发送所述第一配置信息可以是第一节点直接或间接地向第三节点发送所述第一配置信息,如:第一节点向基站发送第一配置信息,由基站向第三节点发送第一配置信息。
一种实施方式中,第一节点和第三节点可以分别从基站获取第一配置信息。
作为一种可选的实施方式,所述方法还包括:
所述第一节点接收来自第四节点的所述第一配置信息;和/或,
所述第一节点接收来自第四节点的所述第二配置信息。
一种实施方式中,第四节点可以是基站等网络侧设备,或者,第四节点可以是第二节点,即基于第二信号进行感知测量的节点。
一种实施方式中,第一配置信息和第二配置信息为同一配置信息时,第四节点可以向第一节点发送一个配置信息,作为第一配置信息和第二配置信息。
一种实施方式中,第一配置信息和第二配置信息为两个配置信息时,第四节点可以向第一节点发送第一配置信息和/或第二配置信息。
作为一种可选的实施方式,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,所述方法还包括:
所述第一节点获取所述第三节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述第一配置信息。
可选地,所述第二信息包括以下至少一项:
所述第一节点和所述第三节点之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
所述第一节点到所述第三节点的通信信号参数配置信息;
所述第三节点到所述第一节点的通信信号参数配置信息。
一种实施方式中,上述通信信号参数配置信息可以参考第二配置信息中关于通信信号的参数配置信息,如:波形类型、子载波间隔、保护间隔、带宽、Burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源等。
一种实施方式中,第一节点可以根据上述第二信息,确定第一信号为LOS径还是NLOS径、选择反射第一信号的第三节点、第一信号的信号强度等等配置信息。
本实施方式中,由第一节点确定第一配置信息。
可选地,在第一节点确定第一配置信息后,第一节点可以向第二节点和/或所述第三节点发送所述第一配置信息。
作为一种可选的实施方式,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,所述方法还包括:
所述第一节点获取所述第三节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述天线端口随机相位测量值或所述参考径参数测量值。
可选地,所述第三信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
一种实施方式中,所述第一节点可以接收所述第三节点发送的第三信息。
一种实施方式中,所述第一节点可以接收第二节点发送的第三信息,其中,第二节点可以事先获取第三节点的位置、速度大小、速度方向、天线面板朝向信息等信息的设备。
本实施方式中,在第三节点为所述第一信号的反射节点的情况下,基于第三节点的位置、速度大小、速度方向、天线面板朝向信息等信息中的至少一项,可以有助于获取所述天线端口随机相位测量值或所述参考径参数测量值。
作为一种可选的实施方式,所述方法还包括:
所述第一节点向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知
结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
一种实施方式中,第五节点可以是基站或感知功能网元。
一种实施方式中,第五节点可以是第二节点。
一种实施方式中,第一节点向第五节点发送所述天线端口随机相位测量值或所述参考径参数测量值,第五节点基于该天线端口随机相位测量值或所述参考径参数测量值,对从第一节点或第二节点接收的第一感知测量量测量值进行随机相位校准,得到目标感知测量量测量值,并基于目标感知测量量测量值计算目标感知结果。
一种实施方式中,在第五节点是第二节点的情况下,第一节点向第五节点发送所述天线端口随机相位测量值或所述参考径参数测量值,第五节点基于该天线端口随机相位测量值或所述参考径参数测量值,对自身对第二信号进行感知测量得到的第一感知测量量测量值进行随机相位校准,得到目标感知测量量测量值,并基于目标感知测量量测量值计算目标感知结果。
一种实施方式中,第五节点还可以向发起第一业务对应的感知需求的应用服务器发送目标感知结果。
作为一种可选的实施方式,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
其中,一个上行周期内,第一节点的天线端口的传输状态不发生切换,即该上行周期内,第一节点的天线端口不会由上行状态切换为下行状态。通常,认为在一个上行周期内的不同上行时隙之间,不会存在随机相位偏转,假设不同上行时隙间隔时间满足信道的参考径的相位近似线性变化,基于该上行周期内的至少2个不同上行时隙的信道参考径的相位,可以很容易地外推出下1个上行周期上行时隙时刻的参考径相位,从而能够实现不同时刻的随机相位估计,这样,基于外推出的随机相位估计值与随机相位测量值便可以实现消除第一节点至少1个天线端口的不同上行时刻的随机相位。具体可以参考上述不同时刻随机相位估计方法3)中的说明,在此不再赘述。
一种实施方式中,在所述第一节点的天线端口为N个的情况下,可以针对每一个天线端口独立进行参考径测量,即进行N次参考径测量,以得到每一个天线端口各自的第一随机相位信息,或者得到任意至少两个天线端口的随机相位的差值。其具体过程可以参考上述基于不同天线端口随机相位估计方法4)中的解释说明,在此不再赘述。
一种实施方式中,在所述第一节点的天线端口为N个的情况下,可以测量每一个天线端口的随机相位测量值,从而基于发送感知信号的天线端口的随机相位测量值来进行随机相位校准,以消除第一节点至少2个不同天线端口的随机相位,进而消除随机相位对多普勒测量和/或角度测量的影响。
在本申请实施例中,第一节点发送第一信号,并接收所述第一信号对应的回波信号,
得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。这样,基于第一节点自发自收第一信号,可以获取第一节点的天线端口随机相位测量值和/或参考径参数测量值,基于该天线端口随机相位测量值和/或参考径参数测量值,能够对存在随机相位干扰的感知测量量测量值或感知结果进行随机相位校准或者消除感知测量量测量值或感知结果中的随机相位偏转,提升得到的目标感知测量量测量值或目标感知结果的精确度,进而提升了感知精度。
请参阅图6,本申请实施例提供的另一种感知方法,其执行主体可以包括第二节点,该第二节点可以包括终端、基站、核心网设备等通信设备中的至少一项,如图6所示,该感知方法可以包括以下步骤:
步骤601、第二节点接收来自第一节点的第二信号,得到第一感知测量量测量值;其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
上述第二节点可以是如图5所示方法实施例中,基于第一节点发送的第二信号进行感知测量的节点,在此不再赘述。
需要说明的是,本申请实施例中的上述第一信号、参考径参数测量值、天线端口随机相位测量值、第一业务、第一感知测量量测量值、目标感知结果的含义和作用与如图5所示方法实施例中的第一信号、参考径参数测量值、天线端口随机相位测量值、第一业务、第一感知测量量测量值、目标感知结果的含义和作用相同,在此不再赘述。
本申请实施例中,第二节点用于根据对第一节点发送的第二信号进行感知测量,以得到第一感知测量量测量值,第二节点在执行感知方法中的过程以及有益效果可以参考如图5所示方法实施例中的相关说明,在此不再赘述。
作为一种可选的实施方式,所述方法还包括:
所述第二节点接收来自所述第一节点的所述天线端口随机相位测量值或所述参考径参数测量值;
