WO2024164177A1 - 无线通信的方法及设备 - Google Patents
无线通信的方法及设备 Download PDFInfo
- Publication number
- WO2024164177A1 WO2024164177A1 PCT/CN2023/075005 CN2023075005W WO2024164177A1 WO 2024164177 A1 WO2024164177 A1 WO 2024164177A1 CN 2023075005 W CN2023075005 W CN 2023075005W WO 2024164177 A1 WO2024164177 A1 WO 2024164177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- downlink
- uplink
- identification information
- spatial filters
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 288
- 238000004891 communication Methods 0.000 title claims abstract description 237
- 238000005259 measurement Methods 0.000 claims abstract description 532
- 230000015654 memory Effects 0.000 claims description 53
- 230000005540 biological transmission Effects 0.000 claims description 50
- 238000004590 computer program Methods 0.000 claims description 50
- 238000012545 processing Methods 0.000 claims description 20
- 235000019527 sweetened beverage Nutrition 0.000 description 82
- 230000008569 process Effects 0.000 description 70
- 230000011664 signaling Effects 0.000 description 50
- 238000010586 diagram Methods 0.000 description 40
- 230000006870 function Effects 0.000 description 34
- 238000013528 artificial neural network Methods 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 15
- 238000001228 spectrum Methods 0.000 description 10
- 238000012549 training Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000013527 convolutional neural network Methods 0.000 description 8
- 230000001360 synchronised effect Effects 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 6
- 230000004913 activation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011176 pooling Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
Definitions
- the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for wireless communications.
- downlink beam management may include: downlink beam scanning, optimal beam reporting on the terminal side, downlink beam indication on the network side and other processes.
- Uplink beam management may include: uplink beam scanning, uplink beam indication on the network side and other processes.
- the network device scans all transmit beam directions through the downlink reference signal, and the terminal device can use different receive beams for measurement, so that all beam pairs can be traversed.
- the terminal device scans all transmit beam directions through the uplink reference signal, and the network device can use different receive beams for measurement, so that all beam pairs can be traversed.
- An embodiment of the present application provides a method and device for wireless communication, wherein a terminal device can support uplink spatial filter prediction based on downlink measurement results, and/or the terminal device can support downlink spatial filter prediction based on uplink measurement results, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management.
- a wireless communication method comprising:
- the terminal device sends first capability information; wherein the first capability information is used to indicate whether the terminal device supports uplink spatial filter prediction based on downlink measurement results, and/or, the first capability information is used to indicate whether the terminal device supports downlink spatial filter prediction based on uplink measurement results.
- a wireless communication method comprising:
- the network device receives first capability information; wherein the first capability information is used to indicate whether the terminal device supports uplink spatial filter prediction based on downlink measurement results, and/or, the first capability information is used to indicate whether the terminal device supports downlink spatial filter prediction based on uplink measurement results.
- a wireless communication method comprising:
- the first communication device inputs a first measurement data set into a first network model and outputs a first prediction data set;
- the first measurement data set includes at least one of the following: link quality information obtained by measuring based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained by measuring based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer; or,
- the first measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters, where K 2 is a positive integer.
- a terminal device is provided, and the terminal device is used to execute the method in the first aspect.
- the terminal device includes a functional module used to execute the method in the first aspect.
- a network device is provided, and the network device is used to execute the method in the second aspect.
- the network device includes a functional module used to execute the method in the second aspect.
- a communication device is provided, the communication device being a first communication device, and the communication device being used to execute the method in the third aspect.
- the communication device comprises a functional module for executing the method in the third aspect.
- a terminal device which includes a processor and a memory; the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, so that the terminal device executes the method in the above-mentioned first aspect.
- a network device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the above-mentioned second aspect.
- a communication device which is a first communication device, and the communication device includes a processor and a memory; the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, so that the communication device executes the method in the above-mentioned third aspect.
- a device for implementing the method in any one of the first to third aspects.
- the device includes: a processor, configured to call and run a computer program from a memory, so that a device equipped with the device executes the method in any one of the first to third aspects.
- a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in any one of the first to third aspects above.
- a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in any one of the first to third aspects above.
- a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to third aspects described above.
- the terminal device can support uplink spatial filter prediction based on downlink measurement results, and the terminal device can implement uplink spatial filter prediction based on downlink measurement results based on the first network model; and/or, the terminal device can support downlink spatial filter prediction based on uplink measurement results, and the network device can implement downlink spatial filter prediction based on uplink measurement results based on the second network model, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management.
- the first communication device can implement uplink spatial filter prediction based on downlink measurement results based on the first network model, or the first communication device can implement downlink spatial filter prediction based on uplink measurement results based on the first network model, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management.
- FIG1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
- FIG. 2 is a schematic diagram of the connection of neurons in a neural network provided by the present application.
- FIG3 is a schematic structural diagram of a neural network provided in the present application.
- FIG4 is a schematic diagram of a convolutional neural network provided in the present application.
- FIG5 is a schematic structural diagram of an LSTM unit provided in the present application.
- FIG6 is a schematic diagram of a downlink beam scanning process provided in the present application.
- FIG7 is a schematic diagram of another downlink beam scanning process provided in the present application.
- FIG8 is a schematic diagram of another downlink beam scanning process provided in the present application.
- FIG9 is a schematic diagram of a spatial domain beam prediction model provided in the present application.
- FIG10 is a schematic diagram of another spatial domain beam prediction model provided in the present application.
- FIG11 is a schematic diagram of a time domain beam prediction model provided in the present application.
- FIG12 is a schematic diagram of a downlink beam management provided in the present application.
- FIG13 is a schematic diagram of an uplink beam management provided in the present application.
- FIG14 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
- Figure 15 is a schematic diagram of downlink beam (pair) measurement and uplink beam (pair) prediction provided according to an embodiment of the present application.
- FIG16 is a schematic diagram of an uplink beam (pair) prediction provided according to an embodiment of the present application.
- FIG17 is a schematic diagram of another uplink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 18 is a flowchart of downlink beam (pair) measurement and uplink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 19 is a schematic diagram of uplink beam (pair) measurement and downlink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 20 is a schematic diagram of a downlink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 21 is a schematic diagram of another downlink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 22 is a flowchart of uplink beam (pair) measurement and downlink beam (pair) prediction provided according to an embodiment of the present application.
- Figure 23 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
- Figure 24 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
- Figure 25 is a schematic block diagram of a network device provided according to an embodiment of the present application.
- Figure 26 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
- Figure 27 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
- Figure 28 is a schematic block diagram of a device provided according to an embodiment of the present application.
- Figure 29 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced long term evolution
- NR New Radio
- LTE on unlicensed spectrum LTE-based ac
- LTE-U LTE-based access to unlicensed spectrum
- NR-U NR-based access to unlicensed spectrum
- NTN Universal Mobile Telecommunication System
- UMTS Universal Mobile Telecommunication System
- WLAN Wireless Local Area Networks
- IoT Wireless Fidelity
- WiFi fifth-generation (5G) systems
- 6G sixth-generation
- D2D device to device
- M2M machine to machine
- MTC machine type communication
- V2V vehicle to vehicle
- SL sidelink
- V2X vehicle to everything
- the communication system in the embodiments of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, a standalone (SA) networking scenario, or a non-standalone (NSA) networking scenario.
- CA carrier aggregation
- DC dual connectivity
- SA standalone
- NSA non-standalone
- the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, where the licensed spectrum can also be considered as an unshared spectrum.
- the communication system in the embodiments of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range of 410 MHz to 7.125 GHz), or to the FR2 frequency band (corresponding to the frequency band range of 24.25 GHz to 52.6 GHz), or to new frequency bands such as high-frequency frequency bands corresponding to the frequency band range of 52.6 GHz to 71 GHz or the frequency band range of 71 GHz to 114.25 GHz.
- the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
- UE user equipment
- the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
- STATION, ST in a WLAN
- a cellular phone a cordless phone
- Session Initiation Protocol (SIP) phone Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
- the terminal device can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)/system on chip (SoC), etc.
- VR virtual reality
- AR augmented reality
- a wireless terminal device in industrial control a wireless terminal device in self-driving
- a wireless terminal device in remote medical a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)
- the terminal device may also be a wearable device.
- Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
- the network device may be a device for communicating with a mobile device, and the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (eNB or eNodeB) in LTE, or a relay station or access point, or a network device or base station (gNB) in a vehicle-mounted device, a wearable device, and an NR network, or Transmission Reception Point (TRP), or network equipment in a future evolved PLMN network or a network equipment in an NTN network, etc.
- AP access point
- BTS base station
- NodeB NodeB
- NB base station
- gNB network device or base station
- TRP Transmission Reception Point
- the network device may have a mobile feature, for example, the network device may be a mobile device.
- the network device may be a satellite or a balloon station.
- the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
- the network device may also be a base station set up in a location such as land or water.
- a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
- the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
- the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
- the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
- the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
- FIG1 exemplarily shows a network device and two terminal devices.
- the communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
- the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
- the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
- the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
- the first communication device may be a terminal device, such as a mobile phone, a machine facility, a customer premises equipment (Customer Premise Equipment, CPE), industrial equipment, a vehicle, etc.; the second communication device may be a counterpart communication device of the first communication device, such as a network device, a mobile phone, an industrial equipment, a vehicle, etc.
- the first communication device may be a terminal device, and the second communication device may be a network device (i.e., uplink communication or downlink communication); or, the first communication device may be a first terminal, and the second communication device may be a second terminal (i.e., sideline communication).
- the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
- a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
- corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
- pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
- pre-definition can refer to what is defined in the protocol.
- the “protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of an existing LTE protocol, NR protocol, Wi-Fi protocol, or a protocol related to other communication systems.
- the present application does not limit the protocol type.
- a neural network is a computing model consisting of multiple interconnected neuron nodes, where the connection between nodes represents the weighted value from the input signal to the output signal, called the weight; each node performs weighted summation (SUM) on different input signals and outputs them through a specific activation function (f).
- Figure 2 is a schematic diagram of a neuron structure, where a1, a2, ..., an represent input signals, w1, w2, ..., wn represent weights, f represents the activation function, and t represents the output.
- a simple neural network is shown in Figure 3, which includes an input layer, a hidden layer, and an output layer. Through different connection methods, weights, and activation functions of multiple neurons, different outputs can be generated, thereby fitting the mapping relationship from input to output. Among them, each upper-level node is connected to all its lower-level nodes.
- This neural network is a fully connected neural network, which can also be called a deep neural network (DNN).
- DNN deep neural network
- CNN convolutional neural network
- input layer multiple convolutional layers
- pooling layers fully connected layer and output layer, as shown in Figure 4.
- Each neuron of the convolution kernel in the convolutional layer is locally connected to its input, and the maximum or average value of a certain layer is extracted by introducing the pooling layer, which effectively reduces the parameters of the network and mines the local features, so that the convolutional neural network can converge quickly and obtain excellent performance.
- Deep learning uses a deep neural network with multiple hidden layers, which greatly improves the network's ability to learn features and fits complex nonlinear mappings from input to output. Therefore, it is widely used in speech and image processing.
- deep learning also includes common basic structures such as convolutional neural networks (CNN) and recurrent neural networks (RNN) for different tasks.
- CNN convolutional neural networks
- RNN recurrent neural networks
- the basic structure of a convolutional neural network includes: input layer, multiple convolutional layers, multiple pooling layers, fully connected layer and output layer, as shown in Figure 4.
- Each neuron of the convolution kernel in the convolutional layer is locally connected to its input, and the maximum or average value of a certain layer is extracted by introducing the pooling layer, which effectively reduces the parameters of the network and mines the local features, so that the convolutional neural network can converge quickly and obtain excellent performance.
- RNN is a neural network that models sequential data and has achieved remarkable results in the field of natural language processing, such as machine translation and speech recognition. Specifically, the network device memorizes the information of the past moment and uses it in the calculation of the current output, that is, the nodes between the hidden layers are no longer disconnected but connected, and the input of the hidden layer includes not only the input layer but also the output of the hidden layer at the previous moment.
- Commonly used RNNs include structures such as Long Short-Term Memory (LSTM) and gated recurrent unit (GRU).
- Figure 5 shows a basic LSTM unit structure, which can include a tanh activation function. Unlike RNN, which only considers the most recent state, the cell state of LSTM determines which states should be retained and which states should be forgotten, solving the defects of traditional RNN in long-term memory.
- a neural network (NN) model can be trained and obtained through the process of data set construction, training, verification and testing. This case assumes that the NN model has been trained in advance through offline training or online training. It should be noted that offline training and online training are not mutually exclusive.
- NW can obtain a static training result through offline training of the data set, which can be called offline training here.
- the NN model can continue to collect more data and perform real-time online training to optimize the parameters of the NN model to achieve better inference and prediction results.
- millimeter wave frequency band communication is introduced, and the corresponding beam management mechanism is also introduced, including uplink and downlink beam management.
- Downlink beam management includes downlink beam scanning, terminal (UE) beam measurement and reporting, and network (NW) downlink beam indication.
- UE terminal
- NW network
- the downlink beam scanning process may include three processes, namely P1, P2 and P3 processes.
- the P1 process refers to the network device scanning different transmit beams and the UE scanning different receive beams;
- the P2 process refers to the network device scanning different transmit beams and the UE using the same receive beam;
- the P3 process refers to the network device using the same transmit beam and the UE scanning different receive beams.
- the network device completes the above beam scanning process by sending a downlink reference signal.
- the downlink reference signal may include but is not limited to a synchronization signal block (Synchronization Signal Block, SSB) and/or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS).
- FIG6 is a schematic diagram of the P1 process (or the downlink full scan process)
- FIG7 is a schematic diagram of the P2 process
- FIG8 is a schematic diagram of the P3 process.
- the network device traverses all transmit beams to send downlink reference signals, and the UE side traverses all receive beams to perform measurements and determine corresponding measurement results.
- the network device traverses all transmit beams to send downlink reference signals, and the UE side uses a specific receive beam to perform measurements to determine the corresponding measurement results.
- the network device may use a specific transmit beam to send a downlink reference signal, and the UE side traverses all receive beams to perform measurements and determine corresponding measurement results.
- the beam reporting mechanism in NR is that the UE measures multiple transmit beams (P2 process) or transmit-receive beam pairs (P1 process), selects the K transmit beams with the highest Layer 1 Reference Signal Receiving Power (L1-RSRP) and their performance, and reports them to the NW in the form of Channel State Information (CSI).
- P2 process multiple transmit beams
- P1 process transmit-receive beam pairs
- CSI Channel State Information
- the NW After decoding the beam information reported by the UE, the NW considers the downlink transmission channel and signal and uses the Media Access Control (MAC) The UE uses the receiving beam corresponding to the transmit beam of the indicated SSB or CSI-RS to perform downlink reception.
- MAC Media Access Control
- NR also defines three uplink beam scanning processes, namely U1, U2 and U3.
- the U1 process means that the UE scans different transmit beams and the NW scans different receive beams;
- the U2 process means that the UE uses the same transmit beam and the NW scans different receive beams;
- the U3 process means that the UE scans different transmit beams and the NW uses the same receive beam.
- the NW For the uplink beam scanning process, since the NW measures the beam from the UE, the UE does not need to report the beam.
- the NW selects the uplink beam it thinks is appropriate from the measured uplink beams and indicates or configures it to the UE for uplink transmission. At the same time, the NW also prepares the corresponding receiving beam.
- AI/ML-based beam management can provide downlink beam prediction in the spatial domain and beam prediction in the time domain (BM-Case2).
- Beam prediction in the spatial domain also called beam management example 1 (BM-Case1):
- the downlink beam spatial domain prediction in data set A (Set A) is predicted by measuring the beams in data set B (Set B).
- Set B is either a subset of Set A, or Set B and Set A are two different beam sets.
- Set B can be understood as a partial subset of beams (pairs);
- Set A can be understood as the full set of beams (pairs).
- FIG9 schematically shows the input and output relationship of the beam prediction model.
- the model solves a multi-classification problem, that is, the relationship between the input L1-RSRP of a partial subset (i.e., Set B) and the L1-RSRP of the optimal K beams, where the partial beam measurement set (i.e., Set B, which is part of the L1-RSRP measured by the full set Set A) is used as the input of the model.
- the output is the optimal K beam indexes selected from the full set Set A, that is, the K beams with the highest L1-RSRP.
- the labels used by the model are the optimal (i.e., the highest L1-RSRP) K beam indexes measured in the full set Set A.
- the measurement data set B (Set B) includes the L1-RSRP corresponding to T beam indices
- the prediction data set A (Set A) includes S beam indices
- the AI/ML model 1 predicts the optimal K beam indices (beam index #2 in FIG9 ).
- the beam in Figure 9 can also be replaced by a beam pair. The specific description is similar to the beam and will not be repeated here.
- FIG10 schematically shows the optimal beam quality prediction model, which can be understood as a linear regression problem.
- the input and output relationship of the model is the relationship between the input L1-RSRP of a partial subset (i.e., Set B) and the L1-RSRP of the optimal K beams.
- the label is the optimal K L1-RSRPs measured in the full set (i.e., Set A), and the corresponding K beam indices.
- the measurement data set B (Set B) includes L1-RSRPs corresponding to T beam indices
- the prediction data set A (Set A) includes L1-RSRPs corresponding to S beam indices
- the beam in FIG10 can also be replaced by a beam pair, and the specific description is similar to the beam, which will not be repeated here.
- Beam prediction in the time domain also called beam management example 2 (BM-Case2):
- the beams in the historical measurement data set B (Set B) are used to predict the downlink beam time domain in the data set A (Set A).
- Set B is either a subset of Set A, the same as Set A, or a subset of Set A.
- Set B can be understood as a partial subset of the beam (pair);
- Set A can be understood as the full set of beam (pair).
- the LSTM model is selected as shown in Figure 11.
- the LSTM model can be understood as extending M instances as input in time series, which is equivalent to the cascade of M LSTM units.
- the input of each LSTM unit is the L1-RSRP of the beam (pair) of instance m (Set Bm) in data set B, where 1 ⁇ m ⁇ M.
- the index of the beam (pair) of Set Bm can be implicitly input through the fixed order of L1-RSRP.
- the LSTM model can predict the optimal beam (pair) of the next F instances, the performance of the optimal beam (pair) (i.e., link quality information), and the duration (dwelling time) of the optimal beam (pair).
- the scanning of a large number of spatial beams (pairs) in the downlink will bring a lot of reference signal overhead and measurement delay.
- NW deploys 64 different downlink transmission directions in FR2 (carried by up to 64 SSBs)
- the UE uses multiple antenna panels (including only one receiving beam panel) to simultaneously perform receiving beam scanning when receiving, and each antenna panel has 4 receiving beams.
- the uplink beam scanning process also faces the same overhead and delay problems.
- downlink beam management may include: downlink beam scanning, optimal beam reporting on the terminal side, downlink beam indication on the network side, etc., as shown in Figure 12.
- Uplink beam management may include: uplink beam scanning, optimal beam reporting on the network side, downlink beam indication on the network side, etc.
- the uplink beam indication and other processes are shown in Figure 13.
- the network device scans all transmit beam directions through the downlink reference signal, and the terminal device can use different receive beams for measurement, so that all beam pairs can be traversed.
- the terminal device scans all transmit beam directions through the uplink reference signal, and the network device can use different receive beams for measurement, so that all beam pairs can be traversed.
- the present application proposes a beam (pair) prediction solution based on an AI/ML model.
- the terminal device can support uplink spatial filter prediction based on downlink measurement results, and/or the terminal device can support downlink spatial filter prediction based on uplink measurement results, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management.
- a beam in the embodiment of the present application may refer to a transmit beam or a receive beam
- a beam pair refers to a pair of transmit beam and receive beam.
- the embodiment of the present application uses a spatial filter to replace the word beam, which is biased towards implementation.
- their output can be understood as inference or prediction.
- inference and prediction have the same meaning and can be interchangeable.
- FIG. 14 is a schematic flow chart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 14 , the wireless communication method 200 may include at least part of the following contents:
- the terminal device sends first capability information to the network device; wherein the first capability information is used to indicate whether the terminal device supports uplink spatial filter prediction based on downlink measurement results, and/or the first capability information is used to indicate whether the terminal device supports downlink spatial filter prediction based on uplink measurement results;
- S220 The network device receives the first capability information.
- the terminal device when the terminal device supports uplink spatial filter prediction based on downlink measurement results, the terminal device inputs the first measurement data set into the first network model and outputs the first prediction data set;
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer.
- the network device when the terminal device supports downlink spatial filter prediction based on uplink measurement results, the network device inputs the second measurement data set into the second network model and outputs the second prediction data set;
- the second measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters, where K 2 is a positive integer.
- a spatial filter may also be referred to as a beam, a beam pair, a spatial relation, a spatial setting, a spatial domain filter, etc., or a spatial filter may also be referred to as a reference signal.
- the first network model is an AI/ML model.
- the first network model may be an AI/ML model for beam prediction in the spatial domain, and the specific implementation may be as shown in FIG. 9 or FIG. 10 , or the specific implementation may be as shown in FIG. 11 .
- the second network model is an AI/ML model.
- the second network model may be an AI/ML model for beam prediction in the spatial domain, and the specific implementation may be as shown in FIG. 9 or FIG. 10 , or the specific implementation may be as shown in FIG. 11 .
- the transmit spatial filter may also be referred to as a transmit beam (Tx beam) or a transmit-end spatial domain filter, and the above terms may be interchangeable.
- the receive spatial filter may also be referred to as a receive beam (Rx beam) or a receive-end spatial domain filter, and the above terms may be interchangeable.
- the combination of a transmit spatial filter and a receive spatial filter may also be referred to as a beam pair (i.e., a transmit beam (Tx beam) and a receive beam (Rx beam) pair), a spatial filter pair, or a spatial filter group, and the above terms may be interchangeable.
- the identification information of the spatial filter may be an index or an identification of the spatial filter.
- the identification information of the transmit spatial filter may be an index or an identification of the transmit spatial filter.
- the identification information of the receiving spatial filter may be an index or an identification of the receiving spatial filter.
- the identification information of the combination of the transmit spatial filter and the receive spatial filter may be a combination index.
