Nothing Special   »   [go: up one dir, main page]

WO2024149185A1 - 传输处理方法、装置、终端及网络侧设备 - Google Patents

传输处理方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024149185A1
WO2024149185A1 PCT/CN2024/071036 CN2024071036W WO2024149185A1 WO 2024149185 A1 WO2024149185 A1 WO 2024149185A1 CN 2024071036 W CN2024071036 W CN 2024071036W WO 2024149185 A1 WO2024149185 A1 WO 2024149185A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
parameter
configuration information
frequency
Prior art date
Application number
PCT/CN2024/071036
Other languages
English (en)
French (fr)
Inventor
丁圣利
姜大洁
姚健
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024149185A1 publication Critical patent/WO2024149185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a transmission processing method, apparatus, terminal and network side equipment.
  • the measurement of perception targets can be performed based on perception signals or synaesthesia integration signals.
  • synaesthesia integration it is particularly important to obtain accurate measurement information, and the non-ideal factors of devices and hardware circuits will significantly affect the measurement accuracy. For example, factors such as clock deviation and non-ideal synchronization at the transceiver end cause carrier frequency deviation (i.e., carrier frequency offset), and the carrier frequency offset will affect the accuracy of perception measurement. Therefore, there is a problem in the related art that the accuracy of perception measurement is poor due to carrier frequency offset.
  • the embodiments of the present application provide a transmission processing method, apparatus, terminal and network-side equipment, which can solve the problem of poor accuracy of perception measurement due to carrier frequency deviation.
  • a transmission processing method comprising:
  • a first device receives a first signal from a second device, where the first signal includes a first signal portion and a second signal portion, where the first signal portion and the second signal portion are in the same frequency band, and a center frequency of the first signal portion is higher than a center frequency of the second signal portion;
  • the first device determines a first parameter according to the first signal
  • the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset.
  • a transmission processing method including:
  • the second device sends a first signal to the first device, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and a center frequency of the first part signal is higher than a center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for a perception result, and the first parameter includes a carrier frequency deviation.
  • a transmission processing method including:
  • the third device sends first configuration information to the first device and/or the second device, where the first configuration information is used to indicate time-frequency resource configuration of a first signal, where the first signal includes a first part signal and a second part signal, and the first part
  • the first signal and the second signal are in the same frequency band, and the center frequency of the first signal is higher than the center frequency of the second signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • a transmission processing device including:
  • a first receiving module is used to receive a first signal from a second device, where the first signal includes a first partial signal and a second partial signal, where the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal;
  • a first determining module configured to determine a first parameter according to the first signal
  • the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset.
  • a transmission processing device including:
  • a second sending module is used to send a first signal to a first device, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and a center frequency of the first part signal is higher than a center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for a perception result, and the first parameter includes a carrier frequency deviation.
  • a transmission processing device including:
  • the third sending module is used to send first configuration information to the first device and/or the second device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a terminal including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, where the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal; the processor is used to determine a first parameter according to the first signal; wherein the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation;
  • the communication interface is used to send a first signal to the first device, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • a network side device comprising a processor and a memory, the memory storing a program or instruction that can be run on the processor, the program or instruction being executed by the processor to implement the The steps of the method described in one aspect, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a network side device including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and the center frequency of the first partial signal is higher than the center frequency of the second partial signal; the processor is used to determine a first parameter according to the first signal; wherein the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset;
  • the communication interface is used to send a first signal to the first device, where the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation;
  • the communication interface is used to send first configuration information to the first device and/or the second device, the first configuration information is used to indicate the time-frequency resource configuration of the first signal, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • a communication system including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the transmission processing method described in the first aspect or the second aspect, and the network side device can be used to execute the steps of the transmission processing method described in the first aspect or the second aspect or the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the steps of the method described in the first aspect, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a first signal is received from a second device through a first device, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first device determines a first parameter based on the first signal; in this way, the perception result can be compensated based on the first parameter, thereby improving the accuracy of the perception measurement.
  • FIG1 is a schematic diagram of a network structure applicable to an embodiment of the present application.
  • FIG2 is an example diagram of a perception scenario applied in an embodiment of the present application.
  • FIG3 is a schematic diagram of a spectrum of an echo signal of a sensing object according to an embodiment of the present application.
  • FIG4 is a flow chart of a transmission processing method according to an embodiment of the present application.
  • 5A is a schematic diagram of a baseband spectrum of an echo signal of a high-frequency part signal of a first signal in a transmission processing method provided in an embodiment of the present application;
  • 5B is a schematic diagram of a baseband spectrum of an echo signal of a low-frequency part of a first signal in a transmission processing method provided in an embodiment of the present application;
  • FIG6A is an example diagram of baseband spectrum shift of an echo signal in a transmission processing method provided in an embodiment of the present application
  • FIG6B is an example diagram of baseband spectrum scaling of an echo signal in a transmission processing method provided in an embodiment of the present application.
  • FIG7 is a second flow chart of the transmission processing method provided in an embodiment of the present application.
  • FIG8 is a third flow chart of the transmission processing method provided in an embodiment of the present application.
  • FIG9 is a fourth flow chart of the transmission processing method provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a structure of a transmission processing device according to an embodiment of the present application.
  • FIG11 is a second schematic diagram of the structure of the transmission processing device provided in an embodiment of the present application.
  • FIG12 is a third schematic diagram of the structure of the transmission processing device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a terminal provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of the network side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • instruction in the specification and claims of this application can be either an explicit instruction or an implicit instruction.
  • An explicit instruction can be understood as the sender explicitly informing the receiver in the instruction sent.
  • the implicit instruction can be understood as the receiving party making a judgment based on the instruction sent by the sender and determining the operation to be performed or the request result based on the judgment result.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (personal computer, PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a wireless access network device, a wireless access network (Radio Access Network, RAN), a wireless access network function or a wireless access network unit.
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a mobile hotspot (WiFi) node, etc.
  • WLAN wireless Local Area Network
  • WiFi mobile hotspot
  • the base station may be referred to as a node B, an evolved node B (Evolved Node B, eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home B node, a home evolved B node, a transmission reception point (Transmission Reception Point, TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: a core network node, a core network function, a mobility management entity (MME), an access mobility management function (AMF), a session management function (SMS), and a session management function.
  • SMF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and Charging Rules Function
  • EASDF Edge Application Server Discovery Function
  • UDM Unified Data Management
  • UDR Unified Data Repository
  • HSS Home Subscriber Server
  • CNC Centralized network configuration
  • NRF Network Repository Function
  • NEF Network Exposure Function
  • BEF Binding Support Function
  • AF Application Function
  • Integrated Sensing and Communication (ISAC).
  • sensing signal sending nodes and receiving nodes there are 6 basic sensing methods.
  • Mode 1 Base station self-transmitting and self-receiving sensing.
  • base station A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • Mode 2 Air interface sensing between base stations: At this time, base station B receives the sensing signal sent by base station A and performs sensing measurement.
  • Mode 3 Uplink air interface perception: At this time, base station A receives the perception signal sent by terminal A and performs perception measurement.
  • Mode 4 Downlink air interface perception: At this time, terminal B receives the perception signal sent by base station B and performs perception measurement.
  • Terminals send and receive sensing autonomously.
  • terminal A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • Mode 6 Sidelink perception between terminals: In this case, terminal B receives the perception signal sent by terminal A and performs perception measurement.
  • the non-ideal factors that affect perceived performance mainly include:
  • Time-frequency synchronization deviation Factors such as clock deviation at the transmitting and receiving ends and non-ideal synchronization lead to problems such as carrier frequency offset, sampling frequency offset, and symbol timing offset, which will affect the accuracy of velocity estimation or cause ranging ambiguity.
  • Antenna/array amplitude and phase errors When using beamforming for perception, the beamforming amplitude and phase errors will cause the formed beam shape (beam gain, beam width, sidelobe level) to be inconsistent with the actual situation, which will lead to a decrease in accuracy when perceiving based on the channel information after beamforming, resulting in errors in angle and reflected power estimation, and even false detection.
  • beam switching delays will also increase the impact of interference and noise on the perception results.
  • the impact of the transmitter on the perceived signal mainly includes windowing, precoding, beamforming and other processing that is unknown to the receiver, resulting in the receiver being unable to obtain true channel information.
  • Random phase in the time domain comes from the state change (such as opening, closing, changing from one state to another, etc.) of at least one of the transmitter antenna, RF module (including various devices connected to the RF channel), digital processing module, and clock module during the signal transmission and reception process. If the device has more than one transmitter, each transmitter may generate an independent random phase. The random phase is generally consistent within the bandwidth of the transmitted signal, but the random phase values generated at different times are different, showing a random distribution within a certain arc range.
  • the carrier frequency of the sensing signal is configured as f c , but due to the non-ideal characteristics of the device, the carrier frequency of the signal actually sent at the transmitting end has an error ⁇ f T , and the local oscillator frequency used to receive the signal at the receiving end has an error ⁇ f R .
  • the Doppler frequency shift caused by the relative motion between the sensing object and the transmitting end and/or the receiving end device of the sensing signal is f d .
  • the baseband signal frequency obtained by the receiving end is ( ⁇ f T - ⁇ f R )+f d ; wherein ⁇ f T - ⁇ f R is the carrier frequency offset at both ends of the transmitting and receiving ends, recorded as f offset . Therefore, the frequency of the baseband signal obtained by the receiving end consists of two parts: Doppler f d and carrier frequency offset f offset , as shown in FIG3 below. For this purpose, a transmission processing method of the present application is proposed.
  • the transmission processing method includes:
  • Step 401 A first device receives a first signal from a second device, where the first signal includes a first partial signal and a second partial signal, where the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal;
  • Step 402 The first device determines a first parameter according to the first signal
  • the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset.
  • the first part of the signal can be understood as a high-frequency part of the signal
  • the second part of the signal can be understood as a low-frequency part of the signal.
  • the center frequency may also be referred to as a carrier center frequency.
  • the carrier frequency deviation may be understood as a carrier frequency deviation of the second device relative to the first device.
  • receiving the first signal can be understood as receiving an echo signal of the first signal reflected by the sensing object.
  • the first device may be a base station or a terminal
  • the second device may be a base station or a terminal.
  • the sensing scenario may include the following sensing scenarios:
  • Scenario 1 the first device is a base station and the second device is a terminal;
  • Scenario 2 the first device is base station A, and the second device is base station B;
  • Scenario 3 the first device is terminal 1, and the second device is terminal 2.
  • the Doppler dispersion phenomenon can be used to separate the Doppler f d caused by the relative motion between the sensing object and the first signal transceiver device and the carrier frequency offset f offset caused by the non-ideal characteristics of the device, so that the Doppler f d of the sensing object can be accurately obtained.
  • the first device may perform a first process on the received first signal to obtain the above-mentioned first parameter.
  • the specific principle of the first process may be set according to actual needs and is not further limited here.
  • the principle of the first process is exemplarily described below.
  • the Doppler frequency shifts generated on the high-frequency signal and the low-frequency signal of the first signal are respectively:
  • ⁇ f T and ⁇ f R are usually at least 5 to 6 orders of magnitude smaller than f H and f L. Since the high-frequency signal and the low-frequency signal of the first signal are limited to be within the same frequency band, the carrier frequency offset f offset superimposed on the high-frequency signal and the low-frequency signal of the first signal is the same. Therefore, the motion speed of the perceived object can be directly estimated.
  • the exact meaning of the relative motion speed v of the sensing object relative to the first signal transceiver device is: the rate of change of the sum of the signal propagation path length from the first device to the sensing object and the signal propagation path length from the sensing object to the second device.
  • the change in the signal propagation path length from the first device to the sensing object is ⁇ R 1
  • the change in the signal propagation path length from the sensing object to the second device is ⁇ R 2 .
  • the relative motion speed v of the sensing object relative to the transceiver of the first signal is ( ⁇ R 1 + ⁇ R 2 )/ ⁇ t.
  • the perceived object detected in the echo signal baseband spectrum of the high-frequency signal of the first signal can be associated with the perceived object detected in the echo signal baseband spectrum of the low-frequency signal of the first signal (as shown in FIG. 5B ) through some algorithms, that is, they are considered to be the same perceived object.
  • the perceived object 1 detected in the echo signal baseband spectrum of the high-frequency signal can be associated with the perceived object 1 detected in the echo signal baseband spectrum of the low-frequency signal.
  • the perceived object detected in the echo signal baseband spectrum of the high-frequency signal and the perceived object detected in the echo signal baseband spectrum of the low-frequency signal are naturally the same perceived object.
  • the frequencies detected in the baseband spectrum of the echo signal of the high-frequency part signal of the first signal and the frequencies detected in the baseband spectrum of the echo signal of the low-frequency part signal of the first signal are respectively:
  • the frequency detected in the baseband spectrum of the echo signal of the high-frequency part signal fd ,H + foffset ;
  • the frequency detected in the baseband spectrum of the echo signal of the low-frequency part signal f d,L +f offset ;
  • the center frequency fH of the high-frequency signal and the center frequency fL of the low-frequency signal are known, so the estimated value of the motion speed of the perceived object can be directly calculated based on ⁇ fHL .
  • the estimated value of the carrier frequency offset can be calculated by substituting the estimated value of the motion speed into f d,H +f offset or f d,L +f offset
  • the following method can be used to first estimate the estimated value of the carrier frequency deviation:
  • the Doppler spectrum F d,H of the high-frequency signal and the Doppler spectrum F d,L of the low-frequency signal also have the above-mentioned proportional relationship.