所述第二节点基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值或第一感知结果进行随机相位校准,得到目标感知测量量测量值或所述目标感知结果,其中,所述目标感知测量量测量值是所述目标感知结果对应的测量值,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
作为一种可选的实施方式,所述方法还包括:
所述第二节点向所述第一节点发送所述第一感知测量量测量值或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
作为一种可选的实施方式,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述方法还包括:
所述第二节点向第三节点发送第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
作为一种可选的实施方式,所述方法还包括:
所述第二节点获取第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量;
和/或,
所述第二节点向所述第一节点发送所述第一配置信息。
作为一种可选的实施方式,所述方法还包括:
所述第二节点获取第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量;
和/或,
所述第二节点向所述第一节点发送所述第二配置信息。
作为一种可选的实施方式,所述方法还包括:
所述第二节点获取第四信息,其中,所述第四信息用于辅助所述第二节点确定第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量。
可选地,所述第四信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
所述第一节点到第三节点,以及所述第三节点到所述第二节点之间的级联信道状态信息,例如:上行级联信道状态信息、下行级联信道状态信息、级联信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;其中,所述第一信号的回波信号为经第三节点的反射的信号;
所述第二节点的通信信号参数配置信息。
一种实施方式中,第二节点的通信信号配置信息,可以包括第一节点和第二节点之间的上行通信信号参数配置信息和/或下行通信信号参数配置信息。其中,上行通信信号参数配置信息可以是第二节点发送且第一节点接收的链路的通信信号参数配置信息,下行通信信号参数配置信息可以是第一节点发送且第二节点接收的链路的通信信号参数配置信息。
一种实施方式中,在第二信号为经第三节点的反射信号的情况下,第二节点的通信信
号参数配置信息,还可以包括第二节点与第三节点之间的上行通信信号参数配置信息和/或下行通信信号参数配置信息。其中,上行通信信号参数配置信息可以是第二节点发送且第三节点接收的链路的通信信号参数配置信息,下行通信信号参数配置信息可以是第三节点发送且第二节点接收的链路的通信信号参数配置信息。
作为一种可选的实施方式,所述方法还包括:
所述第二节点向所述第一节点发送第二信息,其中,所述第二信息用于辅助所述第一节点确定第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
作为一种可选的实施方式,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述第二信息包括以下至少一项:
所述第一节点和第三节点之间的信道状态信息;
所述第一节点到第三节点的通信信号参数配置信息;
第三节点到所述第一节点的通信信号参数配置信息。
作为一种可选的实施方式,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述方法还包括:
所述第二节点获取第三节点的第五信息,其中,所述第五信息用于辅助所述第二节点获取所述参考径参数测量值。
可选地,所述第五信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
其中,上述第五信息的含义和作用与如图5所示方法实施例中的第三信息的含义和作用相同,不同之处在于,如图5所示实施例中由第一节点获取第三信息,并据此作为第一节点确定参考径参数测量值的依据之一,而如图6所示方法实施例中,由第二节点获取第五信息,并据此作为第二节点确定参考径参数测量值的依据之一。
作为一种可选的实施方式,所述方法还包括:
所述第一节点向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
本申请实施例中,第二节点用于对第一节点发送的第二信号进行感知测量,以得到第一感知测量量测量值,其中,由于第二信号在发送机引入了随机相位,使得第一感知测量量测量值存在随机相位偏转,本申请实施例中,基于第一节点接收用于参考径参数测量和/或天线端口随机相位测量的第一信号来得到参考径参数测量值和/或天线端口随机相位测量值,来校准和/或消除第一感知测量量测量值的随机相位,从而得到更加准确的目标感知测量量测量值和/或目标感知结果。
为了便于说明本申请实施例提供的感知方法和感知方法,以如下三种应用场景为例进行举例说明:
场景一:如图7a或图7b所示,假设第一节点是终端(UE),第二节点是基站(gNB),则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1a、基站向UE发送第二配置信息,所述第二配置信息用于进行执行感知/通感一体化业务。
可选地,在步骤1a之前,基站获取第二信息,所述第二信息用于辅助第一配置信息的确定。所述第二信息包括以下至少一项:
UE和基站之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
UE到参考节点、参考节点到基站之间的级联信道状态信息,至少包括:上行级联信道状态信息、下行级联信道状态信息、级联信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
通信信号参数配置信息,包括上行通信信号参数配置信息、下行通信信号参数配置信息。
可选地,在步骤1a之前,基站获取参考节点的第三信息。所述第三信息用于辅助基站获取参考径参数测量值。所述第三信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息。
可选地,基站或UE向所述参考节点发送第二配置信息。
步骤2a、可选地,如图7b所示,UE向参考节点发送第一配置信息,所述第一配置信息用于UE基于自发自收方式进行天线端口随机相位测量。
可选地,在步骤2a之前,UE获取第四信息,所述第四信息用于辅助第二配置信息的确定。所述第四信息包括以下至少一项:
UE和参考节点之间的信道状态信息,例如:UE到参考节点再到UE的级联信道状态信息、UE到参考节点的信道状态信息、参考节点到UE的信道状态信息、UE到参考节点再到UE的级联信道相干时间、UE和参考节点之间的信道相干时间;
通信信号参数配置信息,包括UE到参考节点的通信信号参数配置信息、参考节点到UE的通信信号参数配置信息。
可选地,在步骤2a之前,UE获取参考节点的第三信息。所述第三信息用于辅助UE获取自身天线端口随机相位测量值。所述第三信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息;
其中,UE获取第三信息的方式还可以是:基站获取参考节点的第三信息,再将所述第三信息发送给UE。
步骤3a、UE基于第二配置信息发送第二信号,基站接收第二信号。UE基于第一配