- the link quality information includes at least one of the following: Layer 1 Reference Signal Receiving Power (L1-RSRP), Layer 1 Reference Signal Received Quality (L1-RSRQ), Layer 1 Signal to Interference plus Noise Ratio (L1-SINR), Layer 1 Received Signal Strength Indication (L1-RSSI).
- L1-RSRP Layer 1 Reference Signal Receiving Power
- L1-RSRQ Layer 1 Reference Signal Received Quality
- L1-SINR Layer 1 Signal to Interference plus Noise Ratio
- L1-RSSI Layer 1 Received Signal Strength Indication
- the first network model is more suitable for deployment on the UE side.
- the first network model can also be deployed on the network side.
- the terminal device needs to report the downlink measurement results.
- the following is an example of the first network model being deployed on the UE side, that is, the terminal device predicts the uplink spatial filter based on the downlink measurement results.
- the second network model is more suitable for deployment on the network (NW) side.
- the second network model can also be deployed on the UE side.
- the network device is required to indicate the uplink measurement results to the terminal device.
- the following is an example of the second network model being deployed on the network (NW) side, that is, the network device predicts the downlink spatial filter based on the uplink measurement results.
- the terminal device can implement uplink spatial filter prediction based on downlink measurement results based on the first network model, or the network device can implement downlink spatial filter prediction based on uplink measurement results based on the second network model, thereby reducing the overhead of beam (pair) prediction and improving the performance of the beam management system.
- the embodiment of the present application can be implemented specifically through uplink and downlink beam symmetry (beam correspondence).
- the UE predicts the optimal K 1 downlink receiving beams through the first network model, and then reverses the K 1 downlink receiving beams to obtain the optimal K 1 uplink transmitting beams through the uplink and downlink beam symmetry.
- the NW predicts the optimal K 2 uplink receiving beams through the second network model, and then reverses the K 2 uplink receiving beams to obtain the optimal K 2 downlink transmitting beams through the uplink and downlink beam symmetry.
- downlink measurement can assist uplink beam (pair) prediction
- uplink measurement can assist downlink beam (pair) prediction
- the “assistance” here means taking the downlink or uplink measurement amount (such as the measured reference signal resource index and/or its L1-RSRP value) as the input of the AI/ML model.
- the UE when downlink measurement assists uplink beam (pair) prediction, the UE measures the downlink beam scanning reference signal as the input of the model, the model outputs the prediction of the optimal uplink beam (pair) index, and the UE reports the uplink beam (pair) prediction result to the NW, and finally the NW completes the indication of the uplink beam.
- the UE sends an uplink beam scanning reference signal, the NW measures and uses it as the input of the model, the model outputs the prediction of the optimal downlink beam (pair) index, and finally the NW completes the indication of the downlink beam.
- an uplink beam can be an uplink transmit beam, or an uplink transmit beam and an uplink receive beam.
- a downlink beam (pair) can be a downlink transmit beam, or a downlink transmit beam and a downlink receive beam.
- the terminal device supports uplink spatial filter prediction based on downlink measurement results.
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters.
- the first measurement data set includes link quality information measured based on a downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters, and identification information of K 1 uplink receive spatial filters.
- the first measurement data set includes link quality information obtained based on the downlink reference signal measurement set and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters.
- the downlink reference signal resources in the downlink reference signal measurement set are part or all of the downlink reference signal resources in a downlink reference signal resource set.
- the downlink reference signal resource set is configured by a network device, or the downlink reference signal resource set is agreed upon by a protocol.
- the downlink reference signal resources in the downlink reference signal measurement set include CSI-RS resources and/or SSB resources.
- the NW sends a downlink reference signal based on Set B, and the UE needs to measure the downlink reference signal resources in Set B, i.e., CSI-RS resources and/or SSB resources.
- Set B can be composed of all downlink reference signal resources (i.e., full beam coverage) or part of the downlink reference signal resources (i.e., achieving the goal of reducing overhead in the spatial domain).
- the UE can use one or more receive beams for measurement.
- the schematic diagram of downlink beam (pair) measurement and uplink beam (pair) prediction can be shown in Figure 15, where the UE measures the downlink reference signal sent by the transmission reception point (Transmission Reception Point, TRP) based on the downlink reference signal measurement set (Set B), and the UE predicts K 1 uplink transmit beams and K 1 uplink receive beams based on the first reference signal prediction set (Set A).
- TRP Transmission Reception Point
- the link quality information measured based on the downlink reference signal measurement set is input into the first network model in a first order;
- the first order is associated with a downlink reference signal resource index in the downlink reference signal measurement set.
- One model input method is to input only the link quality of the downlink reference signal of Set B in a fixed order (i.e., the first order), such as L1-RSRP.
- Another model input method includes the downlink reference signal resource index in Set B and the link quality, such as L1-RSRP.
- the advantage of the second model is that the selection of Set B is more flexible.
- the UE uses the L1-RSRP (or other performance indicators, such as L1-SINR or L1-RSSI, L1-RSRQ) of the downlink reference signal measured by Set B as the input of the model in a fixed order (i.e., the first order), as shown in Figure 16.
- the UE uses the L1-RSRP of the downlink reference signal measured by Set B and the downlink reference signal resource index in Set B as the input of the model, as shown in Figure 17.
- M downlink reference signal resource indexes and the corresponding M link qualities, such as L1-RSRP are used as the input of the model.
- the advantage is that the UE can measure more flexibly without having to use the same input every time.
- the model outputs the optimal K 1 uplink beams (pairs), it is not necessary to predict the RSRP received by the corresponding uplink at the NW.
- the identification information of the K 1 uplink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the first reference signal prediction set.
- the reference signal resources in the first reference signal prediction set include at least one of the following: uplink reference signal resources, downlink reference signal resources.
- the first reference signal prediction set may be Set A.
- the identification information of the K 1 uplink transmit spatial filters may be represented by a reference signal resource index predicted by the first network model from the first reference signal prediction set.
- Example 1 when the reference signal resources in the first reference signal prediction set include at least uplink reference signal resources, if the uplink reference signal resources in the first reference signal prediction set configure or activate spatial relationship information, the identification information of the K 1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively receive spatial filters of the corresponding uplink reference signal resources.
- the predicted uplink transmission beam index corresponds to the uplink reference signal resource (such as SRS resource), that is, the reference signal resource in the first reference signal prediction set at least includes the uplink reference signal resource (such as SRS resource), if the SRS resource is configured and/or activated with spatial relationship information, the UE uses its spatial relationship information as the uplink transmission beam.
- the NW uses the receiving beam that receives the SRS resource for reception.
- Example 1 when the reference signal resources in the first reference signal prediction set include at least uplink reference signal resources, if the uplink reference signal resources in the first reference signal prediction set are not configured or activated with spatial relationship information, the identification information of the K 1 uplink transmit spatial filters are respectively the transmit spatial filters corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are determined based on a first uplink scanning method (such as a U3 process); wherein, in the first uplink scanning method, an uplink reference signal is sent using the uplink transmit spatial filter corresponding to the predicted uplink reference signal resource, different receive spatial filters are used to receive the uplink reference signal, and the optimal receive spatial filter is determined based on the signal quality of the received uplink reference signal.
- a first uplink scanning method such as a U3 process
- the predicted uplink transmission beam index corresponds to the uplink reference signal resource (such as SRS resource), that is, the reference signal resource in the first reference signal prediction set includes at least the uplink reference signal resource (such as SRS resource).
- the SRS resource is not configured and/or the spatial relationship information is activated, such as the SRS resource in the SRS resource set for the purpose of uplink beam scanning, the UE only knows the transmission direction of the SRS resource, and the NW does not know in advance how to receive the SRS resource. Then the UE needs to perform uplink beam scanning, such as in the U3 process, the UE fixes the optimal uplink beam direction, and the NW uses different receiving beams to receive, so as to find the optimal receiving beam corresponding to the SRS resource.
- the identification information of the K 1 uplink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resource predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are the transmit spatial filters of the corresponding downlink reference signal resources.
- the predicted uplink transmit beam index corresponds to the downlink reference signal resource (such as CSI-RS resource or SSB resource), that is, the reference signal resources in the first reference signal prediction set include at least downlink reference signal resources (such as CSI-RS resource or SSB resource).
- the CSI-RS resource TCI state is configured and/or activated
- SSB resource the UE has measured it in advance
- the UE can use the corresponding receive beam as the uplink transmit beam
- the NW uses the transmit beam of the CSI-RS resource or SSB resource as the uplink receive beam.
- the identification information of the K 1 uplink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the first downlink scanning mode (such as the P3 process); wherein, in the first downlink scanning mode, the downlink reference signal is sent using the downlink transmit spatial filter corresponding to the predicted downlink reference signal resource, the downlink reference signal is received using different receive spatial filters, and the optimal receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively the downlink transmit spatial filters corresponding to the predicted downlink reference signal resources.
- the predicted uplink transmission beam index corresponds to the downlink reference signal resource (such as CSI-RS resource or SSB resource), that is, the reference signal resource in the first reference signal prediction set includes at least downlink reference signal resources (such as CSI-RS resource or SSB resource).
- the CSI-RS resource not configured in advance and/or the TCI state is not activated
- the SSB resource the UE has not measured in advance
- a downlink beam scanning process is required, such as the P3 process
- the NW uses a fixed transmission beam
- the UE uses different receiving beams to find the optimal receiving beam of the fixed transmission beam.
- the downlink receiving beam is used as the optimal uplink transmission beam.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the first reference signal prediction set. That is, the reference signal resources in the first reference signal prediction set include uplink reference signal resources and downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters can be represented by the uplink reference signal resource index predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters can be represented by the downlink reference signal resource index predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink transmit spatial filters is determined based on spatial relationship information corresponding to uplink reference signal resources predicted by the first network model from the first reference signal prediction set; and/or,
- the identification information of the K 1 uplink receiving spatial filters is respectively identification information of downlink transmitting spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the model outputs the uplink transmit beam and the uplink receive beam, that is, the index of the uplink beam pair.
- An abstract beam pair index can be used to represent the predicted beam pair. It is also possible to consider using the resource index in the NR to characterize it.
- the transmit beam in the beam pair can correspond to the SRS resource (configured with spatial relationship information), and the receive beam can be corresponded to it with the CSI-RS (configured with TCI state) or SSB resource.
- the UE uses a beam of a predicted optimal SRS resource as the uplink transmit beam
- the NW uses the reverse implementation of the corresponding CSI-RS or SSB transmit beam as the uplink receive beam.
- the reference signal resources in the first reference signal prediction set are part or all of the reference signal resources in the preconfigured reference signal resource set.
- the downlink reference signal resources in the first reference signal prediction set include CSI-RS resources and/or block SSB resources; and/or, the uplink reference signal resources in the first reference signal prediction set include SRS resources.
- the first communications device sends first prediction information, wherein the first prediction information includes part or all of the reference signal resource indexes predicted by the first network model from the first reference signal prediction set.
- the first prediction information may be carried by at least one of the following:
- Radio Resource Control signaling, uplink control information (UCI), media access control layer control element (MAC CE) signaling.
- RRC Radio Resource Control
- UCI uplink control information
- MAC CE media access control layer control element
- the predicted uplink transmit beam index may correspond to an uplink reference signal resource (such as an SRS resource) and/or a downlink reference signal resource (such as a CSI-RS resource and/or an SSB resource). Therefore, when the first prediction data set includes the identification information of the predicted K 1 uplink transmit spatial filters, the first prediction information may include the following content: In addition to CSI-RS resources and/or SSB resources, it can also be SRS resources.
- the first prediction information may be carried by a CSI report, and the first prediction information includes a CSI-RS resource indicator (CSI-RS Resource Indicator, CRI) (i.e., CSI-RS resource index) or an SSB resource indicator (SSB Resource Indicator, SSBRI) (i.e., SSB resource index).
- CRI CSI-RS Resource Indicator
- SSBRI SSB Resource Indicator
- the L1-RSRP corresponding to the CRI or SSBRI may also be reported at the same time, but the CRI or SSBRI expresses the receiving beam corresponding to the uplink transmit beam of the UE, as shown in Table 1.
- the reporting format may include L1-RSRP and differential L1-RSRP, but it is still the corresponding downlink link quality, or it may not include (indicated by adding []).
- the L1-RSRP corresponding to CRI or SSBRI#1 is L1-RSRP#1
- the L1-RSRP corresponding to CRI or SSBRI#2 is L1-RSRP#2
- the L1-RSRP corresponding to CRI or SSBRI#3 is L1-RSRP#3
- the L1-RSRP corresponding to CRI or SSBRI#4 is L1-RSRP#4
- Differential L1-RSRP#2 can be the difference between L1-RSRP#2 and L1-RSRP#1
- Differential L1-RSRP#3 can be the difference between L1-RSRP#3 and L1-RSRP#1
- Differential L1-RSRP#4 can be the difference between L1-RSRP#4 and L1-RSRP#1.
- the first prediction information may be carried by a CSI report, and the first prediction information includes an SRS resource index, and the SRS resource index represents the optimal uplink transmit beam predicted by the model, as shown in Table 2. If the NW knows how to receive the SRS resource, then the NW receives it according to the spatial relationship information (i.e., uplink beam information) of the SRS resource; otherwise, the NW can only scan the receiving beam of the SRS resource to find a suitable uplink receiving beam.
- the spatial relationship information i.e., uplink beam information
- the predicted uplink transmit beam index may correspond to an uplink reference signal resource (such as an SRS resource), and the predicted uplink receive beam index may correspond to a downlink reference signal resource (such as a CSI-RS resource and/or an SSB resource). Therefore, when the first prediction data set includes the identification information of the predicted K 1 uplink transmit spatial filters and the identification information of the K 1 uplink receive spatial filters, the content included in the first prediction information may include CSI-RS resources and/or SSB resources and SRS resources.
- the transmit beam associated with the SRS resource
- the receive beam associated with the CSI-RS resource or the SSB resource
- the first CRI or SSBRI corresponds to the first SRS resource index
- the second CRI or SSBRI corresponds to the second SRS resource index
- the first prediction data set includes the predicted identification information of K 1 uplink transmission spatial filters and K 1 uplink
- the receiving beam associated with the CSI-RS resource or SSB resource
- the transmitting beam is implemented as the UE (no need to report).
- the specific reporting format can be referred to in Table 1 above and will not be repeated here.
- the first communication device after the first communication device sends the first prediction information, the first communication device receives the first indication information;
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, or the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, the first indication information is at least one TCI state indication, or the first indication information is an uplink reference signal resource index.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters, the first indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the first indication information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- the NW can indicate the transmit beam according to the UE's report.
- indications based on spatial relationship information can be used, or indications of a unified TCI state (uplink TCI state or joint TCI state) can be used.
- the core content of the indication is the UE's transmit beam, which contains a downlink reference signal resource (such as a CSI-RS resource or SSB resource reported by the UE) on a specific bandwidth part (Band Width Part, BWP) under a specific carrier unit (Component carrier, CC), or an uplink reference signal resource (such as an SRS resource reported by the UE).
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, the first communication device sends first capability information; wherein the first capability information is used to indicate that the first communication device supports uplink spatial filter prediction based on downlink measurement results.
- the UE needs to inform the NW through a capability report whether it supports the prediction of the uplink beam (pair) based on the downlink measurement.
- the first capability information further includes at least one of the following:
- the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set is the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of downlink reference signal measurement sets.
- the UE needs to report through capabilities whether it supports prediction of uplink beams (pairs) based on downlink measurements. If prediction of uplink beams (pairs) based on downlink measurements is supported, the capabilities reported by the UE include but are not limited to at least one of the following:
- the maximum number of beam (pair) measurement sets supported on all CCs/BWPs including the maximum number of measurement sets that can be configured and the maximum number of measurement sets that a UE can measure simultaneously;
- the prediction sets and measurement sets of beams (pairs) may be mapped one-to-one.
- the first capability information can be carried by at least one of the following: RRC signaling, MAC CE signaling, UCI.
- the NW will pass the model adapted to the actual deployment environment and beam (pair) configuration to the UE.
- the signaling transmitted by the model can be signaling within the 3GPP framework, such as the NW using the open format of RRC signaling to describe the structure of one or more models, as well as the initial parameters of each node.
- the NW can use RRC or MAC CE or DCI to indicate a special model identifier (model ID) to the UE (an ID defined in the model lifecycle management to identify different models).
- Another implementation method is that the UE starts a model that it has prepared in advance and optionally informs the NW of the description information of the model, such as through a public format or a more concise model ID.
- the NW and UE have a clear consensus and understanding of the model details expressed by the model ID.
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, receives first information; wherein the first information is used to configure at least one of the following: the downlink reference signal measurement set, the first reference signal prediction set; or, the first information is used to activate at least one of the following: the downlink reference signal measurement set in a plurality of pre-configured downlink reference signal measurement sets, the first reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- NW configures and/or activates the measurement set Set B required for model input for UE.
- NW configures and/or activates the uplink beam (pair) prediction set Set A output by the model for UE.
- the first information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- a flowchart of predicting an uplink beam based on downlink measurement results may be as shown in FIG. 18 .
- the terminal device supports downlink spatial filter prediction based on uplink measurement results.
- the second measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: identification information of the predicted K 2 downlink transmit spatial filters, identification information of the predicted K 2 downlink transmit spatial filters and identification information of the K 2 downlink receive spatial filters.
- the second measurement data set includes link quality information measured based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters.
- the second measurement data set includes link quality information obtained based on the uplink reference signal measurement set and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: identification information of the predicted K 2 downlink transmit spatial filters, identification information of the predicted K 2 downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters.
- the uplink reference signal resources in the uplink reference signal measurement set are part or all of the uplink reference signal resources in an uplink reference signal resource set.
- the uplink reference signal resource set is configured by a network device, or the uplink reference signal resource set is agreed upon by a protocol.
- the uplink reference signal resources in the uplink reference signal measurement set include SRS resources.
- the uplink reference signal measurement set is Set D
- the UE in order to achieve downlink transmit beam prediction based on uplink measurement, or, in order to achieve downlink beam pair (i.e., downlink transmit beam and downlink receive beam) prediction based on uplink measurement, the UE sends an uplink reference signal based on Set D, and the NW needs to measure the uplink reference signal resources in Set D, i.e., SRS resources.
- Set D can be composed of all uplink reference signal resources (i.e., full beam coverage) or part of the uplink reference signal resources (i.e., achieving the goal of reducing overhead in the spatial domain).
- the NW can use one or more receive beams for measurement.
- the schematic diagram of uplink beam (pair) measurement and downlink beam (pair) prediction can be shown in Figure 19, where TRP (NW) measures the uplink reference signal sent by the UE based on the uplink reference signal measurement set (Set D), and TRP (NW) predicts K 2 downlink transmit beams and K 2 downlink receive beams based on the second reference signal prediction set (Set C).
- the link quality information measured based on the uplink reference signal measurement set is input into the second network model in a second order;
- the second order is associated with an uplink reference signal resource index in the uplink reference signal measurement set.
- One model input method is to input only the link quality of the uplink reference signal (such as SRS) of Set D in a fixed order (i.e., the second order), such as L1-RSRP.
- Another model input method includes the uplink reference signal resource (such as SRS resource) index in Set D and the link quality, such as L1-RSRP.
- the advantage of the second model is that the selection of Set D is more flexible.
- L1-RSRP or other performance indicators, such as L1-SINR or L1-RSSI, L1-RSRQ
- the NW uses the L1-RSRP of the uplink reference signal measured by Set D and the uplink reference signal resource index in Set D as the input of the model, as shown in Figure 21.
- M uplink reference signal resource indexes and the corresponding M link qualities, such as L1-RSRP are used as the input of the model.
- the advantage is that the NW can measure more flexibly without having to use the same input every time.
- the model outputs the optimal K 2 downlink beams (pairs), it is not necessary to predict the corresponding downlink RSRP received at the UE.
- Example 3 when the second prediction data set includes identification information of K 2 predicted downlink transmit spatial filters, the identification information of the K 2 downlink transmit spatial filters is determined based on the reference signal resources predicted by the second network model from the second reference signal prediction set.
- the reference signal resources in the second reference signal prediction set include downlink reference signal resources.
- the downlink reference signal resources in the second reference signal prediction set include CSI-RS resources and/or SSB resources.
- the second reference signal prediction set may be Set C.
- Example 3 if the downlink reference signal resources (such as CSI-RS resources) in the second reference signal prediction set are configured or the TCI state is activated, or if the downlink reference signal resources (such as SSB resources) in the second reference signal prediction set have been measured in advance, the identification information of the K 2 downlink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the downlink reference signal resources such as CSI-RS resources
- SSB resources downlink reference signal resources
- the downlink optimal transmit beam output by the model corresponds to the downlink reference signal. If there are CSI-RS resources (TCI state is configured and/or activated) or SSB resources (the UE has measured in advance and knows to use the corresponding receive beam), the UE uses the corresponding receive beam for reception.
- CSI-RS resources TCI state is configured and/or activated
- SSB resources the UE has measured in advance and knows to use the corresponding receive beam
- the identification information of the K 2 downlink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the second downlink scanning mode; wherein, in the second downlink scanning mode (such as the P2 process), the downlink reference signal is sent using the downlink transmit spatial filter corresponding to the predicted downlink reference signal resource, the downlink reference signal is received using different receive spatial filters, and the optimal downlink receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the downlink optimal transmit beam output by the model corresponds to the downlink reference signal.
- the NW needs to perform a downlink beam scanning process, namely the P2 process.
- the NW uses a fixed predicted transmit beam direction to send, and the UE uses different receive beams to receive, so as to find the receive beam corresponding to the optimal downlink transmit beam.
- the identification information of the K 2 downlink transmit spatial filters is determined based on the downlink reference signal resources predicted by the second network model from the second reference signal prediction set
- the identification information of the K 2 downlink receive spatial filters is determined based on the uplink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the uplink reference signal resources in the second reference signal prediction set include SRS resources.
- the identification information of the K 2 downlink receive spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the second network model from the second reference signal prediction set; and/or, the identification information of the K 2 downlink transmit spatial filters is respectively the identification information of the downlink transmit spatial filters corresponding to the downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the model can only output the transmit beam part of the optimal downlink beam pair, that is, the CSI-RS and/or SSB resource index.
- the premise is that the UE needs to measure the predicted SSB resources and the TCI state of the configured and/or activated CSI-RS in advance, that is, the UE knows which receive beam to use for reception.
