Nothing Special   »   [go: up one dir, main page]

WO2024130739A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2024130739A1
WO2024130739A1 PCT/CN2022/141619 CN2022141619W WO2024130739A1 WO 2024130739 A1 WO2024130739 A1 WO 2024130739A1 CN 2022141619 W CN2022141619 W CN 2022141619W WO 2024130739 A1 WO2024130739 A1 WO 2024130739A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
prediction
resources
communication device
Prior art date
Application number
PCT/CN2022/141619
Other languages
English (en)
French (fr)
Inventor
曹建飞
刘文东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/141619 priority Critical patent/WO2024130739A1/zh
Publication of WO2024130739A1 publication Critical patent/WO2024130739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for wireless communications.
  • AI/machine learning can be introduced to improve system performance.
  • AI/ML models for beam (pair) prediction that is, beam (pair) prediction through trained AI/ML models
  • the current beam (pair) prediction based on the AI/ML model cannot reflect the interference between beams (pairs), and network equipment often uses multiple beams (pairs) to cover different terminals during downlink transmission.
  • How to reflect the interference between beams (pairs) in the beam (pair) prediction based on the AI/ML model is a problem that needs to be solved.
  • the embodiment of the present application provides a method and device for wireless communication, wherein the first communication device can input the measured power information of the reference signal part and the power information of the interference noise part into the first network model, and predict the identification information of K spatial filters and/or the L1-SINR corresponding to the K spatial filters. That is, the interference between beams (pairs) can be reflected in the beam (pair) prediction based on the AI/ML model, thereby improving the performance of the beam management system.
  • a wireless communication method comprising:
  • the first communication device inputs a first measurement data set into a first network model and outputs a first prediction data set;
  • the first measurement data set includes at least one of the following: power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set, and identification information of a spatial filter measured based on a reference signal measurement set; or, the first measurement data set includes at least one of the following: power information of a reference signal part measured based on a reference signal measurement set and power information of an interference noise part measured based on an interference signal measurement set, identification information of a spatial filter measured based on a reference signal measurement set, and identification information of a spatial filter measured based on an interference signal measurement set;
  • the first prediction data set includes at least one of the following: identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters; wherein K is a positive integer.
  • a communication device for executing the method in the first aspect.
  • the communication device includes a functional module for executing the method in the above-mentioned first aspect.
  • a communication device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the method in the above-mentioned first aspect.
  • a device for implementing the method in the first aspect.
  • the apparatus includes: a processor, configured to call and run a computer program from a memory, so that a device equipped with the apparatus executes the method in the first aspect described above.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in the first aspect.
  • a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in the first aspect.
  • the first communication device can input the measured power information of the reference signal part and the power information of the interference noise part into the first network model, and predict the identification information of K spatial filters and/or the L1-SINR corresponding to the K spatial filters. That is, the interference between beams (pairs) can be reflected in the beam (pair) prediction based on the AI/ML model, thereby improving the performance of the beam management system.
  • FIG1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the connection of neurons in a neural network provided by the present application.
  • FIG3 is a schematic structural diagram of a neural network provided in the present application.
  • FIG4 is a schematic diagram of a convolutional neural network provided in the present application.
  • FIG5 is a schematic structural diagram of an LSTM unit provided in the present application.
  • FIG6 is a schematic diagram of a downlink beam scanning process provided in the present application.
  • FIG. 7 is a schematic diagram of another downlink beam scanning process provided in the present application.
  • FIG8 is a schematic diagram of another downlink beam scanning process provided in the present application.
  • FIG9 is a schematic diagram of a spatial domain beam prediction model provided in the present application.
  • FIG10 is a schematic diagram of another spatial domain beam prediction model provided in the present application.
  • FIG18 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE on unlicensed spectrum LTE-based ac
  • LTE-U LTE-based access to unlicensed spectrum
  • NR-U NR-based access to unlicensed spectrum
  • NTN Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • IoT Wireless Fidelity
  • WiFi fifth-generation (5G) systems
  • 6G sixth-generation
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, a standalone (SA) networking scenario, or a non-standalone (NSA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • NSA non-standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, where the licensed spectrum can also be considered as an unshared spectrum.
  • the communication system in the embodiments of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range of 410 MHz to 7.125 GHz), or to the FR2 frequency band (corresponding to the frequency band range of 24.25 GHz to 52.6 GHz), or to new frequency bands such as high-frequency frequency bands corresponding to the frequency band range of 52.6 GHz to 71 GHz or the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION, ST in a WLAN
  • a cellular phone a cordless phone
  • Session Initiation Protocol (SIP) phone Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)/system on chip (SoC), etc.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal device in industrial control a wireless terminal device in self-driving
  • a wireless terminal device in remote medical a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (eNB or eNodeB) in LTE, or a relay station or access point, or a network device or a base station (gNB) or a transmission reception point (TRP) in a vehicle-mounted device, a wearable device, and an NR network, or a network device in a future evolved PLMN network or a network device in an NTN network, etc.
  • AP access point
  • BTS base station
  • NodeB NodeB
  • NB base station
  • gNB base station
  • TRP transmission reception point
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include another number of terminal devices within its coverage area, which is not limited in the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of an existing LTE protocol, NR protocol, Wi-Fi protocol, or a protocol related to other communication systems.
  • the present application does not limit the protocol type.
  • a neural network is a computational model consisting of multiple interconnected neuron nodes, where the connection between nodes represents the weighted value from input signal to output signal, called weight; each node performs weighted summation (SUM) on different input signals and outputs them through a specific activation function (f).
  • Figure 2 is a schematic diagram of a neuron structure, where a1, a2, ..., an represent input signals, w1, w2, ..., wn represent weights, f represents activation function, and t represents output.
  • a simple neural network is shown in Figure 3, which includes an input layer, a hidden layer, and an output layer. Through different connection methods, weights, and activation functions of multiple neurons, different outputs can be generated, thereby fitting the mapping relationship from input to output. Among them, each upper-level node is connected to all its lower-level nodes.
  • This neural network is a fully connected neural network, which can also be called a deep neural network (DNN).
  • DNN deep neural network
  • CNN convolutional neural network
  • input layer multiple convolutional layers
  • pooling layers fully connected layer and output layer, as shown in Figure 4.
  • Each neuron of the convolution kernel in the convolutional layer is locally connected to its input, and the maximum or average value of a certain layer is extracted by introducing the pooling layer, which effectively reduces the parameters of the network and mines the local features, so that the convolutional neural network can converge quickly and obtain excellent performance.
  • Deep learning uses a deep neural network with multiple hidden layers, which greatly improves the network's ability to learn features and fits complex nonlinear mappings from input to output. Therefore, it is widely used in speech and image processing.
  • deep learning also includes common basic structures such as convolutional neural networks (CNN) and recurrent neural networks (RNN) for different tasks.
  • CNN convolutional neural networks
  • RNN recurrent neural networks
  • the basic structure of a convolutional neural network includes: input layer, multiple convolutional layers, multiple pooling layers, fully connected layer and output layer, as shown in Figure 4.
  • Each neuron of the convolution kernel in the convolutional layer is locally connected to its input, and the maximum or average value of a certain layer is extracted by introducing the pooling layer, which effectively reduces the parameters of the network and mines the local features, so that the convolutional neural network can converge quickly and obtain excellent performance.
  • RNN is a neural network that models sequential data and has achieved remarkable results in the field of natural language processing, such as machine translation and speech recognition. Specifically, the network device memorizes the information of the past moment and uses it in the calculation of the current output, that is, the nodes between the hidden layers are no longer disconnected but connected, and the input of the hidden layer includes not only the input layer but also the output of the hidden layer at the previous moment.
  • Commonly used RNNs include structures such as Long Short-Term Memory (LSTM) and gated recurrent unit (GRU).
  • Figure 5 shows a basic LSTM unit structure, which can include a tanh activation function. Unlike RNN, which only considers the most recent state, the cell state of LSTM determines which states should be retained and which states should be forgotten, solving the defects of traditional RNN in long-term memory.
  • millimeter wave frequency band communication is introduced, and the corresponding beam management mechanism is also introduced, including uplink and downlink beam management.
  • Downlink beam management includes downlink beam scanning, terminal (UE) beam measurement and reporting, and network (NW) downlink beam indication.
  • UE terminal
  • NW network
  • the downlink beam scanning process may include three processes, namely P1, P2 and P3 processes.
  • the P1 process refers to the network device scanning different transmit beams and the UE scanning different receive beams;
  • the P2 process refers to the network device scanning different transmit beams and the UE using the same receive beam;
  • the P3 process refers to the network device using the same transmit beam and the UE scanning different receive beams.
  • the network device completes the above beam scanning process by sending a downlink reference signal.
  • the downlink reference signal may include but is not limited to a synchronization signal block (Synchronization Signal Block, SSB) and/or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS).
  • FIG. 6 is a schematic diagram of the P1 process (or the downlink full scan process)
  • FIG. 7 is a schematic diagram of the P2 process
  • FIG. 8 is a schematic diagram of the P3 process.
  • the network device traverses all transmit beams to send downlink reference signals, and the UE side traverses all receive beams to perform measurements and determine corresponding measurement results.
  • the network device traverses all transmit beams to send downlink reference signals, and the UE side uses a specific receive beam to perform measurements to determine the corresponding measurement results.
  • the network device may use a specific transmit beam to send a downlink reference signal, and the UE side traverses all receive beams to perform measurements and determine corresponding measurement results.
  • L1-RSRP Layer 1 Reference Signal Receiving Power
  • UCI Uplink Control Information
  • L1-RSRP can also be replaced by other beam link indicators, such as Layer 1 Signal to Interference plus Noise Ratio (L1-SINR), Layer 1 Reference Signal Received Quality (L1-RSRQ), etc.
  • the NW can be used as a downlink transmit beam, and the UE can also find the corresponding receive beam.
  • the NW can be used as a downlink transmit beam, and the UE can also find the corresponding receive beam.
  • the NW uses two or more transmit beams, the UE can always find the corresponding receive beam.
  • the network device After the network device learns the optimal beam reported by the terminal device, it can carry the Transmission Configuration Indicator (TCI) status (which contains the transmit beam using the downlink reference signal as a reference) through Media Access Control (MAC) or Downlink Control Information (DCI) signaling to complete the beam indication to the UE.
  • TCI Transmission Configuration Indicator
  • MAC Media Access Control
  • DCI Downlink Control Information
  • the UE uses the receive beam corresponding to the transmit beam for downlink reception.
  • SINR Signal to Interference and Noise Ratio
  • the UE needs to measure the power of two parts.
  • the first part of the power is the power of the useful signal part, that is, the S part, which is measured using the channel measurement resource (CMR).
  • the second part of the power is the power of the interference and noise part, that is, the (I+N) part.
  • the interference measurement resource (IMR) can be used if the NW is configured with IMR; CMR can also be used to measure interference if the NW is not configured with IMR.
  • CMR can be a synchronization signal block (SSB) or a non-zero power channel state information reference signal (NZP CSI-RS) resource.
  • SSB synchronization signal block
  • NZP CSI-RS non-zero power channel state information reference signal
  • IMR can be Channel State Information Interference Resource (CSI-IM), that is, the UE believes that what is measured on a time-frequency resource configured by NW (without configured reference signal) is interference plus noise; IMR can also be NZP CSI-RS, that is, the UE believes that the measured non-zero power reference signal is an interference signal plus noise.
  • CSI-IM Channel State Information Interference Resource
  • NW without configured reference signal
  • NZP CSI-RS that is, the UE believes that the measured non-zero power reference signal is an interference signal plus noise.
  • CMR resources and IMR resources are associated, that is, when NW configures a CMR resource for UE, it will configure one, two, or zero associated IMR resources. For example, if one IMR resource is configured for a CMR, then this IMR is either a NZP CSI-RS resource or a CSI-IM resource; if two IMR resources are configured for a CMR, then one IMR resource is a NZP CSI-RS resource and the other IMR resource is a CSI-IM resource; if zero IMR resources are configured for a CMR (no IMR is configured), then the UE uses the CMR resource to measure the useful signal part and the interference and noise part.
  • the UE For the interference and noise measurement of CMR, the UE needs to first recover the useful signal (i.e., the S part) from the received signal and calculate its power; then eliminate the S part from the received signal to obtain the remaining interference and noise parts, and calculate their power; and optimally obtain the calculation result of the Signal to Interference plus Noise Ratio (SINR).
  • the useful signal i.e., the S part
  • SINR Signal to Interference plus Noise Ratio
  • AI/ML-based beam management can predict downlink beams in the spatial domain.
  • Beam prediction in the spatial domain also called beam management example 1 (BM-Case1):
  • the downlink beam spatial domain prediction in data set A (Set A) is predicted by measuring the beams in data set B (Set B).
  • Set B is either a subset of Set A, or Set B and Set A are two different beam sets.
  • Set B can be understood as a partial subset of beams (pairs);
  • Set A can be understood as the full set of beams (pairs).
  • FIG9 schematically shows the input and output relationship of the beam prediction model.
  • the model solves a multi-classification problem, that is, the relationship between the input L1-RSRP of a partial subset (i.e., Set B) and the L1-RSRP of the optimal K beams, where the partial beam measurement set (i.e., Set B, which is part of the L1-RSRP measured by the full set Set A) is used as the input of the model.
  • the output is the optimal K beam indexes selected from the full set Set A, that is, the K beams with the highest L1-RSRP.
  • the labels used by the model are the optimal (i.e., the highest L1-RSRP) K beam indexes measured in the full set Set A.
  • the measurement data set B (Set B) includes the L1-RSRP corresponding to T beam indices
  • the prediction data set A (Set A) includes S beam indices
  • the AI/ML model 1 predicts the optimal K beam indices (beam index #2 in FIG9 ).
  • the beam in Figure 9 can also be replaced by a beam pair. The specific description is similar to the beam and will not be repeated here.
  • FIG10 schematically shows the optimal beam quality prediction model, which can be understood as a linear regression problem.
  • the input and output relationship of the model is the relationship between the input L1-RSRP of a partial subset (i.e., Set B) and the L1-RSRP of the optimal K beams.
  • the label is the optimal K L1-RSRPs measured in the full set (i.e., Set A), and the corresponding K beam indices.
  • the measurement data set B (Set B) includes L1-RSRPs corresponding to T beam indices
  • the prediction data set A (Set A) includes L1-RSRPs corresponding to S beam indices
  • the beam in FIG10 can also be replaced by a beam pair, and the specific description is similar to the beam, which will not be repeated here.
  • BM-Case1 Spatial domain beam prediction (BM-Case1) uses L1-RSRP as the performance metric, but it cannot reflect the interference between beams (pairs). In the process of downlink transmission, NW often uses multiple beams (pairs) to cover different UEs.
  • the present application proposes a beam (pair) prediction scheme based on an AI/ML model, which can reflect the interference between beams (pairs) in the beam (pair) prediction based on the AI/ML model, thereby improving the performance of the beam management system.
  • a beam in an embodiment of the present application may refer to a transmit beam or a receive beam
  • a beam pair refers to a pair of transmit beams and receive beams.
  • CMR and IMR are used in the application.
  • CMR may refer to a transmit beam
  • CMR may refer to a transmit beam
  • a transmit-receive beam pair CMR may refer to a transmit beam and a corresponding receive beam
  • a spatial filter may be used instead of a beam (pair).
  • its output may be understood as inference or prediction.
  • inference and prediction have the same meaning and can be interchanged.
  • FIG. 11 is a schematic flow chart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 11 , the wireless communication method 200 may include at least part of the following contents:
  • the first communication device inputs a first measurement data set into a first network model, and outputs a first prediction data set;
  • the first measurement data set includes at least one of the following: power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set, and identification information of a spatial filter measured based on a reference signal measurement set; or, the first measurement data set includes at least one of the following: power information of a reference signal part measured based on a reference signal measurement set and power information of an interference noise part measured based on an interference signal measurement set, identification information of a spatial filter measured based on a reference signal measurement set, and identification information of a spatial filter measured based on an interference signal measurement set;
  • the first prediction data set includes at least one of the following: identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters; wherein K is a positive integer.
  • the first communication device may input the measured power information of the reference signal part and the power information of the interference noise part into the first network model, and predict the identification information of K spatial filters and/or the L1-SINR corresponding to the K spatial filters. That is, the interference between beams (pairs) can be reflected in the beam (pair) prediction based on the AI/ML model, thereby improving the performance of the beam management system.
  • the first network model is an AI/ML model.
  • the first network model may be an AI/ML model for beam prediction in the spatial domain, and a specific implementation may be shown in FIG. 9 or FIG. 10 .