  • the carrier frequency deviation estimation method is as follows:
  • Step 1 Shift. Set a carrier frequency offset step value ⁇ f offset and shift the baseband spectrum F H (of the high frequency signal) to The Doppler spectrum F d,H of the high-frequency signal and the carrier frequency offset f offset ) and the baseband spectrum FL of the low-frequency signal (the sum of the Doppler spectrum F d,L of the low-frequency signal and the carrier frequency offset f offset ) are respectively subtracted or added with n ⁇ f offset to obtain the spectra F H ′ and FL ′. From the graph of the spectrum, it can be seen that the spectrum is shifted leftward or rightward along the frequency axis, as shown in FIG6A .
  • Step 2 scaling.
  • the shifted spectra F H ′ and F L ′ are scaled, that is, spectrum F L ′ is multiplied by coefficient f H /f L to obtain spectrum F L ′′, or spectrum F H ′ is multiplied by coefficient f L /f H to obtain spectrum F H ′′, as shown in FIG6B .
  • Step 3 Point multiplication. Perform corresponding point multiplication on the stretched spectrum F H ′ and F L ′′, or the spectrum F H ′′ and F L ′, that is, calculate the inner product of the vectors, and obtain the inner product p n .
  • Step 5 Peak detection. Search for the maximum value of the inner product vector P, whose corresponding value of n is k, and the estimated value of the carrier frequency deviation is:
  • the spectra F H and FL may be normalized using the maximum amplitude or power thereof as the denominator.
  • the carrier frequency offset step value ⁇ f offset , M and N may be obtained by one of the following methods:
  • the third device determines (based on at least one of the sensing requirement information, the sensing capability information of the first device, and the sensing capability information of the second device) and sends the information to the first device or the second device;
  • the third device determines the group number and sends it to the first device or the second device;
  • the third device may be a base station or a sensing function network element.
  • the sensing function network element may be referred to as a sensing network element or a sensing network function.
  • the sensing function network element may be located on the RAN side or the core network side, and refers to a network node in the core network and/or RAN that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, and sensing data processing. It may be based on an upgrade of the AMF or location management function (LMF) in the 5th Generation (5G) network, or it may be other network nodes or newly defined network nodes.
  • the functional characteristics of the sensing function network element may include at least one of the following:
  • Interacting target information with a wireless signal sending device and/or a wireless signal measuring device including a target terminal or a serving base station of the target terminal or a base station associated with a target area
  • the target information includes a sensing processing request, sensing capability, sensing auxiliary data, a sensing measurement quantity type, and sensing resource configuration information, etc., to obtain a value of a target sensing result or a sensing measurement quantity (an uplink measurement quantity or a downlink measurement quantity) sent by the wireless signal measuring device
  • the wireless signal may also be referred to as a sensing signal or a synaesthesia integrated signal
  • the sensing method to be used is determined by factors such as QoS requirement information, the sensing capability of the wireless signal sending device and the sensing capability of the wireless signal measuring device.
  • the sensing method may include: base station A sends and base station B receives, or base station sends and terminal receives, or base station A sends and receives by itself, or terminal sends and base station receives, or terminal sends and receives by itself, or terminal A sends and terminal B receives, etc.;
  • the sensing device serving the sensing service according to factors such as the type of the sensing service, information about the sensing service consumer, required sensing QoS requirement information, sensing capability of the wireless signal sending device and sensing capability of the wireless signal measuring device, wherein the sensing device includes the wireless signal sending device and/or the wireless signal measuring device;
  • the values of the perceived measurement quantities are processed or calculated to obtain the perceived results. Furthermore, the perceived results are verified, and the perceived accuracy is estimated.
  • a first signal is received from a second device through a first device, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first device determines a first parameter based on the first signal; in this way, the perception result can be compensated based on the first parameter, thereby improving the accuracy of the perception measurement.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • At least one of the first preset threshold, ⁇ f and T is determined by the perception function network element according to the perception requirement information, the perception capability information of the first device and the perception capability information of the second device.
  • the first preset threshold, ⁇ f and T may be set according to a typical speed range of the perception object in the perception prior information.
  • the typical range of the relative speed of the automobile relative to the transceiver device of the first signal is 5m/s to 40m/s.
  • the Doppler difference between the high-frequency signal and the low-frequency signal should be at least greater than the Doppler resolution 2v/c ⁇ f>1/T.
  • the first preset threshold is 3 ⁇ 10 7 , if the frequency difference ⁇ f between the high-frequency signal and the low-frequency signal is given to be 300MHz, then the time length T should be no less than 0.1s; on the contrary, if the given time length is 0.1s, then ⁇ f should be no less than 300MHz.
  • the time resources occupied by the high-frequency signal and the low-frequency signal may be the same or different.
  • a frequency hopping method may be used to transmit the high-frequency signal and the low-frequency signal of the first signal.
  • the high-frequency signal and the low-frequency signal of the first signal are not transmitted at the same time.
  • the high-frequency signal may be transmitted at the same time.
  • the high frequency signal and the low frequency signal are sent alternately.
  • the frequency hopping between the high frequency signal and the low frequency signal of the first signal can be intra-time slot frequency hopping or inter-time slot frequency hopping.
  • the first parameter further includes at least one of the following:
  • SNR Signal-to-noise ratio
  • SINR Signal-to-noise and interference ratio
  • Time information where the time information is used to indicate a reception time of the first signal and/or a transmission time of the first signal.
  • the frequency information after the Doppler and carrier frequency offset of the at least one perceived object are superimposed can be referred to as first frequency information
  • the first frequency information is the frequency information directly obtained by the first device through a slow-time spectrum analysis (for example, Fast Fourier Transform (FFT)) algorithm, that is, the frequency information before the Doppler and carrier frequency offset of the perceived object are separated by the first processing, for example: f d1 +f offset , f d2 +f offset , where f d1 and f d2 are Dopplers caused by the relative motion of the two perceived objects and the first device and/or the second device.
  • FFT Fast Fourier Transform
  • the method for acquiring the received power of the first signal may include the following method:
  • CFAR constant false alarm rate
  • CFAR is performed based on the Doppler one-dimensional image obtained by slow time dimension FFT processing of the echo signal, and the maximum amplitude sample point of CFAR over the threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude;
  • the delay-Doppler two-dimensional image obtained by 2D-FFT processing of the echo signal is used for CFAR, and the maximum amplitude sample point of CFAR over the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional graph obtained by 3D-FFT processing of the echo signal, and the maximum amplitude sample point of CFAR over the threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • the target signal amplitude can also be determined by taking the CFAR maximum amplitude sample point over the threshold and the average of several of its nearest over-threshold sample points as the target signal amplitude.
  • the method for acquiring the perceived SNR/SINR may include the following method:
  • CFAR is performed based on the one-dimensional delay graph obtained by fast time dimension FFT processing of the echo signal.
  • the maximum amplitude sample point that exceeds the threshold of CFAR is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the one-dimensional graph that are ⁇ sample points away from the target sample point are taken as interference/noise sample points, and their average interference/amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude.
  • CFAR is performed based on the Doppler one-dimensional image obtained by slow time dimension FFT processing of the echo signal.
  • the sampling point with the maximum amplitude is the target sampling point, and its amplitude is the target signal amplitude.
  • All sampling points other than ⁇ sampling points in the one-dimensional graph are interference/noise sampling points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated using the target signal amplitude and the interference/noise signal amplitude.
  • CFAR Based on the delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal, CFAR is performed.
  • the maximum amplitude sample point that exceeds the threshold of CFAR is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the two-dimensional map that are ⁇ (fast time dimension) and ⁇ (slow time dimension) away from the target sample point are taken as interference/noise sample points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional graph obtained by 3D-FFT processing of the echo signal.
  • the sample point with the maximum amplitude that passes the CFAR threshold is taken as the target sample point, and its amplitude is taken as the target signal amplitude.
  • All sample points in the three-dimensional graph that are ⁇ (fast time dimension), ⁇ (slow time dimension) and ⁇ (angle dimension) sample points away from the target sample point are taken as interference/noise sample points, and their average amplitude is counted as the interference/noise signal amplitude.
  • the SNR/SINR is calculated using the target signal amplitude and the interference/noise signal amplitude.
  • the target signal amplitude can also be determined by taking the CFAR maximum amplitude sample point over the threshold and the average of several of its nearest over-threshold sample points as the target signal amplitude.
  • the method for determining the interference/noise sample points can also be further screening based on the interference/noise sample points determined above, and the screening method is: for the one-dimensional delay graph, remove several sample points near the delay of 0, and use the remaining interference/noise sample points as noise sample points; for the one-dimensional Doppler graph, remove several sample points near the Doppler of 0, and use the remaining interference/noise sample points as interference/noise sample points; for the two-dimensional delay-Doppler graph, remove the interference/noise sample points in the strip range composed of several points near the delay of 0 and the entire Doppler range, and use the remaining noise sample points as interference/noise sample points; for the three-dimensional delay-Doppler-angle graph, remove the interference/noise sample points in the slice range composed of several points near the time dimension of 0, the entire Doppler range and the entire angle range, and use the remaining interference/noise sample points as interference/noise sample points.
  • the method further includes:
  • the first device receives a second signal from the second device, where the second signal is a perception signal or a synaesthesia integration signal;
  • the first device compensates a perception result obtained based on the second signal according to the first parameter.
  • the above-mentioned second signal can be understood as a signal for the first device and the second device to perform a perception service or a synaesthesia integration service, wherein the sending end of the second signal is the second device, and the receiving end is the first device, that is, for the second signal, the second device is a perception sending node, and the first device is a perception receiving node.
  • the first device is the receiving end of both the first signal and the second signal.
  • the first device supplements the perception result obtained based on the second signal according to the first parameter.
  • the method further comprises any of the following:
  • the first device receives first indication information from a third device, where the first indication information is used to indicate that the second signal is associated with the first signal;
  • the first device determines, based on a protocol agreement, that the second signal is associated with the first signal.
  • the protocol may stipulate that as long as the first device is configured with the first signal, the first signal is associated with the second signal.
  • the first device being configured with the first signal may be understood as the first device being configured with the first configuration information of the first signal, and the first device may receive the first signal based on the first configuration information.
  • the method further includes:
  • the first device sends the first parameter to the second device
  • the first device sends a third signal to the second device, where the third signal is a perception signal or a synaesthesia integration signal;
  • the third signal is associated with the first signal, and the first parameter is used to compensate for a perception result obtained based on the third signal.
  • the third signal can be understood as a signal for the first device and the second device to perform a perception service or a synaesthesia integration service, wherein the transmitting end of the third signal is the first device, and the receiving end is the second device, that is, for the third signal, the first device is a perception sending node, and the second device is a perception receiving node.
  • the second device is the transmitting end of the first signal and the receiving end of the second signal, and the second device needs to use the first parameter when processing the perception signal, so the first device is required to send the first parameter to the second device.
  • the second device applies the first parameter received from the first device to the processing of the second signal, so that the Doppler frequency of the perception object that is not affected by the carrier frequency deviation can be obtained. Therefore, the accuracy of the perception measurement is improved.
  • the method before the first device sends the third signal to the second device, the method further includes:
  • the first device sends second indication information to the second device, where the second indication information is used to indicate that the third signal is associated with the first signal.
  • the association of the third signal with the first signal includes: a protocol stipulates that the first signal is associated with the third signal, or a third device sends third indication information to the first device and/or the second device to indicate that the third signal is associated with the first signal.
  • the first signal can be associated with the third signal as long as the second device is configured with the first signal by the protocol.
  • the second device being configured with the first signal can be understood as the second device being configured with the first configuration information of the first signal, and the second device can send the first signal based on the first configuration information.
  • the third device may first send the third indication information to the first device, and then the first device may send the second indication information to the second device based on the third indication information.
  • the third device may also send the third indication information directly to the second device.
  • the first device may also determine that the third signal is associated with the first signal, and then send the second indication information directly to the second device.
  • the method before the first device receives the first signal from the second device, the method further include:
  • the first device sends first configuration information to the second device, where the first configuration information is used to indicate time-frequency resource configuration of the first signal.
  • the second device may send a first signal to the first device based on the first configuration information.
  • the first device may determine the first configuration information autonomously, or the first configuration information may be determined by a third device. That is, in the embodiment of the present application, before the first device sends the first configuration information to the second device, the method further includes any of the following:
  • the first device determines the first configuration information
  • the first device receives the first configuration information from a third device.
  • the first device determining the first configuration information includes:
  • the first device acquires first information
  • the first device determines first configuration information according to the first information
  • the first information includes at least one of the following:
  • the state information includes at least one of position information, direction information and speed information.
  • the above-mentioned crystal oscillator information may include at least one of the following: the frequency error of the crystal oscillator and the time-varying characteristics of the frequency error.
  • the above-mentioned position information may be coordinates in a global coordinate system, or coordinates relative to a reference position, and the coordinates may be rectangular coordinates or polar coordinates.
  • the above-mentioned orientation information may be the orientation of the antenna panel or the rotation angle of the orientation of the local coordinate system relative to the global coordinate system, or the rotation angle relative to a reference coordinate system, and the rotation angle includes the azimuth, pitch angle, and roll angle.
  • the above-mentioned speed information may be the speed in the global coordinate system, or the speed relative to a reference coordinate system, and the speed includes the magnitude of the speed and the direction of the speed; if the first device is a fixed-position device, this item may be omitted or simplified.
  • the first device or the third device may receive the perception requirement information from an initiator of the perception service (eg, an application server) or a perception function network element.
  • an initiator of the perception service eg, an application server
  • a perception function network element e.g.
  • the method for the first device or the third device to obtain the perception capability information and/or the state information may include at least one of the following:
  • a capability query command e.g., UECapabilityEnquiry
  • the first device and/or the second device responds with its own sensing capability information and/or status information (e.g., via UECapabilityInformation);
  • the method further includes:
  • the first device determines whether to update the first configuration information according to the first parameter
  • the first device determines second configuration information according to the first parameter, where the second configuration information is used to update the first configuration information;
  • the first device sends the second configuration information to the second device.