置信息发送第一信号,并接收第一信号的回波信号;或者,UE基于第一配置信息发送第一信号,并接收第三节点反射的第一信号。
一种可选的实施方式中,所述第二配置信息与第一配置信息相同,第二信号与第一信号相同。
一种可选的实施方式中,所述第二配置信息与第一配置信息为同一配置信息,第二信号与第一信号为同一信号。
步骤4a、UE基于接收到的第一信号,获取天线端口随机相位测量值(随机相位估计值),并将所述随机相位测量值发送给基站。
步骤5a、基站基于接收到的第二信号以及天线端口随机相位测量值,进一步获取目标感知测量量测量值/目标感知结果。
可选地,基站在获取目标感知测量量测量值/目标感知结果之后,还可以将所述感知测量量测量值/感知结果发送给感知功能网元。
需要说明的是,若需要对连续多组信道估计/接收到的第二信号进行随机相位估计和校准,则可以重复步骤1a~步骤5a,直到获得的多组信道估计/接收到的第二信号满足感知业务需求。
此外,当所述第一配置信息与第二配置信息不是同一配置信息,所述第一信号与第二信号不是同一信号时,步骤1a和步骤2a的顺序可以是先执行步骤1a后执行步骤2a,或者先执行步骤2a后执行步骤1a,或者同时执行。
若感知目标为有源目标,所述第二信息还包括:基站到感知目标的信道状态信息、感知目标到基站信道状态信息、基站和感知目标之间信道相干时间、UE到感知目标信道状态信息、感知目标到UE信道状态信息、UE和感知目标之间信道相干时间。
场景二:如图7c或图7d所示,假设第一节点是终端(UE1),第二节点是另一终端(UE2),则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1b、UE 2或基站向UE 1发送第二配置信息,所述第二配置信息用于进行执行感知/通感一体化业务。
可选地,在步骤1b之前,UE 2获取第四信息,所述第四信息用于辅助第二配置信息的确定。所述第四信息包括以下至少一项:
UE 1和UE 2之间的信道状态信息,例如:UE 1到UE 2的信道状态信息、UE 2到UE 1的信道状态信息、UE 1和UE 2之间的信道相干时间;
UE 1、参考节点、UE 2之间的级联信道状态信息,例如:UE 1到参考节点、参考节点到UE 2的级联信道状态信息、UE 2到参考节点、参考节点到UE 1的级联信道状态信息、级联信道的相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
通信信号参数配置信息,包括UE 1到UE 2的通信信号参数配置信息、UE 2到UE 1的通信信号参数配置信息、UE 1到参考节点的通信信号参数配置信息、参考节点到UE 1
的通信信号参数配置信息、UE 2到参考节点的通信信号参数配置信息、参考节点到UE 2的通信信号参数配置信息。
可选地,在步骤1b之前,UE 1或UE 2获取参考节点的第三信息。所述第三信息用于辅助UE 1或UE 2获取参考径参数测量值。所述第三信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息。其中,UE 1或UE 2获取参考节点的第三信息的方式还可以是,基站获取参考节点的第三信息,再将所述第三信息发送给UE 1或UE 2。
可选地,在步骤1b之前,基站获取UE 1和/或UE 2的第六信息,所述第六信息用于辅助确定第二信号的发送设备和接收设备。所述第六信息包括以下至少一项:
UE 1和/或UE 2的自发自收能力指示信息,例如:全双工能力、自干扰抑制功率范围、发送天线和接收天线隔离度;
UE 1和/或UE 2的天线信息,例如:天线端口总数、天线阵型;
UE 1和/或UE 2的状态信息,例如:速度大小、速度方向、天线面板朝向;
UE 1和/或UE 2的平均发射功率、最大发射功率、接收机灵敏度等信息;
UE 1和/或UE 2的电量信息;
UE 1和/或UE 2的计算能力信息。
基于上述第六信息,基站可以从大量终端中选择用于执行第一业务的UE 1和UE 2,和/或,决定由哪一个或哪一些UE发送感知信号,由哪一个或哪一些UE接收感知信号的UE 2,和/或,选择用于进行随机相位校准的设备和/或用于计算感知节点的设备等。
可选地,UE 2或基站向所述参考节点发送第二配置信息。
步骤2b、可选地,UE 1或UE 2向参考节点发送第一配置信息,所述第一配置信息用于UE 1基于自发自收方式进行天线端口随机相位测量。
可选地,在步骤2b之前,UE 2获取第二信息,所述第二信息用于辅助第一配置信息的确定。所述第二信息包括以下至少一项:
UE 1和参考节点之间的信道状态信息,例如:UE 1到参考节点再到UE 1的级联信道状态信息、UE 1到参考节点的信道状态信息、参考节点到UE 1的信道状态信息、UE 1到参考节点再到UE 1的级联信道相干时间、UE 1和参考节点之间的信道相干时间;
通信信号参数配置信息,例如:UE 1到参考节点的通信信号参数配置信息、参考节点到UE 1的通信信号参数配置信息。
可选地,在步骤2b之前,UE 1获取参考节点的第三信息。所述第三信息用于辅助UE 1获取自身天线端口随机相位测量值。所述第三信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息;
可选地,UE 1获取参考节点的第三信息的方式还可以是,基站获取参考节点的第三信息,再将所述第三信息发送给UE 1。
步骤3b、UE 1基于第二配置信息发送第二信号,UE 2接收第二信号;UE 1基于第一配置信息发送第一信号,并接收第一信号的回波信号;或者,UE 1基于第一配置信息
发送第一信号,并接收第三节点反射的第一信号。
可选地,所述第二配置信息与第一配置信息相同,第二信号与第一信号相同。
可选地,所述第二配置信息与第一配置信息为同一配置信息,第二信号与第一信号为同一信号。
步骤4b、UE 1基于接收到的第一信号,获取天线端口随机相位测量值(随机相位估计值)。可选地,UE 1将所述随机相位测量值发送给UE 2。
步骤5b、UE 1或UE 2基于接收到的第二信号以及随机相位测量值,进一步获取目标感知测量量测量值/目标感知结果。
可选地,UE 1或UE 2在获取目标感知测量量测量值/目标感知结果之后,还可以将所述目标感知测量量测量值/目标感知结果发送给基站或感知功能网元。
需要说明的是,与上述场景一相似的,若需要对连续多组信道估计/接收到的第二信号进行随机相位估计和校准,则可以重复步骤1b~步骤5b,直到获得的多组信道估计/接收到的第二信号满足感知业务需求。
此外,当所述第一配置信息与第二配置信息不是同一配置信息,所述第一信号与第二信号不是同一信号时,步骤1b和步骤2b的顺序可以是先执行步骤1b后执行步骤2b,或者先执行步骤2b后执行步骤1b,或者同时执行。
若感知目标为有源目标,所述第四信息还包括以下至少一项:基站到感知目标的信道状态信息、感知目标到基站信道状态信息、基站和感知目标之间信道相干时间、UE 1和/或UE 2到感知目标信道状态信息、感知目标到UE 1和/或UE 2信道状态信息、UE 1和/或UE 2和感知目标之间信道相干时间。
场景三:如图7e所示,假设第一节点和第二节点是同一终端(UE),则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1c、UE确定第二配置信息,所述第二配置信息用于进行执行感知/通感一体化业务。
可选地,在步骤1c之前,UE获取第四信息,所述第四信息用于辅助第二配置信息的确定。所述第四信息包括以下至少一项:
UE和参考节点之间的信道状态信息,例如:UE到参考节点再到UE的级联信道状态信息、UE到参考节点的信道状态信息、参考节点到UE的信道状态信息、UE到参考节点再到UE的级联信道相干时间、UE和参考节点之间的信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