- the model can also output a downlink transmit beam (corresponding to CSI-RS and/or SSB) and a downlink receive beam (corresponding to SRS).
- a downlink transmit beam corresponding to CSI-RS and/or SSB
- a downlink receive beam corresponding to SRS
- the UE needs to use the SRS transmit beam to reversely implement a downlink receive beam.
- the network device sends second indication information to the terminal device
- the second indication information is used to indicate the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters, or the second indication information is used to indicate the identification information of the downlink transmitting spatial filter used in the identification information of the K 2 downlink transmitting spatial filters and the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters.
- the second indication information when the second indication information is used to indicate the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters, the second indication information is at least one TCI state indication, or the second The indication information is a downlink reference signal resource index; or,
- the second indication information is used to indicate the identification information of the downlink transmit spatial filter used in the identification information of the K 2 downlink transmit spatial filters and the identification information of the downlink receive spatial filter used in the identification information of the K 2 downlink receive spatial filters
- the second indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- NW indicates the downlink transmit beam and performs beam indication based on the traditional TCI state or the unified TCI state.
- NW indicates a downlink beam pair.
- the model only outputs the index of CSI-RS and/or SSB, the beam indication of the TCI state can be used.
- the premise is that the UE needs to correspond to the receiving beam in advance. If the model outputs a combination of the index of CSI-RS and/or SSB (indicating the transmit beam) and the SRS index (indicating the receive beam), it is clear that the traditional beam indication based on the TCI state is not enough.
- the SRS resource is used to characterize it.
- the SRS resource index can be carried in the second unified TCI state in the MAC CE and/or DCI indicated by the NW.
- the UE uses the transmit beam of the SRS resource contained in the second unified TCI state as the downlink receive beam.
- the second indication information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- the network device before the network device performs spatial filter prediction based on the second network model, the network device receives second capability information sent by the terminal device;
- the second capability information includes at least one of the following:
- the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set is the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of uplink reference signal measurement sets.
- the UE needs to report its relevant capabilities to the NW.
- the protocol can support the UE's reporting of the capability of uplink beam scanning based on SRS, so the UE does not need to report whether it supports downlink beam (pair) prediction based on uplink measurement.
- the capabilities reported by the UE include but are not limited to at least one of the following:
- the maximum number of beam (pair) measurement sets that can be sent on all CCs/BWPs including the maximum number of measurement sets that can be configured and the maximum number of measurement sets that can be sent simultaneously by the UE;
- the maximum number of beam (pair) measurement sets that can be sent on a CC/BWP is Smax;
- the prediction sets and measurement sets of beams (pairs) may be mapped one-to-one.
- the second capability information can be carried by at least one of the following: RRC signaling, MAC CE signaling, UCI.
- the network device before the network device performs spatial filter prediction based on the second network model, the network device sends second information to the terminal device; wherein,
- the second information is used to configure at least one of the following: the uplink reference signal measurement set, the second reference signal prediction set; or, the second information is used to activate at least one of the following: the uplink reference signal measurement set in a plurality of pre-configured uplink reference signal measurement sets, the second reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the NW configures and/or activates an SRS-based measurement set Set D for the UE.
- NW configures and/or activates the downlink beam (pair) prediction set Set C output by the model for UE (the purpose of configuring the prediction set for UE here is not to allow UE to predict the downlink beam (pair), but to let UE know the range of NW's downlink beam (pair) indication).
- the second information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- a flowchart of predicting a downlink beam based on uplink measurement results may be as shown in FIG. 22 .
- the terminal device can support uplink spatial filter prediction based on downlink measurement results, and the terminal device can implement uplink spatial filter prediction based on downlink measurement results based on the first network model; and/or, the terminal device can support downlink spatial filter prediction based on uplink measurement results, and the network device can implement downlink spatial filter prediction based on uplink measurement results based on the second network model, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management.
- the embodiment of the present application can be implemented specifically through uplink and downlink beam symmetry (beam correspondence).
- FIG. 23 is a schematic flow chart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 23 , the wireless communication method 300 may include at least part of the following contents:
- a first communication device inputs a first measurement data set into a first network model, and outputs a first prediction data set;
- the first measurement data set includes at least one of the following: link quality information obtained by measuring based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained by measuring based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer; or,
- the first measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters, where K 2 is a positive integer.
- a spatial filter may also be referred to as a beam, a beam pair, a spatial relation, a spatial setting, a spatial domain filter, etc., or a spatial filter may also be referred to as a reference signal.
- the first network model is an AI/ML model.
- the first network model may be an AI/ML model for beam prediction in the spatial domain, and the specific implementation may be as shown in FIG. 9 or FIG. 10 , or the specific implementation may be as shown in FIG. 11 .
- the transmit spatial filter may also be referred to as a transmit beam (Tx beam) or a transmit-end spatial domain filter, and the above terms may be interchangeable.
- the receive spatial filter may also be referred to as a receive beam (Rx beam) or a receive-end spatial domain filter, and the above terms may be interchangeable.
- the combination of a transmit spatial filter and a receive spatial filter may also be referred to as a beam pair (i.e., a transmit beam (Tx beam) and a receive beam (Rx beam) pair), a spatial filter pair, or a spatial filter group, and the above terms may be interchangeable.
- the identification information of the spatial filter may be an index or an identification of the spatial filter.
- the identification information of the transmit spatial filter may be an index or an identification of the transmit spatial filter.
- the identification information of the receiving spatial filter may be an index or an identification of the receiving spatial filter.
- the identification information of the combination of the transmit spatial filter and the receive spatial filter may be a combination index.
- the link quality information includes at least one of the following: Layer 1 Reference Signal Receiving Power (L1-RSRP), Layer 1 Reference Signal Received Quality (L1-RSRQ), Layer 1 Signal to Interference plus Noise Ratio (L1-SINR), Layer 1 Received Signal Strength Indication (L1-RSSI).
- L1-RSRP Layer 1 Reference Signal Receiving Power
- L1-RSRQ Layer 1 Reference Signal Received Quality
- L1-SINR Layer 1 Signal to Interference plus Noise Ratio
- L1-RSSI Layer 1 Received Signal Strength Indication
- the first communication device is a terminal device, or the first communication device is a network device.
- the first network model is more suitable for deployment on the UE side, that is, the first communication device is a terminal device.
- the first network model can also be deployed on the network side.
- the terminal device is required to report the downlink measurement results.
- the following is an example of the first network model being deployed on the UE side, that is, the terminal device predicts the uplink spatial filter based on the downlink measurement results.
- the first network model is more suitable for deployment on the network (NW) side, that is, the first communication device is a network device.
- the first network model can also be deployed on the UE side.
- the network device is required to indicate the uplink measurement results to the terminal device.
- the following is an example of the first network model being deployed on the network (NW) side, that is, the network device predicts the downlink spatial filter based on the uplink measurement results.
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer.
- the first measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K2 predicted downlink transmit spatial filters, identification information of K2 predicted downlink transmit spatial filters and identification information of K2 downlink receive spatial filters, where K2 is a positive integer.
- the first communication device can implement uplink spatial filter prediction based on downlink measurement results based on the first network model, or the first communication device can implement downlink spatial filter prediction based on uplink measurement results based on the first network model, thereby reducing the overhead of beam (pair) prediction based on the first network model and improving the performance of the beam management system.
- the embodiment of the present application can be implemented specifically through uplink and downlink beam symmetry (beam correspondence).
- the UE predicts the optimal K 1 downlink receiving beams through the first network model, and then reverses the K 1 downlink receiving beams to obtain the optimal K 1 uplink transmitting beams through the uplink and downlink beam symmetry.
- the NW predicts the optimal K 2 uplink receiving beams through the first network model, and then reverses the K 2 uplink receiving beams to obtain the optimal K 2 downlink transmitting beams through the uplink and downlink beam symmetry.
- downlink measurement can assist uplink beam (pair) prediction
- uplink measurement can assist downlink beam (pair) prediction
- the “assistance” here means taking the downlink or uplink measurement amount (such as the measured reference signal resource index and/or its L1-RSRP value) as the input of the AI/ML model.
- the UE when downlink measurement assists uplink beam (pair) prediction, the UE measures the downlink beam scanning reference signal as the input of the model, the model outputs the prediction of the optimal uplink beam (pair) index, and the UE reports the uplink beam (pair) prediction result to the NW, and finally the NW completes the indication of the uplink beam.
- the UE sends an uplink beam scanning reference signal, the NW measures and uses it as the input of the model, the model outputs the prediction of the optimal downlink beam (pair) index, and finally the NW completes the indication of the downlink beam.
- an uplink beam can be an uplink transmit beam, or an uplink transmit beam and an uplink receive beam.
- a downlink beam (pair) can be a downlink transmit beam, or a downlink transmit beam and a downlink receive beam.
- the first communication device when the information included in the first measurement data set is obtained based on a downlink reference signal measurement set, the first communication device supports uplink spatial filter prediction based on downlink measurement results.
- the first communication device is a terminal device.
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters.
- the first measurement data set includes link quality information measured based on a downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters, and identification information of K 1 uplink receive spatial filters.
- the first measurement data set includes link quality information obtained based on the downlink reference signal measurement set and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters.
- the downlink reference signal resources in the downlink reference signal measurement set are part or all of the downlink reference signal resources in a downlink reference signal resource set.
- the downlink reference signal resource set is configured by a network device, or the downlink reference signal resource set is agreed upon by a protocol.
- the downlink reference signal resources in the downlink reference signal measurement set include CSI-RS resources and/or SSB resources.
- the downlink reference signal measurement set is Set B
- NW sends downlink reference signals based on Set B
- UE needs to measure the downlink reference signal resources in Set B, i.e., CSI-RS resources and/or SSB resources.
- Set B can be composed of all downlink reference signal resources (i.e., full beam coverage) or part of the downlink reference signal resources (i.e., achieving the goal of reducing overhead in the spatial domain).
- the UE can use one or more receive beams for measurement.
- the schematic diagram of downlink beam (pair) measurement and uplink beam (pair) prediction can be shown in Figure 15, where the UE measures the downlink reference signal sent by the transmission reception point (Transmission Reception Point, TRP) based on the downlink reference signal measurement set (Set B), and the UE predicts K 1 uplink transmit beams and K 1 uplink receive beams based on the first reference signal prediction set (Set A).
- TRP Transmission Reception Point
- the first measurement data set only includes link quality information measured based on the downlink reference signal measurement set.
- the link quality information measured based on the downlink reference signal measurement set is input into the first network model according to the first order;
- the first order is associated with a downlink reference signal resource index in the downlink reference signal measurement set.
- One model input method is to input only the link quality of the downlink reference signal of Set B in a fixed order (i.e., the first order), such as L1-RSRP.
- Another model input method includes the downlink reference signal resource index in Set B and the link quality, such as L1-RSRP.
- the advantage of the second model is that the selection of Set B is more flexible.
- the UE uses the L1-RSRP (or other performance indicators, such as L1-SINR or L1-RSSI, L1-RSRQ) of the downlink reference signal measured by Set B as the input of the model in a fixed order (i.e., the first order), as shown in Figure 16.
- the UE uses the L1-RSRP of the downlink reference signal measured by Set B and the downlink reference signal resource index in Set B as the input of the model, as shown in Figure 17.
- M downlink reference signal resource indexes and the corresponding M link qualities, such as L1-RSRP are used as the input of the model.
- the advantage is that the UE can measure more flexibly without having to use the same input every time.
- the model outputs the optimal K 1 uplink beams (pairs), it is not necessary to predict the RSRP received by the corresponding uplink at the NW.
- the identification information of the K 1 uplink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the first reference signal prediction set.
- the reference signal resources in the first reference signal prediction set include at least one of the following: uplink reference signal resources, downlink reference signal resources.
- the first reference signal prediction set may be Set A.
- the identification information of the K 1 uplink transmit spatial filters may be represented by a reference signal resource index predicted by the first network model from the first reference signal prediction set.
- Example 1 when the reference signal resources in the first reference signal prediction set include at least uplink reference signal resources, if the uplink reference signal resources in the first reference signal prediction set configure or activate spatial relationship information, the identification information of the K 1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively receive spatial filters of the corresponding uplink reference signal resources.
- the predicted uplink transmission beam index corresponds to the uplink reference signal resource (such as SRS resource), that is, the reference signal resource in the first reference signal prediction set at least includes the uplink reference signal resource (such as SRS resource), if the SRS resource is configured and/or activated with spatial relationship information, the UE uses its spatial relationship information as the uplink transmission beam.
- the NW uses the receiving beam that receives the SRS resource for reception.
- Example 1 when the reference signal resources in the first reference signal prediction set include at least uplink reference signal resources, if the uplink reference signal resources in the first reference signal prediction set are not configured or activated with spatial relationship information, the identification information of the K 1 uplink transmit spatial filters are respectively the transmit spatial filters corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are determined based on a first uplink scanning method (such as a U3 process); wherein, in the first uplink scanning method, an uplink reference signal is sent using the uplink transmit spatial filter corresponding to the predicted uplink reference signal resource, different receive spatial filters are used to receive the uplink reference signal, and the optimal receive spatial filter is determined based on the signal quality of the received uplink reference signal.
- a first uplink scanning method such as a U3 process
- the predicted uplink transmission beam index corresponds to the uplink reference signal resource (such as SRS resource), that is, the reference signal resource in the first reference signal prediction set includes at least the uplink reference signal resource (such as SRS resource).
- the SRS resource is not configured and/or the spatial relationship information is activated, such as the SRS resource in the SRS resource set for the purpose of uplink beam scanning, the UE only knows the transmission direction of the SRS resource, and the NW does not know in advance how to receive the SRS resource. Then the UE needs to perform uplink beam scanning, such as in the U3 process, the UE fixes the optimal uplink beam direction, and the NW uses different receiving beams to receive, so as to find the optimal receiving beam corresponding to the SRS resource.
- the identification information of the K 1 uplink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resource predicted by the first network model from the first reference signal prediction set.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are the transmit spatial filters of the corresponding downlink reference signal resources.
- the predicted uplink transmit beam index corresponds to a downlink reference signal resource (such as a CSI-RS resource or an SSB resource). That is, the reference signal resources in the first reference signal prediction set include at least downlink reference signal resources (such as CSI-RS resources or SSB resources). If the CSI-RS resources (TCI state is configured and/or activated) or SSB resources (the UE has measured in advance), the UE can use the corresponding receive beam as the uplink transmit beam; the NW uses the transmit beam of the CSI-RS resource or SSB resource as the uplink receive beam.
- CSI-RS resources TCI state is configured and/or activated
- SSB resources the UE has measured in advance
- the identification information of the K 1 uplink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the first downlink scanning mode (such as the P3 process); wherein, in the first downlink scanning mode, the downlink reference signal is sent using the downlink transmit spatial filter corresponding to the predicted downlink reference signal resource, the downlink reference signal is received using different receive spatial filters, and the optimal receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the uplink receive spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively the downlink transmit spatial filters corresponding to the predicted downlink reference signal resources.
- the predicted uplink transmission beam index corresponds to the downlink reference signal resource (such as CSI-RS resource or SSB resource), that is, the reference signal resource in the first reference signal prediction set includes at least downlink reference signal resources (such as CSI-RS resource or SSB resource).
- the CSI-RS resource not configured in advance and/or the TCI state is not activated
- the SSB resource the UE has not measured in advance
- a downlink beam scanning process is required, such as the P3 process
- the NW uses a fixed transmission beam
- the UE uses different receiving beams to find the optimal receiving beam of the fixed transmission beam.
- the downlink receiving beam is used as the optimal uplink transmission beam.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the first reference signal prediction set. That is, the reference signal resources in the first reference signal prediction set include uplink reference signal resources and downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters can be represented by the uplink reference signal resource index predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters can be represented by the downlink reference signal resource index predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink transmit spatial filters is determined based on spatial relationship information corresponding to uplink reference signal resources predicted by the first network model from the first reference signal prediction set; and/or,
- the identification information of the K 1 uplink receiving spatial filters is respectively identification information of downlink transmitting spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the model outputs the uplink transmit beam and the uplink receive beam, that is, the index of the uplink beam pair.
- An abstract beam pair index can be used to represent the predicted beam pair. It is also possible to consider using the resource index in the NR to characterize it.
- the transmit beam in the beam pair can correspond to the SRS resource (configured with spatial relationship information), and the receive beam can be corresponded to it with the CSI-RS (configured with TCI state) or SSB resource.
- the UE uses a beam of a predicted optimal SRS resource as the uplink transmit beam
- the NW uses the reverse implementation of the corresponding CSI-RS or SSB transmit beam as the uplink receive beam.
- the reference signal resources in the first reference signal prediction set are part or all of the reference signal resources in the preconfigured reference signal resource set.
- the downlink reference signal resources in the first reference signal prediction set include CSI-RS resources and/or block SSB resources; and/or, the uplink reference signal resources in the first reference signal prediction set include SRS resources.
- the first communications device sends first prediction information, wherein the first prediction information includes part or all of the reference signal resource indexes predicted by the first network model from the first reference signal prediction set.
- the first prediction information may be carried by at least one of the following:
- Radio Resource Control signaling, uplink control information (UCI), media access control layer control element (MAC CE) signaling.
- RRC Radio Resource Control
- UCI uplink control information
- MAC CE media access control layer control element
- the predicted uplink transmit beam index may correspond to an uplink reference signal resource (such as an SRS resource) and/or a downlink reference signal resource (such as a CSI-RS resource and/or an SSB resource). Therefore, when the first prediction data set includes identification information of the predicted K 1 uplink transmit spatial filters, the first prediction information may include SRS resources in addition to CSI-RS resources and/or SSB resources.
- an uplink reference signal resource such as an SRS resource
- a downlink reference signal resource such as a CSI-RS resource and/or an SSB resource
- the first prediction information may be carried by a CSI report, and the first prediction information includes a CSI-RS resource indication (CSI-RS Resource Indicator, CRI) (i.e., a CSI-RS resource index) or an SSB resource indication (SSB Resource Indicator, SSBRI) (i.e., an SSB resource index).
- CRI CSI-RS Resource Indicator
- SSBRI SSB Resource Indicator
- the L1-RSRP corresponding to the CRI or SSBRI may also be reported at the same time, but the CRI or SSBRI expresses the receiving beam corresponding to the uplink transmit beam of the UE, as shown in Table 1.
- the reporting format may include L1-RSRP and differential L1-RSRP, but it is still the corresponding downlink link quality, or it may not include it (indicated by adding []).
- the L1-RSRP corresponding to CRI or SSBRI#1 is L1-RSRP#1
- the L1-RSRP corresponding to CRI or SSBRI#2 is L1-RSRP#2
- the L1-RSRP corresponding to CRI or SSBRI#3 is L1-RSRP#3
- the L1-RSRP corresponding to CRI or SSBRI#4 is L1-RSRP#4
- Differential L1-RSRP#2 can be the difference between L1-RSRP#2 and L1-RSRP#1
- Differential L1-RSRP#3 can be the difference between L1-RSRP#3 and L1-RSRP#1
- Differential L1-RSRP#4 can be the difference between L1-RSRP#4 and L1-RSRP#1.
- the first prediction information may be carried by a CSI report, and the first prediction information includes an SRS resource index, and the SRS resource index represents the optimal uplink transmit beam predicted by the model, as shown in Table 2. If the NW knows how to receive the SRS resource, then the NW receives it according to the spatial relationship information (i.e., uplink beam information) of the SRS resource; otherwise, the NW can only scan the receiving beam of the SRS resource to find a suitable uplink receiving beam.
- the spatial relationship information i.e., uplink beam information
- the predicted uplink transmit beam index may correspond to an uplink reference signal resource (such as an SRS resource), and the predicted uplink receive beam index may correspond to a downlink reference signal resource (such as a CSI-RS resource and/or an SSB resource). Therefore, when the first prediction data set includes the identification information of the predicted K 1 uplink transmit spatial filters and the identification information of the K 1 uplink receive spatial filters, the content included in the first prediction information may include CSI-RS resources and/or SSB resources and SRS resources.
- the transmit beam associated with the SRS resource
- the receive beam associated with the CSI-RS resource or the SSB resource
- the first CRI or SSBRI corresponds to the first SRS resource index
- the second CRI or SSBRI corresponds to the second SRS resource index
- the first predicted data set includes the identification information of the predicted K 1 uplink transmit spatial filters and the identification information of the K 1 uplink receive spatial filters
- only the receive beam associated with the CSI-RS resource or the SSB resource
- the transmit beam is implemented as the UE (no need to report).
- the specific reporting format can be referred to in Table 1 above, which will not be repeated here.
- the first communication device after the first communication device sends the first prediction information, the first communication device receives the first indication information;
- the first indication information is used to indicate the uplink transmission space used in the identification information of the K 1 uplink transmission space filters.
- the identification information of the filter, or the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, the first indication information is at least one TCI state indication, or the first indication information is an uplink reference signal resource index.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters, the first indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the first indication information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- the NW can indicate the transmit beam according to the UE's report.
- indications based on spatial relationship information can be used, or indications of a unified TCI state (uplink TCI state or joint TCI state) can be used.
- the core content of the indication is the UE's transmit beam, which contains a downlink reference signal resource (such as a CSI-RS resource or SSB resource reported by the UE) on a specific bandwidth part (Band Width Part, BWP) under a specific carrier unit (Component carrier, CC), or an uplink reference signal resource (such as an SRS resource reported by the UE).
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, the first communication device sends first capability information; wherein the first capability information is used to indicate that the first communication device supports uplink spatial filter prediction based on downlink measurement results.
- the UE needs to inform the NW through a capability report whether it supports the prediction of the uplink beam (pair) based on the downlink measurement.
- the first capability information further includes at least one of the following:
- the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set is the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of downlink reference signal measurement sets.
- the UE needs to report through capabilities whether it supports prediction of uplink beams (pairs) based on downlink measurements. If prediction of uplink beams (pairs) based on downlink measurements is supported, the capabilities reported by the UE include but are not limited to at least one of the following:
- the maximum number of beam (pair) measurement sets supported on all CCs/BWPs including the maximum number of measurement sets that can be configured and the maximum number of measurement sets that a UE can measure simultaneously;
- the prediction sets and measurement sets of beams (pairs) may be mapped one-to-one.