  • the "reference signal measurement set” may also be referred to as the "useful signal measurement set”
  • the "power information of the reference signal part” may also be referred to as the “power information of the useful signal part”
  • the “reference signal prediction set” may also be referred to as the “useful signal prediction set”, which is not limited in the present application.
  • a spatial filter may also be referred to as a beam, a beam pair, a spatial relation, a spatial setting, a spatial domain filter, etc., or a spatial filter may also be referred to as a reference signal.
  • the spatial filter includes a transmit spatial filter.
  • the transmit spatial filter may also be referred to as a transmit beam (Tx beam) or a transmitter spatial filter, and the above terms may be interchangeable.
  • the spatial filter includes a receive spatial filter.
  • the receive spatial filter may also be referred to as a receive beam (Rx beam) or a receive-end spatial filter, and the above terms may be interchangeable.
  • the spatial filter includes a transmit spatial filter and a receive spatial filter.
  • the combination of the transmit spatial filter and the receive spatial filter can also be referred to as a beam pair (i.e., a transmit beam (Tx beam) and a receive beam (Rx beam) pair), a spatial filter pair, or a spatial filter group, and the above terms can be interchangeable.
  • the identification information of the spatial filter may be an index or an identification of the spatial filter.
  • the identification information of the transmit spatial filter may be an index or an identification of the transmit spatial filter.
  • the identification information of the receiving spatial filter may be an index or an identification of the receiving spatial filter.
  • the identification information of the combination of the transmit spatial filter and the receive spatial filter may be a combination index.
  • the power information of the reference signal part and the power information of the interference noise part may be L1-RSRP or other power parameters, which is not limited in the embodiments of the present application.
  • the first communication device is a terminal device, or the first communication device is a network device.
  • the identification information of the spatial filter can be implicitly indicated according to the position of the vector where the power information of the reference signal part and the power information of the interference noise part are input into the first network model.
  • the power information of the reference signal part and the power information of the interference noise part corresponding to the first spatial filter are input into the first position of the first network model
  • the power information of the reference signal part and the power information of the interference noise part corresponding to the second spatial filter are input into the second position of the first network model, and so on.
  • the first measurement data set includes power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set.
  • the first measurement data set includes power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set
  • the first prediction data set includes predicted L1-SINRs corresponding to K spatial filters.
  • the first measurement data set includes power information of the reference signal part and power information of the interference noise part obtained based on the reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set and identification information of K spatial filters predicted from an interference signal prediction set.
  • the first measurement data set includes power information of the reference signal part and power information of the interference noise part obtained based on the reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes identification information of the spatial filter obtained based on the reference signal measurement set
  • the first prediction data set includes predicted L1-SINRs corresponding to K spatial filters.
  • the first measurement data set includes identification information of a spatial filter obtained by measurement based on a reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters obtained by prediction from a reference signal prediction set.
  • the first measurement data set includes identification information of spatial filters obtained based on measurements of a reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set and identification information of K spatial filters predicted from an interference signal prediction set.
  • the first measurement data set includes identification information of the spatial filter obtained based on the reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes power information of a reference signal part measured based on a reference signal measurement set and power information of an interference noise part measured based on an interference signal measurement set
  • the first prediction data set includes predicted L1-SINRs corresponding to K spatial filters.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set and power information of the interference noise part measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes power information of a reference signal part measured based on a reference signal measurement set and power information of an interference noise part measured based on an interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set and identification information of K spatial filters predicted from an interference signal prediction set.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set and power information of the interference noise part measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes identification information of the spatial filter obtained based on the reference signal measurement set
  • the first prediction data set includes predicted L1-SINRs corresponding to K spatial filters.
  • the first measurement data set includes identification information of the spatial filter measured based on the reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes identification information of spatial filters obtained based on measurements of a reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set and identification information of K spatial filters predicted from an interference signal prediction set.
  • the first measurement data set includes identification information of the spatial filter obtained based on the reference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes identification information of the spatial filter measured based on the reference signal measurement set and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes the predicted L1-SINRs corresponding to K spatial filters.
  • the first measurement data set includes identification information of the spatial filter measured based on the reference signal measurement set and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes identification information of spatial filters obtained based on the reference signal measurement set and identification information of spatial filters obtained based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and identification information of K spatial filters predicted from the interference signal prediction set.
  • the first measurement data set includes identification information of spatial filters measured based on a reference signal measurement set and identification information of spatial filters measured based on an interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from a reference signal prediction set, identification information of K spatial filters predicted from an interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set, power information of the interference noise part measured based on the interference signal measurement set, identification information of the spatial filter measured based on the reference signal measurement set, and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes the predicted L1-SINR corresponding to the K spatial filters.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set, power information of the interference noise part measured based on the interference signal measurement set, identification information of the spatial filter measured based on the reference signal measurement set, and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and L1-SINR corresponding to the predicted K spatial filters.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set, power information of the interference noise part measured based on the interference signal measurement set, identification information of the spatial filter measured based on the reference signal measurement set, and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set and identification information of K spatial filters predicted from the interference signal prediction set.
  • the first measurement data set includes power information of the reference signal part measured based on the reference signal measurement set, power information of the interference noise part measured based on the interference signal measurement set, identification information of the spatial filter measured based on the reference signal measurement set, and identification information of the spatial filter measured based on the interference signal measurement set
  • the first prediction data set includes identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters.
  • each CMR in the reference signal measurement set is measured to obtain the power information of the reference signal part of the corresponding CMR (i.e., the power of the S part), or the power information of the reference signal part (i.e., the power of the S part) and the power information of the interference noise part (i.e., the power of the (I+N) part) of the corresponding CMR is measured.
  • the power information of the reference signal part of the corresponding CMR i.e., the power of the S part
  • the power information of the interference noise part i.e., the power of the (I+N) part
  • the UE can measure the IMR associated with the CMR in Set B’, and correspondingly obtain the power information of the interference noise signal part of the IMR (i.e., the power of the (I+N) part). If the CMR has no associated IMR, the UE uses the CMR as the IMR, and subtracts the power information of the reference signal part (i.e., the power of the S part) from the total received signal power to obtain the power information of the residual interference noise signal part (i.e., the power of the (I+N) part).
  • the reference signal part i.e., the power of the S part
  • the power information of the reference signal part i.e., the power of the S part
  • the power information of the interference noise part i.e., the power of the (I+N) part
  • each CMR in the reference signal measurement set is measured to obtain the power information of the reference signal part (i.e., the power of the S part) and the power information of the interference noise part (i.e., the power of the (I+N) part) of the corresponding CMR.
  • the interference signal measurement set includes M IMRs, or the interference signal measurement set includes 2M IMRs, where M is a positive integer.
  • the interference signal measurement set can be represented by a measurement set B' (Set B'), that is, Set B' includes M IMRs, or Set B' includes 2M IMRs.
  • each IMR in the interference signal measurement set can be measured to obtain the power information of the interference noise part of the corresponding IMR (i.e., the power of the (I+N) part).
  • the interference signal measurement set may also include 0 IMRs.
  • the power information of the reference signal part i.e., the power of the S part
  • the power information of the interference noise part i.e., the power of the (I+N) part
  • the reference signal measurement set Set B
  • the reference signal prediction set includes N CMRs, where N is a positive integer.
  • the reference signal prediction set can be represented by a prediction set A (Set A), that is, Set A includes N CMRs.
  • Set A the prediction set A
  • the identification information of the K spatial filters predicted based on the reference signal prediction set (Set A) and/or the L1-SINR corresponding to the predicted K spatial filters can be obtained.
  • the interference signal prediction set includes N IMRs, or the interference signal measurement set includes 2N IMRs, where N is a positive integer.
  • the interference signal prediction set can be represented by a prediction set A' (Set A'), that is, Set A' includes N IMRs, or Set A' includes 2N IMRs.
  • the identification information of the K spatial filters predicted based on the interference signal prediction set (Set A') can be obtained, or the identification information of the K spatial filters predicted based on the reference signal prediction set (Set A) and the interference signal prediction set (Set A') and the L1-SINR corresponding to the predicted K spatial filters can be obtained.
  • the interference signal prediction set includes 0 IMRs, that is, no IMR is configured in the interference signal prediction set.
  • the identification information of the K spatial filters predicted based on the reference signal prediction set (Set A) and/or the L1-SINR corresponding to the predicted K spatial filters can be used.
  • M M ⁇ N.
  • M and N may also satisfy other proportional relationships, which are not limited in the embodiments of the present application.
  • the CMR and IMR are configured with a certain association relationship by the network (NW).
  • the NW can configure 0 (no associated IMR) IMR, or 1 (NZP CSI-RS resource or CSI-IM resource) IMR, or 2 IMRs (one NZP CSI-RS resource and one CSI-IM resource).
  • a CMR in the M CMRs and an IMR in the M IMRs satisfy a one-to-one association relationship.
  • a CMR in the M CMRs and an IMR in the 2M IMRs satisfy a one-to-two association relationship.
  • the M CMRs include at least one of the following resources: NZP CSI-RS resources, SSB resources.
  • the M IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM; or, the 2M IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM.
  • a CMR in the N CMRs and an IMR in the N IMRs satisfy a one-to-one association relationship.
  • a CMR in the N CMRs and an IMR in the 2N IMRs satisfy a one-to-two association relationship.
  • the N CMRs include at least one of the following resources: NZP CSI-RS resources, SSB resources.
  • the N IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM; or, the 2N IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM.
  • the associated CMR and IMR have the same quasi-co-located (QCL) type D assumption.
  • QCL quasi-co-located
  • the UE uses the same receive beam to receive the associated CMR and IMR (only applicable to the IMR of NZP CSI-RS), that is, the CMR and the IMR of NZP CSI-RS have the same QCL-TypeD assumption.
  • the IMR of CSI-IM since there is no QCL assumption, the IMR of CSI-IM will not have a QCL relationship with the CMR.
  • the first measurement data set is obtained by measuring the first communication device.
  • the first communication device is a terminal device, and the first measurement data set is obtained by measuring the terminal device.
  • the first measurement data set is measured by other devices and reported to the first communication device.
  • the first communication device is a network device
  • the terminal device obtains the first measurement data set through measurement
  • the terminal device reports the first measurement data set to the network device.
  • the first network model is determined by the first communication device, or the first network model is configured or indicated by other devices.
  • the NW will pass the model (i.e., the first network model) adapted to the NW deployment environment and beam (pair) configuration to the UE.
  • the NW indicates to the UE a special model identifier (model ID) (an identifier (Identity, ID) defined in the life cycle management of the model to identify different models) through RRC and/or MAC CE, and the model identifier is used to indicate the first network model.
  • model ID an identifier (Identity, ID) defined in the life cycle management of the model to identify different models
  • the model identifier is used to indicate the first network model.
  • the UE starts a model (i.e., the first network model) that it has prepared in advance, and can optionally inform the NW of the information of the model, such as through the model ID.
  • model ID As the model communication process, one of the most important assumptions is that NW and UE have a clear consensus and understanding of the model details expressed by the model ID.
  • the first communication device before the first communication device performs spatial domain spatial filter prediction based on the first network model, the first communication device sends first capability information; wherein the first capability information is used to indicate that the first communication device supports prediction of spatial domain spatial filter based on L1-SINR.
  • the first capability information may also indicate that the first communication device does not support prediction of spatial domain spatial filter based on L1-SINR. That is, the first capability information may indicate whether the first communication device supports prediction of spatial domain spatial filter based on L1-SINR.
  • the first capability information occupies 1 bit, and a value of 0 indicates support for prediction of spatial domain spatial filter based on L1-SINR, and a value of 1 indicates that prediction of spatial domain spatial filter based on L1-SINR is not supported.
  • the first capability information occupies 1 bit, and a value of 1 indicates support for prediction of spatial domain spatial filter based on L1-SINR, and a value of 0 indicates that prediction of spatial domain spatial filter based on L1-SINR is not supported.
  • the first communication device is a terminal device, and the terminal device sends the first capability information to the network device. That is, in the embodiment of the present application, before the NW configures the AI/ML model for the UE, the UE needs to inform the NW through the UE capability report whether it supports the spatial domain beam (pair) prediction based on L1-SINR.
  • the first capability information may be carried by one of the following:
  • Radio Resource Control signaling, uplink control information (UCI), media access control layer control element (MAC CE) signaling.
  • RRC Radio Resource Control
  • UCI uplink control information
  • MAC CE media access control layer control element
  • the first capability information further includes but is not limited to at least one of the following:
  • the maximum number of reference signal resources included in the reference signal measurement set is the maximum number of reference signal resources included in the reference signal measurement set
  • the maximum number of interference signal resources included in the interference signal measurement set is the maximum number of interference signal resources included in the interference signal measurement set
  • NZP CSI-RS resources are supported as IMR, the maximum number of NZP CSI-RS resources supported for measurement;
  • the UE needs to inform the NW through the UE capability report whether it supports spatial domain beam (pair) prediction based on L1-SINR. If this feature is supported, the capabilities reported by the UE include but are not limited to at least one of the following:
  • NZP CSI-RS is supported as IMR; if supported, how many NZP CSI-RS resources can be measured at most;
  • CSI-IM is supported as IMR; if supported, how many CSI-IM resources can be measured at most;
  • the maximum size of the prediction set that can be predicted that is, the maximum size of Set A and Set A’;
  • the first network model outputs a maximum number of beams (pairs), that is, the maximum value of K in Top-K.
  • the first communication device before the first communication device performs spatial domain spatial filter prediction based on the first network model, the first communication device receives first information; wherein,
  • the first information is used to configure at least one of the following: the reference signal measurement set, the interference signal measurement set, the reference signal prediction set, the interference signal prediction set; or,
  • the first information is used to activate at least one of the following: one of the reference signal measurement sets in the preconfigured multiple reference signal measurement sets, one of the interference signal measurement sets in the preconfigured multiple interference signal measurement sets, one of the reference signal prediction sets in the preconfigured multiple reference signal prediction sets, and one of the interference signal prediction sets in the preconfigured multiple interference signal prediction sets.
  • the first communication device is a terminal device, that is, before the terminal device performs spatial domain spatial filter prediction based on the first network model, the terminal device receives the first information sent by the network device.
  • the NW configures and/or activates the reference signal measurement set (Set B) and interference signal measurement set (Set B’) required for model input for the UE.
  • the NW uses RRC signaling to configure one or more sets of Set B and Set B’ for the UE.
  • Set B as a reference signal measurement set, can include NZP CSI-RS resources and/or SSB resources;
  • Set B’ as an interference signal measurement set, can include NZP CSI-RS resources and/or CSI-IM.
  • Set B’ may not include any dedicated IMR, that is, the UE uses CMR to measure interference and noise.
  • the NW configures multiple sets of Set B and Set B’
  • the NW also needs to use MAC CE signaling to activate one set of Set B and Set B’ in the multiple configurations according to the actual deployment and antenna configuration. Otherwise, only the configured set of Set B and Set B’ is used.
  • NW configures and/or activates the reference signal prediction set (Set A) and interference signal prediction set (Set A’) output by the model for the UE.
  • NW uses RRC signaling to configure one or more groups of associated reference signal prediction sets (Set A) and interference signal prediction sets (Set A’) for UE.
  • Set A can include NZP CSI-RS resources and/or SSB resources; as an interference signal prediction set, Set A’ can include NZP CSI-RS resources and/or CSI-IM resources.
  • Set A’ may not include any dedicated IMR, that is, UE uses CMR to measure interference and noise. If NW configures multiple groups of Set A and Set A’, then NW also needs to use MAC CE signaling to activate a group of associated Set A and Set A’ in the multiple configurations according to the actual deployment and antenna configuration. Otherwise, only the configured set of Set A and Set A’ is used.
  • the first communication device is a terminal device, and the CMRs in the M CMRs (Set B) and the IMRs in the M IMRs (Set B’) satisfy a one-to-one association relationship, and the first network model is AL/ML model 1, as shown in FIG12.
  • the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMRs in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMRs in the interference signal measurement set (Set B’) can be used as inputs of AL/ML model 1 (predicting Top-K beam (pair) information), as shown in FIG12.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMRs, and obtains the power of the interference noise part (i.e., I+N part) by measuring the IMRs.
  • the output of AL/ML model 1 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a terminal device, and the CMRs in the M CMRs (Set B) and the IMRs in the M IMRs (Set B’) satisfy a one-to-one association relationship, and the first network model is an AL/ML model 2, as shown in FIG13.
  • the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMRs in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMRs in the interference signal measurement set (Set B’) can be used as inputs of the AL/ML model 2 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG13.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMRs, and obtains the power of the interference noise part (i.e., I+N part) by measuring the IMRs.