通信信号参数配置信息,包括UE到参考节点的通信信号参数配置信息、参考节点到UE的通信信号参数配置信息。
可选地,在步骤1c之前,UE获取参考节点的第三信息。所述第三信息用于辅助UE获取自身天线端口随机相位测量值。所述第三信息包括:参考节点的位置、速度大小、速
度方向、天线面板朝向信息。
其中,UE获取第三信息的方式还可以是:基站获取参考节点的第三信息,再将所述第二信息发送给UE。
可选地,UE向所述参考节点发送第一配置信息。
步骤2c、可选地,UE向参考节点发送第一配置信息,所述第一配置信息用于UE基于自发自收方式进行天线端口随机相位测量。
可选地,在步骤2c之前,UE获取第二信息,所述第二信息用于辅助第一配置信息的确定。所述第二信息包括以下至少一项:
UE和参考节点之间的信道状态信息,至少包括:UE到参考节点再到UE的级联信道状态信息、UE到参考节点的信道状态信息、参考节点到UE的信道状态信息、UE到参考节点再到UE的级联信道相干时间、UE和参考节点之间的信道相干时间。
通信信号参数配置信息,包括UE到参考节点的通信信号参数配置信息、参考节点到UE的通信信号参数配置信息。
可选地,在步骤2c之前,UE获取参考节点的第三信息。所述第三信息用于辅助UE获取自身天线端口随机相位测量值。所述第三信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息。
其中,UE获取第三信息的方式还可以是:基站获取参考节点的第三信息,再将所述第二信息发送给UE。
步骤3c、UE基于第一配置信息发送第一信号,并接收第一信号的回波信号;UE基于第二配置信息发送第二信号,并接收第二信号的回波信号;或者,UE基于第二配置信息发送第二信号,并接收第三节点反射的第二信号。
可选地,所述第二配置信息与第一配置信息相同,第二信号与第一信号相同。
可选地,所述第二配置信息与第一配置信息为同一配置信息,第二信号与第一信号为同一信号。
步骤4c、UE基于接收到的第一信号,获取天线端口随机相位测量值,并进一步获取目标感知测量量测量值/目标感知结果。
可选地,UE在获取目标感知测量量测量值/目标感知结果之后,还可以将所述感知测量量测量值/感知结果发送给基站或感知功能网元。
需要说明的是,与上述场景一相似的,若需要对连续多组信道估计/接收到的第二信号进行随机相位估计和校准,则可以重复步骤1c~步骤4c,直到获得的多组信道估计/接收到的第二信号满足感知业务需求。
此外,当所述第一配置信息与第二配置信息不是同一配置信息,所述第一信号与第二信号不是同一信号时,步骤1c和步骤2c的顺序可以是先执行步骤1c后执行步骤2c,或者先执行步骤2c后执行步骤1c,或者同时执行。
若感知目标为有源目标,所述第四信息还包括以下至少一项:基站到感知目标的信道
状态信息、感知目标到基站信道状态信息、基站和感知目标之间信道相干时间、UE到感知目标信道状态信息、感知目标到UE信道状态信息、UE和感知目标之间信道相干时间。
本申请实施例提供的感知方法,执行主体可以为感知装置。本申请实施例中以感知装置执行感知方法为例,说明本申请实施例提供的感知装置。
参照图8,本申请实施例还提供了一种感知装置,应用于第一节点,如图8所示,该感知装置800包括:
第一传输模块801,用于发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,
第二传输模块802,用于发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;
其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
可选地,第一传输模块801,包括:
第一传输单元,用于基于第一配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;和/或,
第二传输单元,用于基于第二配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一感知测量量测量值;
其中,所述第一配置信息用于配置参考径参数测量和/或天线端口随机相位测量,所述第二配置信息用于配置感知测量。
可选地,第二传输模块802,具体用于:
基于第二配置信息向第二节点发送第二信号,所述第二配置信息用于配置感知测量。
可选地,所述第一传输单元,具体用于:
基于第一配置信息发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;
感知装置800还包括:
第一发送模块,用于向所述第二节点发送所述第一节点的天线端口随机相位测量值和/或参考径参数测量值。
可选地,感知装置800还包括:
第一获取模块,用于获取第一感知测量量测量值和/或所述第一感知结果;
第一相位校准模块,用于基于所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,对所述第一感知测量量测量值和/或所述第一感知结果进行随机相位校准,
得到目标感知测量量测量值和/或所述目标感知结果。
可选地,所述第一配置信息和所述第二配置信息为相同的配置信息,所述第一信号和所述第二信号为相同的信号;
和/或,
所述第一配置信息和所述第二配置信息为同一配置信息,所述第一信号和所述第二信号为同一信号。
可选地,第一传输模块801和/或第二传输模块802,包括:
第一接收单元,用于接收所述第一信号经第三节点反射后的回波信号;
感知装置800还包括:
第二发送模块,用于向所述第三节点发送所述第一配置信息。
可选地,感知装置800还包括:
第二接收模块,用于接收来自第四节点的所述第一配置信息;和/或,
第三接收模块,用于接收来自第四节点的所述第二配置信息。
可选地,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,感知装置800还包括:
第二获取模块,用于获取所述第三节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述第一配置信息。
可选地,所述第二信息包括以下至少一项:
所述第一节点和所述第三节点之间的信道状态信息;
所述第一节点到所述第三节点的通信信号参数配置信息;
所述第三节点到所述第一节点的通信信号参数配置信息。
可选地,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,感知装置800还包括:
第三获取模块,用于获取所述第三节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述天线端口随机相位测量值或所述参考径参数测量值。
可选地,所述第三信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,感知装置800还包括:
第三发送模块,用于向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
可选地,所述第一节点为终端。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,
所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本申请实施例提供的感知装置能够实现图5所示方法实施例中第一节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参照图9,本申请实施例还提供了一种感知装置,应用于第二节点,如图9所示,该感知装置900包括:
第一接收模块901,用于接收来自第一节点的第二信号,得到第一感知测量量测量值;