- the first capability information can be carried by at least one of the following: RRC signaling, MAC CE signaling, UCI.
- the NW will pass the model adapted to the actual deployment environment and beam (pair) configuration to the UE.
- the signaling transmitted by the model can be signaling within the 3GPP framework, such as the NW describing the structure of one or more models and the initial parameters of each node based on the open format of RRC signaling.
- the NW can use RRC or MAC CE or DCI to indicate a special model identifier (model ID) to the UE (an ID defined in the life cycle management of the model to identify different models).
- Another implementation method is that the UE starts a model prepared in advance and optionally informs the NW of the description information of the model, such as through an open format or a more concise model ID.
- the NW In the process of using model ID as a model communication, one of the most important assumptions is that the NW and the UE have a clear consensus and understanding of the model details expressed by the model ID.
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, the first communication device The device receives first information; wherein the first information is used to configure at least one of the following: the downlink reference signal measurement set, the first reference signal prediction set; or, the first information is used to activate at least one of the following: the downlink reference signal measurement set in a plurality of pre-configured downlink reference signal measurement sets, the first reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- NW configures and/or activates the measurement set Set B required for model input for UE.
- NW configures and/or activates the uplink beam (pair) prediction set Set A output by the model for UE.
- the first information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- a flowchart of predicting an uplink beam based on downlink measurement results may be as shown in FIG. 18 .
- the first communication device when the information included in the first measurement data set is obtained based on an uplink reference signal measurement set, supports downlink spatial filter prediction based on uplink measurement results.
- the first communication device is a network device.
- the first measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of the predicted K 2 downlink transmit spatial filters, identification information of the predicted K 2 downlink transmit spatial filters and identification information of the K 2 downlink receive spatial filters.
- the first measurement data set includes link quality information measured based on an uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters, and identification information of K 2 downlink receive spatial filters.
- the first measurement data set includes link quality information obtained based on the uplink reference signal measurement set and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters.
- the uplink reference signal resources in the uplink reference signal measurement set are part or all of the uplink reference signal resources in an uplink reference signal resource set.
- the uplink reference signal resource set is configured by a network device, or the uplink reference signal resource set is agreed upon by a protocol.
- the uplink reference signal resources in the uplink reference signal measurement set include SRS resources.
- the uplink reference signal measurement set is Set D
- the UE in order to achieve downlink transmit beam prediction based on uplink measurement, or, in order to achieve downlink beam pair (i.e., downlink transmit beam and downlink receive beam) prediction based on uplink measurement, the UE sends an uplink reference signal based on Set D, and the NW needs to measure the uplink reference signal resources in Set D, i.e., SRS resources.
- Set D can be composed of all uplink reference signal resources (i.e., full beam coverage) or part of the uplink reference signal resources (i.e., achieving the goal of reducing overhead in the spatial domain).
- the NW can use one or more receive beams for measurement.
- the schematic diagram of uplink beam (pair) measurement and downlink beam (pair) prediction can be shown in Figure 19, where TRP (NW) measures the uplink reference signal sent by the UE based on the uplink reference signal measurement set (Set D), and TRP (NW) predicts K 2 downlink transmit beams and K 2 downlink receive beams based on the second reference signal prediction set (Set C).
- the link quality information measured based on the uplink reference signal measurement set is input into the first network model in the second order;
- the second order is associated with an uplink reference signal resource index in the uplink reference signal measurement set.
- One model input method is to input only the link quality of the uplink reference signal (such as SRS) of Set D in a fixed order (i.e., the second order), such as L1-RSRP.
- Another model input method includes the uplink reference signal resource (such as SRS resource) index in Set D and the link quality, such as L1-RSRP.
- the advantage of the second model is that the selection of Set D is more flexible.
- NW uses the L1-RSRP (or other performance indicators, such as L1-SINR or L1-RSSI, L1-RSRQ) of the uplink reference signal measured by Set D as the input of the model in a fixed order (i.e., the second order), as shown in Figure 20.
- the NW uses the L1-RSRP of the uplink reference signal measured by Set D and the uplink reference signal resource index in Set D as the model input, as shown in Figure 21.
- the downlink reference signal resource index and the corresponding M link qualities, such as L1-RSRP, are used as the input of the model.
- the advantage is that the NW can measure more flexibly without having to use the same input every time.
- the model outputs the optimal K 2 downlink beams (pairs), it is not necessary to predict the corresponding downlink RSRP received at the UE.
- Example 3 when the first prediction data set includes identification information of K 2 predicted downlink transmit spatial filters, the identification information of the K 2 downlink transmit spatial filters is determined based on the reference signal resources predicted by the first network model from the second reference signal prediction set.
- the reference signal resources in the second reference signal prediction set include downlink reference signal resources.
- the downlink reference signal resources in the second reference signal prediction set include CSI-RS resources and/or SSB resources.
- the second reference signal prediction set may be Set C.
- Example 3 if the downlink reference signal resources (such as CSI-RS resources) in the second reference signal prediction set are configured or the TCI state is activated, or if the downlink reference signal resources (such as SSB resources) in the second reference signal prediction set have been measured in advance, the identification information of the K 2 downlink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the downlink reference signal resources such as CSI-RS resources
- SSB resources downlink reference signal resources
- the downlink optimal transmit beam output by the model corresponds to the downlink reference signal. If there are CSI-RS resources (TCI state is configured and/or activated) or SSB resources (the UE has measured in advance and knows to use the corresponding receive beam), the UE uses the corresponding receive beam for reception.
- CSI-RS resources TCI state is configured and/or activated
- SSB resources the UE has measured in advance and knows to use the corresponding receive beam
- the identification information of the K 2 downlink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the second downlink scanning mode; wherein, in the second downlink scanning mode (such as the P2 process), the downlink reference signal is sent using the downlink transmit spatial filter corresponding to the predicted downlink reference signal resource, the downlink reference signal is received using different receive spatial filters, and the optimal downlink receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the downlink optimal transmit beam output by the model corresponds to the downlink reference signal.
- the NW needs to perform a downlink beam scanning process, namely the P2 process.
- the NW uses a fixed predicted transmit beam direction to send, and the UE uses different receive beams to receive, so as to find the receive beam corresponding to the optimal downlink transmit beam.
- the identification information of the K 2 downlink transmit spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the second reference signal prediction set
- the identification information of the K 2 downlink receive spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the uplink reference signal resources in the second reference signal prediction set include SRS resources.
- the identification information of the K 2 downlink receiving spatial filters is determined based on spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the second reference signal prediction set; and/or,
- the identification information of the K 2 downlink transmit spatial filters is respectively identification information of downlink transmit spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the model can only output the transmit beam part of the optimal downlink beam pair, that is, the CSI-RS and/or SSB resource index.
- the premise is that the UE needs to measure the predicted SSB resources and the TCI state of the configured and/or activated CSI-RS in advance, that is, the UE knows which receive beam to use for reception.
- the model can also output a downlink transmit beam (corresponding to CSI-RS and/or SSB) and a downlink receive beam (corresponding to SRS).
- a downlink transmit beam corresponding to CSI-RS and/or SSB
- a downlink receive beam corresponding to SRS
- the UE needs to use the SRS transmit beam to reversely implement a downlink receive beam.
- the first communication device sends second indication information
- the second indication information is used to indicate the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters, or the second indication information is used to indicate the identification information of the downlink transmitting spatial filter used in the identification information of the K 2 downlink transmitting spatial filters and the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters.
- the second indication information when the second indication information is used to indicate the identification information of the downlink reception spatial filter used in the identification information of the K 2 downlink reception spatial filters, the second indication information is at least one TCI state indication, or the second indication information is a downlink reference signal resource index; or,
- the second indication information is used to indicate the identification information of the downlink transmission spatial filter used in the identification information of the K 2 downlink transmission spatial filters and the identification information of the downlink reception spatial filter used in the identification information of the K 2 downlink reception spatial filters.
- the second indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- NW indicates the downlink transmit beam and performs beam indication based on the traditional TCI state or the unified TCI state.
- NW indicates a downlink beam pair.
- the model only outputs the index of CSI-RS and/or SSB, the beam indication of the TCI state can be used.
- the premise is that the UE needs to correspond to the receiving beam in advance. If the model outputs a combination of the index of CSI-RS and/or SSB (indicating the transmit beam) and the SRS index (indicating the receive beam), it is clear that the traditional beam indication based on the TCI state is not enough.
- the SRS resource is used to characterize it.
- the SRS resource index can be carried in the second unified TCI state in the MAC CE and/or DCI indicated by the NW.
- the UE uses the transmit beam of the SRS resource contained in the second unified TCI state as the downlink receive beam.
- the second indication information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, the first communication device receives second capability information;
- the second capability information includes at least one of the following:
- the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set is the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of uplink reference signal measurement sets.
- the UE needs to report its relevant capabilities to the NW.
- the protocol can support the UE's reporting of the capability of uplink beam scanning based on SRS, so the UE does not need to report whether it supports downlink beam (pair) prediction based on uplink measurement.
- the capabilities reported by the UE include but are not limited to at least one of the following:
- the maximum number of beam (pair) measurement sets that can be sent on all CCs/BWPs including the maximum number of measurement sets that can be configured and the maximum number of measurement sets that can be sent simultaneously by the UE;
- the maximum number of beam (pair) measurement sets that can be sent on a CC/BWP is Smax;
- the prediction sets and measurement sets of beams (pairs) may be mapped one-to-one.
- the second capability information can be carried by at least one of the following: RRC signaling, MAC CE signaling, UCI.
- the first communication device before the first communication device performs spatial filter prediction based on the first network model, the first communication device sends second information; wherein,
- the second information is used to configure at least one of the following: the uplink reference signal measurement set, the second reference signal prediction set; or, the second information is used to activate at least one of the following: the uplink reference signal measurement set in a plurality of pre-configured uplink reference signal measurement sets, the second reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the NW configures and/or activates an SRS-based measurement set Set D for the UE.
- NW configures and/or activates the downlink beam (pair) prediction set Set C output by the model for UE (the purpose of configuring the prediction set for UE here is not to allow UE to predict the downlink beam (pair), but to let UE know the range of NW's downlink beam (pair) indication).
- the second information can be carried by at least one of the following: RRC signaling, MAC CE signaling, and DCI.
- a flowchart of predicting a downlink beam based on uplink measurement results may be as shown in FIG. 22 .
- the first communication device can implement uplink spatial filter prediction based on the downlink measurement result based on the first network model, or the first communication device can implement downlink spatial filter prediction based on the uplink measurement result based on the first network model, thereby reducing the overhead and delay of uplink spatial filter management and/or downlink spatial filter management, and improving the performance of the beam management system.
- the embodiment of the present application can be implemented specifically through uplink and downlink beam symmetry (beam correspondence).
- FIG24 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
- the terminal device 400 includes:
- the communication unit 410 is used to send first capability information; wherein the first capability information is used to indicate whether the terminal device supports uplink spatial filter prediction based on downlink measurement results, or the first capability information is used to indicate whether the terminal device supports downlink spatial filter prediction based on uplink measurement results.
- the terminal device 400 when the terminal device supports uplink spatial filter prediction based on downlink measurement results, the terminal device 400 further includes: a processing unit 420;
- the processing unit 420 is used to input the first measurement data set into the first network model and output the first prediction data set;
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer.
- the downlink reference signal resources in the downlink reference signal measurement set are part or all of the downlink reference signal resources in a downlink reference signal resource set.
- the downlink reference signal resource set is configured by a network device, or the downlink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the downlink reference signal measurement set is input into the first network model in a first order;
- the first order is associated with a downlink reference signal resource index in the downlink reference signal measurement set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the first reference signal prediction set;
- the reference signal resources in the first reference signal prediction set include at least one of the following: uplink reference signal resources and downlink reference signal resources.
- the identification information of the K1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are receiving spatial filters of corresponding uplink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters are respectively the transmit spatial filters corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are determined based on a first uplink scanning mode
- the uplink reference signal is sent using the uplink transmit spatial filter corresponding to the predicted uplink reference signal resource, the uplink reference signal is received using different receive spatial filters, and the optimal receive spatial filter is determined based on the signal quality of the received uplink reference signal.
- the identification information of the K 1 uplink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are respectively transmitting spatial filters of corresponding downlink reference signal resources.
- the reference signal resources in the first reference signal prediction set at least include downlink reference signal resources. If the downlink reference signal resources in the first reference signal prediction set are not configured or the TCI state is activated, or if the downlink reference signal resources in the first reference signal prediction set have not been measured in advance, the identification information of the K 1 uplink transmit spatial filters is the identification information of the downlink receive spatial filters determined based on the first downlink scanning mode;
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, different receive spatial filters are used to receive the downlink reference signal, and an optimal receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively downlink transmit spatial filters corresponding to the predicted downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set; and/or,
- the identification information of the K 1 uplink receiving spatial filters is respectively identification information of downlink transmitting spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the communication unit 410 is further configured to send first prediction information, wherein the first prediction information includes part or all of the reference signal resource indexes predicted by the first network model from the first reference signal prediction set.
- the communication unit 410 is further configured to receive first indication information
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, or the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, the first indication information is at least one TCI state indication, or the first indication information is an uplink reference signal resource index; or,
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters
- the first indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the downlink reference signal resources in the first reference signal prediction set include channel state information reference signal CSI-RS resources and/or synchronization signal block SSB resources; and/or,
- the uplink reference signal resources in the first reference signal prediction set include sounding reference signal SRS resources.
- the communication unit 410 before the terminal device performs spatial filter prediction based on the first network model, the communication unit 410 is further used to receive first information; wherein,
- the first information is used to configure at least one of the following: the downlink reference signal measurement set, the first reference signal prediction set; or, the first information is used to activate at least one of the following: the downlink reference signal measurement set in a plurality of pre-configured downlink reference signal measurement sets, the first reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first capability information when the first capability information indicates that the terminal device supports uplink spatial filter prediction based on downlink measurement results, the first capability information further includes at least one of the following:
- the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set is the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of downlink reference signal measurement sets.
- the communication unit 410 when the terminal device supports downlink spatial filter prediction based on uplink measurement results, the communication unit 410 is further used to receive second indication information;
- the second indication information is used to indicate the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters, or the second indication information is used to indicate the identification information of the K 2 downlink transmitting spatial filters used in the identification information of the K 2 downlink transmitting spatial filters. identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters;
- the identification information of the K 2 downlink transmit spatial filters and/or the identification information of the K 2 downlink receive spatial filters belong to a second predicted data set output by a second network model deployed on the network side after inputting a second measured data set;
- the second measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: the predicted identification information of the K 2 downlink transmit spatial filters, the predicted identification information of the K 2 downlink transmit spatial filters and the identification information of the K 2 downlink receive spatial filters, K 2 is a positive integer.
- the second indication information when the second indication information is used to indicate the identification information of the downlink reception spatial filter used in the identification information of the K 2 downlink reception spatial filters, the second indication information is at least one TCI state indication, or the second indication information is a downlink reference signal resource index; or,
- the second indication information is used to indicate the identification information of the downlink transmit spatial filter used in the identification information of the K 2 downlink transmit spatial filters and the identification information of the downlink receive spatial filter used in the identification information of the K 2 downlink receive spatial filters
- the second indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the uplink reference signal resources in the uplink reference signal measurement set are part or all of the uplink reference signal resources in the uplink reference signal resource set.
- the uplink reference signal resource set is configured by a network device, or the uplink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the uplink reference signal measurement set is input into the second network model in a second order;
- the second order is associated with an uplink reference signal resource index in the uplink reference signal measurement set.
- the identification information of the K 2 downlink transmit spatial filters is determined based on reference signal resources predicted by the second network model from the second reference signal prediction set;
- the reference signal resources in the second reference signal prediction set include downlink reference signal resources.
- the identification information of the K 2 downlink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the identification information of the K 2 downlink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the second downlink scanning mode
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, and different receive spatial filters are used to receive the downlink reference signal, and an optimal downlink receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the identification information of the K 2 downlink transmit spatial filters is determined based on the downlink reference signal resources predicted by the second network model from the second reference signal prediction set
- the identification information of the K 2 downlink receive spatial filters is determined based on the uplink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the identification information of the K 2 downlink receiving spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the second network model from the second reference signal prediction set; and/or,
- the identification information of the K 2 downlink transmit spatial filters is respectively identification information of downlink transmit spatial filters corresponding to downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the downlink reference signal resources in the second reference signal prediction set include CSI-RS resources and/or SSB resources.
- the uplink reference signal resources in the second reference signal prediction set include SRS resources.
- the communication unit 410 before the terminal device receives the second indication information, the communication unit 410 is further used to receive second information; wherein,
- the second information is used to configure at least one of the following: the uplink reference signal measurement set, the second reference signal prediction set; or, the second information is used to activate at least one of the following: the uplink reference signal measurement set in a plurality of pre-configured uplink reference signal measurement sets, the second reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first capability information includes at least one of the following:
- the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set is the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of uplink reference signal measurement sets.
- the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
- the processing unit may be one or more processors.
- terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the corresponding processes of the terminal device in the method 200 shown in Figure 14, which will not be repeated here for the sake of brevity.
- FIG25 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
- the network device 500 includes:
- the communication unit 510 is used to receive first capability information; wherein the first capability information is used to indicate whether the terminal device supports uplink spatial filter prediction based on downlink measurement results, or the first capability information is used to indicate whether the terminal device supports downlink spatial filter prediction based on uplink measurement results.
- the communication unit 510 is further used to receive first prediction information, wherein the first prediction information includes at least one of the following: partial or all reference signal resource indexes associated with identification information of K 1 uplink transmit spatial filters, partial or all reference signal resource indexes associated with identification information of K 1 uplink receive spatial filters;
- the identification information of the K 1 uplink transmission spatial filters and/or the identification information of the K 1 uplink reception spatial filters belong to a first prediction data set output by a first network model deployed on the terminal side after a first measurement data set is input;
- the first measurement data set includes at least one of the following: link quality information obtained based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: predicted identification information of the K1 uplink transmit spatial filters, predicted identification information of the K1 uplink transmit spatial filters and identification information of the K1 uplink receive spatial filters, where K1 is a positive integer.
- the downlink reference signal resources in the downlink reference signal measurement set are part or all of the downlink reference signal resources in a downlink reference signal resource set.
- the downlink reference signal resource set is configured by the network device, or the downlink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the downlink reference signal measurement set is input into the first network model in a first order;
- the first order is associated with a downlink reference signal resource index in the downlink reference signal measurement set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the first reference signal prediction set;
- the reference signal resources in the first reference signal prediction set include at least one of the following: uplink reference signal resources and downlink reference signal resources.
- the identification information of the K1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are receiving spatial filters of corresponding uplink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters are respectively the transmit spatial filters corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are determined based on a first uplink scanning mode
- the uplink transmission spatial filter corresponding to the predicted uplink reference signal resource is used to generate the uplink reference signal.
- An uplink reference signal is sent, the uplink reference signal is received using different receiving spatial filters, and an optimal receiving spatial filter is determined based on the signal quality of the received uplink reference signal.
- the identification information of the K 1 uplink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are respectively transmitting spatial filters of corresponding downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters is the identification information of the downlink receive spatial filters determined based on the first downlink scanning mode
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, different receive spatial filters are used to receive the downlink reference signal, and an optimal receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively downlink transmit spatial filters corresponding to the predicted downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set; and/or,
- the identification information of the K 1 uplink receiving spatial filters is respectively identification information of downlink transmitting spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the communication unit 510 is further used to send first indication information
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, or the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, the first indication information is at least one TCI state indication, or the first indication information is an uplink reference signal resource index; or,
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters
- the first indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the downlink reference signal resources in the first reference signal prediction set include channel state information reference signal CSI-RS resources and/or synchronization signal block SSB resources; and/or,
- the uplink reference signal resources in the first reference signal prediction set include sounding reference signal SRS resources.
- the communication unit 510 before the network device receives the first prediction information, is further configured to send first information; wherein,
- the first information is used to configure at least one of the following: the downlink reference signal measurement set, the first reference signal prediction set; or, the first information is used to activate at least one of the following: the downlink reference signal measurement set in a plurality of pre-configured downlink reference signal measurement sets, the first reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first capability information further includes at least one of the following:
- the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set is the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of downlink reference signal measurement sets.
- the network device 500 when the terminal device supports downlink spatial filter prediction based on uplink measurement results, the network device 500 further includes: a processing unit 520;
- the processing unit 520 is used to input the second measurement data set into the second network model and output the second prediction data set;
- the second measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the second prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters, where K 2 is a positive integer.
- the uplink reference signal resources in the uplink reference signal measurement set are part or all of the uplink reference signal resources in the uplink reference signal resource set.
- the uplink reference signal resource set is configured by a network device, or the uplink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the uplink reference signal measurement set is input into the second network model in a second order;
- the second order is associated with an uplink reference signal resource index in the uplink reference signal measurement set.
- the identification information of the K 2 downlink transmit spatial filters is determined based on reference signal resources predicted by the second network model from the second reference signal prediction set;
- the reference signal resources in the second reference signal prediction set include downlink reference signal resources.
- the identification information of the K 2 downlink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the identification information of the K 2 downlink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the second downlink scanning mode
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, and different receive spatial filters are used to receive the downlink reference signal, and an optimal downlink receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the identification information of the K 2 downlink transmit spatial filters is determined based on the downlink reference signal resources predicted by the second network model from the second reference signal prediction set
- the identification information of the K 2 downlink receive spatial filters is determined based on the uplink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the identification information of the K 2 downlink receiving spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the second network model from the second reference signal prediction set; and/or,
- the identification information of the K 2 downlink transmit spatial filters is respectively identification information of downlink transmit spatial filters corresponding to downlink reference signal resources predicted by the second network model from the second reference signal prediction set.
- the communication unit 510 is further used to send second indication information; wherein the second indication information is used to indicate the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters, or the second indication information is used to indicate the identification information of the downlink transmitting spatial filter used in the identification information of the K 2 downlink transmitting spatial filters and the identification information of the downlink receiving spatial filter used in the identification information of the K 2 downlink receiving spatial filters.