  • the time-frequency resources of the first signal need to be changed to ensure the accuracy of the carrier frequency offset estimation. Therefore, the first device performs adaptive adjustment of the time-frequency resources of the first signal according to the first parameter, so as to maintain the accuracy of the sensing measurement.
  • a third device may also determine whether to update the first configuration information. For example, after the first device determines the first parameter according to the first signal, the method further includes:
  • the first device sends the first parameter to a third device, where the first parameter is used to determine whether to update the first configuration information.
  • the third device determines that the first configuration information needs to be updated, the second configuration information can be determined, and then the second configuration information is directly sent to the first device and the second device, or the second configuration information is sent to the second device through the first device. That is, in the embodiment of the present application, after the first device sends the first parameter to the third device, the method further includes any of the following:
  • the first device receives second configuration information from the third device;
  • the first device receives second configuration information from the third device, and sends the second configuration information to the second device;
  • the second configuration information is used to update the first configuration information.
  • the first configuration information and/or the second configuration information includes at least one of the following:
  • Operating band ID (operating band ID);
  • BWP Bandwidth part
  • Time-frequency resource configuration information of resources
  • the first part is the frequency domain resource information of the signal
  • the second part is the frequency domain resource information of the signal
  • the time-frequency resource configuration information of the resource set can be understood or replaced by the time-frequency resource configuration information of the resource set ID or the time-frequency resource configuration information of the resource set ID list.
  • the time-frequency resource configuration information of the resource can be understood or replaced by the time-frequency resource configuration information of the resource ID or the time-frequency resource configuration information of the resource ID list.
  • the time-frequency resource configuration information of the resource or the time-frequency resource configuration information of the resource set may include at least one of the following:
  • the duration occupied in the time domain that is, the time length from the target OFDM symbol with the smallest index within the resource set or resource to the target OFDM symbol with the largest index
  • the bandwidth occupied in the frequency domain that is, the bandwidth from the target subcarrier with the smallest index to the target subcarrier with the largest index within the resource set or resource;
  • the position of the RB where the target subcarrier is located in the frequency domain for example, represented by a bitmap
  • a list or ID of resources included in the corresponding resource set may also be included.
  • the target OFDM symbol refers to the OFDM symbol where the resource element (RE) allocated to the first signal is located;
  • the target subcarrier refers to the subcarrier where the RE allocated to the first signal is located, and the RE allocated to the first signal can be an RE dedicated to the first signal or an RE shared by the first signal and a communication service (reference signal, synchronization signal, etc.).
  • the method further includes:
  • the first device acquires second information, where the second information is used to determine the first parameter
  • the second information is agreed upon by the protocol or a signaling instruction is sent by a third device to the first device, and the second information includes at least one of a carrier frequency deviation step value, a first value and a second value, wherein the first value is used to indicate the minimum value of the value range of the carrier frequency deviation, and the second value is used to indicate the maximum value of the value range of the carrier frequency deviation.
  • the carrier frequency offset estimation includes the following interactive processes.
  • Step S71 The first device obtains first configuration information, which specifically includes any of the following:
  • Step S71a the first device determines first configuration information
  • Step S71b The first device receives first configuration information from the third device.
  • the first configuration information may be determined by the first device, or by the third device.
  • the first device or the third device determining the first configuration information may include:
  • the first device or the third device acquires first information
  • the first device or the third device determines first configuration information according to the first information
  • the first information includes at least one of the following:
  • the sensing capability information of the second device is the sensing capability information of the second device.
  • the first device or the third device may obtain the perception requirement information and the perception capability information.
  • the perception requirement information may be received from a perception service initiator (eg, an application server) or a perception function network element.
  • the method for acquiring the perception capability information and/or the state information may include at least one of the following:
  • a capability query command e.g., UECapabilityEnquiry
  • the first device and/or the second device replying with its own sensing capability information and/or status information (e.g., through UECapabilityInformation);
  • Step S72 The first device sends first configuration information to the second device.
  • the first configuration information is used to indicate configuration information of time-frequency resources of the first signal.
  • Step S73 the second device sends a first signal according to the first configuration information
  • the first device can receive the first signal according to the first configuration information, and perform the first processing to obtain the first parameter.
  • the principle of the first processing can refer to the above embodiment and will not be repeated here.
  • step S74a the first device determines the second configuration information, for example, judging whether it is necessary to adjust the configuration information of the time-frequency resources of the first signal based on the first parameter.
  • the first device determines the configuration information of the time-frequency resources of the first signal after adjustment (i.e., the second configuration information).
  • Step S74b1 the first device sends a first parameter to the third device
  • Step S74b2 The third device determines the second configuration information. For example, it determines whether the configuration information of the time-frequency resources of the first signal needs to be adjusted according to the first parameter, and when the third device determines that the configuration information of the time-frequency resources of the first signal needs to be adjusted, the third device determines the second configuration information.
  • Step S74b3 The third device sends second configuration information to the first device.
  • the first device or the third device may determine the second configuration information based on the first information and the first parameter. For example, if the Doppler of the perceived object in the first parameter is less than the first preset value, the time length of the first signal should be increased; for another example, if the first frequency information in the first parameter is less than the second preset value, the first signal should be switched from the current band to another band.
  • Step S75 The first device sends the second configuration information to the second device.
  • first device the second device and the third device may include the following situations:
  • the first device is a base station, and the second device is a terminal.
  • the third device may be a sensing function network element, or the third device is not required.
  • the terminal may send a first signal that meets the requirements through an uplink, and the base station may receive the first signal and perform a first process to obtain a first parameter.
  • the signaling interaction between the base station and the terminal is through an air interface.
  • the signaling interaction between the base station and the perception function network element, and the interaction between the perception function network element and the base station may be forwarded to the wireless access network through the N2 interface by the AMF; or sent by the perception function network element to the UPF, and the UPF sent to the wireless access network through the N3 interface; or sent to the wireless access network (base station) through a newly defined interface.
  • Case 2 the first device is base station A, and the second device is base station B.
  • the third device may be a perception function network element, or the third device is not required.
  • base station B can send a first signal that meets the requirements through a wireless link between base stations (for example, a backhaul link, or other wireless links between base stations newly added for the perception service), and base station A obtains a first parameter by receiving the first signal and performing a first process.
  • the signaling interaction between base station A and base station B can be through the Xn interface.
  • the signaling interaction between base station A and the perception function network element, and the interaction between the perception function network element and the base station can be forwarded to the wireless access network through the N2 interface by using the AMF; or the perception function network element sends it to the UPF, and the UPF sends it to the wireless access network through the N3 interface; or it is sent to the wireless access network (base station A) through a newly defined interface.
  • the first device is terminal 1
  • the second device is terminal 2.
  • the third device may be a base station or a perception function network element.
  • the signaling interaction between terminal 1 (first device) and the perception function network element (third device) needs to go through the access base station of terminal 1.
  • terminal 2 can send a first signal that meets the requirements through a sidelink, and terminal 1 obtains a first parameter by receiving the first signal and performing a first processing.
  • the signaling interaction between terminal 1 and terminal 2 can be through a sidelink link, or forwarded through an access base station.
  • the signaling transmission between terminal 1 and the perception function network element can be through non-access stratum (Non-Access Stratum, NAS) signaling (forwarded via AMF) and/or through radio resource control (Radio Resource Control, RRC) signaling or media access control control element (Media Access Control Control Element, MAC CE) or layer 1 signaling or other newly defined perception signaling.
  • Non-Access Stratum Non-Access Stratum
  • RRC Radio Resource Control
  • MAC CE media access control control element
  • the perception result may be compensated to improve the accuracy of the perception measurement.
  • the sending and receiving of the perception signal or the synaesthesia integrated signal for performing the perception service may include the following situations:
  • Case 1 the first device sends the third signal, and the second device receives the third signal.
  • the second device is a transmitter of the first signal and a receiver of the third signal.
  • the second device needs to use the first parameter when processing the third signal, so the first device needs to send the first parameter to the second device.
  • the second device applies the first parameter received from the first device to the processing of the third signal, so as to obtain the Doppler frequency of the perceived object that is not affected by the carrier frequency offset.
  • the third signal is associated with the first signal to indicate that the carrier frequency offset estimated by the first signal can be used to compensate for the perception result obtained by performing the perception service on the third signal.
  • the association of the third signal with the first signal includes any one of the following:
  • the first device or the third device sends indication information to the second device, indicating the first signal associated with the third signal;
  • the protocol stipulates that as long as the second device is configured with the first signal, the first signal is associated with the third signal of the second device performing the perception service.
  • Case 2 the second device sends a second signal, and the first device receives the second signal.
  • the first device is simultaneously the receiving end of the first signal and the second signal. After performing the first processing on the first signal to obtain the first parameter, the first device applies the first parameter to the processing of the second signal, thereby obtaining the Doppler frequency of the perceived object that is not affected by the carrier frequency deviation.
  • the second signal is associated with the first signal to indicate that the carrier frequency offset estimated by the first signal can be used to compensate for the perception result obtained by performing a perception service on the second signal.
  • the second signal is associated with the first signal and includes any of the following:
  • the third device sends a signaling to the first device, indicating the first signal associated with the second signal;
  • the protocol stipulates that as long as the first device is configured with the first signal, the first signal is associated with the second signal of the second device performing the perception service.
  • the first device performs adaptive adjustment of the time-frequency resources of the first signal according to the first parameter.
  • an embodiment of the present application further provides a transmission processing method.
  • the transmission processing method includes:
  • Step 801 The second device sends a first signal to the first device, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • the method further includes:
  • the second device sends a second signal to the first device, where the second signal is a perception signal or a synaesthesia integration signal;
  • the protocol stipulates that the second signal is associated with the first signal, or a third device sends third indication information to the first device to indicate that the second signal is associated with the first signal.
  • the method further includes:
  • the second device receives the first parameter from the first device
  • the second device receives a third signal from the first device, where the third signal is a perception signal or a synaesthesia integration signal;
  • the second device compensates a perception result obtained based on the third signal based on the first parameter.
  • the method further includes any one of the following:
  • the second device receives third indication information from a third device, where the third indication information is used to indicate that the third signal is associated with the first signal;
  • the second device receives second indication information from the first device, where the second indication information is used to indicate that the third signal is associated with the first signal;
  • the second device determines, based on a protocol agreement, that the third signal is associated with the first signal.
  • the method before the second device sends the first signal to the first device, the method further includes:
  • the second device receives first configuration information from the first device or the third device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal.
  • the method further includes:
  • the second device receives second configuration information from the first device or the third device, where the second configuration information is determined based on the first parameter and is used to update the first configuration information.
  • a first signal is sent to a first device through a second device, where the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first device determines a first parameter based on the first signal; in this way, the perception result can be compensated based on the first parameter, thereby improving the accuracy of the perception measurement.
  • an embodiment of the present application further provides a transmission processing method.
  • the transmission processing method includes:
  • Step 901 The third device sends first configuration information to the first device and/or the second device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the first part signal.
  • the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • the method further includes at least one of the following:
  • the third device sends first indication information to the first device, where the first indication information is used to indicate that a second signal sent by the second device is associated with the first signal, a receiving end of the second signal is the first device, and the second signal is a perception signal or a synaesthesia integration signal;
  • the third device sends third indication information to the first device and/or the second device, where the third indication information is used to indicate that a third signal sent by the first device is associated with the first signal, the receiving end of the third signal is the second device, and the third signal is a perception signal or a synaesthesia integration signal.
  • the method further includes:
  • the third device acquires the first information
  • the third device determines first configuration information according to the first information
  • the first information includes at least one of the following:
  • the state information includes at least one of position information, direction information and speed information.
  • the method further includes:
  • the third device receives the first parameter from the first device
  • the third device determines whether to update the first configuration information according to the first parameter
  • the third device determines second configuration information according to the first parameter, where the second configuration information is used to update the first configuration information;
  • the third device sends the second configuration information to the first device and/or the second device.
  • the method further comprises:
  • the third device sends second information to the first device, where the second information is used to determine the first parameter;
  • the second information includes at least one of a carrier frequency deviation step value, a first value and a second value, wherein the first value is used to indicate the minimum value of the value range of the carrier frequency deviation, and the second value is used to indicate the maximum value of the value range of the carrier frequency deviation.
  • first configuration information is sent to the first device and/or the second device through a third device, and the second device sends a first signal to the first device based on the first configuration information, wherein the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first device determines a first parameter based on the first signal; in this way, the perception result can be compensated based on the first parameter, thereby improving the accuracy of the perception measurement.
  • the transmission processing method provided in the embodiment of the present application can be executed by a transmission processing device.
  • the transmission processing device provided in the embodiment of the present application is described by taking the transmission processing method executed by the transmission processing device as an example.
  • the transmission processing device 1000 includes:
  • a first receiving module 1001 is configured to receive a first signal from a second device, where the first signal includes a first partial signal and a second partial signal, where the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal;
  • the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • the first parameter further includes at least one of the following:
  • SNR perceived signal-to-noise ratio
  • SINR perceived signal-to-interference-plus-noise ratio
  • Time information where the time information is used to indicate a reception time of the first signal and/or a transmission time of the first signal.
  • the transmission processing device 1000 further includes:
  • the first receiving module 1001 is further used to receive a second signal from a second device, where the second signal is a perception signal or a synaesthesia integration signal;
  • the first compensation module is used to compensate the perception result obtained based on the second signal according to the first parameter.
  • the first receiving module 1001 is further used to receive first indication information from a third device, where the first indication information is used to indicate that the second signal is associated with the first signal; and/or
  • the first determining module 1002 is further configured to determine, based on a protocol agreement, that the second signal is associated with the first signal.