  • the output of AL/ML model 2 is the L1-SINR value corresponding to the optimal K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a terminal device, and the CMRs in the M CMRs (Set B) and the IMRs in the 2M IMRs (Set B’) satisfy a one-to-two association relationship, wherein one IMR of the two IMRs corresponding to one CMR is an NZP CSI-RS, and the other IMR is a CSI-IM, and the first network model is an AL/ML model 3, as shown in FIG14.
  • the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMR in the interference signal measurement set (Set B’) can be used as inputs of the AL/ML model 3 (predicting Top-K beam (pair) information), as shown in FIG14.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the IMR.
  • the output of AL/ML model 3 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a terminal device, and the CMRs in the M CMRs (Set B) and the IMRs in the 2M IMRs (Set B’) satisfy a one-to-two association relationship, wherein one IMR of the two IMRs corresponding to one CMR is an NZP CSI-RS, and the other IMR is a CSI-IM, and the first network model is an AL/ML model 4, as shown in FIG15.
  • the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMR in the interference signal measurement set (Set B’) can be used as inputs of the AL/ML model 4 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG15.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the IMR.
  • the output of AL/ML model 4 is the L1-SINR value corresponding to the optimal K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a terminal device, and the network device is configured with M CMRs (Set B), and is not configured with IMRs (Set B’), and the first network model is an AL/ML model 5, as shown in FIG16.
  • the power information such as L1-RSRP
  • the reference signal part i.e., S part
  • the power information such as L1-RSRP
  • the interference noise part i.e., I+N part
  • the AL/ML model 5 predicting Top-K beam (pair) information
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the CMR. Specifically, the terminal device needs to pre-process the measurement of the CMR first to separate the power of the S part of the reference signal and the power of the interference noise (I+N) part.
  • the output of AL/ML model 5 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A).
  • the first communication device is a terminal device, and the network device is configured with M CMRs (Set B), and is not configured with IMRs (Set B’), and the first network model is an AL/ML model 6, as shown in FIG17.
  • the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the CMR in the reference signal measurement set (Set B) can be used as inputs of the AL/ML model 6 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG17.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the CMR. Specifically, the terminal device needs to pre-process the measurement of the CMR first to separate the power of the S part of the reference signal and the power of the interference noise (I+N) part.
  • the output of AL/ML model 6 is the L1-SINR value corresponding to the optimal K beams (pairs) inferred from the reference signal prediction set (Set A).
  • the first communication device sends first prediction information
  • the first prediction information includes part or all of the content in the first prediction data set.
  • the first communication device is a terminal device, that is, after predicting the first prediction data set, the terminal device can report part or all of the content in the first prediction data set to the network device.
  • the first prediction information can be carried by one of the following: RRC signaling, UCI, MAC CE signaling.
  • the L1-SINRs corresponding to the K spatial filters are represented by a differential manner.
  • the differential L1-SINR (Differential L1-SINR) corresponding to beam #2 may be the difference relative to the L1-SINR corresponding to beam #1
  • the differential L1-SINR corresponding to beam #3 may be the difference relative to the L1-SINR corresponding to beam #1
  • the differential L1-SINR corresponding to beam #4 may be the difference relative to the L1-SINR corresponding to beam #1.
  • the differential L1-SINR corresponding to CMR#2 may be the difference with respect to the L1-SINR corresponding to CMR#1
  • the differential L1-SINR corresponding to CMR#3 may be the difference with respect to the L1-SINR corresponding to CMR#1
  • the differential L1-SINR corresponding to CMR#4 may be the difference with respect to the L1-SINR corresponding to CMR#1.
  • the differential L1-SINR corresponding to beam pair #2 may be the difference relative to the L1-SINR corresponding to beam pair #1
  • the differential L1-SINR corresponding to beam pair #3 may be the difference relative to the L1-SINR corresponding to beam pair #1
  • the differential L1-SINR corresponding to beam pair #4 may be the difference relative to the L1-SINR corresponding to beam pair #1.
  • the terminal device if the prediction is based on a model of a receiving beam, the terminal device does not need to report any information, and the network device does not need to give any instructions.
  • the terminal device only finds the receiving beam with the best L1-SINR performance for a fixed transmitting beam.
  • the first communication device receives first indication information; wherein the first indication information is used to indicate identification information of the spatial filter used in the predicted identification information of the K spatial filters.
  • the first communication device is a terminal device, that is, the terminal device receives the first indication information sent by the network device. Specifically, after receiving the first prediction information sent by the terminal device, the network device may send the first indication information to the terminal device.
  • the first indication information is at least one TCI status indication.
  • the first indication information is a TCI status field in a MAC CE and/or a DCI.
  • the first indication information is an identification field of at least one spatial filter. Specifically, it is possible to replace the TCI status field in the MAC CE and/or DCI and use the beam pair identification field. The advantage of this is that in addition to indicating the downlink transmit beam used by the NW, it is also possible to directly indicate to the UE the receive beam that should be used, without relying on the UE's implementation of the receive beam.
  • the first communication device is a network device.
  • the first communication device before the first communication device performs spatial domain spatial filter prediction based on the first network model, receives second capability information; wherein the second capability information is used to indicate that the transmitting device of the second capability information supports the prediction of the spatial domain spatial filter based on L1-SINR.
  • the second capability information may also indicate that the transmitting device of the second capability information does not support the prediction of the spatial domain spatial filter based on L1-SINR. That is, the second capability information may indicate whether the transmitting device of the second capability information supports the prediction of the spatial domain spatial filter based on L1-SINR.
  • the second capability information occupies 1 bit, and a value of 0 indicates that the prediction of the spatial domain spatial filter based on L1-SINR is supported, and a value of 1 indicates that the prediction of the spatial domain spatial filter based on L1-SINR is not supported.
  • the second capability information occupies 1 bit, and a value of 1 indicates that the prediction of the spatial domain spatial filter based on L1-SINR is supported, and a value of 0 indicates that the prediction of the spatial domain spatial filter based on L1-SINR is not supported.
  • the network device receives second capability information sent by the terminal device, wherein the second capability information is used to indicate that the terminal device supports prediction of spatial domain spatial filter based on L1-SINR.
  • the terminal device needs to inform the network device through the terminal capability report whether it supports the measurement and reporting of spatial domain beam (pair) prediction based on L1-SINR.
  • the second capability information further includes but is not limited to at least one of the following:
  • the maximum number of reference signal resources included in the reference signal measurement set is the maximum number of reference signal resources included in the reference signal measurement set
  • the maximum number of interference signal resources included in the interference signal measurement set is the maximum number of interference signal resources included in the interference signal measurement set
  • NZP CSI-RS resources are supported as IMR, the maximum number of NZP CSI-RS resources supported for measurement;
  • the terminal device needs to inform the network device through the terminal capability report whether it supports the measurement and reporting of the spatial domain beam (pair) prediction based on L1-SINR. If this feature is supported, the capabilities reported by the terminal device include but are not limited to at least one of the following:
  • NZP CSI-RS is supported as IMR; if supported, how many NZP CSI-RS resources can be measured at most;
  • CSI-IM is supported as IMR; if supported, how many CSI-IM resources can be measured at most;
  • the first communication device before the first communication device performs spatial domain spatial filter prediction based on the first network model, the first communication device sends second information; wherein,
  • the second information is used to configure at least one of the following: the reference signal measurement set, the interference signal measurement set; or,
  • the second information is used to activate at least one of the following: one of the reference signal measurement sets among the preconfigured reference signal measurement sets, and one of the interference signal measurement sets among the preconfigured interference signal measurement sets.
  • the first communication device is a network device, that is, before the network device performs spatial domain spatial filter prediction based on the first network model, the network device sends the second information to the terminal device.
  • the NW configures and/or activates the reference signal measurement set (Set B) and interference signal measurement set (Set B’) required for model input for the UE.
  • the NW uses RRC signaling to configure one or more sets of Set B and Set B’ for the UE.
  • Set B as a reference signal measurement set, can include NZP CSI-RS resources and/or SSB resources;
  • Set B’ as an interference signal measurement set, can include NZP CSI-RS resources and/or CSI-IM.
  • Set B’ may not include any dedicated IMR, that is, the UE uses CMR to measure interference and noise.
  • the NW configures multiple sets of Set B and Set B’
  • the NW also needs to use MAC CE signaling to activate one set of Set B and Set B’ in the multiple configurations according to the actual deployment and antenna configuration. Otherwise, only the configured set of Set B and Set B’ is used.
  • the first communications device before the first communications device performs spatial filter prediction in the spatial domain based on the first network model, the first communications device receives the first measurement data set.
  • the first communication device is a network device, that is, before the network device performs spatial domain spatial filter prediction based on the first network model, the network device receives the first measurement data set sent by the terminal device.
  • the power information of the reference signal portion and/or the power information of the interference noise portion is represented in a differential manner.
  • the terminal device measures the CMR in the reference signal measurement set (Set B), and the corresponding power information (such as L1-RSRP) of the reference signal part (i.e., the S part) of the CMR is obtained.
  • the terminal device reports the CMR measurement results in Set B to the network device. Considering that the CMR in Set B is configured by the network device, the terminal device reports in the order of the network device configuration, which can be used as the input of the network side model.
  • the configuration and reporting order of Set B can be to first sort the resource index of SSB (if any, i.e., SSB resource indication (SSB Resource Indicator, SSBRI)) from low to high, and then sort from low to high according to the resource index of NZP CSI-RS (if any, i.e., CSI-RS resource indication (CSI-RS Resource Indicator, CRI)).
  • SSB resource indication SSB Resource Indicator, SSBRI
  • NZP CSI-RS if any, i.e., CSI-RS resource indication (CSI-RS Resource Indicator, CRI)
  • the terminal device reports the measurement results of Set B as shown in Tables 4 and 5.
  • the index of the CMR in addition to reporting the power of the reference signal part (in L1-RSRP), the index of the CMR can also be reported. This can support reporting based on differential RSRP, that is, the CMR with the highest RSRP is used as the first index, and other CMRs with lower RSRP are differentially reported.
  • differential RSRP that is, the CMR with the highest RSRP is used as the first index, and other CMRs with lower RSRP are differentially reported.
  • the advantage of this is that the UE's reporting becomes very flexible, and the UE has a certain degree of reporting autonomy.
  • the terminal device measures the IMR in the interference signal measurement set (Set B’).
  • the terminal device measures the IMR in the interference signal measurement set (Set B’).
  • the L1-RSRP corresponding to the CRI or CSI-IM or beam pair #1 of IMR is L1-RSRP #1
  • the L1-RSRP corresponding to the CRI or CSI-IM or beam pair #2 of IMR is Differential L1-RSRP #2
  • the L1-RSRP corresponding to the CRI or CSI-IM or beam pair #M of IMR is Differential L1-RSRP #M
  • Differential L1-RSRP #2 can be the difference relative to L1-RSRP #1
  • Differential L1-RSRP #M can be the difference relative to L1-RSRP #1.
  • the terminal device when 1 CMR is associated with 2 IMRs, the terminal device reports NZP CSI-RS resources and CSI-IM as the measurement results of the IMR. If there are M CMRs, there are 2M IMRs.
  • the order of reporting can be agreed upon, for example, the first half of the reporting format is the measurement results of the NZP CSI-RS resources, and the second half is the measurement results of the CSI-IM, as shown in Table 8 or Table 9 below.
  • the L1-RSRP corresponding to the CRI or beam pair #1 of NZP CSI-RS is NZP CSI-RS L1-RSRP#1
  • the L1-RSRP corresponding to the CRI or beam pair #2 of NZP CSI-RS is NZP CSI-RS Differential L1-RSRP#2,...
  • the L1-RSRP corresponding to the CRI or beam pair #M of NZP CSI-RS is NZP CSI-RS Differential L1-RSRP#M
  • NZP CSI-RS Differential L1-RSRP#2 may be the difference relative to NZP CSI-RS L1-RSRP#1
  • NZP CSI-RS Differential L1-RSRP#M may be the difference relative to NZP CSI-RS L1-RSRP#1.
  • the L1-RSRP corresponding to CSI-IM index#1 of CSI-IM is CSI-IM L1-RSRP#1
  • the L1-RSRP corresponding to CSI-IM index#2 of CSI-IM is CSI-IM Differential L1-RSRP#2
  • the L1-RSRP corresponding to CSI-IM index#M of CSI-IM is CSI-IM Differential L1-RSRP#M
  • CSI-IM Differential L1-RSRP#2 may be the difference relative to CSI-IM L1-RSRP#1
  • CSI-IM Differential L1-RSRP#M may be the difference relative to CSI-IM L1-RSRP#1.
  • the measurement results of CMR and IMR can be reported to the network device at one time, as shown in Table 10 or Table 11. It should be noted that in Table 11, considering that the interference and noise power measured by different IMR resources, such as NZP CSI-RS and CSI-IM, may differ greatly, which exceeds the range of differential quantization. Therefore, we add a () to Differential to indicate that differential-based reporting and non-differential reporting are supported.
  • the power of the reference signal part and the power of the interference noise signal part are considered to be separated and then reported to the network device, as shown in Table 12 or Table 13.
  • Table 13 Set B CMR reference signal and interference and noise power reporting (including beam (pair) index and L1-RSRP)
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMR in the interference signal measurement set (Set B’) as inputs of AL/ML model 1 (predicting Top-K beam (pair) information), as shown in FIG12.
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the IMR, and the terminal device reports the measurement results to the network device.
  • the output of AL/ML model 1 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a network device, and the CMRs in the M CMRs (Set B) and the IMRs in the M IMRs (Set B’) satisfy a one-to-one association relationship, and the first network model is an AL/ML model 2, as shown in FIG13.
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the IMR in the interference signal measurement set (Set B’) as inputs of the AL/ML model 2 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG13.
  • the power information such as L1-RSRP
  • the reference signal part i.e., S part
  • the power information such as L1-RSRP of the interference noise part (i.e., I+N part) obtained by measuring the IMR in the interference signal measurement set (Set B’)
  • the first communication device is a network device
  • the CMRs in the M CMRs (Set B) and the IMRs in the 2M IMRs (Set B’) satisfy a one-to-two association relationship, wherein one IMR of the two IMRs corresponding to one CMR is an NZP CSI-RS, and the other IMR is a CSI-IM, and the first network model is an AL/ML model 3, as shown in FIG14.
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., the S part) measured based on the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., the I+N part) measured based on the IMR in the interference signal measurement set (Set B’) as inputs of the AL/ML model 3 (predicting Top-K beam (pair) information), as shown in FIG14.
  • the power information such as L1-RSRP
  • the reference signal part i.e., the S part
  • the power information such as L1-RSRP
  • the interference noise part i.e., the I+N part
  • the terminal device obtains the power of the reference signal part (i.e., the S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., the I+N part) by measuring the IMR, and the terminal device reports the measurement results to the network device.
  • the output of AL/ML model 3 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., the S part) measured based on the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., the I+N part) measured based on the IMR in the interference signal measurement set (Set B’) as inputs of the AL/ML model 4 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG15.
  • the power information such as L1-RSRP
  • the reference signal part i.e., the S part
  • the power information such as L1-RSRP
  • the interference noise part i.e., the I+N part
  • the terminal device obtains the power of the reference signal part (i.e., the S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., the I+N part) by measuring the IMR, and the terminal device reports the measurement results to the network device.
  • the output of AL/ML model 4 is the L1-SINR value corresponding to the optimal K beams (pairs) inferred from the reference signal prediction set (Set A) and the interference signal prediction set (Set A’).
  • the first communication device is a network device, and the network device is configured with M CMRs (Set B), and is not configured with IMRs (Set B’), and the first network model is an AL/ML model 5, as shown in FIG16.
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained by measuring the CMR in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained by measuring the CMR in the reference signal measurement set (Set B) as inputs of the AL/ML model 5 (predicting Top-K beam (pair) information), as shown in FIG16.
  • the power information such as L1-RSRP
  • the reference signal part i.e., S part
  • the power information such as L1-RSRP
  • the interference noise part i.e., I+N part
  • the terminal device obtains the power of the reference signal part (i.e., S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., I+N part) by measuring the CMR.
  • the terminal device needs to pre-process the measurement of the CMR first, separate the power of the S part of the reference signal and the power of the interference noise (I+N) part, and the terminal device reports the measurement result to the network device.
  • the output of AL/ML model 5 is the optimal (based on the order of predicted L1-SINR from high to low) K beams (pairs) inferred from the reference signal prediction set (Set A).
  • the first communication device is a network device, and the network device is configured with M CMRs (Set B) and is not configured with IMRs (Set B’), and the first network model is an AL/ML model 6, as shown in FIG17 .