- the second indication information when the second indication information is used to indicate the identification information of the downlink reception spatial filter used in the identification information of the K 2 downlink reception spatial filters, the second indication information is at least one TCI state indication, or the second indication information is a downlink reference signal resource index; or,
- the second indication information is used to indicate the identification information of the downlink transmit spatial filter used in the identification information of the K 2 downlink transmit spatial filters and the identification information of the downlink receive spatial filter used in the identification information of the K 2 downlink receive spatial filters
- the second indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the downlink reference signal resources in the second reference signal prediction set include CSI-RS resources and/or SSB resources.
- the uplink reference signal resources in the second reference signal prediction set include SRS resources.
- the communication unit 510 before the network device performs spatial filter prediction based on the second network model, the communication unit 510 Also used to send second information; wherein,
- the second information is used to configure at least one of the following: the uplink reference signal measurement set, the second reference signal prediction set; or, the second information is used to activate at least one of the following: the uplink reference signal measurement set in a plurality of pre-configured uplink reference signal measurement sets, the second reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first capability information further includes at least one of the following:
- the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set is the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of uplink reference signal measurement sets.
- the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
- the processing unit may be one or more processors.
- the network device 500 may correspond to the network device in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the corresponding processes of the network device in the method 200 shown in Figure 14, which will not be repeated here for the sake of brevity.
- Fig. 26 shows a schematic block diagram of a communication device 600 according to an embodiment of the present application.
- the communication device 600 is a first communication device, as shown in Fig. 26, the communication device 600 includes: a processing unit 610;
- the processing unit 610 is used to input a first measurement data set into a first network model and output a first prediction data set;
- the first measurement data set includes at least one of the following: link quality information obtained by measuring based on the downlink reference signal measurement set, and a downlink reference signal resource index corresponding to the link quality information obtained by measuring based on the downlink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 1 predicted uplink transmit spatial filters, identification information of K 1 predicted uplink transmit spatial filters and identification information of K 1 uplink receive spatial filters, where K 1 is a positive integer; or,
- the first measurement data set includes at least one of the following: link quality information obtained based on the uplink reference signal measurement set, and an uplink reference signal resource index corresponding to the link quality information obtained based on the uplink reference signal measurement set; and the first prediction data set includes one of the following: identification information of K 2 predicted downlink transmit spatial filters, identification information of K 2 predicted downlink transmit spatial filters and identification information of K 2 downlink receive spatial filters, where K 2 is a positive integer.
- the first communications device when the information included in the first measurement data set is obtained based on the downlink reference signal measurement set, the first communications device supports uplink spatial filter prediction based on the downlink measurement result.
- the downlink reference signal resources in the downlink reference signal measurement set are part or all of the downlink reference signal resources in a downlink reference signal resource set.
- the downlink reference signal resource set is configured by a network device, or the downlink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the downlink reference signal measurement set is input into the first network model in a first order;
- the first order is associated with a downlink reference signal resource index in the downlink reference signal measurement set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the first reference signal prediction set;
- the reference signal resources in the first reference signal prediction set include at least one of the following: uplink reference signal resources and downlink reference signal resources.
- the identification information of the K1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are receiving spatial filters of corresponding uplink reference signal resources.
- the identification information of the spatial filter is respectively the transmit spatial filter corresponding to the uplink reference signal resource predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are determined based on a first uplink scanning mode
- the uplink reference signal is sent using the uplink transmit spatial filter corresponding to the predicted uplink reference signal resource, the uplink reference signal is received using different receive spatial filters, and the optimal receive spatial filter is determined based on the signal quality of the received uplink reference signal.
- the identification information of the K 1 uplink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmitting spatial filters are respectively transmitting spatial filters of corresponding downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters is the identification information of the downlink receive spatial filters determined based on the first downlink scanning mode
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, different receive spatial filters are used to receive the downlink reference signal, and an optimal receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the uplink receiving spatial filters corresponding to the K 1 uplink transmit spatial filters are respectively downlink transmit spatial filters corresponding to the predicted downlink reference signal resources.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the first reference signal prediction set
- the identification information of the K 1 uplink receive spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the identification information of the K 1 uplink transmit spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the first reference signal prediction set; and/or,
- the identification information of the K 1 uplink receiving spatial filters is respectively identification information of downlink transmitting spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the first reference signal prediction set.
- the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to send first prediction information, where the first prediction information includes part or all of the reference signal resource indexes predicted by the first network model from the first reference signal prediction set.
- the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to receive first indication information
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, or the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters.
- the first indication information when the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters, the first indication information is at least one TCI state indication, or the first indication information is an uplink reference signal resource index; or,
- the first indication information is used to indicate the identification information of the uplink transmit spatial filter used in the identification information of the K 1 uplink transmit spatial filters and the identification information of the uplink receive spatial filter used in the identification information of the K 1 uplink receive spatial filters
- the first indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the downlink reference signal resources in the first reference signal prediction set include channel state information reference signal CSI-RS resources and/or synchronization signal block SSB resources; and/or,
- the uplink reference signal resources in the first reference signal prediction set include sounding reference signal SRS resources.
- the communication device 600 before the first communication device performs spatial filter prediction based on the first network model, the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to send first capability information; wherein the first capability information is used to indicate that the first communication device supports the basic An uplink spatial filter is predicted based on the downlink measurement result.
- the first capability information further includes at least one of the following:
- the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set is the maximum number of downlink reference signal resources in the supported downlink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of downlink reference signal measurement sets.
- the communication device 600 before the first communication device performs spatial filter prediction based on the first network model, the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to receive first information; wherein,
- the first information is used to configure at least one of the following: the downlink reference signal measurement set, the first reference signal prediction set; or, the first information is used to activate at least one of the following: the downlink reference signal measurement set in a plurality of pre-configured downlink reference signal measurement sets, the first reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first communication device is a terminal device.
- the first communications device when the information included in the first measurement data set is obtained based on the uplink reference signal measurement set, the first communications device supports downlink spatial filter prediction based on uplink measurement results.
- the uplink reference signal resources in the uplink reference signal measurement set are part or all of the uplink reference signal resources in the uplink reference signal resource set.
- the uplink reference signal resource set is configured by a network device, or the uplink reference signal resource set is agreed upon by a protocol.
- the link quality information measured based on the uplink reference signal measurement set is input into the first network model in the second order;
- the second order is associated with an uplink reference signal resource index in the uplink reference signal measurement set.
- the identification information of the K 2 downlink transmit spatial filters is determined based on reference signal resources predicted by the first network model from the second reference signal prediction set;
- the reference signal resources in the second reference signal prediction set include downlink reference signal resources.
- the identification information of the K 2 downlink transmit spatial filters is the receive spatial filter corresponding to the downlink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the identification information of the K 2 downlink transmit spatial filters is the identification information of the downlink receive spatial filter determined based on the second downlink scanning mode
- a downlink reference signal is sent using a downlink transmit spatial filter corresponding to a predicted downlink reference signal resource, and different receive spatial filters are used to receive the downlink reference signal, and an optimal downlink receive spatial filter is determined based on the signal quality of the received downlink reference signal.
- the identification information of the K 2 downlink transmit spatial filters is determined based on the downlink reference signal resources predicted by the first network model from the second reference signal prediction set
- the identification information of the K 2 downlink receive spatial filters is determined based on the uplink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the identification information of the K 2 downlink receiving spatial filters is determined based on the spatial relationship information corresponding to the uplink reference signal resources predicted by the first network model from the second reference signal prediction set; and/or,
- the identification information of the K 2 downlink transmit spatial filters is respectively identification information of downlink transmit spatial filters corresponding to the downlink reference signal resources predicted by the first network model from the second reference signal prediction set.
- the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to send second indication information
- the second indication information is used to indicate the downlink receiving space used in the identification information of the K 2 downlink receiving space filters.
- the identification information of the filter, or the second indication information is used to indicate the identification information of the downlink transmit spatial filter used in the identification information of the K 2 downlink transmit spatial filters and the identification information of the downlink receive spatial filter used in the identification information of the K 2 downlink receive spatial filters.
- the second indication information when the second indication information is used to indicate the identification information of the downlink reception spatial filter used in the identification information of the K 2 downlink reception spatial filters, the second indication information is at least one TCI state indication, or the second indication information is a downlink reference signal resource index; or,
- the second indication information is used to indicate the identification information of the downlink transmit spatial filter used in the identification information of the K 2 downlink transmit spatial filters and the identification information of the downlink receive spatial filter used in the identification information of the K 2 downlink receive spatial filters
- the second indication information is a downlink reference signal resource index and an uplink reference signal resource index.
- the downlink reference signal resources in the second reference signal prediction set include CSI-RS resources and/or SSB resources.
- the uplink reference signal resources in the second reference signal prediction set include SRS resources.
- the communication device 600 before the first communication device performs spatial filter prediction based on the first network model, the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to receive second capability information
- the second capability information includes at least one of the following:
- the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set is the maximum number of uplink reference signal resources in the supported uplink reference signal measurement set
- the number of reference signal prediction sets supported on one CC or one BWP is the same as the number of uplink reference signal measurement sets.
- the communication device 600 before the first communication device performs spatial filter prediction based on the first network model, the communication device 600 includes: a communication unit 620;
- the communication unit 620 is used to send the second information; wherein,
- the second information is used to configure at least one of the following: the uplink reference signal measurement set, the second reference signal prediction set; or, the second information is used to activate at least one of the following: the uplink reference signal measurement set in a plurality of pre-configured uplink reference signal measurement sets, the second reference signal prediction set in a plurality of pre-configured reference signal prediction sets.
- the first communication device is a network device.
- the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
- the processing unit may be one or more processors.
- the communication device 600 may correspond to the first communication device in an embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 600 are respectively for implementing the corresponding processes of the first communication device in the method 300 shown in Figure 23, which will not be repeated here for the sake of brevity.
- Fig. 27 is a schematic structural diagram of a communication device 700 provided in an embodiment of the present application.
- the communication device 700 shown in Fig. 27 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