  • the transmission processing device 1000 further includes:
  • a first sending module is used to send the first parameter to the second device; send a third signal to the second device, wherein the third signal is a perception signal or a synaesthesia integration signal;
  • the third signal is associated with the first signal, and the first parameter is used to compensate for a perception result obtained based on the third signal.
  • the first sending module is further used for the first device to send second indication information to the second device, where the second indication information is used to indicate that the third signal is associated with the first signal.
  • the association of the third signal with the first signal includes: a protocol stipulates that the first signal is associated with the third signal, or a third device sends third indication information to the first device and/or the second device to indicate that the third signal is associated with the first signal.
  • the first sending module is used to send first configuration information to the second device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal.
  • the first determining module 1002 is further configured to determine the first configuration information
  • the first receiving module 1001 is further configured to receive the first configuration information from a third device.
  • the first determining module 1002 is specifically used to obtain first information, and determine first configuration information according to the first information;
  • the first information includes at least one of the following:
  • the state information includes at least one of position information, direction information and speed information.
  • the first determination module 1002 is further configured to determine whether to update the first configuration information according to the first parameter; if it is determined to update the first configuration information, determine second configuration information according to the first parameter, and the second configuration information is used to update the first configuration information;
  • the first sending module is further used to send the second configuration information to the second device.
  • the first sending module is further configured to send the first parameter to a third device, wherein the first parameter is used to to determine whether to update the first configuration information.
  • the first receiving module 1001 is further used to receive second configuration information from the third device when the third device determines to update the first configuration information; or, the first receiving module 1001 is further used to receive second configuration information from the third device when the third device determines to update the first configuration information, and the first sending module is used to send the second configuration information to the second device;
  • the second configuration information is used to update the first configuration information.
  • the first configuration information and/or the second configuration information includes at least one of the following:
  • Time-frequency resource configuration information of the resource set
  • Time-frequency resource configuration information of resources
  • the first part is the frequency domain resource information of the signal
  • the second part is the frequency domain resource information of the signal
  • the transmission processing device further includes:
  • the second information is agreed upon by the protocol or a signaling instruction is sent by a third device to the first device, and the second information includes at least one of a carrier frequency deviation step value, a first value and a second value, wherein the first value is used to indicate the minimum value of the value range of the carrier frequency deviation, and the second value is used to indicate the maximum value of the value range of the carrier frequency deviation.
  • the transmission processing device 1100 includes:
  • the second sending module 1101 is used to send a first signal to a first device, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • the second sending module 1101 is further configured to send a second signal to the first device, wherein the second signal
  • the signal is a perceptual signal or a synaesthesia integration signal
  • the protocol stipulates that the second signal is associated with the first signal, or a third device sends third indication information to the first device to indicate that the second signal is associated with the first signal.
  • the transmission processing device 1100 further includes:
  • a second receiving module is used to receive the first parameter from the first device; receive a third signal from the first device, wherein the third signal is a perception signal or a synaesthesia integration signal;
  • the second compensation module is used to compensate the perception result obtained based on the third signal based on the first parameter.
  • the second receiving module is further used to receive third indication information from a third device, where the third indication information is used to indicate that the third signal is associated with the first signal; or,
  • the second receiving module is further configured to receive second indication information from the first device, where the second indication information is used to indicate that the third signal is associated with the first signal; or,
  • the transmission processing device 1100 further includes a second determination module, configured to determine, based on a protocol agreement, that the third signal is associated with the first signal.
  • the transmission processing device 1100 further includes:
  • the second receiving module is used to receive first configuration information from the first device or the third device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal.
  • the second receiving module is further used to receive second configuration information from the first device or the third device, where the second configuration information is determined based on the first parameter, and the second configuration information is used to update the first configuration information.
  • the transmission processing device 1200 includes:
  • the third sending module 1201 is used to send first configuration information to the first device and/or the second device, where the first configuration information is used to indicate the time-frequency resource configuration of the first signal, where the first signal includes a first part signal and a second part signal, where the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, where the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the first signal satisfies at least one of the following:
  • the first part of the signal and the second part of the signal occupy different frequency resources
  • ⁇ f ⁇ T is greater than or equal to a first preset threshold, wherein ⁇ f represents the difference between the center frequency of the first signal and the center frequency of the second signal, and T represents the smaller duration between the duration occupied by the first signal and the duration occupied by the second signal.
  • the third sending module 1201 is further used to indicate at least one of the following:
  • first indication information is used to indicate that a second signal sent by a second device is associated with the first signal, a receiving end of the second signal is the first device, and the second signal is a perception signal or a synaesthesia integration signal;
  • the third indication information is used to indicate that a third signal sent by the first device is associated with the first signal, the receiving end of the third signal is the second device, and the third signal is a perception signal or a synaesthesia integration signal.
  • the transmission processing device 1200 further includes:
  • a second acquisition module used to acquire first information
  • a third determining module configured to determine first configuration information according to the first information
  • the first information includes at least one of the following:
  • the state information includes at least one of position information, direction information and speed information.
  • the transmission processing device 1200 further includes:
  • a third receiving module configured to receive the first parameter from the first device
  • a third determination module configured to determine whether to update the first configuration information according to the first parameter; if it is determined to update the first configuration information, determine second configuration information according to the first parameter, wherein the second configuration information is used to update the first configuration information;
  • the third sending module 1201 is further configured to send the second configuration information to the first device and/or the second device.
  • the third sending module 1201 is further used to send second information to the first device, where the second information is used to determine the first parameter;
  • the second information includes at least one of a carrier frequency deviation step value, a first value and a second value, wherein the first value is used to indicate the minimum value of the value range of the carrier frequency deviation, and the second value is used to indicate the maximum value of the value range of the carrier frequency deviation.
  • the transmission processing device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the transmission processing device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 4 to 9 and achieve the same technical effects. To avoid repetition, they will not be described here.