  • the network device can use the power information (such as L1-RSRP) of the reference signal part (i.e., S part) obtained based on the CMR measurement in the reference signal measurement set (Set B) and the power information (such as L1-RSRP) of the interference noise part (i.e., I+N part) obtained based on the CMR measurement in the reference signal measurement set (Set B) as inputs of the AL/ML model 6 (predicting the L1-SINR corresponding to the Top-K beam (pair)), as shown in FIG17 .
  • L1-RSRP the reference signal part obtained based on the CMR measurement in the reference signal measurement set (Set B)
  • the power information such as L1-RSRP
  • the interference noise part i.e., I+N part
  • the terminal device obtains the power of the reference signal part (i.e., the S part) by measuring the CMR, and obtains the power of the interference noise part (i.e., the I+N part) by measuring the CMR.
  • the terminal device needs to pre-process the CMR measurement first to separate the power of the S part of the reference signal and the power of the interference noise (I+N) part, and the terminal device reports the measurement result to the network device.
  • the output of the AL/ML model 6 is the L1-SINR value corresponding to the optimal K beams (pairs) inferred from the reference signal prediction set (Set A).
  • the first communication device is a network device, that is, the network device sends the second indication information to the terminal device. Specifically, after the network device predicts and obtains the first prediction data set, it can send the second indication information to the terminal device.
  • the second indication information is at least one TCI status indication; or,
  • the second indication information is an identification field of at least one spatial filter.
  • the first communication device can input the measured power information of the reference signal part and the power information of the interference noise part into the first network model, and predict the identification information of the K spatial filters and/or the L1-SINR corresponding to the K spatial filters. That is, the interference between beams (pairs) can be reflected in the beam (pair) prediction based on the AI/ML model, thereby improving the performance of the beam management system.
  • Fig. 18 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
  • the communication device 300 is a first communication device, as shown in Fig. 18, the communication device 300 includes: a processing unit 310;
  • the processing unit 310 is used to input a first measurement data set into a first network model and output a first prediction data set;
  • the first measurement data set includes at least one of the following: power information of a reference signal part and power information of an interference noise part measured based on a reference signal measurement set, and identification information of a spatial filter measured based on a reference signal measurement set; or, the first measurement data set includes at least one of the following: power information of a reference signal part measured based on a reference signal measurement set and power information of an interference noise part measured based on an interference signal measurement set, identification information of a spatial filter measured based on a reference signal measurement set, and identification information of a spatial filter measured based on an interference signal measurement set;
  • the first prediction data set includes at least one of the following: identification information of K spatial filters predicted from the reference signal prediction set, identification information of K spatial filters predicted from the interference signal prediction set, and L1-SINR corresponding to the predicted K spatial filters; wherein K is a positive integer.
  • the reference signal measurement set includes M channel measurement resources CMR; and/or, the interference signal measurement set includes M interference measurement resources IMR, or, the interference signal measurement set includes 2M IMR; and/or,
  • M and N are both positive integers, and M ⁇ N.
  • a CMR in the M CMRs and an IMR in the M IMRs satisfy a one-to-one association relationship; or, a CMR in the M CMRs and an IMR in the 2M IMRs satisfy a one-to-two association relationship.
  • the M CMRs include at least one of the following resources: non-zero power channel state information reference signal NZP CSI-RS resources, synchronization signal block SSB resources; and/or,
  • the M IMRs include at least one of the following resources: NZP CSI-RS resources, channel state information interference resources CSI-IM; or, the 2M IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM.
  • a CMR in the N CMRs and an IMR in the N IMRs satisfy a one-to-one association relationship; or, a CMR in the N CMRs and an IMR in the 2N IMRs satisfy a one-to-two association relationship.
  • the N CMRs include at least one of the following resources: NZP CSI-RS resources, SSB resources; and/or, the N IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM; or, the 2N IMRs include at least one of the following resources: NZP CSI-RS resources, CSI-IM.
  • the associated CMR and IMR have the same quasi co-located QCL type D assumption.
  • the first measurement data set is obtained by measuring the first communication device, or the first measurement data set is measured by other devices and reported to the first communication device.
  • the communication device 300 before the first communication device performs spatial domain spatial filter prediction based on the first network model, the communication device 300 further includes:
  • the communication unit 320 is configured to send first capability information, wherein the first capability information is used to indicate that the first communication device supports prediction of a spatial filter in a spatial domain based on L1-SINR.
  • the first capability information further includes at least one of the following:
  • the maximum number of reference signal resources included in the reference signal measurement set is the maximum number of reference signal resources included in the reference signal measurement set
  • the maximum number of interference signal resources included in the interference signal measurement set is the maximum number of interference signal resources included in the interference signal measurement set
  • NZP CSI-RS resources are supported as IMR, the maximum number of NZP CSI-RS resources supported for measurement;
  • the communication device 300 before the first communication device performs spatial domain spatial filter prediction based on the first network model, the communication device 300 further includes:
  • the communication unit 320 is used to receive the first information; wherein,
  • the first information is used to configure at least one of the following: the reference signal measurement set, the interference signal measurement set, the reference signal prediction set, the interference signal prediction set; or,
  • the first information is used to activate at least one of the following: one of the reference signal measurement sets in the preconfigured multiple reference signal measurement sets, one of the interference signal measurement sets in the preconfigured multiple interference signal measurement sets, one of the reference signal prediction sets in the preconfigured multiple reference signal prediction sets, and one of the interference signal prediction sets in the preconfigured multiple interference signal prediction sets.
  • the communication device 300 further includes:
  • the communication unit 320 is configured to send first prediction information
  • the first prediction information includes part or all of the content in the first prediction data set.
  • the L1-SINRs corresponding to the K spatial filters are represented by a differential manner.
  • the communication unit 320 is further used to receive first indication information; wherein the first indication information is used to indicate identification information of the spatial filter used in the identification information of the predicted K spatial filters.
  • the first indication information is at least one transmission configuration indication TCI state indication; or,
  • the first indication information is an identification field of at least one spatial filter.
  • the first communication device is a terminal device.
  • the communication device 300 before the first communication device performs spatial domain spatial filter prediction based on the first network model, the communication device 300 further includes:
  • the communication unit 320 is configured to receive second capability information; wherein the second capability information is used to indicate that the sending device of the second capability information supports prediction of a spatial filter in the spatial domain based on L1-SINR.
  • the second capability information further includes at least one of the following:
  • the maximum number of reference signal resources included in the reference signal measurement set is the maximum number of reference signal resources included in the reference signal measurement set
  • the maximum number of interference signal resources included in the interference signal measurement set is the maximum number of interference signal resources included in the interference signal measurement set
  • NZP CSI-RS resources are supported as IMR, the maximum number of NZP CSI-RS resources supported for measurement;
  • the communication device 300 before the first communication device performs spatial domain spatial filter prediction based on the first network model, the communication device 300 further includes:
  • the communication unit 320 is used to send the second information; wherein,
  • the second information is used to configure at least one of the following: the reference signal measurement set, the interference signal measurement set; or,
  • the second information is used to activate at least one of the following: one of the reference signal measurement sets among the preconfigured reference signal measurement sets, and one of the interference signal measurement sets among the preconfigured interference signal measurement sets.
  • the communication device 300 before the first communication device performs spatial domain spatial filter prediction based on the first network model, the communication device 300 further includes:
  • the communication unit 320 is configured to receive the first measurement data set.
  • the power information of the reference signal portion and/or the power information of the interference noise portion are represented in a differential manner.
  • the communication device 300 further includes:
  • the communication unit 320 is used to send second indication information; wherein the second indication information is used to indicate the identification information of the spatial filter used in the predicted identification information of the K spatial filters.
  • the second indication information is at least one TCI status indication; or,
  • the second indication information is an identification field of at least one spatial filter.
  • the first communication device is a network device.
  • the first network model is determined by the first communication device, or the first network model is configured or indicated by other devices.