其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
可选地,感知装置900还包括:
第四接收模块,用于接收来自所述第一节点的所述天线端口随机相位测量值或所述参考径参数测量值;
第二相位校准模块,用于基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值或第一感知结果进行随机相位校准,得到目标感知测量量测量值或所述目标感知结果,其中,所述目标感知测量量测量值是所述目标感知结果对应的测量值,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,感知装置900还包括:
第四发送模块,用于向所述第一节点发送所述第一感知测量量测量值或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,感知装置900还包括:
第五发送模块,用于向第三节点发送第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
可选地,感知装置900还包括:
第四获取模块,用于获取第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量;
和/或,
第六发送模块,用于向所述第一节点发送所述第一配置信息。
可选地,感知装置900还包括:
第五获取模块,用于获取第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量;
和/或,
第七发送模块,用于向所述第一节点发送所述第二配置信息。
可选地,感知装置900还包括:
第六获取模块,用于获取第四信息,其中,所述第四信息用于辅助所述第二节点确定第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量。
可选地,所述第四信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第三节点,以及所述第三节点到所述第二节点之间的级联信道状态信息,其中,所述第一信号的回波信号为经第三节点的反射的信号;
所述第二节点的通信信号参数配置信息。
可选地,感知装置900还包括:
第八发送模块,用于向所述第一节点发送第二信息,其中,所述第二信息用于辅助所述第一节点确定第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述第二信息包括以下至少一项:
所述第一节点和第三节点之间的信道状态信息;
所述第一节点到第三节点的通信信号参数配置信息;
第三节点到所述第一节点的通信信号参数配置信息。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,感知装置900还包括:
第七获取模块,用于获取第三节点的第五信息,其中,所述第五信息用于辅助所述第二节点获取所述参考径参数测量值。
可选地,所述第五信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,感知装置900还包括:
第九发送模块,用于向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如,该通信设备1000作为第一节点时,该程序或指令被处理器1001执行时实现如图5所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1000作为第二节点时,该程序或指令被处理器1001执行时实现如图6所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口。
在一种可选的实施方式中,在所述通信设为第一节点的情况下,所述通信接口用于:
发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;
或者,
发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
在另一种可选的实施方式中,在所述通信设备为第二节点的情况下,所述通信接口用于接收来自第一节点的第二信号,得到第一感知测量量测量值;其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
该通信设备实施例与上述方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备施例中,且能达到相同的技术效果。
本申请实施例还提供一种终端,如图11所示,该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处
理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选地,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
一种实施方式中,在所述终端1100作为第一节点的情况下,
射频单元1101,用于:
发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,
发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;
其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
可选地,射频单元1101执行的所述发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,包括:
基于第一配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;和/或,
基于第二配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一感知测量量测量值;
其中,所述第一配置信息用于配置参考径参数测量和/或天线端口随机相位测量,所述第二配置信息用于配置感知测量。
可选地,射频单元1101执行的所述发送第二信号,包括:
基于第二配置信息向第二节点发送第二信号,所述第二配置信息用于配置感知测量。
可选地,射频单元1101执行的所述发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,包括:
基于第一配置信息发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;
射频单元1101,还用于向所述第二节点发送所述第一节点的天线端口随机相位测量值和/或参考径参数测量值。
可选地,处理器1110或射频单元1101,还用于获取第一感知测量量测量值和/或所述第一感知结果;
处理器1110,还用于基于所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,对所述第一感知测量量测量值和/或所述第一感知结果进行随机相位校准,得到目标感知测量量测量值和/或所述目标感知结果。
可选地,所述第一配置信息和所述第二配置信息为相同的配置信息,所述第一信号和所述第二信号为相同的信号;
和/或,
所述第一配置信息和所述第二配置信息为同一配置信息,所述第一信号和所述第二信号为同一信号。
可选地,射频单元1101执行的所述接收所述第一信号对应的回波信号,包括:
接收所述第一信号经第三节点反射后的回波信号;
射频单元1101在执行所述发送第一信号之前,还用于向所述第三节点发送所述第一配置信息。
可选地,射频单元1101,还用于:
接收来自第四节点的所述第一配置信息;和/或,
接收来自第四节点的所述第二配置信息。