  • the embodiment of the present application further provides a communication device 1300, including a processor 1301 And a memory 1302, the memory 1302 stores a program or instruction that can be run on the processor 1301, and when the program or instruction is executed by the processor 1301, the various steps of the above-mentioned transmission processing method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, where the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal; the processor is used to determine a first parameter according to the first signal; wherein the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation;
  • the communication interface is used to send a first signal to the first device, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 14 is a schematic diagram of the hardware structure of a terminal implementing the embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409 and at least some of the components of the processor 1410.
  • the terminal 1400 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG14 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042, and the graphics processing unit 14041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1406 may include a display panel 14061, and the display panel 14061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072.
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the radio frequency unit 1401 can transmit the data to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
  • the radio frequency unit 1401 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1409 can be used to store software programs or instructions and various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1409 may include a volatile memory or a non-volatile memory, or the memory 1409 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1409 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1410.
  • the radio frequency unit 1401 is used to receive a first signal from a second device, the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and the center frequency of the first partial signal is higher than the center frequency of the second partial signal; the processor 1410 is used to determine a first parameter according to the first signal; wherein the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset;
  • the radio frequency unit 1401 is used to send a first signal to the first device, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and the center frequency of the first partial signal is higher than the center frequency of the second partial signal; the processor is used to determine a first parameter according to the first signal; wherein the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency offset;
  • the communication interface is used to send a first signal to the first device,
  • the first signal includes a first partial signal and a second partial signal, the first partial signal and the second partial signal are in the same frequency band, and a center frequency of the first partial signal is higher than a center frequency of the second partial signal;
  • the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation;
  • the communication interface is used to send first configuration information to the first device and/or the second device, the first configuration information is used to indicate the time-frequency resource configuration of the first signal, the first signal includes a first part signal and a second part signal, the first part signal and the second part signal are in the same frequency band, and the center frequency of the first part signal is higher than the center frequency of the second part signal; the first signal is used to determine a first parameter, the first parameter is used to compensate for the perception result, and the first parameter includes a carrier frequency deviation.
  • This network side device embodiment corresponds to the above-mentioned network side device method embodiment.
  • Each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1500 includes: an antenna 1501, a radio frequency device 1502, a baseband device 1503, a processor 1504 and a memory 1505.
  • the antenna 1501 is connected to the radio frequency device 1502.
  • the radio frequency device 1502 receives information through the antenna 1501 and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502.
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1503, which includes a baseband processor.
  • the baseband device 1503 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 15, one of which is, for example, a baseband processor, which is connected to the memory 1505 through a bus interface to call the program in the memory 1505 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1506, which is, for example, a common public radio interface (CPRI).
  • a network interface 1506 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1500 of the embodiment of the present application also includes: instructions or programs stored in the memory 1505 and executable on the processor 1504.
  • the processor 1504 calls the instructions or programs in the memory 1505 to execute the methods executed by the modules shown in Figures 10, 11 or 12, and achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the above-mentioned transmission processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the present application embodiment further provides a chip, the chip comprising a processor and a communication interface, the communication interface and The processor is coupled, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned transmission processing method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned transmission processing method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a terminal and a network side device, wherein the terminal is used to execute the various processes as shown in Figure 4 or Figure 8 and the various method embodiments described above, and the network side device is used to execute the various processes as shown in Figure 4 or Figure 8 or Figure 9 and the various method embodiments described above, and can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输处理方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的传输处理方法包括:第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一设备根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。

Description

传输处理方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2023年01月12日在中国提交的中国专利申请No.202310041486.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输处理方法、装置、终端及网络侧设备。
背景技术
随着通信技术的发展,在通信系统中,可以基于感知信号或者通感一体化信号进行感知目标的测量。在通感一体化中,获取精确的测量信息尤为重要,而器件和硬件电路的非理想因素会显著影响测量精度。例如,收发端时钟偏差和非理想同步等因素带来载波频偏(即载波频率偏移),而载波频偏将会影响到感知测量的精度。因此,相关技术中存在由于载波频偏导致感知测量的准确性较差的问题。
发明内容
本申请实施例提供一种传输处理方法、装置、终端及网络侧设备,能够解决由于载波频偏导致感知测量的准确性较差的问题。
第一方面,提供了一种传输处理方法,包括:
第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
所述第一设备根据所述第一信号确定第一参数;
其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第二方面,提供了一种传输处理方法,包括:
第二设备向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第三方面,提供了一种传输处理方法,包括:
第三设备向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部 分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第四方面,提供了一种传输处理装置,包括:
第一接收模块,用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
第一确定模块,用于根据所述第一信号确定第一参数;
其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第五方面,提供了一种传输处理装置,包括:
第二发送模块,用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第六方面,提供了一种传输处理装置,包括:
第三发送模块,用于向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,
在所述终端为第一设备时,所述通信接口用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述处理器用于根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述终端为第二设备时,所述通信接口用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第 一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,
在所述网络侧设备为第一设备时,所述通信接口用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述处理器用于根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述网络侧设备为第二设备时,所述通信接口用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述网络侧设备为第三设备时,所述通信接口用于向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
第十一方面,提供了一种通信系统系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面或第二方面所述的传输处理方法的步骤,所述网络侧设备可用于执行如第一方面或第二方面或第三方面所述的传输处理方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
本申请实施例中,通过第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一设备根据所述第一信号确定第一参数;这样可以基于第一参数对感知结果进行补偿,从而提高了感知测量的准确性。
附图说明
图1是本申请实施例可应用的网络结构示意图;
图2是本申请实施例应用的感知场景示例图;
图3是本申请实施例感知对象回波信号频谱示意图;
图4是本申请实施例提供的传输处理方法的流程示意图之一;
图5A是本申请实施例提供的传输处理方法中第一信号的高频部分信号的回波信号基带频谱示意图;
图5B是本申请实施例提供的传输处理方法中第一信号的低频部分信号的回波信号基带频谱示意图;
图6A是本申请实施例提供的传输处理方法中回波信号基带频谱平移示例图;
图6B是本申请实施例提供的传输处理方法中回波信号基带频谱伸缩示例图;
图7是本申请实施例提供的传输处理方法的流程示意图之二;
图8是本申请实施例提供的传输处理方法的流程示意图之三;
图9是本申请实施例提供的传输处理方法的流程示意图之四;
图10是本申请实施例提供的传输处理装置的结构示意图之一;
图11是本申请实施例提供的传输处理装置的结构示意图之二;
图12是本申请实施例提供的传输处理装置的结构示意图之三;
图13是本申请实施例提供的通信设备的结构示意图;
图14是本申请实施例提供的终端的结构示意图;
图15是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书中的术语“指示”既可以是一个明确的指示,也可以是一个隐含的指示。其中,明确的指示可以理解为,发送方在发送的指示中明确告知了接收 方需要执行的操作或请求结果;隐含的指示可以理解为,接收方根据发送方发送的指示进行判断,根据判断结果确定需要执行的操作或请求结果。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或移动热点(WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function, SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、通信感知一体化(Integrated Sensing and Communication,ISAC)。
未来超五代移动通信技术(Beyond 5G,B5G)和6G无线通信系统有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的WiFi传感和自动驾驶汽车的雷达传感。传感和通信系统通常是单独设计的,并占用不同的频段。ISAC能够使得传感和通信系统共享同一频段和硬件、提高频率效率并降低硬件成本。ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用场景。ISAC的典型应用包括:自动驾驶车辆的导航和避障、基于WiFi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。
二、感知方式。
根据感知信号发送节点和接收节点的不同,分为6种基本感知方式。
方式1、基站自发自收感知。在这种感知方式下,基站A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式2、基站间空口感知。此时,基站B接收基站A发送的感知信号,进行感知测量。