  • the spatial filter comprises a transmit spatial filter
  • the spatial filter comprises a receive spatial filter
  • the spatial filter includes a transmitting spatial filter and a receiving spatial filter.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the communication device 300 may correspond to the first communication device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 300 are respectively for implementing the corresponding process of the first communication device in the method 200 shown in Figure 11, which will not be repeated here for the sake of brevity.
  • Fig. 19 is a schematic structural diagram of a communication device 400 provided in an embodiment of the present application.
  • the communication device 400 shown in Fig. 19 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410 , or may be integrated into the processor 410 .
  • the communication device 400 may further include a transceiver 430 , and the processor 410 may control the transceiver 430 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of the antennas may be one or more.
  • the processor 410 may implement the functionality of a processing unit in the first communication device, which will not be described in detail herein for the sake of brevity.
  • the transceiver 430 may implement the function of a communication unit in the first communication device, which will not be described in detail here for the sake of brevity.
  • the communication device 400 may specifically be the first communication device of the embodiment of the present application, and the communication device 400 may implement the corresponding processes implemented by the first communication device in each method of the embodiment of the present application, which will not be repeated here for the sake of brevity.
  • Fig. 20 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the device 500 shown in Fig. 20 includes a processor 510, and the processor 510 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the apparatus 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the processor 510 may implement the functionality of a processing unit in the first communication device, which will not be described in detail herein for the sake of brevity.
  • the apparatus 500 may further include an input interface 530.
  • the processor 510 may control the input interface 530 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the processor 510 may be located inside or outside the chip.
  • the input interface 530 may implement the functionality of a communication unit in the first communication device.
  • the apparatus 500 may further include an output interface 540.
  • the processor 510 may control the output interface 540 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the processor 510 may be located inside or outside the chip.
  • the output interface 540 may implement the functionality of a communication unit in the first communication device.
  • the apparatus may be applied to the first communication device in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the first communication device in the various methods in the embodiments of the present application, which will not be described in detail here for the sake of brevity.
  • the device mentioned in the embodiments of the present application may also be a chip, for example, a system-on-chip, a system-on-chip, a chip system, or a system-on-chip chip.
  • Fig. 21 is a schematic block diagram of a communication system 600 provided in an embodiment of the present application. As shown in Fig. 21, the communication system 600 includes a first communication device 610 and a second communication device 620.
  • the first communication device 610 may be used to implement the corresponding functions implemented by the first communication device in the above method, which will not be described in detail for the sake of brevity.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the first communication device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first communication device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program can be applied to the first communication device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in other words, the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,第一通信设备可以将测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型,预测得到K个空间滤波器的标识信息和/或K个空间滤波器对应的L1-SINR。也即,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
在新无线(New Radio,NR)系统中,可以引入人工智能(Artificial Intelligence,AI)/机器学习(machine learning,ML)来提升系统性能。例如,引入AI/ML模型进行波束(对)预测,即通过训练好的AI/ML模型进行波束(对)预测,提升了波束管理系统的性能。然而,当前基于AI/ML模型的波束(对)预测无法反映出波束(对)之间的干扰,而网络设备在下行传输的过程中往往是使用多个波束(对)来覆盖不同的终端。如何在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法及设备,第一通信设备可以将测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型,预测得到K个空间滤波器的标识信息和/或K个空间滤波器对应的L1-SINR。也即,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。
第一方面,提供了一种无线通信的方法,该方法包括:
第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息;或者,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息,基于干扰信号测量集测量得到的空间滤波器的标识信息;
其中,该第一预测数据集包括以下至少之一:从参考信号预测集中预测得到的K个空间滤波器的标识信息,从干扰信号预测集中预测得到的K个空间滤波器的标识信息,预测的K个空间滤波器对应的L1-SINR;其中,K为正整数。
第二方面,提供了一种通信设备,用于执行上述第一方面中的方法。
具体地,该通信设备包括用于执行上述第一方面中的方法的功能模块。
第三方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第一方面中的方法。
第四方面,提供了一种装置,用于实现上述第一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的方法。
通过上述技术方案,第一通信设备可以将测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型,预测得到K个空间滤波器的标识信息和/或K个空间滤波器对应的L1-SINR。也即,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种神经网络的神经元的连接示意图。
图3是本申请提供的一种神经网络的示意性结构图。
图4是本申请提供的一种卷积神经网络的示意性图。
图5是本申请提供的一种LSTM单元的示意性结构图。
图6是本申请提供的一种下行的波束扫描过程的示意性图。
图7是本申请提供的另一种下行的波束扫描过程的示意性图。
图8是本申请提供的又一种下行的波束扫描过程的示意性图。
图9是本申请提供的一种空间域波束预测模型的示意性图。
图10是本申请提供的另一种空间域波束预测模型的示意性图。
图11是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图12至17分别是本申请实施例提供的波束(对)预测模型的示意性图。
图18是根据本申请实施例提供的一种通信设备的示意性框图。
图19是根据本申请实施例提供的另一种通信设备的示意性框图。
图20是根据本申请实施例提供的一种装置的示意性框图。
图21是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全 (transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方 式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于更好的理解本申请实施例,对本申请相关的神经网络和机器学习进行说明。
神经网络(Neural Network,NN)是一种由多个神经元节点相互连接构成的运算模型,其中节点间的连接代表从输入信号到输出信号的加权值,称为权重;每个节点对不同的输入信号进行加权求和(summation,SUM),并通过特定的激活函数(f)输出,图2是一种神经元结构的示意图,其中,a1,a2,…,an表示输入信号,w1,w2,…,wn表示权重,f表示激励函数,t表示输出。
一个简单的神经网络如图3所示,包含输入层、隐藏层和输出层,通过多个神经元不同的连接方式,权重和激活函数,可以产生不同的输出,进而拟合从输入到输出的映射关系。其中,每一个上一级节点都与其全部的下一级节点相连,该神经网络是一种全连接神经网络,也可以称为深度神经网络(Deep Neural Network,DNN)。
一个卷积神经网络(Convolutional Neural Network,CNN)的基本结构包括:输入层、多个卷积层、多个池化层、全连接层及输出层,如图4所示。卷积层中卷积核的每个神经元与其输入进行局部连接,并通过引入池化层提取某一层局部的最大值或者平均值特征,有效减少了网络的参数,并挖掘了局部特征,使得卷积神经网络能够快速收敛,获得优异的性能。
深度学习采用多隐藏层的深度神经网络,极大提升了网络学习特征的能力,能够拟合从输入到输出的复杂的非线性映射,因而语音和图像处理领域得到广泛的应用。除了深度神经网络,面对不同任务,深度学习还包括卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)等常用基本结构。
一个卷积神经网络的基本结构包括:输入层、多个卷积层、多个池化层、全连接层及输出层,如图4所示。卷积层中卷积核的每个神经元与其输入进行局部连接,并通过引入池化层提取某一层局部的最大值或者平均值特征,有效减少了网络的参数,并挖掘了局部特征,使得卷积神经网络能够快速收敛,获得优异的性能。
RNN是一种对序列数据建模的神经网络,在自然语言处理领域,如机器翻译、语音识别等应用取得显著成绩。具体表现为,网络设备对过去时刻的信息进行记忆,并用于当前输出的计算中,即隐藏层之间的节点不再是无连接的而是有连接的,并且隐藏层的输入不仅包括输入层还包括上一时刻隐藏层的输出。常用的RNN包括长短期记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(gated recurrent unit,GRU)等结构。图5所示为一个基本的LSTM单元结构,其可以包含tanh激活函数,不同于RNN只考虑最近的状态,LSTM的细胞状态会决定哪些状态应该被留下来,哪些状态应该被遗忘,解决了传统RNN在长期记忆上存在的缺陷。
为便于更好的理解本申请实施例,对本申请相关的NR波束管理进行说明。
在NR系统中,引入了毫米波频段的通信,也引入了相应的波束管理机制,包括可以分为上行和下行的波束管理。对于下行的波束管理包括下行的波束扫描(beam sweeping),终端(UE)波束测量和上报(measurement&reporting),网络(network,NW)对于下行波束指示(beam indication)等过程。
下行波束扫描过程可包括3个过程,即P1、P2和P3过程。P1过程指网络设备扫描不同发射波束,UE扫描不同的接收波束;P2过程指网络设备扫描不同发射波束,UE使用相同的接收波束;P3过程指网络设备使用相同的发射波束,UE扫描不同的接收波束。一般情况下,网络设备通过发送下行参考信号来完成上述波束扫描过程。可选地,该下行参考信号可以包括但不限于同步信号块(Synchronization Signal Block,SSB)和/或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
图6所示是P1过程(或称下行的全扫描过程)的示意性图,图7所示是P2过程的示意性图,图8所示是P3过程的示意性图。
如图6所示,在P1过程中,网络设备遍历所有的发射波束发送下行参考信号,UE侧遍历所有的接收波束进行测量,确定对应的测量结果。
如图7所示,在P2过程中,网络设备遍历所有的发射波束发送下行参考信号,UE侧使用特定接收波束进行测量,确定对应的测量结果。
如图8所示,在P3过程中,网络设备可以使用特定发射波束发送下行参考信号,UE侧遍历所有的接收波束进行测量,确定对应的测量结果。
NR中的传统波束上报指UE通过测量不同波束(对)的层1参考信号接收功率(Layer1 Reference Signal Receiving Power,L1-RSRP)值,选择L1-RSRP最高的K个发射波束,以上行控制信息(Uplink  Control Information,UCI)的形式上报给NW。这里L1-RSRP也可以替换为其他波束链路指标,如层1信号干扰噪声比(Layer1 Signal to Interference plus Noise Ratio,L1-SINR),层1参考信号接收质量(Layer1 Reference Signal Received Quality,L1-RSRQ)等。
上述的最优K个发射波束,如果单独使用任何一个,NW都可以当做下行的发射波束,UE也可以找到对应的接收波束。但是不能保证当NW使用2个或2个以上的发射波束时,UE总是可以找到对应的接收波束。
在网络设备获知终端设备上报的最优波束后,可以通过媒体接入控制(Media Access Control,MAC)或下行控制信息(Downlink Control Information,DCI)信令来携带传输配置指示(Transmission Configuration Indicator,TCI)状态(其中包含下行参考信号作为参考的发射波束),来完成对UE的波束指示,UE使用该发射波束对应的接收波束来进行下行接收。
在NR中,考虑到L1-RSRP无法反应发射波束之间的相互干扰情况,仅能反应出有用信号波束的强度,引入了基于L1-SINR的发射波束测量和上报机制。
按照信号干扰噪声比(Signal to Interference and Noise Ratio,SINR)的定义:S/(I+N);其中,S表示有用信号部分的功率,(I+N)表示干扰和噪声部分的功率。
具体的,UE需要测量2个部分的功率,第一部分的功率是有用信号部分的功率,即S部分,使用信道测量资源(Channel measurement resource,CMR)进行测量。第二部分的功率是干扰和噪声部分的功率,即(I+N)部分,可以使用干扰测量资源(Interference measurement resource,IMR),如果NW配置了IMR;也可以使用CMR来进行测量干扰,如果NW没有配置IMR。CMR可以是同步信号块(Synchronization Signal Block,SSB)或非零功率信道状态信息参考信号(Non-Zero Power Channel State Information-Reference Signal,NZP CSI-RS)资源。
对于IMR的干扰和噪声测量,IMR可以是信道状态信息干扰资源(Channel State Information Interference Resource,CSI-IM),即UE认为NW配置的一块时频资源上(无配置的参考信号)测量到的都是干扰加噪声;IMR也可以是NZP CSI-RS,即UE认为测量到的非零功率的参考信号是干扰信号加噪声。
CMR资源和IMR资源是有关联关系的,即NW给UE配置一个CMR资源,就会配置一个或两个或零个关联的IMR资源。举例来说,如果为一个CMR配置了一个IMR资源,那么这个IMR要么是NZP CSI-RS资源,要么是CSI-IM资源;如果为一个CMR配置了两个IMR资源,那么一个IMR资源是NZP CSI-RS资源,另一个IMR资源是CSI-IM资源;如果为一个CMR配置了零个IMR资源(没有配置IMR),那么UE使用该CMR资源来测量有用信号的部分以及干扰和噪声的部分。
对于CMR的干扰和噪声测量,UE的实现方式是需要先从接收信号中恢复出有用信号(即S部分),计算其功率;然后从接收到信号中消除S部分,得到残留的干扰和噪声部分,计算其功率;最优得到信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)的计算结果。
为便于更好的理解本申请实施例,对本申请相关的基于AI/ML的波束管理进行说明。
基于AI/ML的波束管理可以为空间域的下行波束预测。
空间域的波束预测(也可以称之为波束管理示例1(BM-Case1)):通过测量数据集B(Set B)中的波束来进行预测数据集A(Set A)中下行波束空间域预测。Set B要么是Set A的一个子集,要么Set B和Set A是两个不同的波束集合。Set B可以理解为波束(对)的部分子集;Set A可以理解为波束(对)的全集。
图9示意性地示出了波束预测模型的输入和输出关系,可以认为该模型解决的是一个多分类问题,即部分子集(即Set B)输入L1-RSRP到最优的K个波束的L1-RSRP的关系,其中,部分波束测量集(即Set B,为全集Set A测量的L1-RSRP的一部分)作为该模型的输入。输出则是从全集Set A中所选的最优的K个波束索引,即L1-RSRP最高的K个波束。该模型使用的标签是Set A全集中测量的最优的(即最高L1-RSRP)的K个波束索引。具体的,如图9所示,测量数据集B(Set B)包括T个波束索引对应的L1-RSRP,预测数据集A(Set A)包括S个波束索引,且AI/ML模型1预测的是最优的K个波束索引(图9中为波束索引#2)。需要说明的是,图9中的波束也可以替换为波束对,具体描述与波束相似,在此不再赘述。
图10示意性地示出了最优波束质量预测模型,可以理解为一个线性回归问题。模型的输入和输出关系从部分子集(即Set B)输入L1-RSRP到最优的K个波束的L1-RSRP的关系。与图9中波束预测模型相同的是输入部分,不同的是该模型的输出是K(K>=1)个最优的L1-RSRP。标签是在全集(即Set A)中测量的最优的K个L1-RSRP,以及对应的K个波束索引。具体的,如图10所示,测量数据集B(Set B)包括T个波束索引对应的L1-RSRP,预测数据集A(Set A)包括S个波束索引对应的L1-RSRP,且AI/ML模型2预测的是K(K>=1)个最优的L1-RSRP。需要说明的是,图10 中的波束也可以替换为波束对,具体描述与波束相似,在此不再赘述。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
对于NR的波束扫描过程来说,大量的空间波束(对)的扫描会带来大量的参考信号开销和测量的时延。举例来说,假设NW在FR2部署了64个不同的下行发射方向(通过最多64个SSB来承载),UE接收时使用多个天线面板(包括仅有一个接收波束面板)来同时进行接收波束扫描,且每一个天线面板有4个接收波束。UE至少需要测量64*4=256个波束对,对应的就是需要256个资源的下行资源开销,以及扫描过需要大概80毫秒(每20ms的一个SSB周期,总共需要4个周期)。所以在NR演进中定义了空间域和时间域的波束(对)预测的用例。
空间域波束预测(BM-Case1)是以L1-RSRP作为性能度量,但无法反映出波束(对)之间的干扰,而NW在下行传输的过程中往往是使用多个波束(对)来覆盖不同的UE。
基于上述问题,本申请提出了设计了基于AI/ML模型的波束(对)预测方案,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。
需要说明的是,“波束(对)”文字含义是表示“波束”或“波束对”。具体来说,波束在本申请实施例中可以指发射波束或接收波束,波束对指一对发射波束和接收波束。在申请中使用了CMR和IMR的概念,当AI/ML模型进行发射波束的预测时,CMR可以指代发射波束;当AI/ML模型进行发射接收波束对的预测时,CMR可以指代发射波束以及对应的接收波束;同理,也适用于IMR。另外,可以使用空间滤波器来代替波束(对)。对于AI/ML模型来说,其输出可以理解为推断(inference)或预测(prediction),在本申请中推断和预测表示相同的意思,可以互换。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图11是根据本申请实施例的无线通信的方法200的示意性流程图,如图11所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息;或者,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息,基于干扰信号测量集测量得到的空间滤波器的标识信息;