- the communication device 700 may further include a memory 720.
- the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
- the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
- the communication device 700 may further include a transceiver 730 , and the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
- the transceiver 730 may include a transmitter and a receiver.
- the transceiver 730 may further include an antenna, and the number of the antennas may be one or more.
- the processor 710 may implement the function of a processing unit in a terminal device, or the processor 710 may implement the function of a processing unit in a network device, or the processor 710 may implement the function of a processing unit in a first communication device, which will not be described in detail here for the sake of brevity.
- the transceiver 730 can implement the function of a communication unit in a terminal device, or the transceiver 730 can implement the function of a communication unit in a network device, or the transceiver 730 can implement the function of a communication unit in a first communication device, which will not be described here for brevity.
- the communication device 700 may specifically be a terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which will not be described herein for the sake of brevity.
- the communication device 700 may specifically be a network device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
- the communication device 700 may specifically be the first communication device of the embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the first communication device in each method of the embodiment of the present application, which will not be repeated here for the sake of brevity.
- Fig. 28 is a schematic structural diagram of a device according to an embodiment of the present application.
- the device 800 shown in Fig. 28 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
- the apparatus 800 may further include a memory 820.
- the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
- the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
- the processor 810 may implement the function of a processing unit in a first communication device, or the processor 810 may implement the function of a processing unit in a terminal device, or the processor 810 may implement the function of a processing unit in a network device, which will not be described in detail here for the sake of brevity.
- the apparatus 800 may further include an input interface 830.
- the processor 810 may control the input interface 830 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
- the processor 810 may be located inside or outside the chip.
- the input interface 830 may implement the function of a communication unit in a first communication device. In some embodiments, the input interface 830 may implement the function of a communication unit in a terminal device. In some embodiments, the input interface 830 may implement the function of a communication unit in a network device.
- the apparatus 800 may further include an output interface 840.
- the processor 810 may control the output interface 840 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
- the processor 810 may be located inside or outside the chip.
- the output interface 840 may implement the function of a communication unit in a first communication device. In some embodiments, the output interface 840 may implement the function of a communication unit in a terminal device. In some embodiments, the output interface 840 may implement the function of a communication unit in a network device.
- the apparatus may be applied to the first communication device in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the first communication device in the various methods in the embodiments of the present application, which will not be described in detail here for the sake of brevity.
- the apparatus may be applied to a terminal device in an embodiment of the present application, and the apparatus may implement the corresponding processes implemented by the terminal device in each method in an embodiment of the present application, which will not be described in detail here for the sake of brevity.
- the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the device mentioned in the embodiments of the present application may also be a chip, for example, a system-on-chip, a system-on-chip, a chip system, or a system-on-chip chip.
- FIG29 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
- the communication system 900 includes a terminal device 910 and a network device 920 .
- the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
- the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they will not be repeated here.
- the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
- each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
- the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
- the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to execute, or the hardware and software modules in the decoding processor can be executed.
- the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
- the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory can be a random access memory. Random Access Memory (RAM) is used as an external cache.
- RAM Synchronous RAM
- SDRAM Synchronous DRAM
- DDR SDRAM Double Data Rate SDRAM
- ESDRAM Enhanced SDRAM
- SLDRAM Synchronous Link DRAM
- DR RAM Direct Rambus RAM
- the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
- An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
- the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer-readable storage medium can be applied to the first communication device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- An embodiment of the present application also provides a computer program product, including computer program instructions.
- the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer program product can be applied to the first communication device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
- the embodiment of the present application also provides a computer program.
- the computer program can be applied to the terminal device in the embodiments of the present application.
- the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer program can be applied to the network device in the embodiments of the present application.
- the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the computer program can be applied to the first communication device in the embodiments of the present application.
- the computer program runs on a computer, the computer executes the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separate, and the components shown as units may be Or it may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application can be embodied in the form of a software product in essence or in other words, the part that contributes to the prior art or the part of the technical solution.
- the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种无线通信的方法及设备,终端设备可以支持基于下行测量结果进行上行空间滤波器预测,和/或,终端设备可以支持基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。该无线通信的方法,包括:终端设备发送第一能力信息;其中,该第一能力信息用于指示该终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和或,该第一能力信息用于指示该终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
Description
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
在新无线(New Radio,NR)系统中,引入了毫米波频段的通信,也引入了相应的波束管理机制,具体可以分为上行和下行的波束管理。其中,下行的波束管理可以包括:下行的波束扫描,终端侧的最优波束上报,网络侧的下行波束指示等过程。上行的波束管理可以包括:上行的波束扫描,网络侧的上行波束指示等过程。具体地,对于下行的波束管理,网络设备通过下行参考信号来扫描所有的发射波束方向,终端设备可以使用不同的接收波束来进行测量,从而可以遍历全部的波束对。对于上行的波束管理,终端设备通过上行参考信号来扫描所有的发射波束方向,网络设备可以使用不同的接收波束来进行测量,从而可以遍历全部的波束对。
由此可见,在上行的波束管理和下行的波束管理中,需要遍历全部的发射波束和接收波束的组合来选择最优波束,因此会带来大量的开销和时延。
发明内容
本申请实施例提供了一种无线通信的方法及设备,终端设备可以支持基于下行测量结果进行上行空间滤波器预测,和/或,终端设备可以支持基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备发送第一能力信息;其中,该第一能力信息用于指示该终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和/或,该第一能力信息用于指示该终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备接收第一能力信息;其中,该第一能力信息用于指示终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和/或,该第一能力信息用于指示终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
第三方面,提供了一种无线通信的方法,该方法包括:
第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数;或者,
该第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
第四方面,提供了一种终端设备,该终端设备用于执行上述第一方面中的方法。具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第五方面,提供了一种网络设备,该网络设备用于执行上述第二方面中的方法。具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第六方面,提供了一种通信设备,该通信设备为第一通信设备,该通信设备用于执行上述第三方面中的方法。具体地,该通信设备包括用于执行上述第三方面中的方法的功能模块。
第七方面,提供了一种终端设备,该终端设备包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该终端设备执行上述第一方面中的方法。
第八方面,提供了一种网络设备,该网络设备包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该网络设备执行上述第二方面中的方法。
第九方面,提供了一种通信设备,该通信设备为第一通信设备,该通信设备包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第三方面中的方法。
第十方面,提供了一种装置,用于实现上述第一方面至第三方面中的任一方面中的方法。具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
通过上述第一方面和第二方面的技术方案,终端设备可以支持基于下行测量结果进行上行空间滤波器预测,以及终端设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测;和/或,终端设备可以支持基于上行测量结果进行下行空间滤波器预测,以及网络设备可以基于第二网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。
通过上述第三方面的技术方案,第一通信设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测,或者,第一通信设备可以基于第一网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种神经网络的神经元的连接示意图。
图3是本申请提供的一种神经网络的示意性结构图。
图4是本申请提供的一种卷积神经网络的示意性图。
图5是本申请提供的一种LSTM单元的示意性结构图。
图6是本申请提供的一种下行的波束扫描过程的示意性图。
图7是本申请提供的另一种下行的波束扫描过程的示意性图。
图8是本申请提供的又一种下行的波束扫描过程的示意性图。
图9是本申请提供的一种空间域波束预测模型的示意性图。
图10是本申请提供的另一种空间域波束预测模型的示意性图。
图11是本申请提供的一种时间域波束预测模型的示意性图。
图12是本申请提供的一种下行的波束管理的示意性图。
图13是本申请提供的一种上行的波束管理的示意性图。
图14是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图15是根据本申请实施例提供的一种下行波束(对)测量和上行波束(对)预测的示意图。
图16是根据本申请实施例提供的一种上行波束(对)预测的示意图。
图17是根据本申请实施例提供的另一种上行波束(对)预测的示意图。
图18是根据本申请实施例提供的一种下行波束(对)测量和上行波束(对)预测的流程图。
图19是根据本申请实施例提供的一种上行波束(对)测量和下行波束(对)预测的示意图。
图20是根据本申请实施例提供的一种下行波束(对)预测的示意图。
图21是根据本申请实施例提供的另一种下行波束(对)预测的示意图。
图22是根据本申请实施例提供的一种上行波束(对)测量和下行波束(对)预测的流程图。
图23是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图24是根据本申请实施例提供的一种终端设备的示意性框图。
图25是根据本申请实施例提供的一种网络设备的示意性框图。
图26是根据本申请实施例提供的一种通信设备的示意性框图。
图27是根据本申请实施例提供的另一种通信设备的示意性框图。
图28是根据本申请实施例提供的一种装置的示意性框图。
图29是根据本申请实施例提供的一种通信系统的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者
发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。在本申请实施例中,第一通信设备可以是终端设备,且第二通信设备可以网络设备(即上行通信或下行通信);或者,第一通信设备可以是第一终端,且第二通信设备可以第二终端(即侧行通信)。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于更好的理解本申请实施例,对本申请相关的神经网络和机器学习进行说明。
神经网络(Neural Network,NN)是一种由多个神经元节点相互连接构成的运算模型,其中节点间的连接代表从输入信号到输出信号的加权值,称为权重;每个节点对不同的输入信号进行加权求和(summation,SUM),并通过特定的激活函数(f)输出,图2是一种神经元结构的示意图,其中,a1,a2,…,an表示输入信号,w1,w2,…,wn表示权重,f表示激励函数,t表示输出。
一个简单的神经网络如图3所示,包含输入层、隐藏层和输出层,通过多个神经元不同的连接方式,权重和激活函数,可以产生不同的输出,进而拟合从输入到输出的映射关系。其中,每一个上一级节点都与其全部的下一级节点相连,该神经网络是一种全连接神经网络,也可以称为深度神经网络(Deep Neural Network,DNN)。
一个卷积神经网络(Convolutional Neural Network,CNN)的基本结构包括:输入层、多个卷积层、多个池化层、全连接层及输出层,如图4所示。卷积层中卷积核的每个神经元与其输入进行局部连接,并通过引入池化层提取某一层局部的最大值或者平均值特征,有效减少了网络的参数,并挖掘了局部特征,使得卷积神经网络能够快速收敛,获得优异的性能。
深度学习采用多隐藏层的深度神经网络,极大提升了网络学习特征的能力,能够拟合从输入到输出的复杂的非线性映射,因而语音和图像处理领域得到广泛的应用。除了深度神经网络,面对不同任务,深度学习还包括卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)等常用基本结构。
一个卷积神经网络的基本结构包括:输入层、多个卷积层、多个池化层、全连接层及输出层,如图4所示。卷积层中卷积核的每个神经元与其输入进行局部连接,并通过引入池化层提取某一层局部的最大值或者平均值特征,有效减少了网络的参数,并挖掘了局部特征,使得卷积神经网络能够快速收敛,获得优异的性能。
RNN是一种对序列数据建模的神经网络,在自然语言处理领域,如机器翻译、语音识别等应用取得显著成绩。具体表现为,网络设备对过去时刻的信息进行记忆,并用于当前输出的计算中,即隐藏层之间的节点不再是无连接的而是有连接的,并且隐藏层的输入不仅包括输入层还包括上一时刻隐藏层的输出。常用的RNN包括长短期记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(gated recurrent unit,GRU)等结构。图5所示为一个基本的LSTM单元结构,其可以包含tanh激活函数,不同于RNN只考虑最近的状态,LSTM的细胞状态会决定哪些状态应该被留下来,哪些状态应该被遗忘,解决了传统RNN在长期记忆上存在的缺陷。
通过数据集的构建,训练,验证和测试等过程可以训练并得到一个神经网络(Neural Network,NN)模型。本案假设NN模型都已经是提前通过离线训练或者在线训练的方式训练完成。需要说明的是,离线训练和在线训练并非相互排斥。首先NW可以通过数据集离线训练的方式得到一个静态的训练结果,这里可以称之为离线训练。在NW或UE对NN的使用过程中,随着UE的进一步测量和/或上报,NN模型可以继续收集更多的数据,进行实时的在线训练来优化NN模型的参数,达到更好的推断和预测结果。
为便于更好的理解本申请实施例,对本申请相关的NR波束管理进行说明。
在NR系统中,引入了毫米波频段的通信,也引入了相应的波束管理机制,包括可以分为上行和下行的波束管理。对于下行的波束管理包括下行的波束扫描(beam sweeping),终端(UE)波束测量和上报(measurement&reporting),网络(network,NW)对于下行波束指示(beam indication)等过程。
下行波束扫描过程可包括3个过程,即P1、P2和P3过程。P1过程指网络设备扫描不同发射波束,UE扫描不同的接收波束;P2过程指网络设备扫描不同发射波束,UE使用相同的接收波束;P3过程指网络设备使用相同的发射波束,UE扫描不同的接收波束。一般情况下,网络设备通过发送下行参考信号来完成上述波束扫描过程。可选地,该下行参考信号可以包括但不限于同步信号块(Synchronization Signal Block,SSB)和/或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
图6所示是P1过程(或称下行的全扫描过程)的示意性图,图7所示是P2过程的示意性图,图8所示是P3过程的示意性图。
如图6所示,在P1过程中,网络设备遍历所有的发射波束发送下行参考信号,UE侧遍历所有的接收波束进行测量,确定对应的测量结果。
如图7所示,在P2过程中,网络设备遍历所有的发射波束发送下行参考信号,UE侧使用特定接收波束进行测量,确定对应的测量结果。
如图8所示,在P3过程中,网络设备可以使用特定发射波束发送下行参考信号,UE侧遍历所有的接收波束进行测量,确定对应的测量结果。
NR中的波束上报指机制是UE通过测量多个发射波束(P2过程)或发射接收波束对(P1过程),选择层1参考信号接收功率(Layer1Reference Signal Receiving Power,L1-RSRP)最高的K个发射波束及其性能,以信道状态信息(Channel State Information,CSI)上报给NW。
NW在解码了UE上报的波束信息后,考虑下行传输信道和信号,通过媒体接入控制(Media Access
Control,MAC)和/或下行控制信息(Downlink Control Information,DCI)信令来携带传输配置指示(Transmission Configuration Indicator,TCI)状态(包含同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源索引作为UE的参考),对UE进行波束信息指示。UE使用该指示的SSB或CSI-RS的发射波束对应的接收波束来进行下行接收。
对应地,NR同样定义了三种上行波束扫描过程,即U1,U2和U3。U1过程指UE扫描不同发射波束,NW扫描不同的接收波束;U2过程指UE使用相同的发射波束,NW扫描不同的接收波束;U3过程指UE扫描不同发射波束,NW使用相同的接收波束。
对于上行波束扫描过程,由于NW对来自UE的波束进行测量,所以不需要UE的波束上报。NW从测量的上行波束中,选择自认为合适的上行波束指示或配置给UE来进行上行发射。同时,NW也准备好对应的接收波束。
为便于更好的理解本申请实施例,对本申请相关的基于AI/ML的波束管理进行说明。
基于AI/ML的波束管理可以为空间域的下行波束预测和时间域的波束预测(BM-Case2)。
空间域的波束预测(也可以称之为波束管理示例1(BM-Case1)):通过测量数据集B(Set B)中的波束来进行预测数据集A(Set A)中下行波束空间域预测。Set B要么是Set A的一个子集,要么Set B和Set A是两个不同的波束集合。Set B可以理解为波束(对)的部分子集;Set A可以理解为波束(对)的全集。
图9示意性地示出了波束预测模型的输入和输出关系,可以认为该模型解决的是一个多分类问题,即部分子集(即Set B)输入L1-RSRP到最优的K个波束的L1-RSRP的关系,其中,部分波束测量集(即Set B,为全集Set A测量的L1-RSRP的一部分)作为该模型的输入。输出则是从全集Set A中所选的最优的K个波束索引,即L1-RSRP最高的K个波束。该模型使用的标签是Set A全集中测量的最优的(即最高L1-RSRP)的K个波束索引。具体的,如图9所示,测量数据集B(Set B)包括T个波束索引对应的L1-RSRP,预测数据集A(Set A)包括S个波束索引,且AI/ML模型1预测的是最优的K个波束索引(图9中为波束索引#2)。需要说明的是,图9中的波束也可以替换为波束对,具体描述与波束相似,在此不再赘述。
图10示意性地示出了最优波束质量预测模型,可以理解为一个线性回归问题。模型的输入和输出关系从部分子集(即Set B)输入L1-RSRP到最优的K个波束的L1-RSRP的关系。与图9中波束预测模型相同的是输入部分,不同的是该模型的输出是K(K>=1)个最优的L1-RSRP。标签是在全集(即Set A)中测量的最优的K个L1-RSRP,以及对应的K个波束索引。具体的,如图10所示,测量数据集B(Set B)包括T个波束索引对应的L1-RSRP,预测数据集A(Set A)包括S个波束索引对应的L1-RSRP,且AI/ML模型2预测的是K(K>=1)个最优的L1-RSRP。需要说明的是,图10中的波束也可以替换为波束对,具体描述与波束相似,在此不再赘述。
时间域的波束预测(也可以称之为波束管理示例2(BM-Case2)):通过历史测量数据集B(Set B)中的波束来进行预测数据集A(Set A)中下行波束时间域预测。Set B要么是Set A的一个子集,要么和Set A相同,要么是Set A的一个子集。Set B可以理解为波束(对)的部分子集;Set A可以理解为波束(对)的全集。
以时间域波束(对)及其性能的预测为用例,选用LSTM模型如图11所示。该LSTM模型在时序上可以理解为延展了M个实例(instances)作为输入,等效为M个LSTM单元的级联。每一个LSTM单元的输入是数据集B中的实例m(Set Bm)的波束(对)的L1-RSRP,其中,1≤m≤M。
需要说明的是,Set Bm的波束(对)的索引可以通过L1-RSRP的固定排序方式隐含地输入。在完成了M个实例的性能输入后,LSTM模型可以预测接下来的F个实例的最优波束(对),最优波束(对)的性能(即链路质量信息),以及最优波束(对)的持续时间(dwelling time)。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
对于NR的波束扫描过程来说,下行大量的空间波束(对)的扫描会带来大量的参考信号开销和测量的时延。举例来说,假设NW在FR2部署了64个不同的下行发射方向(通过最多64个SSB来承载),UE接收时使用多个天线面板(包括仅有一个接收波束面板)来同时进行接收波束扫描,且每一个天线面板有4个接收波束。UE至少需要测量64*4=256个波束对,对应的就是需要256个资源的下行资源开销,以及扫描过需要大概80毫秒(每20ms的一个SSB周期,总共需要4个周期)。所以在NR演进中定义了空间域和时间域的波束(对)预测的用例。同样地,上行的波束扫描过程也面临着同样的开销和时延的问题。
具体的,在NR系统中,下行的波束管理可以包括:下行的波束扫描,终端侧的最优波束上报,网络侧的下行波束指示等过程,如图12所示。上行的波束管理可以包括:上行的波束扫描,网络侧
的上行波束指示等过程,如图13所示。具体地,对于下行的波束管理,网络设备通过下行参考信号来扫描所有的发射波束方向,终端设备可以使用不同的接收波束来进行测量,从而可以遍历全部的波束对。对于上行的波束管理,终端设备通过上行参考信号来扫描所有的发射波束方向,网络设备可以使用不同的接收波束来进行测量,从而可以遍历全部的波束对。
由此可见,在上行的波束管理和下行的波束管理中,需要遍历全部的发射波束和接收波束的组合来选择最优波束,因此会带来大量的开销和时延。
当NR中定义的用例均为下行的波束扫描减少开销和时延。没有对上行的波束扫描过程有任何的优化。因此本案考虑到上下行信道间的波束对称性,即最优的下行波束对和上行波束对之间有一定的对应性。使用机器学习技术可以将这种对应性提取出来,从而通过下行测量来预测最优的上行波束(对);反之亦然。这样可以减少一个方向上(上行或下行)的波束扫描开销。
基于上述问题,本申请提出了设计了基于AI/ML模型的波束(对)预测方案,终端设备可以支持基于下行测量结果进行上行空间滤波器预测,和/或,终端设备可以支持基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。
需要说明的是,“波束(对)”文字含义是表示“波束”或“波束对”。具体来说,波束在本申请实施例中可以指发射波束或接收波束,波束对指一对发射波束和接收波束。本申请实施例使用空间滤波器来代替波束这个偏向于实现的词。对于AI/ML模型来说,其输出可以理解为推断(inference)或预测(prediction),在本申请中推断和预测表示相同的意思,可以互换。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图14是根据本申请实施例的无线通信的方法200的示意性流程图,如图14所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备向网络设备发送第一能力信息;其中,该第一能力信息用于指示该终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和/或,该第一能力信息用于指示该终端设备是否支持基于上行测量结果进行下行空间滤波器预测;
S220,该网络设备接收该第一能力信息。
在一些实施例中,在该终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,该终端设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数。
在一些实施例中,在该终端设备支持基于上行测量结果进行下行空间滤波器预测的情况下,该网络设备将第二测量数据集输入第二网络模型,输出第二预测数据集;
其中,该第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
在本申请一些实施例中,空间滤波器(spatial filter)也可以称为波束(beam)、波束对(beam pair)、空间关系(Spatial relation)、空间配置(spatial setting)、空域滤波器(spatial domain filter)等,或者,空间滤波器(spatial filter)也可以称为参考信号。
在一些实施例中,第一网络模型为AI/ML模型。可选地,该第一网络模型可以是用于空间域的波束预测的AI/ML模型,具体实现可以如图9或图10所示,或者,具体实现可以如图11所示。
在一些实施例中,第二网络模型为AI/ML模型。可选地,该第二网络模型可以是用于空间域的波束预测的AI/ML模型,具体实现可以如图9或图10所示,或者,具体实现可以如图11所示。
在一些实施例中,发射空间滤波器也可以称为发射波束(Tx beam)或发送端空域滤波器,上述术语可以相互替换。接收空间滤波器也可以称为接收波束(Rx beam)或接收端空域滤波器,上述术语可以相互替换。发射空间滤波器和接收空间滤波器的组合也可以称为波束对(即发射波束(Tx beam)与接收波束(Rx beam)对),空间滤波器对,空间滤波器组,上述术语可以相互替换。
在一些实施例中,空间滤波器的标识信息可以为空间滤波器的索引或标识。
例如,发射空间滤波器的标识信息可以为发射空间滤波器的索引或标识。
又例如,接收空间滤波器的标识信息可以为接收空间滤波器的索引或标识。
再例如,发射空间滤波器和接收空间滤波器的组合的标识信息可以为组合索引。
在一些实施例中,该链路质量信息包括以下至少之一:层1参考信号接收功率(Layer1Reference Signal Receiving Power,L1-RSRP),层1参考信号接收质量(Layer1Reference Signal Received Quality,L1-RSRQ),层1信号干扰噪声比(Layer1Signal to Interference plus Noise Ratio,L1-SINR),层1接收信号强度指示(Layer1Received Signal Strength Indication,L1-RSSI)。