方式3、上行空口感知。此时,基站A接收终端A发送的感知信号,进行感知测量。
方式4、下行空口感知。此时,终端B接收基站B发送的感知信号,进行感知测量。
方式5、终端自发自收感知。此时,终端A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式6、终端间旁链路(Sidelink)感知。此时,终端B接收终端A发送的感知信号,进行感知测量。
三、感知非理想因素。
在通感一体化中,获取精确的测量信息尤为重要,而器件和硬件电路的非理想因素会显著影响测量精度,特别是对于上述感知方式中感知信号的接收端和发射端不是同一设备的情况。
影响感知性能的非理想因素,主要包括:
1、功放不确定性,或信号接收功率的不确定性。由于低噪声放大器,可编程增益放大器等器件的非理想导致实际的增益调整与预期不符,进而使得测量得到的信号幅度不准确。
2、IQ路不平衡。I、Q支路器件性能的局限性使得本振信号相位不能保证严格相差90°、两路信号增益存在差异以及存在直流偏置等,进而导致基带信号的正交性被破坏,造成感知信号的恶化。
3、时频同步偏差。收发端时钟偏差、非理想同步等因素带来载波频率偏移、取样频率偏移、符号定时偏移等问题,会影响对速度估计的准确性或导致测距模糊。
4、天线/阵列幅相误差。包括在利用波束赋形进行感知时,波束赋形幅度和相位误差,将导致形成的波束形状(波束增益、波束宽度、旁瓣水平)与实际不符,进而在基于波束赋形后的信道信息进行感知时导致精度下降,造成角度和反射功率估计误差,甚至造成误检。此外,波束切换延迟也会加大干扰和噪声对感知结果的影响。发送端对感知信号的影响,主要包括加窗、预编码、波束赋形等对接收端不可知的处理导致接收端无法获取真实的信道信息。
5、时间域随机相位。该随机相位来自于发射机天线、射频模块(包括连接射频通道上的各种器件)、数字处理模块、时钟模块的其中至少1者在信号发送和接收过程中状态发生了变化(例如开启、关闭、从1个状态转变为另1个状态等)。若设备具有不止1套发射机,则每个发射机可能会产生独立的随机相位。该随机相位一般在发射信号带宽内是一致的,但不同时刻上产生的随机相位值是不同的,呈现在某个弧度范围内随机分布。
考虑图2所示的场景,采用A发B收的感知模式,感知信号的载频配置为fc,但是由于器件的非理想特性,在发射端实际发送信号的载频有误差ΔfT、在接收端用于接收信号的本振频率有误差ΔfR。另外,由感知对象与感知信号的发射端和/或接收端设备的相对运动引起的多普勒频移为fd。因此,接收端得到的基带信号频率为(ΔfT-ΔfR)+fd;其中,ΔfT-ΔfR为收发两端的载波频偏,记为foffset。因此,接收端得到的基带信号的频率由多普勒fd和载波频偏foffset两部分构成,如下图3所示。为此提出了本申请的传输处理方法。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输处理方法进行详细地说明。
参照图4,本申请实施例提供了一种传输处理方法,如图4所示,该传输处理方法包括:
步骤401,第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
步骤402,所述第一设备根据所述第一信号确定第一参数;
其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
本申请实施例中,上述第一部分信号可以理解为高频部分信号,上述第二部分信号可以理解为低频部分信号。通过设置第一信号的高频部分信号和低频部分信号处于同一频带内,从而可以使得高频部分信号和低频部分信号上叠加的载波频偏是相同。这样,可以利用第一信号的高频部分信号和低频部分信号的不同的多普勒频移和相同的载波频偏,来将多普勒频移和载波频偏分离出来,达到估计出感知对象的运动速度和/或载波频偏的目的。
可选地,上述中心频率也可以称之为载波中心频率。上述载波频偏可以理解为第二设备相对于第一设备的载波频偏。
应理解,本申请实施例中,接收第一信号可以理解为接收第一信号经过感知对象反射的回波信号。
可选地,上述第一设备可以为基站或者终端,上述第二设备可以为基站或者终端。例如,在本申请实施例中,感知场景可以包括以下感知场景:
场景1,第一设备为基站,第二设备为终端;
场景2,第一设备为基站A,第二设备为基站B;
场景3,第一设备为终端1,第二设备为终端2。
可选地,在本申请实施例中可以利用多普勒色散现象,来将由于感知对象和第一信号的收发端设备的相对运动引起的多普勒fd,和由于器件的非理想特性引起的载波频偏foffset,分离开,从而可以准确得到感知对象的多普勒fd
需要说明的是,第一设备可以对接收到第一信号执行第一处理得到上述第一参数。该第一处理的具体原理可以根据实际需要进行设置,在此不做进一步的限定。以下对第一处理的原理进行示例性说明。
假设高频部分信号的中心频率为fH,低频部分信号的中心频率为fL,对于任一相对于第一信号的收发端设备的相对运动的运动速度为v的感知对象,对第一信号的高频部分信号和低频部分信号产生的多普勒频移分别为:
高频部分信号的多普勒频移:
低频部分信号的多普勒频移:
忽略由在发射端实际发送信号的载频误差ΔfT、在接收端用于接收信号的本振频率误差ΔfR引起的多普勒,因为ΔfT和ΔfR与fH和fL相比通常小至少5~6个数量级。由于限制第一信号的高频部分信号和低频部分信号处于同一个频带(band)之内,因此,第一信号的高频部分信号和低频部分信号上所叠加的载波频偏foffset是相同的。从而可以直接估计感知对象的运动速度。
需要注意的是,本申请实施例中,感知对象相对于第一信号的收发端设备的相对运动的运动速度v的准确含义是:从第一设备到感知对象之间的信号传播路径长度和从感知对象到第二设备之间的信号传播路径长度之和的变化速率。例如,在时间Δt内,从第一设 备到感知对象之间的信号传播路径长度的变化为ΔR1、从感知对象到第二设备之间的信号传播路径长度的变化为ΔR2,则本申请实施例中,感知对象相对于第一信号的收发端的相对运动的运动速度v为(ΔR1+ΔR2)/Δt。
应理解,能够不估计载波频偏、直接估计出感知对象的运动速度的前提是,能够通过一些算法将第一信号的高频部分信号的回波信号基带频谱(如图5A所示)中检测出的感知对象,与第一信号的低频部分信号的回波信号基带频谱(如图5B所示)中检测出的感知对象关联起来,即认为是同一个感知对象。例如,能够将高频部分信号的回波信号基带频谱中检测出的感知对象1,与低频部分信号的回波信号基带频谱中检测出的感知对象1关联起来。显然,对于只存在一个感知对象的情况,高频部分信号的回波信号基带频谱中检测出的感知对象与低频部分信号的回波信号基带频谱中检测出的感知对象自然是同一个感知对象。
对任一感知对象,第一信号的高频部分信号的回波信号基带频谱中检测出的频率,和,第一信号的低频部分信号的回波信号基带频谱中检测出的频率分别为:
高频部分信号的回波信号基带频谱中检测出的频率:fd,H+foffset
低频部分信号的回波信号基带频谱中检测出的频率:fd,L+foffset
对上述两个频率相减得到:
在上式中高频部分信号的中心频率fH和低频部分信号的中心频率为fL是已知的,因此可以直接根据ΔfHL计算得到感知对象的运动速度的估计值
进一步地,可根据运动速度的估计值代入fd,H+foffset或fd,L+foffset计算得到载波频偏的估计值
可选地,当环境中有多个感知对象,可采用下面所述方法先估计出载波频偏的估计值
从公式(1)和公式(2)中可以看出,对于任意的感知对象,高频部分信号的多普勒频移fd,H和低频部分信号的多普勒频移fd,L具有固定的比例关系,即有:
因此,对于任意数量和任意运动速度的感知对象叠加起来的多普勒谱,高频部分信号的多普勒谱Fd,H和低频部分信号的多普勒谱Fd,L,也是具有上述的比例关系。根据这一现象,载波频偏估计方法如下:
第一步:平移。设定一个载波频偏的步进值Δfoffset,将高频部分信号的基带频谱FH(为 高频部分信号的多普勒谱Fd,H与载波频偏foffset之和)和低频部分信号的基带频谱FL(为低频部分信号的多普勒谱Fd,L与载波频偏foffset之和)分别减去或加上n·Δfoffset得到频谱FH′和FL′,从频谱的图形上看,就是对频谱沿着频率轴做向左或者向右的平移,具体如图6A所示。
第二步:伸缩。对平移后的频谱FH′和FL′进行伸缩,即,将频谱FL′乘以系数fH/fL得到频谱FL″,或者,将FH′乘以系数fL/fH得到频谱FH″,具体如图6B所示。
第三步:点乘。将伸缩后的频谱FH′和FL″,或者,频谱FH″和FL′,进行对应的点相乘,即求矢量的内积,得到内积pn
第四步:遍历。在预设的范围内,改变n的取值,对第一步、第二步、第三步的过程进行遍历,得到内积向量为P={p-M,…,p-2,p-1,p0,p1,p2,…pN},其中M和N都是预设的正整数。
第五步:峰值检测。搜索内积向量P的最大值,其对应的n的值为k,则载频频偏的估计值为:
可选地,在第一步之前,对频谱FH和FL可以分别以其中的幅度或者功率的最大值为分母进行归一化。
在上述方法中,载波频偏步进值Δfoffset、M和N可以通过如下方式之一获取:
由第三设备(根据感知需求信息、第一设备的感知能力信息和第二设备的感知能力信息中的至少一项)确定后发送给第一设备或第二设备;
由协议配置固定的多组取值,由第三设备确定组号后发送给第一设备或第二设备;
由协议配置固定的一组取值。
可选地,上述第三设备可以为基站或者感知功能(Sensing Function)网元。感知功能网元可以称之为也可以叫做感知网元或者感知网络功能。该感知功能网元可以处于RAN侧或核心网侧,是指核心网和/或RAN中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络节点,可以是基于第5代(5th Generation,5G)网络中AMF或位置管理功能(Location Management Function,LMF)升级,也可以是其他网络节点或新定义的网络节点,具体的,感知功能网元的功能特性可以包括以下至少一项:
与无线信号发送设备和/或无线信号测量设备(包括目标终端或者目标终端的服务基站或者目标区域关联的基站)进行目标信息交互,其中,目标信息包括感知处理请求,感知能力,感知辅助数据,感知测量量类型和感知资源配置信息等,以获得无线信号测量设备发送目标感知结果或感知测量量(上行测量量或下行测量量)的值;其中,无线信号也可以称作感知信号或者通感一体化信号;
根据感知业务的类型、感知业务消费者信息、所需的感知服务质量(Quality of Service, QoS)要求信息、无线信号发送设备的感知能力和无线信号测量设备的感知能力等因素来决定使用的感知方法,该感知方法可以包括:基站A发基站B收,或者基站发终端收,或者基站A自发自收,或者终端发基站收,或者终端自发自收,或者终端A发终端B收等;
根据感知业务的类型、感知业务消费者的信息、所需的感知QoS要求信息、无线信号发送设备的感知能力和无线信号测量设备的感知能力等因素,来决定为感知业务服务的感知设备,其中,感知设备包括无线信号发送设备和/或无线信号测量设备;
管理感知业务所需资源的整体协调和调度,如对基站和/或终端的感知资源进行相应的配置;
对感知测量量的值进行数据处理,或进行计算获得感知结果。进一步地,验证感知结果,估计感知精度等。
本申请实施例中,通过第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一设备根据所述第一信号确定第一参数;这样可以基于第一参数对感知结果进行补偿,从而提高了感知测量的准确性。
可选地,在一些实施例中,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,上述第一预设门限、Δf和T中的至少一项由感知功能网元根据感知需求信息、第一设备的感知能力信息和第二设备的感知能力信息确定。其中,第一预设门限、Δf和T的设置方法可以是:根据感知先验信息中感知对象的典型速度范围设置。
例如,汽车相对于第一信号的收发端设备的相对运动的运动速度的典型范围是5m/s~40m/s,要利用第一信号的多普勒色散估计载波频偏进行感知结果的补偿,应满足:高频部分信号与低频部分信号的多普勒之差至少要大于多普勒分辨率2v/c×Δf>1/T。整理得到Δf×T>c/2v,其中v为上述典型范围中的值例如5m/s,代入上式得到Δf×T>3×107,则所述的第一预设门限为3×107,如果给定高频部分信号和低频部分信号的频率之差Δf为300MHz,则时间长度T应不小于0.1s;相反,如果给定时间长度为0.1s则Δf应不小于300MHz。
需要说明的是,所述高频部分信号和低频部分信号占用的时间资源,可以相同或者不同。可选地,在第一信号的高频部分信号占用的时间资源与低频部分信号占用的时间资源之间没有重叠部分时,可以采用跳频的方式来实现第一信号的高频部分信号和低频部分信号的发送,此时第一信号的高频部分信号和低频部分信号不是同时发送,例如可以高频部 分信号与低频部分信号交替发送。第一信号的高频部分信号和低频部分信号之间的跳频可是时隙内跳频或者时隙间跳频。
可选地,在一些实施例中,所述第一参数还包括以下至少一项:
感知对象的多普勒或多普勒列表;
至少一个感知对象的多普勒与载波频偏叠加后的频率信息;
第一信号的接收功率;
第一信号的感知信噪比(Signal Noise Ratio,SNR)或第一信号的感知信干噪比(Signal to Noise and Interference Ratio,SINR);
第二设备的运动速度和第二设备的运动方向;
时间信息,所述时间信息用于表示所述第一信号的接收时间和/或所述第一信号的发送时间。
可选地,上述至少一个感知对象的多普勒与载波频偏叠加后的频率信息可以称之为第一频率信息,该第一频率信息是第一设备通过慢时间维频谱分析(例如,快速傅里叶变换(Fast Fourier Transform,FFT))算法直接得到的频率信息,即采用第一处理将感知对象的多普勒与载波频偏分离开之前的频率信息,例如:fd1+foffset、fd2+foffset,其中fd1和fd2是由两个感知对象与第一设备和/或第二设备的相对运动引起的多普勒。
其中,第一信号的接收功率的获取方法可以包括以下方法:
基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(Constant False-Alarm Rate,CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度。
应理解,目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度。
可选地,感知SNR/SINR的获取方法可以包括以下方法:
基于回波信号快时间维FFT处理得到的时延一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的 幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR。
应理解,目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度。
可选地,干扰/噪声样值点的确定方法还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方法是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除时间维0附近若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
可选地,在一些实施例中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
所述第一设备从第二设备接收第二信号,所述第二信号为感知信号或通感一体化信号;
所述第一设备根据所述第一参数对基于所述第二信号获得的感知结果进行补偿。
本申请实施例中,上述第二信号可以理解为第一设备与第二设备执行感知业务或者通感一体化业务的信号,其中,第二信号的发送端为第二设备,接收端为第一设备,即针对第二信号,第二设备为感知发送节点,第一设备为感知接收节点。换句话说,第一设备同时是第一信号和第二信号的接收端,第一设备在对第一信号执行第一处理得到第一参数后,将第一参数应用到对于第二信号的处理过程中,从而能够获得不受载波频偏影响的感知对象的多普勒频率。因此,提高了感知测量的准确性。
可选地,所述第一设备根据所述第一参数对基于所述第二信号获得的感知结果进行补 偿之前,所述方法还包括以下任一项:
所述第一设备从第三设备接收第一指示信息,所述第一指示信息用于指示所述第二信号与所述第一信号关联;
所述第一设备基于协议约定确定所述第二信号与所述第一信号关联。
本申请实施例中,可以由协议约定只要第一设备被配置了第一信号,则第一信号与第二信号关联。其中,第一设备被配置了第一信号可以理解为第一设备被配置了第一信号的第一配置信息,第一设备可以基于第一配置信息接收第一信号。
可选地,在一些实施例中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
所述第一设备向所述第二设备发送所述第一参数;
所述第一设备向所述第二设备发送第三信号,所述第三信号为感知信号或通感一体化信号;
其中,所述第三信号与所述第一信号关联,且所述第一参数用于对基于所述第三信号获得的感知结果进行补偿。
本申请实施例中,上述第三信号可以理解为第一设备与第二设备执行感知业务或者通感一体化业务的信号,其中,第三信号的发送端为第一设备,接收端为第二设备,即针对第三信号,第一设备为感知发送节点,第二设备为感知接收节点。换句话说,第二设备是第一信号的发送端、第二信号的接收端,第二设备在进行感知信号处理时需要用到第一参数,因此需要第一设备将第一参数发送给第二设备。第二设备将从第一设备处接收的第一参数应用到对于第二信号的处理过程中,从而能够获得不受载波频偏影响的感知对象的多普勒频率。因此,提高了感知测量的准确性。
可选地,所述第一设备向所述第二设备发送第三信号之前,所述方法还包括:
所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联。
可选地,所述第三信号与所述第一信号关联包括:协议约定所述第一信号与所述第三信号关联,或者,由第三设备向所述第一设备和/或所述第二设备发送第三指示信息指示所述第三信号与所述第一信号关联。
本申请实施例中,可以由协议约定只要第二设备被配置了第一信号,则第一信号与第三信号关联。其中,第二设备被配置了第一信号可以理解为第二设备被配置了第一信号的第一配置信息,第二设备可以基于第一配置信息发送第一信号。
需要说明的是,在本申请实施例中,可以由第三设备首先向第一设备发送第三指示信息,然后由第一设备基于第三指示信息向第二设备发送第二指示信息,也可以由第三设备直接向第二设备发送第三指示信息,还可以由第一设备确定第三信号与第一信号关联,然后直接向第二设备发送第二指示信息。
可选地,在一些实施例中,所述第一设备从第二设备接收第一信号之前,所述方法还 包括:
所述第一设备向所述第二设备发送第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
本申请实施例中,第二设备接收到第一配置信息后,可以基于第一配置信息向第一设备发送第一信号。
应理解,上述第一设备可以自主确定上述第一配置信息,也可以由第三设备确定上述第一配置信息,也就是说,在本申请实施例中,所述第一设备向所述第二设备发送第一配置信息之前,所述方法还包括以下任一项:
所述第一设备确定所述第一配置信息;
所述第一设备从第三设备接收所述第一配置信息。
可选地,在一些实施例中,所述第一设备确定所述第一配置信息包括:
所述第一设备获取第一信息;
所述第一设备根据第一信息确定第一配置信息;
其中,所述第一信息包括以下至少一项:
感知需求信息;
第一设备的晶振信息;
第二设备的晶振信息;
第一设备的状态信息;
第二设备的状态信息;
第一设备的感知能力信息;
第二设备的感知能力信息;
其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
本申请实施例中,上述晶振信息可以包括以下至少一项:晶振的频率误差和频率误差随时间的变化特性。上述位置信息可以是在全局坐标系中的坐标,或者相对于某个参考位置的坐标,该坐标可以是直角坐标或极坐标。上述朝向信息可以是天线面板的朝向或者本地坐标系的朝向相对于全局坐标系的旋转角度,或者相对于某个参考坐标系的旋转角度,该旋转角度包括方位角、俯仰角和横滚角。上述速度信息可以是在全局坐标系中的速度,或者相对于某个参考坐标系的速度,该速度包括速度的大小和速度的方向;如果第一设备是固定位置的设备,此项可缺省或者简化表示。
可选地,上述第一设备或第三设备可以从感知业务的发起方(例如,应用服务器)或感知功能网元处接收所述感知需求信息。
可选地,第一设备或第三设备获取感知能力信息和/或状态信息的方法可以包括以下至少一项:
向第一设备和/或第二设备发送能力查询命令(例如:UECapabilityEnquiry),第一设备和/或第二设备回复自身的感知能力信息和/或状态信息(例如,通过 UECapabilityInformation);
访问存储有第一设备和/或第二设备的感知能力信息和/或状态信息的网络节点获取感知能力信息/或状态信息。
可选地,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
所述第一设备根据所述第一参数确定是否更新所述第一配置信息;
在确定更新所述第一配置信息的情况下,所述第一设备根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
所述第一设备向所述第二设备发送所述第二配置信息。
本申请实施例中,随着感知对象相对于第一信号的收发端设备的相对运动运动速度的变化导致的多普勒频率的变化、感知对象运动距离的变化导致第一信号的路损的变化、以及载波频偏随时间的漂移等原因,需要改变第一信号的时频资源以保证对于载波频偏估计的精度。因此,第一设备根据所述第一参数,执行第一信号的时频资源的自适应调节,从而可以保持感知测量的准确度。
可选地,在一些实施例中,还可以由第三设备确定否更新所述第一配置信息。例如,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
所述第一设备向第三设备发送所述第一参数,所述第一参数用于确定是否更新所述第一配置信息。
应理解,在第三设备确定需要更新第一配置信息时,可以确定第二配置信息,然后直接将第二配置信息发送给第一设备和第二设备,或者通过第一设备向第二设备发送第二配置信息。也就是说,在本申请实施例中,所述第一设备向第三设备发送所述第一参数之后,所述方法还包括以下任一项:
在所述第三设备确定更新所述第一配置信息的情况下,所述第一设备从所述第三设备接收第二配置信息;
在所述第三设备确定更新所述第一配置信息的情况下,所述第一设备从所述第三设备接收第二配置信息,并向所述第二设备发送所述第二配置信息;
其中,所述第二配置信息用于更新所述第一配置信息。
可选地,在一些实施例中,所述第一配置信息和/或所述第二配置信息包括以下至少一项:
工作频段标识(operating band ID);
带宽部分(bandwidth part,BWP)标识;
资源集(ResourceSet)的时频资源配置信息;
资源的时频资源配置信息;
第一部分信号的频域资源信息;
第二部分信号的频域资源信息;
所述第一信号的信号方向;
所述第一信号在时域上的重复周期;
所述第一信号关联的感知信号或通感一体化信号的标识;
所述第一信号的跳频模式。
可选地,上述资源集的时频资源配置信息可以理解或替换为资源集ID的时频资源配置信息或者资源集ID列表的时频资源配置信息。上述资源的时频资源配置信息可以理解或替换为资源ID的时频资源配置信息或者资源ID列表的时频资源配置信息。其中,资源的时频资源配置信息或资源集的时频资源配置信息可以包括以下至少一项:
在时域上的起始位置;
在时域上占据的时长,即从所述资源集或资源之内的最小索引的目标OFDM符号至最大索引的目标OFDM符号之间的时间长度;
目标OFDM符号之间的间隔;
目标OFDM符号的数量;
目标OFDM符号的密度;
目标OFDM符号所在时隙在时域的重复周期;
目标OFDM符号在所在的时隙内的位置;
目标OFDM符号在时域上的位置分布;
在频域上的起始位置;
在频域上占据的带宽,即从所述资源集或资源之内的最小索引的目标子载波至最大索引的目标子载波之间的带宽;
目标子载波的密度;
目标子载波所在的资源块(Resource block,RB)在频域的重复周期;
目标子载波在所在RB内的位置;
目标子载波所在的RB在频域的位置,例如,用位图(bitmap)表示;
目标子载波在频域上的位置分布;
对于资源集,还可以包括对应资源集中包含的资源的列表或者ID。
其中,所述的目标OFDM符号是指分配给第一信号的资源单元(Resource element,RE)所在的OFDM符号;所述的目标子载波是指分配给所述第一信号的RE所在的子载波,所述分配给第一信号的RE可以是所述第一信号专用的RE、也可以是第一信号与通信业务(参考信号、同步信号等)共用的RE。
可选地,所述第一设备根据所述第一信号确定第一参数之前,所述方法还包括:
所述第一设备获取第二信息,所述第二信息用于确定所述第一参数;
其中,所述第二信息由协议约定或第三设备向所述第一设备发送信令指示,且所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
为了更好的理解本申请,以下通过一些实例进行详细说明。
如图7所示,进行载波频偏估计包括以下交互流程。
步骤S71,第一设备获取第一配置信息。具体包括以下任一项:
步骤S71a,第一设备确定第一配置信息;
步骤S71b,第一设备从第三设备接收第一配置信息。
可选地,在本申请实施例中,可以由第一设备确定第一配置信息,也可以由第三设备确定第一配置信息,具体地,第一设备或第三设备确定第一配置信息可以包括:
所述第一设备或第三设备获取第一信息;
所述第一设备或第三设备根据第一信息确定第一配置信息;
其中,所述第一信息包括以下至少一项:
感知需求信息;
第一设备的晶振信息;
第二设备的晶振信息;
第一设备的状态信息;
第二设备的状态信息;
第一设备的感知能力信息;
第二设备的感知能力信息。
可选地,在第一设备或者第三设备确定所述第一配置信息之前,所述第一设备或者第三设备可以获取所述感知需求信息和感知能力信息。在一些实施例中,可以从感知业务发起方(例如,应用服务器)或感知功能网元处接收感知需求信息。
可选地,获取感知能力信息和/或状态信息的方法可以包括以下至少一项:
向第一设备和/或第二设备发送能力查询命令(例如:UECapabilityEnquiry),第一设备和/或第二设备回复自身的感知能力信息和/或状态信息(例如,通过UECapabilityInformation);
访问存储有第一设备和/或第二设备的感知能力信息和/或状态信息的网络节点获取感知能力信息/或状态信息。
步骤S72,第一设备向第二设备发送第一配置信息。该第一配置信息用于指示第一信号的时频资源的配置信息。
步骤S73,第二设备根据第一配置信息发送第一信号;
本申请实施例中,第一设备可以根据第一配置信息接收第一信号,并进行第一处理,得到第一参数,第一处理的原理可以参照上述实施例在此不再赘述。
步骤S74a,第一设备确定第二配置信息,例如,根据第一参数判断是否需要进行第一信号的时频资源的配置信息的调节,在第一设备确定需要进行第一信号的时频资源的配置信息的调节的情况下,第一设备确定调节后的第一信号的时频资源的配置信息(即第二配置信息)。
步骤S74b1,第一设备向第三设备发送第一参数;
步骤S74b2,第三设备确定第二配置信息。例如,根据第一参数判断是否需要进行第一信号的时频资源的配置信息的调节,在第三设备确定需要进行第一信号的时频资源的配置信息的调节的情况下,第三设备确定第二配置信息。
步骤S74b3,第三设备向第一设备发送第二配置信息。
可选地,在本申请实施例中,第一设备或第三设备可以根据上述第一信息和第一参数确定第二配置信息。例如,如果第一参数中的感知对象的多普勒小于第一预设值,则应增加第一信号的时间长度;又例如,如果第一参数中的第一频率信息小于第二预设值,则应将第一信号从当前所在band切换到其他band。
步骤S75,第一设备向第二设备发送所述第二配置信息。
需要说明的是,对于上述第一设备、第二设备和第三设备可以包括以下情况:
情况1,第一设备是基站,第二设备是终端。此时,第三设备可以是感知功能网元或者不需要第三设备。
本实施例中,终端可以通过上行链路发送满足要求的第一信号,基站通过接收第一信号并进行第一处理,得到第一参数。其中,基站与终端之间的信令交互是通过空口。基站与感知功能网元之间的信令交互,感知功能网元和基站之间的交互可以是利用AMF通过N2接口转发给无线接入网;或者感知功能网元发送给UPF,UPF通过N3接口发送给无线接入网;或者通过新定义的接口发送给无线接入网(基站)。
情况2,第一设备是基站A,第二设备是基站B。此时,第三设备可以是感知功能网元或者不需要第三设备。
本实施例中,基站B可以通过基站间无线链路(例如:backhaul链路,或者为感知业务新增的基站间的其他无线链路)发送满足要求的第一信号,基站A通过接收第一信号并进行第一处理,得到第一参数。其中,基站A与基站B之间的信令交互可以通过Xn接口。基站A与感知功能网元之间的信令交互,感知功能网元和基站之间的交互可以是利用AMF通过N2接口转发给无线接入网;或者感知功能网元发送给UPF,UPF通过N3接口发送给无线接入网;或者通过新定义的接口发送给无线接入网(基站A)。
情况3,第一设备是终端1,第二设备是终端2。此时,第三设备可以是基站或者感知功能网元。在第三设备是感知功能网元的情况下,终端1(第一设备)与感知功能网元(第三设备)之间的信令交互需要通过终端1的接入基站。
本实施例中,终端2可以通过旁链路(sidelink)发送满足要求的第一信号,终端1通过接收第一信号并进行第一处理,得到第一参数。终端1与终端2之间的信令交互可以通过sidelink链路,或者通过接入基站转发。其中,终端1和感知功能网元之间的信令传输可以是通过非接入层(Non-Access Stratum,NAS)信令(经AMF转发)和/或通过无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制控制单元(Media Access Control Control Element,MAC CE)或层1信令或其他新定义感知信令。
可选地,在确定上述第一参数后,可以对感知结果进行补偿,以提高感知测量的准确性。其中,用于执行感知业务的感知信号或通感一体化信号的收发可以包括以下情况:
情况1:第一设备发送第三信号,第二设备接收第三信号。
本实施例中,第二设备是第一信号的发送端、第三信号的接收端,第二设备在进行第三信号处理时需要用到第一参数,因此需要第一设备将第一参数发送给第二设备。第二设备,将从第一设备处接收的第一参数应用到对于第三信号的处理过程中,从而能够获得不受载波频偏影响的感知对象的多普勒频率。
其中,所述第三信号与第一信号关联,用于指示通感第一信号估计得到的载波频偏可用于对所述第三信号执行感知业务得到的感知结果进行补偿。所述第三信号与第一信号关联包括以下任一项:
第一设备或第三设备向第二设备发送指示信息,指示与第三信号关联的第一信号;
协议约定,只要第二设备被配置了第一信号,则第一信号与第二设备执行感知业务的第三信号关联。
情况2:第二设备发送第二信号,第一设备接收第二信号。
本实施例中,第一设备同时是第一信号和第二信号的接收端,第一设备在对第一信号执行第一处理得到第一参数后,将第一参数应用到对于第二信号的处理过程中,从而能够获得不受载波频偏影响的感知对象的多普勒频率。
其中,所述第二信号与第一信号关联,用于指示通感第一信号估计得到的载波频偏可用于对所述第二信号执行感知业务得到的感知结果进行补偿。所述第二信号与第一信号关联包括以下任一项:
第三设备向第一设备发送信令,指示与第二信号关联的第一信号;
协议约定,只要第一设备被配置了第一信号,则第一信号与第二设备执行感知业务的第二信号关联。
此外,随着感知对象相对于第一信号的收发端设备的相对运动的运动速度的变化导致的多普勒频率的变化、感知对象运动距离的变化导致第一信号的路损的变化、以及载波频偏随时间的漂移等原因,需要改变第一信号的时频资源以保证对于载波频偏估计的精度。因此,第一设备根据所述第一参数,执行第一信号的时频资源的自适应调节。
参照图8,本申请实施例还提供了一种传输处理方法,如图8所示,该传输处理方法包括:
步骤801,第二设备向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
可选地,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,所述第二设备发送第一信号之后,所述方法还包括:
所述第二设备向所述第一设备发送第二信号,所述第二信号为感知信号或通感一体化信号;
其中,协议约定所述第二信号与所述第一信号关联,或者,第三设备向所述第一设备发送第三指示信息指示所述第二信号与所述第一信号关联。
可选地,所述第二设备发送第一信号之后,所述方法还包括:
所述第二设备从所述第一设备接收所述第一参数;
所述第二设备从所述第一设备接收第三信号,所述第三信号为感知信号或通感一体化信号;
所述第二设备基于所述第一参数对基于所述第三信号获得的感知结果进行补偿。
可选地,所述第二设备基于所述第一参数对基于所述第三信号获得的感知结果进行补偿之前,所述方法还包括以下任一项:
所述第二设备从第三设备接收第三指示信息,所述第三指示信息用于指示所述第三信号与所述第一信号关联;
所述第二设备从第一设备接收第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联;
所述第二设备基于协议约定确定所述第三信号与所述第一信号关联。
可选地,所述第二设备向第一设备发送第一信号之前,所述方法还包括:
所述第二设备从所述第一设备或第三设备接收第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
可选地,所述第二设备向第一设备发送第一信号之后,所述方法还包括:
所述第二设备从所述第一设备或所述第三设备接收第二配置信息,所述第二配置信息基于所述第一参数确定,且所述第二配置信息用于更新所述第一配置信息。
本申请实施例中,通过第二设备向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;第一设备根据所述第一信号确定第一参数;这样可以基于第一参数对感知结果进行补偿,从而提高了感知测量的准确性。
参照图9,本申请实施例还提供了一种传输处理方法,如图9所示,该传输处理方法包括:
步骤901,第三设备向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所 述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
可选地,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,所述第三设备向第一设备和/或第二设备发送第一配置信息之后,所述方法还包括以下至少一项:
所述第三设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第二设备发送的第二信号与所述第一信号关联,所述第二信号的接收端为所述第一设备,且所述第二信号为感知信号或通感一体化信号;
所述第三设备向所述第一设备和/或所述第二设备发送第三指示信息,所述第三指示信息用于指示第一设备发送的第三信号与所述第一信号关联,所述第三信号的接收端为所述第二设备,且所述第三信号为感知信号或通感一体化信号。
可选地,所述第三设备向第一设备和/或第二设备发送第一配置信息之前,所述方法还包括:
所述第三设备获取第一信息;
所述第三设备根据第一信息确定第一配置信息;
其中,所述第一信息包括以下至少一项:
感知需求信息;
第一设备的晶振信息;
第二设备的晶振信息;
第一设备的状态信息;
第二设备的状态信息;
第一设备的感知能力信息;
第二设备的感知能力信息;
其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
可选地,所述第三设备向第一设备和/或第二设备发送第一配置信息之后,所述方法还包括:
所述第三设备从所述第一设备接收所述第一参数;
所述第三设备根据所述第一参数确定是否更新所述第一配置信息;
在确定更新所述第一配置信息的情况下,所述第三设备根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
所述第三设备向所述第一设备和/或所述第二设备发送所述第二配置信息。
可选地,所述方法还包括:
所述第三设备向所述第一设备发送第二信息,所述第二信息用于确定所述第一参数;
其中,所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
本申请实施例中,通过第三设备向第一设备和/或第二设备发送第一配置信息,第二设备基于第一配置信息向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;第一设备根据所述第一信号确定第一参数;这样可以基于第一参数对感知结果进行补偿,从而提高了感知测量的准确性。
本申请实施例提供的传输处理方法,执行主体可以为传输处理装置。本申请实施例中以传输处理装置执行传输处理方法为例,说明本申请实施例提供的传输处理装置。
参照图10,本申请实施例还提供了一种传输处理装置,如图10所示,该传输处理装置1000包括:
第一接收模块1001,用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
第一确定模块1002,用于根据所述第一信号确定第一参数;
其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
可选地,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,所述第一参数还包括以下至少一项:
感知对象的多普勒或多普勒列表;
至少一个感知对象的多普勒与载波频偏叠加后的频率信息;
第一信号的接收功率;
第一信号的感知信噪比SNR或第一信号的感知信干噪比SINR;
第二设备的运动速度和第二设备的运动方向;
时间信息,所述时间信息用于表示所述第一信号的接收时间和/或所述第一信号的发送时间。
可选地,所述传输处理装置1000还包括:
所述第一接收模块1001还用于从第二设备接收第二信号,所述第二信号为感知信号或通感一体化信号;
第一补偿模块,用于根据所述第一参数对基于所述第二信号获得的感知结果进行补偿。
可选地,所述第一接收模块1001还用于从第三设备接收第一指示信息,所述第一指示信息用于指示所述第二信号与所述第一信号关联;和/或
所述第一确定模块1002还用于基于协议约定确定所述第二信号与所述第一信号关联。
可选地,所述传输处理装置1000还包括:
第一发送模块,用于向所述第二设备发送所述第一参数;向所述第二设备发送第三信号,所述第三信号为感知信号或通感一体化信号;
其中,所述第三信号与所述第一信号关联,且所述第一参数用于对基于所述第三信号获得的感知结果进行补偿。
可选地,所述第一发送模块还用于所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联。
可选地,所述第三信号与所述第一信号关联包括:协议约定所述第一信号与所述第三信号关联,或者,由第三设备向所述第一设备和/或所述第二设备发送第三指示信息指示所述第三信号与所述第一信号关联。
可选地,所述传输处理装置1000还包括:
第一发送模块,用于向所述第二设备发送第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
可选地,所述第一确定模块1002还用于确定所述第一配置信息;
所述第一接收模块1001还用于从第三设备接收所述第一配置信息。
可选地,所述第一确定模块1002具体用于获取第一信息,根据第一信息确定第一配置信息;
其中,所述第一信息包括以下至少一项:
感知需求信息;
第一设备的晶振信息;
第二设备的晶振信息;
第一设备的状态信息;
第二设备的状态信息;
第一设备的感知能力信息;
第二设备的感知能力信息;
其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
可选地,所述第一确定模块1002还用于根据所述第一参数确定是否更新所述第一配置信息;在确定更新所述第一配置信息的情况下,根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
所述第一发送模块还用于向所述第二设备发送所述第二配置信息。
可选地,所述第一发送模块,还用于向第三设备发送所述第一参数,所述第一参数用 于确定是否更新所述第一配置信息。
可选地,所述第一接收模块1001还用于在所述第三设备确定更新所述第一配置信息的情况下,从所述第三设备接收第二配置信息;或者,所述第一接收模块1001还用于在所述第三设备确定更新所述第一配置信息的情况下,所述第一设备从所述第三设备接收第二配置信息,所述第一发送模块用于向所述第二设备发送所述第二配置信息;
其中,所述第二配置信息用于更新所述第一配置信息。
可选地,所述第一配置信息和/或所述第二配置信息包括以下至少一项:
工作频段标识;
带宽部分标识;
资源集的时频资源配置信息;
资源的时频资源配置信息;
第一部分信号的频域资源信息;
第二部分信号的频域资源信息;
所述第一信号的信号方向;
所述第一信号在时域上的重复周期;
所述第一信号关联的感知信号或通感一体化信号的标识;
所述第一信号的跳频模式。
可选地,所述传输处理装置还包括:
第一获取模块,用于获取第二信息,所述第二信息用于确定所述第一参数;
其中,所述第二信息由协议约定或第三设备向所述第一设备发送信令指示,且所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
参照图11,本申请实施例还提供了一种传输处理装置,如图11所示,该传输处理装置1100包括:
第二发送模块1101,用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
可选地,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,所述第二发送模块1101还用于向所述第一设备发送第二信号,所述第二信 号为感知信号或通感一体化信号;
其中,协议约定所述第二信号与所述第一信号关联,或者,第三设备向所述第一设备发送第三指示信息指示所述第二信号与所述第一信号关联。
可选地,所述传输处理装置1100还包括:
第二接收模块,用于从所述第一设备接收所述第一参数;从所述第一设备接收第三信号,所述第三信号为感知信号或通感一体化信号;
第二补偿模块,用于基于所述第一参数对基于所述第三信号获得的感知结果进行补偿。
可选地,所述第二接收模块还用于从第三设备接收第三指示信息,所述第三指示信息用于指示所述第三信号与所述第一信号关联;或者,
所述第二接收模块还用于从第一设备接收第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联;或者,
所述传输处理装置1100还包括第二确定模块,用于基于协议约定确定所述第三信号与所述第一信号关联。
可选地,所述传输处理装置1100还包括:
第二接收模块,用于从所述第一设备或第三设备接收第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
可选地,所述第二接收模块还用于从所述第一设备或所述第三设备接收第二配置信息,所述第二配置信息基于所述第一参数确定,且所述第二配置信息用于更新所述第一配置信息。
参照图12,本申请实施例还提供了一种传输处理装置,如图12所示,该传输处理装置1200包括:
第三发送模块1201,用于向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
可选地,所述第一信号满足以下至少一项:
所述第一部分信号和第二部分信号占用不同的频率资源;
Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
可选地,所述第三发送模块1201还用于指示以下至少一项:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示第二设备发送的第二信号与所述第一信号关联,所述第二信号的接收端为所述第一设备,且所述第二信号为感知信号或通感一体化信号;
向所述第一设备和/或所述第二设备发送第三指示信息,所述第三指示信息用于指示第一设备发送的第三信号与所述第一信号关联,所述第三信号的接收端为所述第二设备,且所述第三信号为感知信号或通感一体化信号。
可选地,所述传输处理装置1200还包括:
第二获取模块,用于获取第一信息;
第三确定模块,用于根据第一信息确定第一配置信息;
其中,所述第一信息包括以下至少一项:
感知需求信息;
第一设备的晶振信息;
第二设备的晶振信息;