其中,该第一预测数据集包括以下至少之一:从参考信号预测集中预测得到的K个空间滤波器的标识信息,从干扰信号预测集中预测得到的K个空间滤波器的标识信息,预测的K个空间滤波器对应的L1-SINR;其中,K为正整数。
在本申请实施例中,第一通信设备可以将测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型,预测得到K个空间滤波器的标识信息和/或K个空间滤波器对应的L1-SINR。也即,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。
在一些实施例中,第一网络模型为AI/ML模型。可选地,该第一网络模型可以是用于空间域的波束预测的AI/ML模型,具体实现可以如图9或图10所示。
在本申请一些实施例中,“参考信号测量集”也可以称之为“有用信号测量集”,“参考信号部分的功率信息”也可以称之为“有用信号部分的功率信息”,“参考信号预测集”也可以称之为“有用信号预测集”,本申请对此并不限定。
在本申请一些实施例中,空间滤波器(spatial filter)也可以称为波束(beam)、波束对(beam pair)、空间关系(Spatial relation)、空间配置(spatial setting)、空域滤波器(spatial domain filter)等,或者,空间滤波器(spatial filter)也可以称为参考信号。
在一些实施例中,该空间滤波器包括一个发射空间滤波器。可选地,发射空间滤波器也可以称为发射波束(Tx beam)或发送端空域滤波器,上述术语可以相互替换。
在一些实施例中,该空间滤波器包括一个接收空间滤波器。可选地,接收空间滤波器也可以称为接收波束(Rx beam)或接收端空域滤波器,上述术语可以相互替换。
在一些实施例中,该空间滤波器包括一个发射空间滤波器和一个接收空间滤波器。可选地,发射空间滤波器和接收空间滤波器的组合也可以称为波束对(即发射波束(Tx beam)与接收波束(Rx beam)对),空间滤波器对,空间滤波器组,上述术语可以相互替换。
在一些实施例中,空间滤波器的标识信息可以为空间滤波器的索引或标识。
例如,发射空间滤波器的标识信息可以为发射空间滤波器的索引或标识。
又例如,接收空间滤波器的标识信息可以为接收空间滤波器的索引或标识。
再例如,发射空间滤波器和接收空间滤波器的组合的标识信息可以为组合索引。
在一些实施例中,参考信号部分的功率信息和干扰噪声部分的功率信息可以是L1-RSRP,也可以是其他功率参数,本申请实施例对此并不限定。
在一些实施例中,该第一通信设备为终端设备,或者,该第一通信设备为网络设备。
在一些实施例中,空间滤波器的标识信息可以按照参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型所在向量的位置来隐式指示。例如,第一个空间滤波器对应的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型的第一个位置,第二个空间滤波器对应的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型的第二个位置,以此类推。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及 该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息、基于干扰信号测量集测量得到的干扰噪声部分的功率信息、基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息、基于干扰信号测量集测量得到的干扰噪声部分的功率信息、基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息、基于干扰信号测量集测量得到的干扰噪声部分的功率信息、基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息和从干扰信号预测集中预测得到的K个空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于参考信号测量集测量得到的参考信号部分的功率信息、基于干扰信号测量集测量得到的干扰噪声部分的功率信息、基于参考信号测量集测量得到的空间滤波器的标识信息和基于干扰信号测量集测量得到的空间滤波器的标识信息,以及该第一预测数据集包括从参考信号预测集中预测得到的K个空间滤波器的标识信息、从干扰信号预测集中预测得到的K个空间滤波器的标识信息和预测的K个空间滤波器对应的L1-SINR。
在一些实施例中,该参考信号测量集包括M个CMR,其中,M为正整数。具体例如,参考信号测量集可以用测量集B(Set B)表示,也即,Set B包括M个CMR。可选地,可以基于参考信号测量集(Set B)测量得到的参考信号部分的功率信息(即S部分的功率),也可以基于参考信号测量集(Set B)测量得到的参考信号部分的功率信息(即S部分的功率)和干扰噪声部分的功率信息(即(I+N)部分的功率)。具体的,测量参考信号测量集中的每一个CMR,测量得到对应的CMR的参考信号部分的功率信息(即S部分的功率),或者,测量得到对应的CMR的参考信号部分的功率信息(即S部分的功率)和干扰噪声部分的功率信息(即(I+N)部分的功率)。
具体例如,UE可以测量Set B’中与CMR关联的IMR,对应会得到该IMR的干扰噪声信号部分的功率信息(即(I+N)部分的功率)。如果CMR没有关联的IMR,UE将该CMR作为IMR来使用,从总的接收信号功率中减去参考信号部分的功率信息(即S部分的功率),便可得到残留的干扰噪声信号部分的功率信息(即(I+N)部分的功率)。
可选地,若未配置干扰信号测量集,或者,干扰信号测量集包括0个IMR,可以基于参考信号测 量集(Set B)测量得到的参考信号部分的功率信息(即S部分的功率)和干扰噪声部分的功率信息(即(I+N)部分的功率)。具体的,测量参考信号测量集中的每一个CMR,测量得到对应的CMR的参考信号部分的功率信息(即S部分的功率)和干扰噪声部分的功率信息(即(I+N)部分的功率)。
在一些实施例中,该干扰信号测量集包括M个IMR,或者,该干扰信号测量集包括2M个IMR,其中,M为正整数。具体例如,干扰信号测量集可以用测量集B’(Set B’)表示,也即,Set B’包括M个IMR,或者,Set B’包括2M个IMR。具体的,可以测量干扰信号测量集中的每一个IMR,测量得到对应的IMR的干扰噪声部分的功率信息(即(I+N)部分的功率)。
可选地,该干扰信号测量集也可以包括0个IMR,此种情况下,可以基于参考信号测量集(Set B)测量得到的参考信号部分的功率信息(即S部分的功率)和干扰噪声部分的功率信息(即(I+N)部分的功率)。
在一些实施例中,该参考信号预测集包括N个CMR,其中,N为正整数。具体例如,参考信号预测集可以用预测集A(Set A)表示,也即,Set A包括N个CMR。具体的,可以基于参考信号预测集(Set A)预测得到的K个空间滤波器的标识信息和/或预测的K个空间滤波器对应的L1-SINR。
在一些实施例中,该干扰信号预测集包括N个IMR,或者,该干扰信号测量集包括2N个IMR,其中,N为正整数。具体例如,干扰信号预测集可以用预测集A’(Set A’)表示,也即,Set A’包括N个IMR,或者,Set A’包括2N个IMR。具体的,可以基于干扰信号预测集(Set A’)预测得到的K个空间滤波器的标识信息,或者,可以基于参考信号预测集(Set A)和干扰信号预测集(Set A’)预测得到的K个空间滤波器的标识信息和/或预测的K个空间滤波器对应的L1-SINR。
可选地,该干扰信号预测集包括0个IMR,也即,该干扰信号预测集中未配置IMR。此种情况下,可以基于参考信号预测集(Set A)预测得到的K个空间滤波器的标识信息和/或预测的K个空间滤波器对应的L1-SINR。
在一些实施例中,M<N。可选地,4M=N,或者,8M=N。当然,M和N也可以满足其他比例关系,本申请实施例对此并不限定。具体的,从空间域波束(对)预测的角度上看,参考信号测量集(M个CMR)小于参考信号预测集(N个CMR),例如,4M=N,或者,8M=N。这样做的好处是可以大大减少为了计算L1-SINR而对CMR和IMR的测量开销。
在一些实施例中,不管是测量集还是预测集,CMR和IMR都被网络(NW)配置了一定的关联关系。具体来说,对于任一CMR,NW可以为其配置0个(没有关联的IMR)IMR,或者,1个(NZP CSI-RS资源或CSI-IM资源)IMR,或者,2个IMR(一个NZP CSI-RS资源和一个CSI-IM资源)。
在一些实施例中,该M个CMR中的CMR与该M个IMR中的IMR满足一对一的关联关系。
在一些实施例中,该M个CMR中的CMR与该2M个IMR中的IMR满足一对二的关联关系。
在一些实施例中,该M个CMR包括以下资源中的至少一种:NZP CSI-RS资源,SSB资源。
在一些实施例中,该M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM;或者,该2M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
在一些实施例中,该N个CMR中的CMR与该N个IMR中的IMR满足一对一的关联关系。
在一些实施例中,该N个CMR中的CMR与该2N个IMR中的IMR满足一对二的关联关系。
在一些实施例中,该N个CMR包括以下资源中的至少一种:NZP CSI-RS资源,SSB资源。
在一些实施例中,该N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM;或者,该2N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
在一些实施例中,具有关联关系的CMR和IMR存在相同的准共址(Quasi-co-located,QCL)类型D假设。例如,对于CMR和IMR之间的QCL关系:UE使用相同的接收波束来接收关联的CMR和IMR(仅适用于NZP CSI-RS的IMR),即CMR和NZP CSI-RS的IMR有相同的QCL-TypeD假设。而对于CSI-IM的IMR,因其没有QCL假设,所以CSI-IM的IMR不会和CMR有QCL关系。
在一些实施例中,该第一测量数据集由该第一通信设备测量得到,例如,该第一通信设备为终端设备,该终端设备测量得到该第一测量数据集。
在一些实施例中,该第一测量数据集由其他设备测量并上报给该第一通信设备的,例如,该第一通信设备为网络设备,终端设备通过测量得到该第一测量数据集,以及该终端设备将该第一测量数据集上报给该网络设备。
在一些实施例中,该第一网络模型由该第一通信设备确定,或者,该第一网络模型由其他设备配置或指示。
具体的,如果UE支持空间域的波束(对)预测,且预测所用到的模型是小区专属的模型,那么NW将适配于NW部署环境和波束(对)配置的模型(即第一网络模型)传递给UE。例如NW通过RRC和/或MAC CE指示给UE一个专门的模型标识(model ID)(在模型的生命周期管理中定义的 标识(Identity,ID),用以标识不同的模型),该模型标识用于指示该第一网络模型。或者,UE启动自己预先准备的一个模型(即第一网络模型),可以选择性地(Optional)将该模型的信息告知NW,如通过model ID。
需要说明的是,在使用model ID作为模型沟通过程中,一个最重要的假设条件是NW和UE之间对于model ID所表达的模型细节有清晰的共识和了解。
在一些实施例中,该第一通信设备为终端设备。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该第一通信设备发送第一能力信息;其中,该第一能力信息用于指示该第一通信设备支持基于L1-SINR的空间域空间滤波器的预测。可选地,该第一能力信息也可以指示该第一通信设备不支持基于L1-SINR的空间域空间滤波器的预测。也即,该第一能力信息可以指示该第一通信设备是否支持基于L1-SINR的空间域空间滤波器的预测。例如,第一能力信息占用1个比特,取值0表示支持基于L1-SINR的空间域空间滤波器的预测,取值1表示不支持基于L1-SINR的空间域空间滤波器的预测。又例如,第一能力信息占用1个比特,取值1表示支持基于L1-SINR的空间域空间滤波器的预测,取值0表示不支持基于L1-SINR的空间域空间滤波器的预测。
具体的,该第一通信设备为终端设备,该终端设备向网络设备发送该第一能力信息。也即,在本申请实施例中,在NW为UE配置AI/ML模型前,UE需要通过UE能力上报告知NW,它是否支持基于L1-SINR的空间域波束(对)预测。
在一些实施例中,该第一能力信息可以通过以下之一承载:
无线资源控制(Radio Resource Control,RRC)信令,上行控制信息(Uplink Control Information,UCI),媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)信令。
在一些实施例中,该第一能力信息还包括但不限于以下至少之一:
该参考信号测量集中包含的参考信号资源的最大数量;
该干扰信号测量集中包含的干扰信号资源的最大数量;
是否支持NZP CSI-RS资源作为IMR;
在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
是否支持CSI-IM作为IMR;
在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息;
该参考信号预测集的最大尺寸;
该干扰信号预测集的最大尺寸;
K的最大取值。
具体的,在NW为UE配置AI/ML模型前,UE需要通过UE能力上报告知NW,它是否支持基于L1-SINR的空间域波束(对)预测。如果支持该特性,UE上报的能力包括但不限于以下至少之一:
参考信号测量集(Set B)最多可以测量多少个SSB资源和/或CSI-RS资源;
干扰信号测量集(Set B’)最多可以测量多少个CSI-IM资源和/或NZP CSI-RS资源;
是否支持NZP CSI-RS作为IMR;如支持,最多可以测量多少个NZP CSI-RS资源;
是否支持CSI-IM作为IMR;如支持,最多可以测量多少个CSI-IM资源;
是否支持把CMR作为IMR来使用(即是否支持基于参考信号测量集(Set B)测量参考信号部分的功率信息和干扰噪声部分的功率信息);
最多可以预测的预测集的尺寸,即Set A和Set A’的尺寸(size)的最大限度;
第一网络模型输出最多多少个波束(对),即Top-K中K的最大值。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该第一通信设备接收第一信息;其中,
该第一信息用于配置以下至少之一:该参考信号测量集,该干扰信号测量集,该参考信号预测集,该干扰信号预测集;或者,
该第一信息用于激活以下至少之一:预配置的多个该参考信号测量集中的一个该参考信号测量集,预配置的多个该干扰信号测量集中的一个该干扰信号测量集,预配置的多个该参考信号预测集中的一个该参考信号预测集,预配置的多个该干扰信号预测集中的一个该干扰信号预测集。
具体的,第一通信设备为终端设备,也即,在该终端设备基于该第一网络模型进行空间域空间滤波器预测之前,该终端设备接收网络设备发送的该第一信息。
具体的,NW为UE配置和/或激活模型输入所需的参考信号测量集(Set B)和干扰信号测量集(Set B’)。NW使用RRC信令为UE配置一组或多组Set B和Set B’。Set B作为参考信号测量集可以包 含NZP CSI-RS资源和/或SSB资源;Set B’作为干扰信号测量集可以包含NZP CSI-RS资源和/或CSI-IM,当然Set B’也可不包含任何专属的IMR,即UE使用CMR来测量干扰和噪声。如果NW配置了多组Set B和Set B’,那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set B和Set B’。否则,仅使用配置的一组Set B和Set B’。
具体的,NW为UE配置和/或激活模型输出的参考信号预测集(Set A)和干扰信号预测集(Set A’)。
NW使用RRC信令为UE配置一组或多组关联的参考信号预测集(Set A)和干扰信号预测集(Set A’)。Set A作为参考信号预测集可以包含NZP CSI-RS资源和/或SSB资源;Set A’作为干扰信号预测集可以包含NZP CSI-RS资源和/或CSI-IM资源,当然Set A’也可不包含任何专属的IMR,即UE使用CMR来测量干扰和噪声。如果NW配置了多组Set A和Set A’,那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组关联的Set A和Set A’。否则,仅使用配置的一组Set A和Set A’。
在一些实施例中,该第一通信设备为终端设备,且该M个CMR(Set B)中的CMR与该M个IMR(Set B’)中的IMR满足一对一的关联关系,该第一网络模型为AL/ML模型1,如图12所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型1(预测Top-K波束(对)信息)的输入,如图12所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率。AL/ML模型1的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为终端设备,且该M个CMR(Set B)中的CMR与该M个IMR(Set B’)中的IMR满足一对一的关联关系,该第一网络模型为AL/ML模型2,如图13所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型2(预测Top-K波束(对)对应的L1-SINR)的输入,如图13所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率。AL/ML模型2的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备为终端设备,且该M个CMR(Set B)中的CMR与该2M个IMR(Set B’)中的IMR满足一对二的关联关系,其中,一个CMR对应的两个IMR中的一个IMR为NZP CSI-RS,另一个IMR为CSI-IM,该第一网络模型为AL/ML模型3,如图14所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型3(预测Top-K波束(对)信息)的输入,如图14所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率。AL/ML模型3的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为终端设备,且该M个CMR(Set B)中的CMR与该2M个IMR(Set B’)中的IMR满足一对二的关联关系,其中,一个CMR对应的两个IMR中的一个IMR为NZP CSI-RS,另一个IMR为CSI-IM,该第一网络模型为AL/ML模型4,如图15所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型4(预测Top-K波束(对)对应的L1-SINR)的输入,如图15所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率。AL/ML模型4的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备为终端设备,且网络设备配置了M个CMR(Set B),且未配置IMR(Set B’),该第一网络模型为AL/ML模型5,如图16所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于参考信号测量集(Set B)中的CMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型5(预测Top-K波束(对)信息)的输入,如图16所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对CMR测量得到干扰噪声部分(即I+N部分)的功率,具体的,终端设备需要先对CMR的测量进行预处理,分离出参考信号的S部分的功率和干 扰噪声(I+N)部分的功率。AL/ML模型5的输出为从参考信号预测集(Set A)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为终端设备,且网络设备配置了M个CMR(Set B),且未配置IMR(Set B’),该第一网络模型为AL/ML模型6,如图17所示。具体的,可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于参考信号测量集(Set B)中的CMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型6(预测Top-K波束(对)对应的L1-SINR)的输入,如图17所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对CMR测量得到干扰噪声部分(即I+N部分)的功率,具体的,终端设备需要先对CMR的测量进行预处理,分离出参考信号的S部分的功率和干扰噪声(I+N)部分的功率。AL/ML模型6的输出为从参考信号预测集(Set A)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备发送第一预测信息;
其中,该第一预测信息包括该第一预测数据集中的部分或全部内容。
具体例如,该第一通信设备为终端设备,也即,该终端设备在预测得到该第一预测数据集之后,可以向网络设备上报该第一预测数据集中的部分或全部内容。
在一些实施例中,该第一预测信息可以通过以下之一承载:RRC信令,UCI,MAC CE信令。
在一些实施例中,在该第一预测信息至少包括预测的K个空间滤波器对应的L1-SINR的情况下,该K个空间滤波器对应的L1-SINR通过差分方式表示。
具体例如,终端设备可以上报K个波束的标识以及K个波束对应的L1-SINR,假设K=4,终端设备上报的信息格式可以如表1所示。
表1
Figure PCTCN2022141619-appb-000001
需要说明的是,在上述表1中,波束#2对应的差分L1-SINR(Differential L1-SINR)可以是相对于波束#1对应的L1-SINR的差值,波束#3对应的差分L1-SINR可以是相对于波束#1对应的L1-SINR的差值,波束#4对应的差分L1-SINR可以是相对于波束#1对应的L1-SINR的差值。
具体例如,如果是基于发射波束的模型预测,终端设备上报最优的K个发射波束信息。因为1个CMR与1个,2个或0个IMR关联,且网络设备配置了这种关联关系,所以终端设备可以仅上报最优K个发射波束的CMR索引。假设K=4,终端设备上报的信息格式可以如表2所示。
表2
Figure PCTCN2022141619-appb-000002
需要说明的是,在上述表2中,CMR#2对应的差分L1-SINR可以是相对于CMR#1对应的L1-SINR的差值,CMR#3对应的差分L1-SINR可以是相对于CMR#1对应的L1-SINR的差值,CMR#4对应的差分L1-SINR可以是相对于CMR#1对应的L1-SINR的差值。
具体例如,终端设备可以上报K个波束对的标识以及K个波束对对应的L1-SINR,假设K=4, 终端设备上报的信息格式可以如表3所示。
表3
Figure PCTCN2022141619-appb-000003
需要说明的是,在上述表3中,波束对#2对应的差分L1-SINR可以是相对于波束对#1对应的L1-SINR的差值,波束对#3对应的差分L1-SINR可以是相对于波束对#1对应的L1-SINR的差值,波束对#4对应的差分L1-SINR可以是相对于波束对#1对应的L1-SINR的差值。
在一些实施例中,如果是基于接收波束的模型预测,那么终端设备不需要上报任何信息,网络设备也不需要进行指示。终端设备仅是对固定的发射波束找到L1-SINR性能最好的接收波束。
在一些实施例中,该第一通信设备接收第一指示信息;其中,该第一指示信息用于指示预测的该K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
具体例如,该第一通信设备为终端设备,也即,该终端设备接收网络设备发送的该第一指示信息。具体的,该网络设备在接收到该终端设备发送的该第一预测信息之后,可以向该终端设备发送该第一指示信息。
在一些实施例中,该第一指示信息为至少一个TCI状态指示。例如,该第一指示信息为MAC CE和/或DCI中的TCI状态域。
在一些实施例中,该第一指示信息为至少一个空间滤波器的标识字段。具体的,可以考虑替换掉MAC CE和/或DCI中的TCI状态这个域,使用波束对标识这个新的域。这样做的好处是除了可以指示NW使用的下行发射波束,还可以直接指示给UE应该使用的接收波束,而不再依靠UE对于接收波束的实现。
在一些实施例中,该第一通信设备为网络设备。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该第一通信设备接收第二能力信息;其中,该第二能力信息用于指示该第二能力信息的发端设备支持基于L1-SINR的空间域空间滤波器的预测。可选地,该第二能力信息也可以指示该第二能力信息的发端设备不支持基于L1-SINR的空间域空间滤波器的预测。也即,该第二能力信息可以指示该第二能力信息的发端设备是否支持基于L1-SINR的空间域空间滤波器的预测。例如,第二能力信息占用1个比特,取值0表示支持基于L1-SINR的空间域空间滤波器的预测,取值1表示不支持基于L1-SINR的空间域空间滤波器的预测。又例如,第二能力信息占用1个比特,取值1表示支持基于L1-SINR的空间域空间滤波器的预测,取值0表示不支持基于L1-SINR的空间域空间滤波器的预测。