在本申请实施例中,对于基于下行测量结果进行上行空间滤波器预测,第一网络模型比较适合部署在UE侧。当然,对于基于下行测量结果进行上行空间滤波器预测,第一网络模型也可以部署在网络侧,此种情况下,需要终端设备上报下行测量结果。以下以第一网络模型部署在UE侧为例进行说明,即终端设备基于下行测量结果进行上行空间滤波器预测。
在本申请实施例中,对于基于上行测量结果进行下行空间滤波器预测,第二网络模型比较适合部署在网络(NW)侧。当然,对于基于上行测量结果进行下行空间滤波器预测,第二网络模型也可以部署在UE侧,此种情况下,需要网络设备指示上行测量结果给终端设备。以下以第二网络模型部署在网络(NW)侧为例进行说明,即网络设备基于上行测量结果进行下行空间滤波器预测。
在本申请实施例中,终端设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测,或者,网络设备可以基于第二网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低波束(对)预测的开销,提升了波束管理系统的性能。本申请实施例具体可以通过上下行波束对称性(beam correspondence)实现。
例如,如果UE支持上下行波束对称性(beam correspondence)的话,那么UE通过第一网络模型预测最优K1个下行接收波束,然后通过上下行波束对称性,将该K1个下行接收波束反向得到最优K1个上行发射波束。
又例如,如果NW支持上下行波束对称性(beam correspondence)的话,那么NW通过第二网络模型预测最优K2个上行接收波束,然后通过上下行波束对称性,将该K2个上行接收波束反向得到最优K2个下行发射波束。
在本申请实施例中,可以实现下行测量辅助上行波束(对)预测,或者,上行测量辅助下行波束(对)预测。这里说的“辅助”的意思是指将下行或上行的测量量(例如测量的参考信号资源索引和/或其L1-RSRP值)作为AI/ML模型的输入。
在本申请实施例中,当下行测量辅助上行波束(对)预测时,UE测量下行的波束扫描参考信号,作为模型的输入,模型输出最优上行波束(对)索引的预测,UE将上行波束(对)预测结果上报给NW,最后由NW完成上行波束的指示。当上行测量辅助下行波束(对)预测时,UE发送上行的波束扫描参考信号,NW进行测量并作为模型的输入,模型输出最优下行波束(对)索引的预测,最后由NW完成下行波束的指示。
需要说明的是,上行波束(对)可以是上行发射波束,也可以是上行发射波束和上行接收波束。同理,下行波束(对)可以是下行发射波束,也可以是下行发射波束和下行接收波束。
在一些实施例中,终端设备支持基于下行测量结果进行上行空间滤波器预测。
也即,在本实施例中,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于下行参考信号测量集测量得到的链路质量信息;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
具体又例如,该第一测量数据集包括基于下行参考信号测量集测量得到的链路质量信息和基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。可选地,该下行参考信号资源集由网络设备配置,或者,该下行参考信号资源集由协议约定。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
具体例如,假设下行参考信号测量集为Set B,为了实现基于下行测量的上行发射波束预测,或者,为了实现基于下行测量的上行波束对(即上行发射波束和上行接收波束)预测,NW基于Set B发送下行参考信号,UE需要测量Set B中的下行参考信号资源,即CSI-RS资源和/或SSB资源。需
要说明的是,Set B的组成可以是全部的下行参考信号资源(即全波束的覆盖),也可以是一部分的下行参考信号资源(即在空间域实现减少开销的目标)。另外,在UE侧,根据Set B中参考信号资源的配置,UE可以使用一个或多个接收波束来进行测量。
具体的,下行波束(对)测量和上行波束(对)预测的示意图可以如图15所示,UE基于下行参考信号测量集(Set B)测量发送接收点(Transmission Reception Point,TRP)发送的下行参考信号,以及UE基于第一参考信号预测集(Set A)预测K1个上行发射波束和K1个上行接收波束。
在一些实施例中,在该第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,该基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入该第一网络模型;
其中,该第一顺序与该下行参考信号测量集中的下行参考信号资源索引关联。
具体例如,对于第一网络模型的输入,存在两种主要的方式。一种模型的输入方式是仅按照固定的顺序(即第一顺序)输入Set B的下行参考信号的链路质量,如L1-RSRP。另外一种模型的输入方式包括Set B中的下行参考信号资源索引以及链路质量,如L1-RSRP。第二种模型的优点在于Set B的选择更为灵活。
具体来说,在第一种模型的输入方式中,UE将Set B测量的下行参考信号的L1-RSRP(或其他性能指标,如L1-SINR或L1-RSSI,L1-RSRQ)按照固定的顺序(即第一顺序)作为模型的输入,如图16所示。输出为模型预测的最优的K1个上行波束(对)的索引,在图16中使用K1=1为例。
具体来说,在第二种模型的输入方式中,UE将Set B测量的下行参考信号的L1-RSRP,以及Set B中的下行参考信号资源索引作为模型的输入,如图17所示。这是不同于图16的地方,把M个下行参考信号资源索引以及对应的M个链路质量,如L1-RSRP,作为模型的输入。好处是UE可以更加灵活地测量,不必每次测量都使用相同的输入。同样地,模型的输出为预测的最优的K1个上行波束(对)的索引,在图17中使用K1=1为例。
需要说明的是,因为在图16和图17中,模型输出的是最优的K1个上行波束(对),因此并不需要预测对应的上行在NW处接收的RSRP。
在一些实施例中,作为示例1,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定。
具体的,该第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。具体例如,第一参考信号预测集可以是Set A。
可选地,在示例1中,该K1个上行发射空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引表示。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
具体例如,预测的上行发射波束索引与上行参考信号资源(如SRS资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源(如SRS资源),如果该SRS资源配置和/或激活了空间关系信息,UE将其空间关系信息作为上行发射波束。对应地,NW使用接收该SRS资源的接收波束来进行接收。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,该K1个上行发射空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式(如U3过程)确定;其中,在该第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
具体例如,预测的上行发射波束索引与上行参考信号资源(如SRS资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源(如SRS资源),如果SRS资源未配置和/或激活空间关系信息,例如用于上行波束扫描目的的SRS资源集中的SRS资源,UE仅知道该SRS资源的发射方向,NW并不提前知道如何接收该SRS资源。那么UE需要进行上行波束扫描,如U3过程中UE固定最优上行波束方向,NW使用不同的接收波束来接收,从而找到对应该SRS资源的最优的接收波束。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源(如CSI-RS资源)配置或激活了TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源(如SSB资源)已预先测量过,该K1个上行发射空间滤波器的标识信息为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
具体例如,预测的上行发射波束索引与下行参考信号资源(如CSI-RS资源或SSB资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源(如CSI-RS资源或SSB资源),如果CSI-RS资源(配置和/或激活了TCI state)或SSB资源(UE已经提前测量过),那么UE可以使用对应的接收波束作为上行的发射波束;NW使用该CSI-RS资源或SSB资源的发射波束作为上行的接收波束。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源未预先测量过,该K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式(如P3过程)确定的下行接收空间滤波器的标识信息;其中,在该第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
具体例如,预测的上行发射波束索引与下行参考信号资源(如CSI-RS资源或SSB资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源(如CSI-RS资源或SSB资源),如果CSI-RS资源(未提前配置和/或未激活了TCI状态)或SSB资源(UE未提前测量过),那么需要下行的波束扫描过程,如P3过程,NW使用固定的发射波束,UE使用不同的接收波束来找到该固定发射波束的最优接收波束。然后将该下行接收波束作为最优的上行发射波束使用。
在一些实施例中,作为示例2,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,该K1个上行接收空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源确定。也即,该第一参考信号预测集中的参考信号资源包括上行参考信号资源和下行参考信号资源。
可选地,在示例2中,该K1个上行发射空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源索引表示,该K1个上行接收空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源索引表示。
可选地,在示例2中,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K1个上行接收空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
具体例如,模型输出上行发射波束和上行接收波束,即上行波束对的索引。可以使用一个抽象的波束对索引来表示该预测的波束对。还可以考虑使用NR中的资源索引来表征。举例来说,波束对中的发射波束可以与SRS资源(配置了空间关系信息)对应,接收波束可以用CSI-RS(配置了TCI状态)或SSB资源来与其对应。这意味着UE使用某个预测的最优的SRS资源的波束做上行的发射波束,NW使用对应的CSI-RS或SSB的发射波束的反向实现作为上行的接收波束。
在一些实施例中,该第一参考信号预测集中的参考信号资源为预配置的参考信号资源集中的部分或者全部参考信号资源。可选地,该第一参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或块SSB资源;和/或,该第一参考信号预测集中的上行参考信号资源包括SRS资源。
在一些实施例中,该第一通信设备发送第一预测信息,其中,该第一预测信息包括该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引中的部分或全部。
在一些实施例中,该第一预测信息可以通过以下至少之一承载:
无线资源控制(Radio Resource Control,RRC)信令,上行控制信息(Uplink Control Information,UCI),媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)信令。
在一些实施例中,在上述示例1中,预测的上行发射波束索引可以与上行参考信号资源(如SRS资源)和/或下行参考信号资源(如CSI-RS资源和/或SSB资源)对应,因此,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该第一预测信息包括的内容除了可以
是CSI-RS资源和/或SSB资源之外,还可以是SRS资源。
具体例如,第一预测信息可以通过CSI报告承载,第一预测信息包括CSI-RS资源指示(CSI-RS Resource Indicator,CRI)(即CSI-RS资源索引)或SSB资源指示(SSB Resource Indicator,SSBRI)(即SSB资源索引),当然,也可以同时上报CRI或SSBRI对应的L1-RSRP,但是CRI或SSBRI则表达的是UE的上行发射波束对应的接收波束,如表1所示。该上报格式可以包含L1-RSRP和差分L1-RSRP,但仍为对应的下行的链路质量,也可以不包含(加上了[]表示)。
表1下行参考信号资源作为上行接收波束上报
需要说明的是,在上述表1中,CRI or SSBRI#1对应的L1-RSRP为L1-RSRP#1,CRI or SSBRI#2对应的L1-RSRP为L1-RSRP#2,CRI or SSBRI#3对应的L1-RSRP为L1-RSRP#3,CRI or SSBRI#4对应的L1-RSRP为L1-RSRP#4,Differential L1-RSRP#2可以是L1-RSRP#2相对于L1-RSRP#1的差值,Differential L1-RSRP#3可以是L1-RSRP#3相对于L1-RSRP#1的差值,Differential L1-RSRP#4可以是L1-RSRP#4相对于L1-RSRP#1的差值。
具体例如,第一预测信息可以通过CSI报告承载,第一预测信息包括SRS资源索引,SRS资源索引表示模型预测的最优的上行发射波束,如表2所示。如果NW知道该如何接收该SRS资源,那么NW按照该SRS资源的空间关系信息(即上行波束信息)来接收;否则,NW只能对该SRS资源进行接收波束的扫描,找到合适的上行接收波束。
表2上行参考信号资源作为上行发射波束上报
在一些实施例中,在上述示例2中,预测的上行发射波束索引可以与上行参考信号资源(如SRS资源)对应,预测的上行接收波束索引可以与下行参考信号资源(如CSI-RS资源和/或SSB资源)对应,因此,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该第一预测信息包括的内容可以包括CSI-RS资源和/或SSB资源和SRS资源。
具体例如,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,发射波束(与SRS资源关联)和接收波束(与CSI-RS资源或SSB资源关联),参考表3,第一个CRI或SSBRI对应着第一个SRS资源索引,第二个CRI或SSBRI对应着第二个SRS资源索引,以此类推。
表3上行参考信号资源作为上行发射波束上报
具体例如,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行
接收空间滤波器的标识信息的情况下,仅上报接收波束(与CSI-RS资源或SSB资源关联),发射波束作为UE的实现(无需上报),具体上报格式可以参考上述表1,在此不再赘述。
在一些实施例中,在第一通信设备发送第一预测信息之后,该第一通信设备接收第一指示信息;
其中,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,该第一指示信息为至少一个TCI状态指示,或者,该第一指示信息为上行参考信号资源索引。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,该第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第一指示信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
具体例如,在UE上报了上行发射波束或上行波束对后,NW可以根据UE的上报来进行发射波束的指示。在NR中,可以使用基于空间关系信息的指示,也可以使用统一TCI状态的指示(上行TCI状态或联合TCI状态)。该指示的核心内容是UE的发射波束,它包含特定载波单元(Component carrier,CC)下的特定带宽部分(Band Width Part,BWP)上的一个下行参考信号资源(如UE上报的CSI-RS资源或SSB资源),或上行参考信号资源(如UE上报的SRS资源)。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信设备发送第一能力信息;其中,该第一能力信息用于指示该第一通信设备支持基于下行测量结果进行上行空间滤波器预测。
具体的,在NW为UE配置模型所需的测量资源之前,UE需要通过能力上报告知NW,它是否支持基于下行测量来进行上行波束(对)的预测。
在一些实施例中,该第一能力信息还包括以下至少之一:
在预配置的所有CC或所有BWP上支持的下行参考信号测量集的最大数量;
支持的配置的下行参考信号测量集的最大数量;
支持的同时测量的下行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;
支持的下行参考信号测量集中的下行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K1的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
具体例如,在NW为UE配置模型所需的测量资源之前,UE需要通过能力上报其是否支持基于下行测量来进行上行波束(对)的预测。如果支持基于下行测量来进行上行波束(对)的预测,UE上报的能力包括但不限于以下至少之一:
在全部的CC/BWP上最多支持多少个波束(对)测量集,包括最多配置多少个测量集,也包含UE最多可以同时测量多少个测量集;
在全部的CC/BWP上最多支持多少个波束(对)预测集;
在一个CC/BWP上最多支持多少个波束(对)测量集,即Nmax;
在每个测量集Set Bn(1<=n<=N),最多可以测量多少个下行的SSB资源和/或CSI-RS资源;
在一个CC/BWP上最多支持多少个波束(对)预测集,即Pmax;
在每个预测集Set Ap(1<=p<=P),最多可以预测多少个波束(对);
在一个CC/BWP上预测集的数目P可以和测量集的N的数目相同(P=N),这种情况下可以是波束(对)的预测集合测量集是一对一映射的。
在一些实施例中,该第一能力信息可以通过以下至少之一承载:RRC信令,MAC CE信令,UCI。
在一些实施例中,如果UE支持基于下行测量的上行波束(对)预测,且预测所用到的模型是小区专属的模型,那么NW将适配于实际部署环境和波束(对)配置的模型传递给UE。该模型传递的信令可以是3GPP框架内信令,如NW基于RRC信令的公开格式(open format)来描述一个或多个模型的结构,以及各个节点的初始参数。接下来,NW可以使用RRC或MAC CE或DCI指示给UE一个专门的模型标识(model ID)(在模型的生命周期管理中定义的ID,用以标识不同的模型)。另
外一种实现方式是UE启动自己预先准备的一个模型,选择性地(Optional)将该模型的描述信息告知NW,如通过公开格式,或更为简练的model ID。在使用model ID作为模型沟通过程中,一个最重要的假设条件是NW和UE之间对于model ID所表达的模型细节有清晰的共识和了解。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信设备接收第一信息;其中,该第一信息用于配置以下至少之一:该下行参考信号测量集,该第一参考信号预测集;或者,该第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的该下行参考信号测量集,预配置的多个参考信号预测集中的该第一参考信号预测集。
具体例如,NW为UE配置和/或激活模型输入所需的测量集Set B。NW使用RRC信令为UE配置一组或多组Set Bn(1<=n<=N)。Set Bn作为波束(对)测量集可以包含CSI-RS资源和/或SSB资源。如果NW为UE配置了多组Set Bn(1<=n<=N),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set B。否则,UE仅使用配置的一组Set B。
具体例如,NW为UE配置和/或激活模型输出的上行波束(对)预测集Set A。NW使用RRC信令为UE配置一组或多组上行波束(对)预测集Set Ap(1<=p<=P)。Set Ap作为波束(对)预测集可以包含CSI-RS资源,SSB资源,和/或SRS资源。如果NW配置了多组Set Ap(1<=p<=P),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set A。否则,仅使用配置的一组Set A。
在一些实施例中,该第一信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,基于下行测量结果预测上行波束的流程图可以如图18所示。
在一些实施例中,该终端设备支持基于上行测量结果进行下行空间滤波器预测。
也即,在本实施例中,该第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
具体例如,该第二测量数据集包括基于上行参考信号测量集测量得到的链路质量信息;且该第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
具体又例如,该第二测量数据集包括基于上行参考信号测量集测量得到的链路质量信息和基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。可选地,该上行参考信号资源集由网络设备配置,或者,该上行参考信号资源集由协议约定。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源包括SRS资源。
具体例如,假设上行参考信号测量集为Set D,为了实现基于上行测量的下行发射波束预测,或者,为了实现基于上行测量的下行波束对(即下行发射波束和下行接收波束)预测,UE基于Set D发送上行参考信号,NW需要测量Set D中的上行参考信号资源,即SRS资源。需要说明的是,Set D的组成可以是全部的上行参考信号资源(即全波束的覆盖),也可以是一部分的上行参考信号资源(即在空间域实现减少开销的目标)。另外,在NW侧,根据Set D中参考信号资源的配置,NW可以使用一个或多个接收波束来进行测量。
具体的,上行波束(对)测量和下行波束(对)预测的示意图可以如图19所示,TRP(NW)基于上行参考信号测量集(Set D)测量UE发送的上行参考信号,以及TRP(NW)基于第二参考信号预测集(Set C)预测K2个下行发射波束和K2个下行接收波束。
在一些实施例中,在该第二测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,该基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入该第二网络模型;
其中,该第二顺序与该上行参考信号测量集中的上行参考信号资源索引关联。
具体例如,对于第二网络模型的输入,存在两种主要的方式。一种模型的输入方式是仅按照固定的顺序(即第二顺序)输入Set D的上行参考信号(如SRS)的链路质量,如L1-RSRP。另外一种模型的输入方式包括Set D中的上行参考信号资源(如SRS资源)索引以及链路质量,如L1-RSRP。第二种模型的优点在于Set D的选择更为灵活。
具体来说,在第一种模型的输入方式中,NW将Set D测量的上行参考信号的L1-RSRP(或其他性能指标,如L1-SINR或L1-RSSI,L1-RSRQ)按照固定的顺序(即第二顺序)作为模型的输入,如
图20所示。输出为模型预测的最优的K2个下行波束(对)的索引,在图20中使用K2=1为例。
具体来说,在第二种模型的输入方式中,NW将Set D测量的上行参考信号的L1-RSRP,以及Set D中的上行参考信号资源索引作为模型的输入,如图21所示。这是不同于图20的地方,把M个上行参考信号资源索引以及对应的M个链路质量,如L1-RSRP,作为模型的输入。好处是NW可以更加灵活地测量,不必每次测量都使用相同的输入。同样地,模型的输出为预测的最优的K2个下行波束(对)的索引,在图21中使用K2=1为例。
需要说明的是,因为在图20和图21中,模型输出的是最优的K2个下行波束(对),因此并不需要预测对应的下行在UE处接收的RSRP。
在一些实施例中,作为示例3,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的参考信号资源确定。
具体的,该第二参考信号预测集中的参考信号资源包括下行参考信号资源。可选地,该第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。具体例如,第二参考信号预测集可以是Set C。
可选地,在示例3中,若该第二参考信号预测集中的下行参考信号资源(如CSI-RS资源)配置或激活了TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源(如SSB资源)已预先测量过,该K2个下行发射空间滤波器的标识信息为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
具体例如,模型输出的下行最优发射波束与下行参考信号对应,如果CSI-RS资源(配置和/或激活了TCI state)或SSB资源(UE已经提前测量过,知道使用对应的接收波束),那么UE使用对应的接收波束来接收。
可选地,在示例3中,若该第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源未预先测量过,该K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在该第二下行扫描方式(如P2过程)中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
具体例如,模型输出的下行最优发射波束与下行参考信号对应,如果CSI-RS资源(未配置和/或激活了TCI state)或SSB资源(UE未提前测量过,因此不知道使用对应的接收波束),那么NW需要执行下行波束扫描过程,即P2过程,NW使用固定的预测的发射波束方向来发送,UE使用不同的接收波束来接收,从而找到最优下行发射波束对应的接收波束。
在一些实施例中,作为示例4,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源确定。可选地,该第二参考信号预测集中的上行参考信号资源包括SRS资源。
可选地,在示例4中,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,该K2个下行发射空间滤波器的标识信息分别为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
具体例如,模型可以仅输出最优下行波束对中的发射波束部分,即CSI-RS和/或SSB资源索引。但前提是UE需要提前测量过预测的SSB资源和被配置和/或激活了CSI-RS的TCI状态,也就是说UE知道该使用哪个接收波束来进行接收。
具体又例如,模型也可以输出下行发射波束(对应CSI-RS和/或SSB),以及下行接收波束(对应SRS)。对于接收波束部分,UE需要把SRS的发射波束用来反向实现做下行接收波束。
在一些实施例中,该网络设备向该终端设备发送第二指示信息;
其中,该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息。
在一些实施例中,在该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为至少一个TCI状态指示,或者,该第二
指示信息为下行参考信号资源索引;或者,
在该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
具体的,NW指示下行发射波束,基于传统TCI状态或统一TCI状态来进行波束指示。
具体的,NW指示下行波束对,如果模型只输出CSI-RS和/或SSB的索引,那么可以沿用TCI状态的波束指示。如上所述,前提是UE需要提前对应的接收波束。如果模型输出的是CSI-RS和/或SSB的索引(指示发射波束)和SRS索引(指示接收波束)的组合,显然传统的基于TCI状态的波束指示不够用了。对于波束对中的接收波束,用SRS资源来表征。
具体信令,SRS资源索引可以承载在NW指示的MAC CE和/或DCI中的第二统一TCI状态中。UE用第二统一TCI状态中包含的SRS资源的发射波束来作为下行的接收波束。
在一些实施例中,该第二指示信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,在该网络设备基于该第二网络模型进行空间滤波器预测之前,该网络设备接收该终端设备发送的第二能力信息;
其中,该第二能力信息包括以下至少之一:
在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;
支持的配置的上行参考信号测量集的最大数量;
支持的同时发送的上行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;
支持的上行参考信号测量集中的上行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K2的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
具体的,在NW为UE配置模型所需的测量资源之前,UE需要上报给NW其相关的能力。需要说明的是,协议可以支持UE基于SRS的上行波束扫描的能力上报,因此不需要UE再上报是否支持基于上行测量来进行下行波束(对)的预测。UE上报的能力包括但不限于以下至少之一:
在全部的CC/BWP上最多支持发送多少个波束(对)测量集,包括最多配置多少个测量集,也包含UE最多可以同时发送多少个测量集;
在全部的CC/BWP上最多支持多少个波束(对)预测集;
在一个CC/BWP上最多支持发送多少个波束(对)测量集,即Smax;
在每个测量集Set Ds(1<=s<=S),最多可以发送多少个上行SRS资源;
在一个CC/BWP上最多支持多少个波束(对)预测集,即Tmax;
在每个预测集Set Ct(1<=t<=T),最多可以预测多少个波束(对);
在一个CC/BWP上预测集的数目T可以和测量集的S的数目相同(S=T),这种情况下可以是波束(对)的预测集合测量集是一对一映射的。
在一些实施例中,该第二能力信息可以通过以下至少之一承载:RRC信令,MAC CE信令,UCI。
在本实施例中,因为模型部署在NW侧,不需要从NW到UE的模型传递。
在一些实施例中,在该网络设备基于该第二网络模型进行空间滤波器预测之前,该网络设备向该终端设备发送第二信息;其中,
该第二信息用于配置以下至少之一:该上行参考信号测量集,该第二参考信号预测集;或者,该第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的该上行参考信号测量集,预配置的多个参考信号预测集中的该第二参考信号预测集。
具体例如,NW为UE配置和/或激活基于SRS的测量集Set D。NW使用RRC信令为UE配置一组或多组Set Ds(1<=s<=S)。Set Ds作为上行波束(对)测量集包含SRS资源。如果NW为UE配置了多组Set Ds(1<=s<=S),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set D。否则,UE仅使用配置的一组Set D。
具体例如,NW为UE配置和/或激活模型输出的下行波束(对)预测集Set C(这里为UE配置预测集的目的并不是为了让UE进行下行波束(对)的预测,而是让UE知道NW进行下行波束(对)指示的范围)。NW使用RRC信令为UE配置一组或多组上行波束(对)预测集Set Ct(1<=t<=T)。Set Ct作为下行波束(对)预测集可以包含CSI-RS资源,SSB资源,和/或SRS资源。如果NW配置了多组Set Ct(1<=t<=T),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE
信令激活多组配置中的一组Set C。否则,仅使用配置的一组Set C。
在一些实施例中,该第二信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,基于上行测量结果预测下行波束的流程图可以如图22所示。
因此,在本申请实施例中,终端设备可以支持基于下行测量结果进行上行空间滤波器预测,以及终端设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测;和/或,终端设备可以支持基于上行测量结果进行下行空间滤波器预测,以及网络设备可以基于第二网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延。本申请实施例具体可以通过上下行波束对称性(beam correspondence)实现。
图23是根据本申请实施例的无线通信的方法300的示意性流程图,如图23所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;
该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数;或者,
该第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
在本申请一些实施例中,空间滤波器(spatial filter)也可以称为波束(beam)、波束对(beam pair)、空间关系(Spatial relation)、空间配置(spatial setting)、空域滤波器(spatial domain filter)等,或者,空间滤波器(spatial filter)也可以称为参考信号。
在一些实施例中,第一网络模型为AI/ML模型。可选地,该第一网络模型可以是用于空间域的波束预测的AI/ML模型,具体实现可以如图9或图10所示,或者,具体实现可以如图11所示。
在一些实施例中,发射空间滤波器也可以称为发射波束(Tx beam)或发送端空域滤波器,上述术语可以相互替换。接收空间滤波器也可以称为接收波束(Rx beam)或接收端空域滤波器,上述术语可以相互替换。发射空间滤波器和接收空间滤波器的组合也可以称为波束对(即发射波束(Tx beam)与接收波束(Rx beam)对),空间滤波器对,空间滤波器组,上述术语可以相互替换。
在一些实施例中,空间滤波器的标识信息可以为空间滤波器的索引或标识。
例如,发射空间滤波器的标识信息可以为发射空间滤波器的索引或标识。
又例如,接收空间滤波器的标识信息可以为接收空间滤波器的索引或标识。
再例如,发射空间滤波器和接收空间滤波器的组合的标识信息可以为组合索引。
在一些实施例中,该链路质量信息包括以下至少之一:层1参考信号接收功率(Layerl Reference Signal Receiving Power,L1-RSRP),层1参考信号接收质量(Layerl Reference Signal Received Quality,L1-RSRQ),层1信号干扰噪声比(Layerl Signal to Interference plus Noise Ratio,L1-SINR),层1接收信号强度指示(Layerl Received Signal Strength Indication,L1-RSSI)。
在一些实施例中,该第一通信设备为终端设备,或者,该第一通信设备为网络设备。
在本申请实施例中,对于基于下行测量结果进行上行空间滤波器预测,第一网络模型比较适合部署在UE侧,也即,该第一通信设备为终端设备。当然,对于基于下行测量结果进行上行空间滤波器预测,第一网络模型也可以部署在网络侧,此种情况下,需要终端设备上报下行测量结果。以下以第一网络模型部署在UE侧为例进行说明,即终端设备基于下行测量结果进行上行空间滤波器预测。
在本申请实施例中,对于基于上行测量结果进行下行空间滤波器预测,第一网络模型比较适合部署在网络(NW)侧,也即,该第一通信设备为网络设备。当然,对于基于上行测量结果进行下行空间滤波器预测,第一网络模型也可以部署在UE侧,此种情况下,需要网络设备指示上行测量结果给终端设备。以下以第一网络模型部署在网络(NW)侧为例进行说明,即网络设备基于上行测量结果进行下行空间滤波器预测。
在本申请实施例中,在第一通信设备为终端设备的情况下,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数。
在本申请实施例中,在第一通信设备为网络设备的情况下,该第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
在本申请实施例中,第一通信设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测,或者,第一通信设备可以基于第一网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低基于第一网络模型进行波束(对)预测的开销,提升了波束管理系统的性能。本申请实施例具体可以通过上下行波束对称性(beam correspondence)实现。
例如,如果UE支持上下行波束对称性(beam correspondence)的话,那么UE通过第一网络模型预测最优K1个下行接收波束,然后通过上下行波束对称性,将该K1个下行接收波束反向得到最优K1个上行发射波束。
又例如,如果NW支持上下行波束对称性(beam correspondence)的话,那么NW通过第一网络模型预测最优K2个上行接收波束,然后通过上下行波束对称性,将该K2个上行接收波束反向得到最优K2个下行发射波束。
在本申请实施例中,可以实现下行测量辅助上行波束(对)预测,或者,上行测量辅助下行波束(对)预测。这里说的“辅助”的意思是指将下行或上行的测量量(例如测量的参考信号资源索引和/或其L1-RSRP值)作为AI/ML模型的输入。
在本申请实施例中,当下行测量辅助上行波束(对)预测时,UE测量下行的波束扫描参考信号,作为模型的输入,模型输出最优上行波束(对)索引的预测,UE将上行波束(对)预测结果上报给NW,最后由NW完成上行波束的指示。当上行测量辅助下行波束(对)预测时,UE发送上行的波束扫描参考信号,NW进行测量并作为模型的输入,模型输出最优下行波束(对)索引的预测,最后由NW完成下行波束的指示。
需要说明的是,上行波束(对)可以是上行发射波束,也可以是上行发射波束和上行接收波束。同理,下行波束(对)可以是下行发射波束,也可以是下行发射波束和下行接收波束。