第一设备的状态信息;
第二设备的状态信息;
第一设备的感知能力信息;
第二设备的感知能力信息;
其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
可选地,所述传输处理装置1200还包括:
第三接收模块,用于从所述第一设备接收所述第一参数;
第三确定模块,用于根据所述第一参数确定是否更新所述第一配置信息;在确定更新所述第一配置信息的情况下,根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
所述第三发送模块1201还用于向所述第一设备和/或所述第二设备发送所述第二配置信息。
可选地,所述第三发送模块1201还用于向所述第一设备发送第二信息,所述第二信息用于确定所述第一参数;
其中,所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
本申请实施例中的传输处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置能够实现图4至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301 和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,该程序或指令被处理器1301执行时实现上述传输处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,
在所述终端为第一设备时,所述通信接口用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述处理器用于根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述终端为第二设备时,所述通信接口用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理单元14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,在所述终端为第一设备时,所述射频单元1401用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述处理器1410用于根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述终端为第二设备时,所述射频单元1401用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,
在所述网络侧设备为第一设备时,所述通信接口用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述处理器用于根据所述第一信号确定第一参数;其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述网络侧设备为第二设备时,所述通信接口用于向第一设备发送第一信号,所述 第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏;
在所述网络侧设备为第三设备时,所述通信接口用于向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503、处理器1504和存储器1505。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括基带处理器。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1506,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1500还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图10、图11或图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和 所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端用于执行如图4或图8及上述各个方法实施例的各个过程,所述网络侧设备用于执行如图4或图8或图9及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种传输处理方法,包括:
    第一设备从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
    所述第一设备根据所述第一信号确定第一参数;
    其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
  2. 根据权利要求1所述的方法,其中,所述第一信号满足以下至少一项:
    所述第一部分信号和第二部分信号占用不同的频率资源;
    Δf×T大于或等于第一预设门限,所述Δf表示所述第一部分信号的中心频率与所述第二部分信号的中心频率的差值,所述T表示所述第一部分信号所占用时长和所述第二部分信号所占用时长中较小的时长。
  3. 根据权利要求1所述的方法,其中,所述第一参数还包括以下至少一项:
    感知对象的多普勒或多普勒列表;
    至少一个感知对象的多普勒与载波频偏叠加后的频率信息;
    第一信号的接收功率;
    第一信号的感知信噪比SNR或第一信号的感知信干噪比SINR;
    第二设备的运动速度和第二设备的运动方向;
    时间信息,所述时间信息用于表示所述第一信号的接收时间和/或所述第一信号的发送时间。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
    所述第一设备从第二设备接收第二信号,所述第二信号为感知信号或通感一体化信号;
    所述第一设备根据所述第一参数对基于所述第二信号获得的感知结果进行补偿。
  5. 根据权利要求4所述的方法,其中,所述第一设备根据所述第一参数对基于所述第二信号获得的感知结果进行补偿之前,所述方法还包括以下任一项:
    所述第一设备从第三设备接收第一指示信息,所述第一指示信息用于指示所述第二信号与所述第一信号关联;
    所述第一设备基于协议约定确定所述第二信号与所述第一信号关联。
  6. 根据权利要求1至3任一项所述的方法,其中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一参数;
    所述第一设备向所述第二设备发送第三信号,所述第三信号为感知信号或通感一体化信号;
    其中,所述第三信号与所述第一信号关联,且所述第一参数用于对基于所述第三信号获得的感知结果进行补偿。
  7. 根据权利要求6所述的方法,其中,所述第一设备向所述第二设备发送第三信号之前,所述方法还包括:
    所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联。
  8. 根据权利要求6所述的方法,其中,所述第三信号与所述第一信号关联包括:协议约定所述第一信号与所述第三信号关联,或者,由第三设备向所述第一设备和/或所述第二设备发送第三指示信息指示所述第三信号与所述第一信号关联。
  9. 根据权利要求1至8任一项所述的方法,其中,所述第一设备从第二设备接收第一信号之前,所述方法还包括:
    所述第一设备向所述第二设备发送第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
  10. 根据权利要求9所述的方法,其中,所述第一设备向所述第二设备发送第一配置信息之前,所述方法还包括以下任一项:
    所述第一设备确定所述第一配置信息;
    所述第一设备从第三设备接收所述第一配置信息。
  11. 根据权利要求10所述的方法,其中,所述第一设备确定所述第一配置信息包括:
    所述第一设备获取第一信息;
    所述第一设备根据第一信息确定所述第一配置信息;
    其中,所述第一信息包括以下至少一项:
    感知需求信息;
    第一设备的晶振信息;
    第二设备的晶振信息;
    第一设备的状态信息;
    第二设备的状态信息;
    第一设备的感知能力信息;
    第二设备的感知能力信息;
    其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
  12. 根据权利要求9所述的方法,其中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
    所述第一设备根据所述第一参数确定是否更新所述第一配置信息;
    在确定更新所述第一配置信息的情况下,所述第一设备根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
    所述第一设备向所述第二设备发送所述第二配置信息。
  13. 根据权利要求9所述的方法,其中,所述第一设备根据所述第一信号确定第一参数之后,所述方法还包括:
    所述第一设备向第三设备发送所述第一参数,所述第一参数用于确定是否更新所述第一配置信息。
  14. 根据权利要求13所述的方法,其中,所述第一设备向第三设备发送所述第一参数之后,所述方法还包括以下任一项:
    在所述第三设备确定更新所述第一配置信息的情况下,所述第一设备从所述第三设备接收第二配置信息;
    在所述第三设备确定更新所述第一配置信息的情况下,所述第一设备从所述第三设备接收第二配置信息,并向所述第二设备发送所述第二配置信息;
    其中,所述第二配置信息用于更新所述第一配置信息。
  15. 根据权利要求1至14任一项所述的方法,其中,所述第一设备根据所述第一信号确定第一参数之前,所述方法还包括:
    所述第一设备获取第二信息,所述第二信息用于确定所述第一参数;
    其中,所述第二信息由协议约定或第三设备向所述第一设备发送信令指示,且所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
  16. 一种传输处理方法,包括:
    第二设备向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
  17. 根据权利要求16所述的方法,其中,所述第二设备发送第一信号之后,所述方法还包括:
    所述第二设备向所述第一设备发送第二信号,所述第二信号为感知信号或通感一体化信号;
    其中,协议约定所述第二信号与所述第一信号关联,或者,第三设备向所述第一设备发送第三指示信息指示所述第二信号与所述第一信号关联。
  18. 根据权利要求16所述的方法,其中,所述第二设备发送第一信号之后,所述方法还包括:
    所述第二设备从所述第一设备接收所述第一参数;
    所述第二设备从所述第一设备接收第三信号,所述第三信号为感知信号或通感一体化信号;
    所述第二设备基于所述第一参数对基于所述第三信号获得的感知结果进行补偿。
  19. 根据权利要求18所述的方法,其中,所述第二设备基于所述第一参数对基于所述第三信号获得的感知结果进行补偿之前,所述方法还包括以下任一项:
    所述第二设备从第三设备接收第三指示信息,所述第三指示信息用于指示所述第三信号与所述第一信号关联;
    所述第二设备从第一设备接收第二指示信息,所述第二指示信息用于指示所述第三信号与所述第一信号关联;
    所述第二设备基于协议约定确定所述第三信号与所述第一信号关联。
  20. 根据权利要求16至19任一项所述的方法,其中,所述第二设备向第一设备发送第一信号之前,所述方法还包括:
    所述第二设备从所述第一设备或第三设备接收第一配置信息,所述第一配置信息用于指示所述第一信号的时频资源配置。
  21. 根据权利要求20所述的方法,其中,所述第二设备向第一设备发送第一信号之后,所述方法还包括:
    所述第二设备从所述第一设备或所述第三设备接收第二配置信息,所述第二配置信息基于所述第一参数确定,且所述第二配置信息用于更新所述第一配置信息。
  22. 一种传输处理方法,包括:
    第三设备向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
  23. 根据权利要求22所述的方法,其中,所述第三设备向第一设备和/或第二设备发送第一配置信息之后,所述方法还包括以下至少一项:
    所述第三设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第二设备发送的第二信号与所述第一信号关联,所述第二信号的接收端为所述第一设备,且所述第二信号为感知信号或通感一体化信号;
    所述第三设备向所述第一设备和/或所述第二设备发送第三指示信息,所述第三指示信息用于指示第一设备发送的第三信号与所述第一信号关联,所述第三信号的接收端为所述第二设备,且所述第三信号为感知信号或通感一体化信号。
  24. 根据权利要求22至23任一项所述的方法,其中,所述第三设备向第一设备和/或第二设备发送第一配置信息之前,所述方法还包括:
    所述第三设备获取第一信息;
    所述第三设备根据第一信息确定第一配置信息;
    其中,所述第一信息包括以下至少一项:
    感知需求信息;
    第一设备的晶振信息;
    第二设备的晶振信息;
    第一设备的状态信息;
    第二设备的状态信息;
    第一设备的感知能力信息;
    第二设备的感知能力信息;
    其中,所述状态信息包括位置信息、朝向信息和速度信息中的至少一项。
  25. 根据权利要求22至24任一项所述的方法,其中,所述第三设备向第一设备和/或第二设备发送第一配置信息之后,所述方法还包括:
    所述第三设备从所述第一设备接收所述第一参数;
    所述第三设备根据所述第一参数确定是否更新所述第一配置信息;
    在确定更新所述第一配置信息的情况下,所述第三设备根据所述第一参数确定第二配置信息,所述第二配置信息用于更新所述第一配置信息;
    所述第三设备向所述第一设备和/或所述第二设备发送所述第二配置信息。
  26. 根据权利要求22至25任一项所述的方法,其中,所述方法还包括:
    所述第三设备向所述第一设备发送第二信息,所述第二信息用于确定所述第一参数;
    其中,所述第二信息包括载波频偏步进值、第一值和第二值中的至少一项,其中,所述第一值用于指示所述载波频偏的取值范围的最小值,所述第二值用于指示所述载波频偏的取值范围的最大值。
  27. 一种传输处理装置,包括:
    第一接收模块,用于从第二设备接收第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;
    第一确定模块,用于根据所述第一信号确定第一参数;
    其中,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
  28. 一种传输处理装置,包括:
    第二发送模块,用于向第一设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感知结果进行补偿,且所述第一参数包括载波频偏。
  29. 一种传输处理装置,包括:
    第三发送模块,用于向第一设备和/或第二设备发送第一配置信息,所述第一配置信息用于指示第一信号的时频资源配置,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号和第二部分信号处于同一频带内,且所述第一部分信号的中心频率高于所述第二部分信号的中心频率;所述第一信号用于确定第一参数,所述第一参数用于对感 知结果进行补偿,且所述第一参数包括载波频偏。
  30. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至21任一项所述的传输处理方法的步骤。
  31. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的传输处理方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至26任一项所述的传输处理方法。
PCT/CN2024/071036 2023-01-12 2024-01-08 传输处理方法、装置、终端及网络侧设备 WO2024149185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310041486.2A CN118338400A (zh) 2023-01-12 2023-01-12 传输处理方法、装置、终端及网络侧设备
CN202310041486.2 2023-01-12

Publications (1)

Publication Number Publication Date
WO2024149185A1 true WO2024149185A1 (zh) 2024-07-18

Family

ID=91780860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/071036 WO2024149185A1 (zh) 2023-01-12 2024-01-08 传输处理方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN118338400A (zh)
WO (1) WO2024149185A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223559A1 (en) * 2005-03-29 2006-10-05 Pei Chen Doppler compensation scheme
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置
WO2022089642A1 (zh) * 2020-11-02 2022-05-05 华为技术有限公司 波束训练方法、装置及存储介质
CN114760173A (zh) * 2022-03-30 2022-07-15 西安电子科技大学 一种基于谱分析优化的载波频偏估计方法
WO2022253238A1 (zh) * 2021-06-04 2022-12-08 维沃移动通信有限公司 消息传输方法、信号发送方法、装置及通信设备
WO2023274029A1 (zh) * 2021-06-28 2023-01-05 维沃移动通信有限公司 通信感知方法、装置及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223559A1 (en) * 2005-03-29 2006-10-05 Pei Chen Doppler compensation scheme
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置
WO2022089642A1 (zh) * 2020-11-02 2022-05-05 华为技术有限公司 波束训练方法、装置及存储介质
WO2022253238A1 (zh) * 2021-06-04 2022-12-08 维沃移动通信有限公司 消息传输方法、信号发送方法、装置及通信设备
WO2023274029A1 (zh) * 2021-06-28 2023-01-05 维沃移动通信有限公司 通信感知方法、装置及网络设备
CN114760173A (zh) * 2022-03-30 2022-07-15 西安电子科技大学 一种基于谱分析优化的载波频偏估计方法

Also Published As

Publication number Publication date
CN118338400A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2024114460A1 (zh) 测量方法、装置及设备
WO2024149185A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024149184A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024131688A1 (zh) 感知方法、感知装置及通信设备
WO2024140841A1 (zh) 感知方法及装置
WO2024131689A1 (zh) 感知方法、感知装置及通信设备
WO2024131752A1 (zh) 感知方法、感知装置、通信设备及存储介质
WO2024140796A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024131690A1 (zh) 感知方法、装置及设备
WO2024078379A1 (zh) 多普勒测量方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024078382A1 (zh) 多普勒测量方法、装置及通信设备
WO2024109637A1 (zh) 信息发送方法、信息接收方法、装置及相关设备
WO2024208069A1 (zh) 信息发送方法、信息接收方法、装置及通信设备
WO2024131764A1 (zh) 信号配置方法、装置及设备
WO2024020850A1 (en) Scheduling and/or processing multiplexed sensing and communication signals
EP4387179A1 (en) Data transmission processing method and apparatus, communication device, and storage medium
Tapio et al. Bi-Static Sensing with 5G NR Physical Uplink Shared Channel Transmission
CN117202218A (zh) 感知方式切换方法、装置及通信设备
CN117440396A (zh) 感知处理方法、装置、终端及设备
CN117914424A (zh) 多普勒测量方法、装置及通信设备
CN117440398A (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741184

Country of ref document: EP

Kind code of ref document: A1