具体例如,在网络设备基于该第一网络模型进行空间域空间滤波器预测之前,该网络设备接收终端设备发送的第二能力信息,其中,该第二能力信息用于指示该终端设备支持基于L1-SINR的空间域空间滤波器的预测。
具体的,在网络设备为终端设备配置AI/ML模型(即第一网络模型)前,终端设备需要通过终端能力上报告知网络设备,它是否支持基于L1-SINR的空间域波束(对)预测的测量和上报。
在一些实施例中,该第二能力信息还包括但不限于以下至少之一:
该参考信号测量集中包含的参考信号资源的最大数量;
该干扰信号测量集中包含的干扰信号资源的最大数量;
是否支持NZP CSI-RS资源作为IMR;
在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
是否支持CSI-IM作为IMR;
在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息。
具体的,在网络设备为终端设备配置AI/ML模型(即第一网络模型)前,终端设备需要通过终 端能力上报告知网络设备,它是否支持基于L1-SINR的空间域波束(对)预测的测量和上报。如果支持该特性,终端设备上报的能力包括但不限于以下至少之一:
参考信号测量集(Set B)最多可以测量多少个SSB资源和/或CSI-RS资源;
干扰信号测量集(Set B’)最多可以测量多少个CSI-IM资源和/或NZP CSI-RS资源;
是否支持NZP CSI-RS作为IMR;如支持,最多可以测量多少个NZP CSI-RS资源;
是否支持CSI-IM作为IMR;如支持,最多可以测量多少个CSI-IM资源;
是否支持把CMR作为IMR来使用(即是否支持基于参考信号测量集(Set B)测量参考信号部分的功率信息和干扰噪声部分的功率信息)。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该第一通信设备发送第二信息;其中,
该第二信息用于配置以下至少之一:该参考信号测量集,该干扰信号测量集;或者,
该第二信息用于激活以下至少之一:预配置的多个该参考信号测量集中的一个该参考信号测量集,预配置的多个该干扰信号测量集中的一个该干扰信号测量集。
具体例如,该第一通信设备为网络设备,也即,在网络设备基于该第一网络模型进行空间域空间滤波器预测之前,该网络设备向终端设备发送该第二信息。
具体的,NW为UE配置和/或激活模型输入所需的参考信号测量集(Set B)和干扰信号测量集(Set B’)。NW使用RRC信令为UE配置一组或多组Set B和Set B’。Set B作为参考信号测量集可以包含NZP CSI-RS资源和/或SSB资源;Set B’作为干扰信号测量集可以包含NZP CSI-RS资源和/或CSI-IM,当然Set B’也可不包含任何专属的IMR,即UE使用CMR来测量干扰和噪声。如果NW配置了多组Set B和Set B’,那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set B和Set B’。否则,仅使用配置的一组Set B和Set B’。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该第一通信设备接收该第一测量数据集。
具体例如,该第一通信设备为网络设备,也即,在该网络设备基于该第一网络模型进行空间域空间滤波器预测之前,该网络设备接收终端设备发送的该第一测量数据集。
在一些实施例中,参考信号部分的功率信息和/或干扰噪声部分的功率信息通过差分方式表示。
在一些实施例中,终端设备测量参考信号测量集(Set B)中的CMR,对应会得到该CMR的参考信号部分(即S部分)的功率信息(如L1-RSRP)。终端设备上报Set B中的CMR测量结果给网络设备。考虑到Set B中的CMR是网络设备配置的,终端设备按照网络设备配置的顺序进行上报,可以作为网络侧模型的输入。举例来说,Set B的配置和上报的顺序可以是先把SSB的资源索引(如有,即SSB资源指示(SSB Resource Indicator,SSBRI))从低到高进行排序,然后按照NZP CSI-RS的资源的索引(如有,即CSI-RS资源指示(CSI-RS Resource Indicator,CRI))从低到高进行排序。具体例如,终端设备上报Set B的测量结果,如表4和表5所示。
表4 Set B的CMR测量上报(仅包含排序的L1-RSRP)
Figure PCTCN2022141619-appb-000004
表5 Set B的CMR测量上报(包含波束(对)索引和L1-RSRP)
Figure PCTCN2022141619-appb-000005
需要说明的是,在上述表5中,CRI或SSBRI或beam pair#1of CMR对应的L1-RSRP为L1-RSRP#1,CRI或SSBRI或beam pair#2of CMR对应的L1-RSRP为Differential L1-RSRP#2,…,CRI或SSBRI或beam pair#M of CMR对应的L1-RSRP为Differential L1-RSRP#M,Differential L1-RSRP#2可以是相对于L1-RSRP#1的差值,Differential L1-RSRP#M可以是相对于L1-RSRP#1的差值。
在上述表5中,除了上报参考信号部分的功率(以L1-RSRP)外,还可以上报CMR的索引。这样可以支持基于差分RSRP的上报,即把RSRP最高的CMR作为第一个索引,其他较低RSRP的CMR对其进行差分上报。这样做的好处是使得UE的上报变得非常灵活,UE有一定的上报自主选择权。
在一些实施例中,终端设备测量干扰信号测量集(Set B’)中的IMR。当1个CMR和1个IMR关联,不管是基于NZP CSI-RS还是CSI-IM的测量,对应会得到该IMR的干扰噪声部分的功率。终端设备具体上报测量结果的信息格式可以参考如下表6或表7的上报方式。
表6 Set B’的IMR测量上报(仅包含排序的L1-RSRP)
Figure PCTCN2022141619-appb-000006
表7 Set B’的IMR测量上报(包含波束(对)索引和L1-RSRP)
Figure PCTCN2022141619-appb-000007
需要说明的是,在上述表7中,CRI或CSI-IM或beam pair#1 of IMR对应的L1-RSRP为L1-RSRP#1,CRI或CSI-IM或beam pair#2 of IMR对应的L1-RSRP为Differential L1-RSRP#2,…,CRI或CSI-IM或beam pair#M of IMR对应的L1-RSRP为Differential L1-RSRP#M,Differential L1-RSRP#2可以是相对于L1-RSRP#1的差值,Differential L1-RSRP#M可以是相对于L1-RSRP#1的差值。
在一些实施例中,当1个CMR和2个IMR关联,终端设备上报NZP CSI-RS资源和CSI-IM作为IMR的测量结果。如果有M个CMR,那么有2M个IMR。可以约定好上报的顺序,比如上报格式的前半部分NZP CSI-RS资源的测量结果,后半部分是CSI-IM的测量结果,如下表8或表9所示。
表8 Set B’的NZP CSI-RS和CSI-IM的测量上报(仅包含排序的L1-RSRP)
Figure PCTCN2022141619-appb-000008
表9 Set B’的IMR测量上报(包含波束(对)索引和L1-RSRP)
Figure PCTCN2022141619-appb-000009
需要说明的是,在上述表9中,CRI或beam pair#1 of NZP CSI-RS对应的L1-RSRP为NZP CSI-RS L1-RSRP#1,CRI或beam pair#2 of NZP CSI-RS对应的L1-RSRP为NZP CSI-RS Differential L1-RSRP#2,…,CRI或beam pair#M of NZP CSI-RS对应的L1-RSRP为NZP CSI-RS Differential L1-RSRP#M,NZP CSI-RS Differential L1-RSRP#2可以是相对于NZP CSI-RS L1-RSRP#1的差值,NZP CSI-RS Differential L1-RSRP#M可以是相对于NZP CSI-RS L1-RSRP#1的差值。CSI-IM index#1 of CSI-IM对应的L1-RSRP为CSI-IM L1-RSRP#1,CSI-IM index#2 of CSI-IM对应的L1-RSRP为CSI-IM Differential L1-RSRP#2,…,CSI-IM index#M of CSI-IM对应的L1-RSRP为CSI-IM Differential L1-RSRP#M,CSI-IM Differential L1-RSRP#2可以是相对于CSI-IM L1-RSRP#1的差值,CSI-IM Differential L1-RSRP#M可以是相对于CSI-IM L1-RSRP#1的差值。
在一些实施例中,可以将CMR和IMR的测量结果放在一次上报给网络设备,如表10或表11所示。需要说明的是,在表11中,考虑到不同IMR资源,如NZP CSI-RS和CSI-IM测量到的干扰和噪声功率相差可能很大,超出了差分量化的范围,因此我们给Differential加上了一个(),表示支持基于差分的上报和非差分的上报。
表10 Set B的CMR和Set B’中的IMR测量上报(仅包含排序的L1-RSRP)
Figure PCTCN2022141619-appb-000010
表11 Set B的CMR测量上报(包含波束(对)索引和L1-RSRP)
Figure PCTCN2022141619-appb-000011
在一些实施例中,当网络设备没有为CMR配置IMR时,考虑将参考信号部分的功率和干扰噪声信号部分的功率分离开后上报给网络设备,如表12或表13所示。
表12 Set B的CMR的参考信号和干扰与噪声功率上报(仅包含排序的L1-RSRP)
Figure PCTCN2022141619-appb-000012
表13 Set B的CMR参考信号和干扰与噪声功率上报(包含波束(对)索引和L1-RSRP)
Figure PCTCN2022141619-appb-000013
在一些实施例中,该第一通信设备为网络设备,且该M个CMR(Set B)中的CMR与该M个 IMR(Set B’)中的IMR满足一对一的关联关系,该第一网络模型为AL/ML模型1,如图12所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型1(预测Top-K波束(对)信息)的输入,如图12所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率,终端设备将测量结果上报给网络设备。AL/ML模型1的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为网络设备,且该M个CMR(Set B)中的CMR与该M个IMR(Set B’)中的IMR满足一对一的关联关系,该第一网络模型为AL/ML模型2,如图13所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型2(预测Top-K波束(对)对应的L1-SINR)的输入,如图13所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率,终端设备将测量结果上报给网络设备。AL/ML模型2的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备为网络设备,且该M个CMR(Set B)中的CMR与该2M个IMR(Set B’)中的IMR满足一对二的关联关系,其中,一个CMR对应的两个IMR中的一个IMR为NZP CSI-RS,另一个IMR为CSI-IM,该第一网络模型为AL/ML模型3,如图14所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型3(预测Top-K波束(对)信息)的输入,如图14所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率,终端设备将测量结果上报给网络设备。AL/ML模型3的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为网络设备,且该M个CMR(Set B)中的CMR与该2M个IMR(Set B’)中的IMR满足一对二的关联关系,其中,一个CMR对应的两个IMR中的一个IMR为NZP CSI-RS,另一个IMR为CSI-IM,该第一网络模型为AL/ML模型4,如图15所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于干扰信号测量集(Set B’)中的IMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型4(预测Top-K波束(对)对应的L1-SINR)的输入,如图15所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对IMR测量得到干扰噪声部分(即I+N部分)的功率,终端设备将测量结果上报给网络设备。AL/ML模型4的输出为从参考信号预测集(Set A)和干扰信号预测集(Set A’)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备为网络设备,且网络设备配置了M个CMR(Set B),且未配置IMR(Set B’),该第一网络模型为AL/ML模型5,如图16所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于参考信号测量集(Set B)中的CMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型5(预测Top-K波束(对)信息)的输入,如图16所示。具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对CMR测量得到干扰噪声部分(即I+N部分)的功率,具体的,终端设备需要先对CMR的测量进行预处理,分离出参考信号的S部分的功率和干扰噪声(I+N)部分的功率,终端设备将测量结果上报给网络设备。AL/ML模型5的输出为从参考信号预测集(Set A)中推断的最优的(基于预测L1-SINR从高到低的排序)K个波束(对)。
在一些实施例中,该第一通信设备为网络设备,且网络设备配置了M个CMR(Set B),且未配置IMR(Set B’),该第一网络模型为AL/ML模型6,如图17所示。具体的,网络设备可以将基于参考信号测量集(Set B)中CMR测量得到的参考信号部分(即S部分)的功率信息(如L1-RSRP)和基于参考信号测量集(Set B)中的CMR测量得到的干扰噪声部分(即I+N部分)的功率信息(如L1-RSRP),作为AL/ML模型6(预测Top-K波束(对)对应的L1-SINR)的输入,如图17所示。 具体的,终端设备通过对CMR的测量得到参考信号部分(即S部分)的功率,对CMR测量得到干扰噪声部分(即I+N部分)的功率,具体的,终端设备需要先对CMR的测量进行预处理,分离出参考信号的S部分的功率和干扰噪声(I+N)部分的功率,终端设备将测量结果上报给网络设备。AL/ML模型6的输出为从参考信号预测集(Set A)中推断的最优的K个波束(对)对应的L1-SINR值。
在一些实施例中,该第一通信设备发送第二指示信息;其中,该第二指示信息用于指示预测的该K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
具体例如,该第一通信设备为网络设备,也即,该网络设备向终端设备发送该第二指示信息。具体的,该网络设备预测得到该第一预测数据集之后,可以向该终端设备发送该第二指示信息。
在一些实施例中,该第二指示信息为至少一个TCI状态指示;或者,
该第二指示信息为至少一个空间滤波器的标识字段。
因此,在本申请实施例中,第一通信设备可以将测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息输入第一网络模型,预测得到K个空间滤波器的标识信息和/或K个空间滤波器对应的L1-SINR。也即,可以在基于AI/ML模型的波束(对)预测中反映波束(对)之间的干扰,从而提升了波束管理系统的性能。
上文结合图11至图17,详细描述了本申请的方法实施例,下文结合图18至图21,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图18示出了根据本申请实施例的通信设备300的示意性框图。该通信设备300为第一通信设备,如图18所示,该通信设备300包括:处理单元310;
该处理单元310用于将第一测量数据集输入第一网络模型,输出第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息;或者,该第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息,基于干扰信号测量集测量得到的空间滤波器的标识信息;
其中,该第一预测数据集包括以下至少之一:从参考信号预测集中预测得到的K个空间滤波器的标识信息,从干扰信号预测集中预测得到的K个空间滤波器的标识信息,预测的K个空间滤波器对应的L1-SINR;其中,K为正整数。
在一些实施例中,该参考信号测量集包括M个信道测量资源CMR;和/或,该干扰信号测量集包括M个干扰测量资源IMR,或者,该干扰信号测量集包括2M个IMR;和/或,
该参考信号预测集包括N个CMR;和/或,该干扰信号预测集包括N个IMR,或者,该干扰信号测量集包括2N个IMR;
其中,M和N均为正整数,且M<N。
在一些实施例中,该M个CMR中的CMR与该M个IMR中的IMR满足一对一的关联关系;或者,该M个CMR中的CMR与该2M个IMR中的IMR满足一对二的关联关系。
在一些实施例中,该M个CMR包括以下资源中的至少一种:非零功率信道状态信息参考信号NZP CSI-RS资源,同步信号块SSB资源;和/或,
该M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,信道状态信息干扰资源CSI-IM;或者,该2M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
在一些实施例中,该N个CMR中的CMR与该N个IMR中的IMR满足一对一的关联关系;或者,该N个CMR中的CMR与该2N个IMR中的IMR满足一对二的关联关系。
在一些实施例中,该N个CMR包括以下资源中的至少一种:NZP CSI-RS资源,SSB资源;和/或,该N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM;或者,该2N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
在一些实施例中,具有关联关系的CMR和IMR存在相同的准共址QCL类型D假设。
在一些实施例中,4M=N,或者,8M=N。
在一些实施例中,该第一测量数据集由该第一通信设备测量得到,或者,该第一测量数据集由其他设备测量并上报给该第一通信设备的。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该通信设备300还包括:
通信单元320,用于发送第一能力信息;其中,该第一能力信息用于指示该第一通信设备支持基于L1-SINR的空间域空间滤波器的预测。
在一些实施例中,该第一能力信息还包括以下至少之一:
该参考信号测量集中包含的参考信号资源的最大数量;
该干扰信号测量集中包含的干扰信号资源的最大数量;
是否支持NZP CSI-RS资源作为IMR;
在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
是否支持CSI-IM作为IMR;
在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息;
该参考信号预测集的最大尺寸;
该干扰信号预测集的最大尺寸;
K的最大取值。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该通信设备300还包括:
通信单元320,用于接收第一信息;其中,
该第一信息用于配置以下至少之一:该参考信号测量集,该干扰信号测量集,该参考信号预测集,该干扰信号预测集;或者,
该第一信息用于激活以下至少之一:预配置的多个该参考信号测量集中的一个该参考信号测量集,预配置的多个该干扰信号测量集中的一个该干扰信号测量集,预配置的多个该参考信号预测集中的一个该参考信号预测集,预配置的多个该干扰信号预测集中的一个该干扰信号预测集。
在一些实施例中,该通信设备300还包括:
通信单元320,用于发送第一预测信息;
其中,该第一预测信息包括该第一预测数据集中的部分或全部内容。
在一些实施例中,在该第一预测信息至少包括预测的K个空间滤波器对应的L1-SINR的情况下,该K个空间滤波器对应的L1-SINR通过差分方式表示。
在一些实施例中,该通信单元320还用于接收第一指示信息;其中,该第一指示信息用于指示预测的该K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
在一些实施例中,该第一指示信息为至少一个传输配置指示TCI状态指示;或者,
该第一指示信息为至少一个空间滤波器的标识字段。
在一些实施例中,该第一通信设备为终端设备。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该通信设备300还包括:
通信单元320,用于接收第二能力信息;其中,该第二能力信息用于指示该第二能力信息的发端设备支持基于L1-SINR的空间域空间滤波器的预测。
在一些实施例中,该第二能力信息还包括以下至少之一:
该参考信号测量集中包含的参考信号资源的最大数量;
该干扰信号测量集中包含的干扰信号资源的最大数量;
是否支持NZP CSI-RS资源作为IMR;
在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
是否支持CSI-IM作为IMR;
在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该通信设备300还包括:
通信单元320,用于发送第二信息;其中,
该第二信息用于配置以下至少之一:该参考信号测量集,该干扰信号测量集;或者,
该第二信息用于激活以下至少之一:预配置的多个该参考信号测量集中的一个该参考信号测量集,预配置的多个该干扰信号测量集中的一个该干扰信号测量集。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间域空间滤波器预测之前,该通信设备300还包括:
通信单元320,用于接收该第一测量数据集。
在一些实施例中,该参考信号部分的功率信息和/或该干扰噪声部分的功率信息通过差分方式表示。
在一些实施例中,该通信设备300还包括:
通信单元320,用于发送第二指示信息;其中,该第二指示信息用于指示预测的该K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
在一些实施例中,该第二指示信息为至少一个TCI状态指示;或者,
该第二指示信息为至少一个空间滤波器的标识字段。
在一些实施例中,该第一通信设备为网络设备。
在一些实施例中,该第一网络模型由该第一通信设备确定,或者,该第一网络模型由其他设备配置或指示。
在一些实施例中,该空间滤波器包括一个发射空间滤波器;或者,
该空间滤波器包括一个接收空间滤波器;或者,
该空间滤波器包括一个发射空间滤波器和一个接收空间滤波器。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备300可对应于本申请方法实施例中的第一通信设备,并且通信设备300中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法200中第一通信设备的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例提供的一种通信设备400示意性结构图。图19所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图19所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
在一些实施例中,如图19所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,处理器410可以实现第一通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器430可以实现第一通信设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信设备400具体可为本申请实施例的第一通信设备,并且该通信设备400可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
图20是本申请实施例的装置的示意性结构图。图20所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图20所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,处理器510可以实现第一通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。可选地,处理器510可以位于芯片内或芯片外。
在一些实施例中,输入接口530可以实现第一通信设备中的通信单元的功能。
在一些实施例中,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。可选地,处理器510可以位于芯片内或芯片外。
在一些实施例中,输出接口540可以实现第一通信设备中的通信单元的功能。
在一些实施例中,该装置可应用于本申请实施例中的第一通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图21是本申请实施例提供的一种通信系统600的示意性框图。如图21所示,该通信系统600包 括第一通信设备610和第二通信设备620。