可选地,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,射频单元1101,还用于获取所述第三节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述第一配置信息。
可选地,所述第二信息包括以下至少一项:
所述第一节点和所述第三节点之间的信道状态信息;
所述第一节点到所述第三节点的通信信号参数配置信息;
所述第三节点到所述第一节点的通信信号参数配置信息。
可选地,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,射频单元1101,还用于获取所述第三节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述天线端口随机相位测量值或所述参考径参数测量值。
可选地,所述第三信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,射频单元1101,还用于向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本实施方式中,终端1100能够实现如图8所示感知装置的各个模型执行的功能,且能够取得相同的有益效果,为避免重复,在此不再赘述。
一种实施方式中,在所述终端1100作为第二节点的情况下,
射频单元1101,用于接收来自第一节点的第二信号,得到第一感知测量量测量值;
其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
可选地,射频单元1101,还用于接收来自所述第一节点的所述天线端口随机相位测量值或所述参考径参数测量值;
处理器1110,用于基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值或第一感知结果进行随机相位校准,得到目标感知测量量测量值或所述目标感知结果,其中,所述目标感知测量量测量值是所述目标感知结果对应的测量值,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,射频单元1101,还用于向所述第一节点发送所述第一感知测量量测量值或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下:
射频单元1101,还用于向第三节点发送第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
可选地,射频单元1101,还用于:
获取第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量;
和/或,
向所述第一节点发送所述第一配置信息。
可选地,射频单元1101,还用于:
获取第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量;
和/或,
向所述第一节点发送所述第二配置信息。
可选地,射频单元1101,还用于获取第四信息,其中,所述第四信息用于辅助所述第二节点确定第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量。
可选地,所述第四信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第三节点,以及所述第三节点到所述第二节点之间的级联信道状态信息,其中,所述第一信号的回波信号为经第三节点的反射的信号;
所述第二节点的通信信号参数配置信息。
可选地,射频单元1101,还用于向所述第一节点发送第二信息,其中,所述第二信息用于辅助所述第一节点确定第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述第二信息包括以下至少一项:
所述第一节点和第三节点之间的信道状态信息;
所述第一节点到第三节点的通信信号参数配置信息;
第三节点到所述第一节点的通信信号参数配置信息。
可选地,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下:
射频单元1101,还用于获取第三节点的第五信息,其中,所述第五信息用于辅助所述第二节点获取所述参考径参数测量值。
可选地,所述第五信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,射频单元1101,还用于向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值
或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
本实施方式中,终端1100能够实现如图9所示感知装置的各个模型执行的功能,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例还提供一种网络侧设备,如图12所示,该网络侧设备1200包括:天线1201、射频装置1202、基带装置1203、处理器1204和存储器1205。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括基带处理器。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1206,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络侧设备1200还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图8和/或9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图5或图6所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图5或图6所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如图5或图6所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他
性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (32)
- 一种感知方法,包括:第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
- 根据权利要求1所述的方法,其中,所述第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,包括:所述第一节点基于第一配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;和/或,所述第一节点基于第二配置信息发送所述第一信号,并接收所述第一信号对应的回波信号,得到所述第一感知测量量测量值;其中,所述第一配置信息用于配置参考径参数测量和/或天线端口随机相位测量,所述第二配置信息用于配置感知测量。
- 根据权利要求1所述的方法,其中,所述第一节点发送第二信号,包括:所述第一节点基于第二配置信息向第二节点发送第二信号,所述第二配置信息用于配置感知测量。
- 根据权利要求3所述的方法,其中,所述第一节点发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,包括:所述第一节点基于第一配置信息发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值;所述方法还包括:所述第一节点向所述第二节点发送所述第一节点的天线端口随机相位测量值和/或参考径参数测量值。