其中,该第一通信设备610可以用于实现上述方法中由第一通信设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (59)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
    其中,所述第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息;或者,所述第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息,基于干扰信号测量集测量得到的空间滤波器的标识信息;
    其中,所述第一预测数据集包括以下至少之一:从参考信号预测集中预测得到的K个空间滤波器的标识信息,从干扰信号预测集中预测得到的K个空间滤波器的标识信息,预测的K个空间滤波器对应的层1信号干扰噪声比L1-SINR;其中,K为正整数。
  2. 如权利要求1所述的方法,其特征在于,
    所述参考信号测量集包括M个信道测量资源CMR;和/或,所述干扰信号测量集包括M个干扰测量资源IMR,或者,所述干扰信号测量集包括2M个IMR;和/或,
    所述参考信号预测集包括N个CMR;和/或,所述干扰信号预测集包括N个IMR,或者,所述干扰信号测量集包括2N个IMR;
    其中,M和N均为正整数,且M<N。
  3. 如权利要求2所述的方法,其特征在于,
    所述M个CMR中的CMR与所述M个IMR中的IMR满足一对一的关联关系;或者,
    所述M个CMR中的CMR与所述2M个IMR中的IMR满足一对二的关联关系。
  4. 如权利要求2或3所述的方法,其特征在于,
    所述M个CMR包括以下资源中的至少一种:非零功率信道状态信息参考信号NZP CSI-RS资源,同步信号块SSB资源;和/或,
    所述M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,信道状态信息干扰资源CSI-IM;或者,所述2M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
  5. 如权利要求2所述的方法,其特征在于,
    所述N个CMR中的CMR与所述N个IMR中的IMR满足一对一的关联关系;或者,
    所述N个CMR中的CMR与所述2N个IMR中的IMR满足一对二的关联关系。
  6. 如权利要求2或5所述的方法,其特征在于,
    所述N个CMR包括以下资源中的至少一种:NZP CSI-RS资源,SSB资源;和/或,
    所述N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM;或者,所述2N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
  7. 如权利要求3或5所述的方法,其特征在于,
    具有关联关系的CMR和IMR存在相同的准共址QCL类型D假设。
  8. 如权利要求2至7中任一项所述的方法,其特征在于,
    4M=N,或者,8M=N。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,
    所述第一测量数据集由所述第一通信设备测量得到,或者,所述第一测量数据集由其他设备测量并上报给所述第一通信设备的。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述方法还包括:
    所述第一通信设备发送第一能力信息;其中,所述第一能力信息用于指示所述第一通信设备支持基于L1-SINR的空间域空间滤波器的预测。
  11. 如权利要求10所述的方法,其特征在于,
    所述第一能力信息还包括以下至少之一:
    所述参考信号测量集中包含的参考信号资源的最大数量;
    所述干扰信号测量集中包含的干扰信号资源的最大数量;
    是否支持NZP CSI-RS资源作为IMR;
    在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
    是否支持CSI-IM作为IMR;
    在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
    是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息;
    所述参考信号预测集的最大尺寸;
    所述干扰信号预测集的最大尺寸;
    K的最大取值。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述方法还包括:
    所述第一通信设备接收第一信息;其中,
    所述第一信息用于配置以下至少之一:所述参考信号测量集,所述干扰信号测量集,所述参考信号预测集,所述干扰信号预测集;或者,
    所述第一信息用于激活以下至少之一:预配置的多个所述参考信号测量集中的一个所述参考信号测量集,预配置的多个所述干扰信号测量集中的一个所述干扰信号测量集,预配置的多个所述参考信号预测集中的一个所述参考信号预测集,预配置的多个所述干扰信号预测集中的一个所述干扰信号预测集。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备发送第一预测信息;
    其中,所述第一预测信息包括所述第一预测数据集中的部分或全部内容。
  14. 如权利要求13所述的方法,其特征在于,
    在所述第一预测信息至少包括预测的K个空间滤波器对应的L1-SINR的情况下,所述K个空间滤波器对应的L1-SINR通过差分方式表示。
  15. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备接收第一指示信息;其中,所述第一指示信息用于指示预测的所述K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
  16. 如权利要求15所述的方法,其特征在于,
    所述第一指示信息为至少一个传输配置指示TCI状态指示;或者,
    所述第一指示信息为至少一个空间滤波器的标识字段。
  17. 如权利要求1至16中任一项所述的方法,其特征在于,
    所述第一通信设备为终端设备。
  18. 如权利要求1至9中任一项所述的方法,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述方法还包括:
    所述第一通信设备接收第二能力信息;其中,所述第二能力信息用于指示所述第二能力信息的发端设备支持基于L1-SINR的空间域空间滤波器的预测。
  19. 如权利要求18所述的方法,其特征在于,
    所述第二能力信息还包括以下至少之一:
    所述参考信号测量集中包含的参考信号资源的最大数量;
    所述干扰信号测量集中包含的干扰信号资源的最大数量;
    是否支持NZP CSI-RS资源作为IMR;
    在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
    是否支持CSI-IM作为IMR;
    在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
    是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息。
  20. 如权利要求1至9、18至19中任一项所述的方法,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述方法还包括:
    所述第一通信设备发送第二信息;其中,
    所述第二信息用于配置以下至少之一:所述参考信号测量集,所述干扰信号测量集;或者,
    所述第二信息用于激活以下至少之一:预配置的多个所述参考信号测量集中的一个所述参考信号测量集,预配置的多个所述干扰信号测量集中的一个所述干扰信号测量集。
  21. 如权利要求1至9、18至20中任一项所述的方法,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述方法还包括:
    所述第一通信设备接收所述第一测量数据集。
  22. 如权利要求21所述的方法,其特征在于,
    所述参考信号部分的功率信息和/或所述干扰噪声部分的功率信息通过差分方式表示。
  23. 如权利要求1至9、18至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备发送第二指示信息;其中,所述第二指示信息用于指示预测的所述K个空间滤 波器的标识信息中使用的空间滤波器的标识信息。
  24. 如权利要求23所述的方法,其特征在于,
    所述第二指示信息为至少一个TCI状态指示;或者,
    所述第二指示信息为至少一个空间滤波器的标识字段。
  25. 如权利要求1至9、18至24中任一项所述的方法,其特征在于,
    所述第一通信设备为网络设备。
  26. 如权利要求1至25中任一项所述的方法,其特征在于,
    所述第一网络模型由所述第一通信设备确定,或者,所述第一网络模型由其他设备配置或指示。
  27. 如权利要求1至26中任一项所述的方法,其特征在于,
    所述空间滤波器包括一个发射空间滤波器;或者,
    所述空间滤波器包括一个接收空间滤波器;或者,
    所述空间滤波器包括一个发射空间滤波器和一个接收空间滤波器。
  28. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:
    处理单元,用于将第一测量数据集输入第一网络模型,输出第一预测数据集;
    其中,所述第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息;或者,所述第一测量数据集包括以下至少之一:基于参考信号测量集测量得到的参考信号部分的功率信息和基于干扰信号测量集测量得到的干扰噪声部分的功率信息,基于参考信号测量集测量得到的空间滤波器的标识信息,基于干扰信号测量集测量得到的空间滤波器的标识信息;
    其中,所述第一预测数据集包括以下至少之一:从参考信号预测集中预测得到的K个空间滤波器的标识信息,从干扰信号预测集中预测得到的K个空间滤波器的标识信息,预测的K个空间滤波器对应的层1信号干扰噪声比L1-SINR;其中,K为正整数。
  29. 如权利要求28所述的设备,其特征在于,
    所述参考信号测量集包括M个信道测量资源CMR;和/或,所述干扰信号测量集包括M个干扰测量资源IMR,或者,所述干扰信号测量集包括2M个IMR;和/或,
    所述参考信号预测集包括N个CMR;和/或,所述干扰信号预测集包括N个IMR,或者,所述干扰信号测量集包括2N个IMR;
    其中,M和N均为正整数,且M<N。
  30. 如权利要求29所述的设备,其特征在于,
    所述M个CMR中的CMR与所述M个IMR中的IMR满足一对一的关联关系;或者,
    所述M个CMR中的CMR与所述2M个IMR中的IMR满足一对二的关联关系。
  31. 如权利要求29或30所述的设备,其特征在于,
    所述M个CMR包括以下资源中的至少一种:非零功率信道状态信息参考信号NZP CSI-RS资源,同步信号块SSB资源;和/或,
    所述M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,信道状态信息干扰资源CSI-IM;或者,所述2M个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
  32. 如权利要求29所述的设备,其特征在于,
    所述N个CMR中的CMR与所述N个IMR中的IMR满足一对一的关联关系;或者,
    所述N个CMR中的CMR与所述2N个IMR中的IMR满足一对二的关联关系。
  33. 如权利要求29或32所述的设备,其特征在于,
    所述N个CMR包括以下资源中的至少一种:NZP CSI-RS资源,SSB资源;和/或,
    所述N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM;或者,所述2N个IMR包括以下资源中的至少一种:NZP CSI-RS资源,CSI-IM。
  34. 如权利要求30或32所述的设备,其特征在于,
    具有关联关系的CMR和IMR存在相同的准共址QCL类型D假设。
  35. 如权利要求29至34中任一项所述的设备,其特征在于,
    4M=N,或者,8M=N。
  36. 如权利要求28至35中任一项所述的设备,其特征在于,
    所述第一测量数据集由所述第一通信设备测量得到,或者,所述第一测量数据集由其他设备测量并上报给所述第一通信设备的。
  37. 如权利要求28至36中任一项所述的设备,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述通信设备还包括:
    通信单元,用于发送第一能力信息;其中,所述第一能力信息用于指示所述第一通信设备支持基于L1-SINR的空间域空间滤波器的预测。
  38. 如权利要求37所述的设备,其特征在于,
    所述第一能力信息还包括以下至少之一:
    所述参考信号测量集中包含的参考信号资源的最大数量;
    所述干扰信号测量集中包含的干扰信号资源的最大数量;
    是否支持NZP CSI-RS资源作为IMR;
    在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
    是否支持CSI-IM作为IMR;
    在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
    是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息;
    所述参考信号预测集的最大尺寸;
    所述干扰信号预测集的最大尺寸;
    K的最大取值。
  39. 如权利要求28至38中任一项所述的设备,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述通信设备还包括:
    通信单元,用于接收第一信息;其中,
    所述第一信息用于配置以下至少之一:所述参考信号测量集,所述干扰信号测量集,所述参考信号预测集,所述干扰信号预测集;或者,
    所述第一信息用于激活以下至少之一:预配置的多个所述参考信号测量集中的一个所述参考信号测量集,预配置的多个所述干扰信号测量集中的一个所述干扰信号测量集,预配置的多个所述参考信号预测集中的一个所述参考信号预测集,预配置的多个所述干扰信号预测集中的一个所述干扰信号预测集。
  40. 如权利要求28至39中任一项所述的设备,其特征在于,所述通信设备还包括:
    通信单元,用于发送第一预测信息;
    其中,所述第一预测信息包括所述第一预测数据集中的部分或全部内容。
  41. 如权利要求40所述的设备,其特征在于,
    在所述第一预测信息至少包括预测的K个空间滤波器对应的L1-SINR的情况下,所述K个空间滤波器对应的L1-SINR通过差分方式表示。
  42. 如权利要求40或41所述的设备,其特征在于,
    所述通信单元还用于接收第一指示信息;其中,所述第一指示信息用于指示预测的所述K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
  43. 如权利要求42所述的设备,其特征在于,
    所述第一指示信息为至少一个传输配置指示TCI状态指示;或者,
    所述第一指示信息为至少一个空间滤波器的标识字段。
  44. 如权利要求28至43中任一项所述的设备,其特征在于,
    所述第一通信设备为终端设备。
  45. 如权利要求28至36中任一项所述的设备,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述通信设备还包括:
    通信单元,用于接收第二能力信息;其中,所述第二能力信息用于指示所述第二能力信息的发端设备支持基于L1-SINR的空间域空间滤波器的预测。
  46. 如权利要求45所述的设备,其特征在于,
    所述第二能力信息还包括以下至少之一:
    所述参考信号测量集中包含的参考信号资源的最大数量;
    所述干扰信号测量集中包含的干扰信号资源的最大数量;
    是否支持NZP CSI-RS资源作为IMR;
    在支持NZP CSI-RS资源作为IMR的情况下,支持测量的NZP CSI-RS资源的最大数量;
    是否支持CSI-IM作为IMR;
    在支持CSI-IM作为IMR的情况下,支持测量的CSI-IM的最大数量;
    是否支持基于参考信号测量集测量参考信号部分的功率信息和干扰噪声部分的功率信息。
  47. 如权利要求28至36、45至46中任一项所述的设备,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述通信设备还包括:
    通信单元,用于发送第二信息;其中,
    所述第二信息用于配置以下至少之一:所述参考信号测量集,所述干扰信号测量集;或者,
    所述第二信息用于激活以下至少之一:预配置的多个所述参考信号测量集中的一个所述参考信号测量集,预配置的多个所述干扰信号测量集中的一个所述干扰信号测量集。
  48. 如权利要求28至36、45至47中任一项所述的设备,其特征在于,在所述第一通信设备基于所述第一网络模型进行空间域空间滤波器预测之前,所述通信设备还包括:
    通信单元,用于接收所述第一测量数据集。
  49. 如权利要求48所述的设备,其特征在于,
    所述参考信号部分的功率信息和/或所述干扰噪声部分的功率信息通过差分方式表示。
  50. 如权利要求28至36、45至49中任一项所述的设备,其特征在于,所述通信设备还包括:
    通信单元,用于发送第二指示信息;其中,所述第二指示信息用于指示预测的所述K个空间滤波器的标识信息中使用的空间滤波器的标识信息。
  51. 如权利要求50所述的设备,其特征在于,
    所述第二指示信息为至少一个TCI状态指示;或者,
    所述第二指示信息为至少一个空间滤波器的标识字段。
  52. 如权利要求28至36、45至51中任一项所述的设备,其特征在于,
    所述第一通信设备为网络设备。
  53. 如权利要求28至52中任一项所述的设备,其特征在于,
    所述第一网络模型由所述第一通信设备确定,或者,所述第一网络模型由其他设备配置或指示。
  54. 如权利要求28至53中任一项所述的设备,其特征在于,
    所述空间滤波器包括一个发射空间滤波器;或者,
    所述空间滤波器包括一个接收空间滤波器;或者,
    所述空间滤波器包括一个发射空间滤波器和一个接收空间滤波器。
  55. 一种通信设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求1至27中任一项所述的方法。
  56. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求1至27中任一项所述的方法被实现。
  58. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求1至27中任一项所述的方法被实现。
  59. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1至27中任一项所述的方法被实现。
PCT/CN2022/141619 2022-12-23 2022-12-23 无线通信的方法及设备 WO2024130739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/141619 WO2024130739A1 (zh) 2022-12-23 2022-12-23 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/141619 WO2024130739A1 (zh) 2022-12-23 2022-12-23 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2024130739A1 true WO2024130739A1 (zh) 2024-06-27

Family

ID=91587591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141619 WO2024130739A1 (zh) 2022-12-23 2022-12-23 无线通信的方法及设备

Country Status (1)

Country Link
WO (1) WO2024130739A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210211176A1 (en) * 2018-09-26 2021-07-08 Zte Corporation Interference-aware beam reporting in wireless communications
WO2022084457A1 (en) * 2020-10-21 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Communication device predicted future interference information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210211176A1 (en) * 2018-09-26 2021-07-08 Zte Corporation Interference-aware beam reporting in wireless communications
WO2022084457A1 (en) * 2020-10-21 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Communication device predicted future interference information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LENOVO: "Further aspects on AI/ML for beam management", 3GPP TSG RAN WG1#109E, RP-2204420, 29 April 2022 (2022-04-29), XP052144023 *
OPPO: "Discussion on Multi-beam Operation Enhancements", 3GPP TSG RAN WG1 #97, R1-1906288, 3 May 2019 (2019-05-03), XP051708325 *
ZHIHUA SHI, OPPO: "Other aspects of AI/ML for beam management", 3GPP TSG RAN WG1 #111, R1-2211481, 7 November 2022 (2022-11-07), XP052222045 *

Similar Documents

Publication Publication Date Title
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2023123062A1 (zh) 虚拟信道样本的质量评估方法和设备
US20240314727A1 (en) Positioning method, model training method, and first device
WO2024130739A1 (zh) 无线通信的方法及设备
CN114451005B (zh) 链路失败检测的方法和装置
WO2024130573A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024164177A1 (zh) 无线通信的方法及设备
WO2024092498A1 (zh) 无线通信的方法及设备
WO2024168516A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024065696A1 (zh) 无线通信的方法、终端设备和网络设备
CN115843125A (zh) 通信方法和通信装置
WO2023206163A1 (zh) 无线通信的方法、网络设备和终端设备
WO2024138692A1 (zh) 空间滤波器预测方法、终端设备及网络设备
WO2024065697A1 (zh) 模型监测的方法、终端设备和网络设备
CN113938907A (zh) 通信的方法及通信装置
WO2024119492A1 (zh) 无线通信的方法及设备
WO2024207330A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023125598A1 (zh) 一种通信方法及通信装置
WO2024207485A1 (zh) 无线通信的方法及设备
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024213187A1 (en) Indication of network side additional condition
WO2024229632A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024000521A1 (zh) 通信方法和设备
WO2024138494A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024138527A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22969026

Country of ref document: EP

Kind code of ref document: A1