- 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:所述第一节点获取第一感知测量量测量值和/或所述第一感知结果;所述第一节点基于所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,对所述第一感知测量量测量值和/或所述第一感知结果进行随机相位校准,得到目标感知 测量量测量值和/或所述目标感知结果。
- 根据权利要求2所述的方法,其中,所述第一配置信息和所述第二配置信息为相同的配置信息,所述第一信号和所述第二信号为相同的信号;和/或,所述第一配置信息和所述第二配置信息为同一配置信息,所述第一信号和所述第二信号为同一信号。
- 根据权利要求2所述的方法,其中,第一节点接收所述第一信号对应的回波信号,包括:第一节点接收所述第一信号经第三节点反射后的回波信号;在所述第一节点发送第一信号之前,所述方法还包括:所述第一节点向所述第三节点发送所述第一配置信息。
- 根据权利要求2所述的方法,其中,所述方法还包括:所述第一节点接收来自第四节点的所述第一配置信息;和/或,所述第一节点接收来自第四节点的所述第二配置信息。
- 根据权利要求2所述的方法,其中,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,所述方法还包括:所述第一节点获取所述第三节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述第一配置信息。
- 根据权利要求9所述的方法,其中,所述第二信息包括以下至少一项:所述第一节点和所述第三节点之间的信道状态信息;所述第一节点到所述第三节点的通信信号参数配置信息;所述第三节点到所述第一节点的通信信号参数配置信息。
- 根据权利要求1所述的方法,其中,在所述第一信号的回波信号为经第三节点的反射的信号的情况下,所述方法还包括:所述第一节点获取所述第三节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述天线端口随机相位测量值或所述参考径参数测量值。
- 根据权利要求11所述的方法,其中,所述第三信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一节点向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
- 根据权利要求1至13中任一项所述的方法,其中,所述第一节点为终端。
- 根据权利要求1至13中任一项所述的方法,其中,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
- 一种感知方法,包括:第二节点接收来自第一节点的第二信号,得到第一感知测量量测量值;其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点接收来自所述第一节点的所述天线端口随机相位测量值或所述参考径参数测量值;所述第二节点基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值或第一感知结果进行随机相位校准,得到目标感知测量量测量值或所述目标感知结果,其中,所述目标感知测量量测量值是所述目标感知结果对应的测量值,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点向所述第一节点发送所述第一感知测量量测量值或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
- 根据权利要求16所述的方法,其中,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述方法还包括:所述第二节点向第三节点发送第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点获取第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量;和/或,所述第二节点向所述第一节点发送所述第一配置信息。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点获取第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量;和/或,所述第二节点向所述第一节点发送所述第二配置信息。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点获取第四信息,其中,所述第四信息用于辅助所述第二节点确定第二配置信息,其中,所述第二配置信息用于配置对所述第一感知测量量的感知测量。
- 根据权利要求22所述的方法,其中,所述第四信息包括以下至少一项:所述第一节点和所述第二节点之间的信道状态信息;所述第一节点到第三节点,以及所述第三节点到所述第二节点之间的级联信道状态信息,其中,所述第一信号的回波信号为经第三节点的反射的信号;所述第二节点的通信信号参数配置信息。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第二节点向所述第一节点发送第二信息,其中,所述第二信息用于辅助所述第一节点确定第一配置信息,其中,所述第一配置信息用于配置对所述天线端口随机相位测量值或参考径参数测量值的测量。
- 根据权利要求24所述的方法,其中,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述第二信息包括以下至少一项:所述第一节点和第三节点之间的信道状态信息;所述第一节点到第三节点的通信信号参数配置信息;第三节点到所述第一节点的通信信号参数配置信息。
- 根据权利要求16所述的方法,其中,在所述参考径参数测量值包括所述第一节点和第三节点之间的非视距参考径的测量值的情况下,所述方法还包括:所述第二节点获取第三节点的第五信息,其中,所述第五信息用于辅助所述第二节点获取所述参考径参数测量值。
- 根据权利要求26所述的方法,其中,所述第五信息包括所述第三节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
- 根据权利要求16所述的方法,其中,所述方法还包括:所述第一节点向第五节点发送所述第一感知测量量测量值、所述天线端口随机相位测量值、所述参考径参数测量值、目标感知测量量测量值、第一感知结果和所述目标感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果,所述目标感知测量量测量值为基于所述天线端口随机相位测量值或所述参考径参数测量值对所述第一感知测量量测量值进行随机相位校准后得到的测量值。
- 一种感知装置,应用于第一节点,所述装置包括:第一传输模块,用于发送第一信号,并接收所述第一信号对应的回波信号,得到第一信息,其中,所述第一信息包括以下至少一项:所述第一节点的天线端口随机相位测量值、参考径参数测量值、第一感知测量量测量值;或者,第二传输模块,用于发送第一信号,并接收所述第一信号对应的回波信号,得到所述第一节点的天线端口随机相位测量值和/或参考径参数测量值,且所述第一节点发送第二信号,其中,所述第一感知测量量测量值基于对所述第二信号的感知测量得到;其中,所述天线端口随机相位测量值或所述参考径参数测量值,以及所述第一感知测量量测量值用于确定第一业务的目标感知结果,所述第一业务为感知业务和/或通信感知一体化业务。
- 一种感知装置,应用于第二节点,所述装置包括:第一接收模块,用于接收来自第一节点的第二信号,得到第一感知测量量测量值;其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第一业务的目标感知结果基于天线端口随机相位测量值或参考径参数测量值,以及所述第一感知测量量测量值确定,所述天线端口随机相位测量值或参考径参数测量值基于所述第一节点接收的第一信号的回波信号确定。
- 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至15中任一项所述的感知方法的步骤,或者实现如权利要求16至28中任一项所述的感知方法的步骤。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至15中任一项所述的感知方法的步骤,或者实现如权利要求16至28中任一项所述的感知方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211652063.6 | 2022-12-21 | ||
CN202211652063.6A CN118233021A (zh) | 2022-12-21 | 2022-12-21 | 感知方法、感知装置及通信设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024131688A1 true WO2024131688A1 (zh) | 2024-06-27 |
Family
ID=91504616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/139331 WO2024131688A1 (zh) | 2022-12-21 | 2023-12-18 | 感知方法、感知装置及通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118233021A (zh) |
WO (1) | WO2024131688A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014191462A1 (en) * | 2013-05-28 | 2014-12-04 | Vrije Universiteit Brussel | Method and apparatus for predicting the perceptual quality of a signal |
CN107645770A (zh) * | 2016-07-13 | 2018-01-30 | 华为技术有限公司 | 一种相位校准方法及装置 |
CN115119136A (zh) * | 2021-03-17 | 2022-09-27 | 维沃移动通信有限公司 | 定位方法、终端及网络侧设备 |
CN115412958A (zh) * | 2021-05-27 | 2022-11-29 | 成都极米科技股份有限公司 | 无线感知测量的方法及装置、电子设备、存储介质 |
-
2022
- 2022-12-21 CN CN202211652063.6A patent/CN118233021A/zh active Pending
-
2023
- 2023-12-18 WO PCT/CN2023/139331 patent/WO2024131688A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014191462A1 (en) * | 2013-05-28 | 2014-12-04 | Vrije Universiteit Brussel | Method and apparatus for predicting the perceptual quality of a signal |
CN107645770A (zh) * | 2016-07-13 | 2018-01-30 | 华为技术有限公司 | 一种相位校准方法及装置 |
CN115119136A (zh) * | 2021-03-17 | 2022-09-27 | 维沃移动通信有限公司 | 定位方法、终端及网络侧设备 |
CN115412958A (zh) * | 2021-05-27 | 2022-11-29 | 成都极米科技股份有限公司 | 无线感知测量的方法及装置、电子设备、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN118233021A (zh) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11031978B2 (en) | Detection and ranging using multi-radio mobile devices | |
US11307299B2 (en) | Radio frequency based sensing using communication signals | |
WO2022194144A1 (zh) | 定位方法、终端及网络侧设备 | |
CN115529661A (zh) | 定位处理方法、定位参考信号发送方法、装置及设备 | |
WO2024114460A1 (zh) | 测量方法、装置及设备 | |
WO2024131688A1 (zh) | 感知方法、感知装置及通信设备 | |
WO2024131689A1 (zh) | 感知方法、感知装置及通信设备 | |
WO2024131752A1 (zh) | 感知方法、感知装置、通信设备及存储介质 | |
WO2024131690A1 (zh) | 感知方法、装置及设备 | |
WO2024032538A1 (zh) | 校准方法、信息传输方法、装置及通信设备 | |
WO2024140841A1 (zh) | 感知方法及装置 | |
CN118715796A (zh) | 位置确定方法、装置、设备、介质、芯片、产品及程序 | |
Yin et al. | AutoCali: Enhancing AoA-based Indoor Localization through Automatic Phase Calibration | |
WO2024140796A1 (zh) | 传输处理方法、装置、终端及网络侧设备 | |
WO2024149185A1 (zh) | 传输处理方法、装置、终端及网络侧设备 | |
WO2024149184A1 (zh) | 传输处理方法、装置、终端及网络侧设备 | |
WO2024099152A1 (zh) | 信息传输方法、装置及通信设备 | |
WO2024099153A1 (zh) | 信息传输方法、装置及通信设备 | |
WO2024131691A1 (zh) | 感知处理方法、装置、通信设备及可读存储介质 | |
US20240178951A1 (en) | Data transmission processing method and apparatus, communication device, and storage medium | |
WO2024120359A1 (zh) | 信息处理、传输方法及通信设备 | |
WO2024109637A1 (zh) | 信息发送方法、信息接收方法、装置及相关设备 | |
WO2024012253A1 (zh) | 感知处理方法、装置、终端、网络侧设备及可读存储介质 | |
WO2024027664A1 (zh) | 载波相位定位方法、装置、设备及介质 | |
WO2023125656A1 (zh) | 多端口定位参考信号配置方法、装置及通信设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23905852 Country of ref document: EP Kind code of ref document: A1 |