在一些实施例中,在第一测量数据集中包括的信息基于下行参考信号测量集得到的情况下,该第一通信设备支持基于下行测量结果进行上行空间滤波器预测。可选地,该第一通信设备为终端设备。
也即,在本实施例中,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于下行参考信号测量集测量得到的链路质量信息;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
具体又例如,该第一测量数据集包括基于下行参考信号测量集测量得到的链路质量信息和基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。可选地,该下行参考信号资源集由网络设备配置,或者,该下行参考信号资源集由协议约定。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
具体例如,假设下行参考信号测量集为Set B,为了实现基于下行测量的上行发射波束预测,或者,为了实现基于下行测量的上行波束对(即上行发射波束和上行接收波束)预测,NW基于Set B发送下行参考信号,UE需要测量Set B中的下行参考信号资源,即CSI-RS资源和/或SSB资源。需要说明的是,Set B的组成可以是全部的下行参考信号资源(即全波束的覆盖),也可以是一部分的下行参考信号资源(即在空间域实现减少开销的目标)。另外,在UE侧,根据Set B中参考信号资源的配置,UE可以使用一个或多个接收波束来进行测量。
具体的,下行波束(对)测量和上行波束(对)预测的示意图可以如图15所示,UE基于下行参考信号测量集(Set B)测量发送接收点(Transmission Reception Point,TRP)发送的下行参考信号,以及UE基于第一参考信号预测集(Set A)预测K1个上行发射波束和K1个上行接收波束。
在一些实施例中,在该第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息
的情况下,该基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入该第一网络模型;
其中,该第一顺序与该下行参考信号测量集中的下行参考信号资源索引关联。
具体例如,对于第一网络模型的输入,存在两种主要的方式。一种模型的输入方式是仅按照固定的顺序(即第一顺序)输入Set B的下行参考信号的链路质量,如L1-RSRP。另外一种模型的输入方式包括Set B中的下行参考信号资源索引以及链路质量,如L1-RSRP。第二种模型的优点在于Set B的选择更为灵活。
具体来说,在第一种模型的输入方式中,UE将Set B测量的下行参考信号的L1-RSRP(或其他性能指标,如L1-SINR或L1-RSSI,L1-RSRQ)按照固定的顺序(即第一顺序)作为模型的输入,如图16所示。输出为模型预测的最优的K1个上行波束(对)的索引,在图16中使用K1=1为例。
具体来说,在第二种模型的输入方式中,UE将Set B测量的下行参考信号的L1-RSRP,以及Set B中的下行参考信号资源索引作为模型的输入,如图17所示。这是不同于图16的地方,把M个下行参考信号资源索引以及对应的M个链路质量,如L1-RSRP,作为模型的输入。好处是UE可以更加灵活地测量,不必每次测量都使用相同的输入。同样地,模型的输出为预测的最优的K1个上行波束(对)的索引,在图17中使用K1=1为例。
需要说明的是,因为在图16和图17中,模型输出的是最优的K1个上行波束(对),因此并不需要预测对应的上行在NW处接收的RSRP。
在一些实施例中,作为示例1,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定。
具体的,该第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。具体例如,第一参考信号预测集可以是Set A。
可选地,在示例1中,该K1个上行发射空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引表示。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
具体例如,预测的上行发射波束索引与上行参考信号资源(如SRS资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源(如SRS资源),如果该SRS资源配置和/或激活了空间关系信息,UE将其空间关系信息作为上行发射波束。对应地,NW使用接收该SRS资源的接收波束来进行接收。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,该K1个上行发射空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式(如U3过程)确定;其中,在该第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
具体例如,预测的上行发射波束索引与上行参考信号资源(如SRS资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源(如SRS资源),如果SRS资源未配置和/或激活空间关系信息,例如用于上行波束扫描目的的SRS资源集中的SRS资源,UE仅知道该SRS资源的发射方向,NW并不提前知道如何接收该SRS资源。那么UE需要进行上行波束扫描,如U3过程中UE固定最优上行波束方向,NW使用不同的接收波束来接收,从而找到对应该SRS资源的最优的接收波束。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源(如CSI-RS资源)配置或激活了TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源(如SSB资源)已预先测量过,该K1个上行发射空间滤波器的标识信息为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
具体例如,预测的上行发射波束索引与下行参考信号资源(如CSI-RS资源或SSB资源)对应,
也即,该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源(如CSI-RS资源或SSB资源),如果CSI-RS资源(配置和/或激活了TCI state)或SSB资源(UE已经提前测量过),那么UE可以使用对应的接收波束作为上行的发射波束;NW使用该CSI-RS资源或SSB资源的发射波束作为上行的接收波束。
可选地,在示例1中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源未预先测量过,该K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式(如P3过程)确定的下行接收空间滤波器的标识信息;其中,在该第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。可选地,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
具体例如,预测的上行发射波束索引与下行参考信号资源(如CSI-RS资源或SSB资源)对应,也即,该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源(如CSI-RS资源或SSB资源),如果CSI-RS资源(未提前配置和/或未激活了TCI状态)或SSB资源(UE未提前测量过),那么需要下行的波束扫描过程,如P3过程,NW使用固定的发射波束,UE使用不同的接收波束来找到该固定发射波束的最优接收波束。然后将该下行接收波束作为最优的上行发射波束使用。
在一些实施例中,作为示例2,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,该K1个上行接收空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源确定。也即,该第一参考信号预测集中的参考信号资源包括上行参考信号资源和下行参考信号资源。
可选地,在示例2中,该K1个上行发射空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源索引表示,该K1个上行接收空间滤波器的标识信息可以通过该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源索引表示。
可选地,在示例2中,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K1个上行接收空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
具体例如,模型输出上行发射波束和上行接收波束,即上行波束对的索引。可以使用一个抽象的波束对索引来表示该预测的波束对。还可以考虑使用NR中的资源索引来表征。举例来说,波束对中的发射波束可以与SRS资源(配置了空间关系信息)对应,接收波束可以用CSI-RS(配置了TCI状态)或SSB资源来与其对应。这意味着UE使用某个预测的最优的SRS资源的波束做上行的发射波束,NW使用对应的CSI-RS或SSB的发射波束的反向实现作为上行的接收波束。
在一些实施例中,该第一参考信号预测集中的参考信号资源为预配置的参考信号资源集中的部分或者全部参考信号资源。可选地,该第一参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或块SSB资源;和/或,该第一参考信号预测集中的上行参考信号资源包括SRS资源。
在一些实施例中,该第一通信设备发送第一预测信息,其中,该第一预测信息包括该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引中的部分或全部。
在一些实施例中,该第一预测信息可以通过以下至少之一承载:
无线资源控制(Radio Resource Control,RRC)信令,上行控制信息(Uplink Control Information,UCI),媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)信令。
在一些实施例中,在上述示例1中,预测的上行发射波束索引可以与上行参考信号资源(如SRS资源)和/或下行参考信号资源(如CSI-RS资源和/或SSB资源)对应,因此,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该第一预测信息包括的内容除了可以是CSI-RS资源和/或SSB资源之外,还可以是SRS资源。
具体例如,第一预测信息可以通过CSI报告承载,第一预测信息包括CSI-RS资源指示(CSI-RS Resource Indicator,CRI)(即CSI-RS资源索引)或SSB资源指示(SSB Resource Indicator,SSBRI)(即SSB资源索引),当然,也可以同时上报CRI或SSBRI对应的L1-RSRP,但是CRI或SSBRI则表达的是UE的上行发射波束对应的接收波束,如表1所示。该上报格式可以包含L1-RSRP和差分L1-RSRP,但仍为对应的下行的链路质量,也可以不包含(加上了[]表示)。
表1下行参考信号资源作为上行接收波束上报
需要说明的是,在上述表1中,CRI or SSBRI#1对应的L1-RSRP为L1-RSRP#1,CRI or SSBRI#2对应的L1-RSRP为L1-RSRP#2,CRI or SSBRI#3对应的L1-RSRP为L1-RSRP#3,CRI or SSBRI#4对应的L1-RSRP为L1-RSRP#4,Differential L1-RSRP#2可以是L1-RSRP#2相对于L1-RSRP#1的差值,Differential L1-RSRP#3可以是L1-RSRP#3相对于L1-RSRP#1的差值,Differential L1-RSRP#4可以是L1-RSRP#4相对于L1-RSRP#1的差值。
具体例如,第一预测信息可以通过CSI报告承载,第一预测信息包括SRS资源索引,SRS资源索引表示模型预测的最优的上行发射波束,如表2所示。如果NW知道该如何接收该SRS资源,那么NW按照该SRS资源的空间关系信息(即上行波束信息)来接收;否则,NW只能对该SRS资源进行接收波束的扫描,找到合适的上行接收波束。
表2上行参考信号资源作为上行发射波束上报
在一些实施例中,在上述示例2中,预测的上行发射波束索引可以与上行参考信号资源(如SRS资源)对应,预测的上行接收波束索引可以与下行参考信号资源(如CSI-RS资源和/或SSB资源)对应,因此,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该第一预测信息包括的内容可以包括CSI-RS资源和/或SSB资源和SRS资源。
具体例如,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,发射波束(与SRS资源关联)和接收波束(与CSI-RS资源或SSB资源关联),参考表3,第一个CRI或SSBRI对应着第一个SRS资源索引,第二个CRI或SSBRI对应着第二个SRS资源索引,以此类推。
表3上行参考信号资源作为上行发射波束上报
具体例如,在第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,仅上报接收波束(与CSI-RS资源或SSB资源关联),发射波束作为UE的实现(无需上报),具体上报格式可以参考上述表1,在此不再赘述。
在一些实施例中,在第一通信设备发送第一预测信息之后,该第一通信设备接收第一指示信息;
其中,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间
滤波器的标识信息,或者,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,该第一指示信息为至少一个TCI状态指示,或者,该第一指示信息为上行参考信号资源索引。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,该第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第一指示信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
具体例如,在UE上报了上行发射波束或上行波束对后,NW可以根据UE的上报来进行发射波束的指示。在NR中,可以使用基于空间关系信息的指示,也可以使用统一TCI状态的指示(上行TCI状态或联合TCI状态)。该指示的核心内容是UE的发射波束,它包含特定载波单元(Component carrier,CC)下的特定带宽部分(Band Width Part,BWP)上的一个下行参考信号资源(如UE上报的CSI-RS资源或SSB资源),或上行参考信号资源(如UE上报的SRS资源)。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信设备发送第一能力信息;其中,该第一能力信息用于指示该第一通信设备支持基于下行测量结果进行上行空间滤波器预测。
具体的,在NW为UE配置模型所需的测量资源之前,UE需要通过能力上报告知NW,它是否支持基于下行测量来进行上行波束(对)的预测。
在一些实施例中,该第一能力信息还包括以下至少之一:
在预配置的所有CC或所有BWP上支持的下行参考信号测量集的最大数量;
支持的配置的下行参考信号测量集的最大数量;
支持的同时测量的下行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;
支持的下行参考信号测量集中的下行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K1的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
具体例如,在NW为UE配置模型所需的测量资源之前,UE需要通过能力上报其是否支持基于下行测量来进行上行波束(对)的预测。如果支持基于下行测量来进行上行波束(对)的预测,UE上报的能力包括但不限于以下至少之一:
在全部的CC/BWP上最多支持多少个波束(对)测量集,包括最多配置多少个测量集,也包含UE最多可以同时测量多少个测量集;
在全部的CC/BWP上最多支持多少个波束(对)预测集;
在一个CC/BWP上最多支持多少个波束(对)测量集,即Nmax;
在每个测量集Set Bn(1<=n<=N),最多可以测量多少个下行的SSB资源和/或CSI-RS资源;
在一个CC/BWP上最多支持多少个波束(对)预测集,即Pmax;
在每个预测集Set Ap(1<=p<=P),最多可以预测多少个波束(对);
在一个CC/BWP上预测集的数目P可以和测量集的N的数目相同(P=N),这种情况下可以是波束(对)的预测集合测量集是一对一映射的。
在一些实施例中,该第一能力信息可以通过以下至少之一承载:RRC信令,MAC CE信令,UCI。
在一些实施例中,如果UE支持基于下行测量的上行波束(对)预测,且预测所用到的模型是小区专属的模型,那么NW将适配于实际部署环境和波束(对)配置的模型传递给UE。该模型传递的信令可以是3GPP框架内信令,如NW基于RRC信令的公开格式(open format)来描述一个或多个模型的结构,以及各个节点的初始参数。接下来,NW可以使用RRC或MAC CE或DCI指示给UE一个专门的模型标识(model ID)(在模型的生命周期管理中定义的ID,用以标识不同的模型)。另外一种实现方式是UE启动自己预先准备的一个模型,选择性地(Optional)将该模型的描述信息告知NW,如通过公开格式,或更为简练的model ID。在使用model ID作为模型沟通过程中,一个最重要的假设条件是NW和UE之间对于model ID所表达的模型细节有清晰的共识和了解。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信
设备接收第一信息;其中,该第一信息用于配置以下至少之一:该下行参考信号测量集,该第一参考信号预测集;或者,该第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的该下行参考信号测量集,预配置的多个参考信号预测集中的该第一参考信号预测集。
具体例如,NW为UE配置和/或激活模型输入所需的测量集Set B。NW使用RRC信令为UE配置一组或多组Set Bn(1<=n<=N)。Set Bn作为波束(对)测量集可以包含CSI-RS资源和/或SSB资源。如果NW为UE配置了多组Set Bn(1<=n<=N),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set B。否则,UE仅使用配置的一组Set B。
具体例如,NW为UE配置和/或激活模型输出的上行波束(对)预测集Set A。NW使用RRC信令为UE配置一组或多组上行波束(对)预测集Set Ap(1<=p<=P)。Set Ap作为波束(对)预测集可以包含CSI-RS资源,SSB资源,和/或SRS资源。如果NW配置了多组Set Ap(1<=p<=P),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set A。否则,仅使用配置的一组Set A。
在一些实施例中,该第一信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,基于下行测量结果预测上行波束的流程图可以如图18所示。
在一些实施例中,在第一测量数据集中包括的信息基于上行参考信号测量集得到的情况下,该第一通信设备支持基于上行测量结果进行下行空间滤波器预测。可选地,该第一通信设备为网络设备。
也即,在本实施例中,该第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
具体例如,该第一测量数据集包括基于上行参考信号测量集测量得到的链路质量信息;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
具体又例如,该第一测量数据集包括基于上行参考信号测量集测量得到的链路质量信息和基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。可选地,该上行参考信号资源集由网络设备配置,或者,该上行参考信号资源集由协议约定。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源包括SRS资源。
具体例如,假设上行参考信号测量集为Set D,为了实现基于上行测量的下行发射波束预测,或者,为了实现基于上行测量的下行波束对(即下行发射波束和下行接收波束)预测,UE基于Set D发送上行参考信号,NW需要测量Set D中的上行参考信号资源,即SRS资源。需要说明的是,Set D的组成可以是全部的上行参考信号资源(即全波束的覆盖),也可以是一部分的上行参考信号资源(即在空间域实现减少开销的目标)。另外,在NW侧,根据Set D中参考信号资源的配置,NW可以使用一个或多个接收波束来进行测量。
具体的,上行波束(对)测量和下行波束(对)预测的示意图可以如图19所示,TRP(NW)基于上行参考信号测量集(Set D)测量UE发送的上行参考信号,以及TRP(NW)基于第二参考信号预测集(Set C)预测K2个下行发射波束和K2个下行接收波束。
在一些实施例中,在该第一测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,该基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入该第一网络模型;
其中,该第二顺序与该上行参考信号测量集中的上行参考信号资源索引关联。
具体例如,对于第一网络模型的输入,存在两种主要的方式。一种模型的输入方式是仅按照固定的顺序(即第二顺序)输入Set D的上行参考信号(如SRS)的链路质量,如L1-RSRP。另外一种模型的输入方式包括Set D中的上行参考信号资源(如SRS资源)索引以及链路质量,如L1-RSRP。第二种模型的优点在于Set D的选择更为灵活。
具体来说,在第一种模型的输入方式中,NW将Set D测量的上行参考信号的L1-RSRP(或其他性能指标,如L1-SINR或L1-RSSI,L1-RSRQ)按照固定的顺序(即第二顺序)作为模型的输入,如图20所示。输出为模型预测的最优的K2个下行波束(对)的索引,在图20中使用K2=1为例。
具体来说,在第二种模型的输入方式中,NW将Set D测量的上行参考信号的L1-RSRP,以及Set D中的上行参考信号资源索引作为模型的输入,如图21所示。这是不同于图20的地方,把M个上
行参考信号资源索引以及对应的M个链路质量,如L1-RSRP,作为模型的输入。好处是NW可以更加灵活地测量,不必每次测量都使用相同的输入。同样地,模型的输出为预测的最优的K2个下行波束(对)的索引,在图21中使用K2=1为例。
需要说明的是,因为在图20和图21中,模型输出的是最优的K2个下行波束(对),因此并不需要预测对应的下行在UE处接收的RSRP。
在一些实施例中,作为示例3,在该第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第一网络模型从第二参考信号预测集中预测得到的参考信号资源确定。
具体的,该第二参考信号预测集中的参考信号资源包括下行参考信号资源。可选地,该第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。具体例如,第二参考信号预测集可以是Set C。
可选地,在示例3中,若该第二参考信号预测集中的下行参考信号资源(如CSI-RS资源)配置或激活了TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源(如SSB资源)已预先测量过,该K2个下行发射空间滤波器的标识信息为该第一网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
具体例如,模型输出的下行最优发射波束与下行参考信号对应,如果CSI-RS资源(配置和/或激活了TCI state)或SSB资源(UE已经提前测量过,知道使用对应的接收波束),那么UE使用对应的接收波束来接收。
可选地,在示例3中,若该第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源未预先测量过,该K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在该第二下行扫描方式(如P2过程)中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
具体例如,模型输出的下行最优发射波束与下行参考信号对应,如果CSI-RS资源(未配置和/或激活了TCI state)或SSB资源(UE未提前测量过,因此不知道使用对应的接收波束),那么NW需要执行下行波束扫描过程,即P2过程,NW使用固定的预测的发射波束方向来发送,UE使用不同的接收波束来接收,从而找到最优下行发射波束对应的接收波束。
在一些实施例中,作为示例4,在该第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第一网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,该K2个下行接收空间滤波器的标识信息基于该第一网络模型从该第二参考信号预测集中预测得到的上行参考信号资源确定。可选地,该第二参考信号预测集中的上行参考信号资源包括SRS资源。
可选地,在示例4中,该K2个下行接收空间滤波器的标识信息基于该第一网络模型从该第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K2个下行发射空间滤波器的标识信息分别为该第一网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
具体例如,模型可以仅输出最优下行波束对中的发射波束部分,即CSI-RS和/或SSB资源索引。但前提是UE需要提前测量过预测的SSB资源和被配置和/或激活了CSI-RS的TCI状态,也就是说UE知道该使用哪个接收波束来进行接收。
具体又例如,模型也可以输出下行发射波束(对应CSI-RS和/或SSB),以及下行接收波束(对应SRS)。对于接收波束部分,UE需要把SRS的发射波束用来反向实现做下行接收波束。
在一些实施例中,该第一通信设备发送第二指示信息;
其中,该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息。
在一些实施例中,在该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为至少一个TCI状态指示,或者,该第二指示信息为下行参考信号资源索引;或者,
在该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的
情况下,该第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
具体的,NW指示下行发射波束,基于传统TCI状态或统一TCI状态来进行波束指示。
具体的,NW指示下行波束对,如果模型只输出CSI-RS和/或SSB的索引,那么可以沿用TCI状态的波束指示。如上所述,前提是UE需要提前对应的接收波束。如果模型输出的是CSI-RS和/或SSB的索引(指示发射波束)和SRS索引(指示接收波束)的组合,显然传统的基于TCI状态的波束指示不够用了。对于波束对中的接收波束,用SRS资源来表征。
具体信令,SRS资源索引可以承载在NW指示的MAC CE和/或DCI中的第二统一TCI状态中。UE用第二统一TCI状态中包含的SRS资源的发射波束来作为下行的接收波束。
在一些实施例中,该第二指示信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信设备接收第二能力信息;
其中,该第二能力信息包括以下至少之一:
在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;
支持的配置的上行参考信号测量集的最大数量;
支持的同时发送的上行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;
支持的上行参考信号测量集中的上行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K2的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
具体的,在NW为UE配置模型所需的测量资源之前,UE需要上报给NW其相关的能力。需要说明的是,协议可以支持UE基于SRS的上行波束扫描的能力上报,因此不需要UE再上报是否支持基于上行测量来进行下行波束(对)的预测。UE上报的能力包括但不限于以下至少之一:
在全部的CC/BWP上最多支持发送多少个波束(对)测量集,包括最多配置多少个测量集,也包含UE最多可以同时发送多少个测量集;
在全部的CC/BWP上最多支持多少个波束(对)预测集;
在一个CC/BWP上最多支持发送多少个波束(对)测量集,即Smax;
在每个测量集Set Ds(1<=s<=S),最多可以发送多少个上行SRS资源;
在一个CC/BWP上最多支持多少个波束(对)预测集,即Tmax;
在每个预测集Set Ct(1<=t<=T),最多可以预测多少个波束(对);
在一个CC/BWP上预测集的数目T可以和测量集的S的数目相同(S=T),这种情况下可以是波束(对)的预测集合测量集是一对一映射的。
在一些实施例中,该第二能力信息可以通过以下至少之一承载:RRC信令,MAC CE信令,UCI。
在本实施例中,因为模型部署在NW侧,不需要从NW到UE的模型传递。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该第一通信设备发送第二信息;其中,
该第二信息用于配置以下至少之一:该上行参考信号测量集,该第二参考信号预测集;或者,该第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的该上行参考信号测量集,预配置的多个参考信号预测集中的该第二参考信号预测集。
具体例如,NW为UE配置和/或激活基于SRS的测量集Set D。NW使用RRC信令为UE配置一组或多组Set Ds(1<=s<=S)。Set Ds作为上行波束(对)测量集包含SRS资源。如果NW为UE配置了多组Set Ds(1<=s<=S),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set D。否则,UE仅使用配置的一组Set D。
具体例如,NW为UE配置和/或激活模型输出的下行波束(对)预测集Set C(这里为UE配置预测集的目的并不是为了让UE进行下行波束(对)的预测,而是让UE知道NW进行下行波束(对)指示的范围)。NW使用RRC信令为UE配置一组或多组上行波束(对)预测集Set Ct(1<=t<=T)。Set Ct作为下行波束(对)预测集可以包含CSI-RS资源,SSB资源,和/或SRS资源。如果NW配置了多组Set Ct(1<=t<=T),那么NW还需要根据实际的部署情况和天线配置情况,使用MAC CE信令激活多组配置中的一组Set C。否则,仅使用配置的一组Set C。
在一些实施例中,该第二信息可以通过以下至少之一承载:RRC信令,MAC CE信令,DCI。
在一些实施例中,基于上行测量结果预测下行波束的流程图可以如图22所示。
因此,在本申请实施例中,第一通信设备可以基于第一网络模型实现基于下行测量结果进行上行空间滤波器预测,或者,第一通信设备可以基于第一网络模型实现基于上行测量结果进行下行空间滤波器预测,从而可以降低上行空间滤波器管理和/或下行空间滤波器管理的开销和时延,提升了波束管理系统的性能。本申请实施例具体可以通过上下行波束对称性(beam correspondence)实现。
上文结合图14至图23,详细描述了本申请的方法实施例,下文结合图24至图29,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图24示出了根据本申请实施例的终端设备400的示意性框图。如图24所示,终端设备400包括:
通信单元410用于发送第一能力信息;其中,该第一能力信息用于指示该终端设备是否支持基于下行测量结果进行上行空间滤波器预测,或者,该第一能力信息用于指示该终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
在一些实施例中,在该终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,该终端设备400还包括:处理单元420;
该处理单元420用于将第一测量数据集输入第一网络模型,输出第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
在一些实施例中,该下行参考信号资源集由网络设备配置,或者,该下行参考信号资源集由协议约定。
在一些实施例中,在该第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,该基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入该第一网络模型;
其中,该第一顺序与该下行参考信号测量集中的下行参考信号资源索引关联。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;
其中,该第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,该K1个上行发射空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;
其中,在该第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源已预先测量过,该K1个上行发射空间滤波器的标识信息为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况
下,若该第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源未预先测量过,该K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,该K1个上行接收空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源确定。
在一些实施例中,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K1个上行接收空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该通信单元410还用于发送第一预测信息,其中,该第一预测信息包括该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引中的部分或全部。
在一些实施例中,该通信单元410还用于接收第一指示信息;
其中,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,该第一指示信息为至少一个TCI状态指示,或者,该第一指示信息为上行参考信号资源索引;或者,
在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,该第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第一参考信号预测集中的下行参考信号资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源;和/或,
该第一参考信号预测集中的上行参考信号资源包括探测参考信号SRS资源。
在一些实施例中,在该终端设备基于该第一网络模型进行空间滤波器预测之前,该通信单元410还用于接收第一信息;其中,
该第一信息用于配置以下至少之一:该下行参考信号测量集,该第一参考信号预测集;或者,该第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的该下行参考信号测量集,预配置的多个参考信号预测集中的该第一参考信号预测集。
在一些实施例中,在该第一能力信息指示该终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,该第一能力信息还包括以下至少之一:
在预配置的所有载波单元CC或所有带宽部分BWP上支持的下行参考信号测量集的最大数量;
支持的配置的下行参考信号测量集的最大数量;
支持的同时测量的下行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;
支持的下行参考信号测量集中的下行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K1的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
在一些实施例中,在该终端设备支持基于上行测量结果进行下行空间滤波器预测的情况下,该通信单元410还用于接收第二指示信息;
其中,该第二指示信息用于指示K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,该第二指示信息用于指示K2个下行发射空间滤波器的标识信息中使用的下
行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息;
其中,该K2个下行发射空间滤波器的标识信息和/或该K2个下行接收空间滤波器的标识信息属于网络侧部署的第二网络模型在输入第二测量数据集之后输出的第二预测数据集;
其中,该第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第二预测数据集包括以下之一:预测得到的该K2个下行发射空间滤波器的标识信息,预测得到的该K2个下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息,K2为正整数。
在一些实施例中,在该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为至少一个TCI状态指示,或者,该第二指示信息为下行参考信号资源索引;或者,
在该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
在一些实施例中,该上行参考信号资源集由网络设备配置,或者,该上行参考信号资源集由协议约定。
在一些实施例中,在该第二测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,该基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入该第二网络模型;
其中,该第二顺序与该上行参考信号测量集中的上行参考信号资源索引关联。
在一些实施例中,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的参考信号资源确定;
其中,该第二参考信号预测集中的参考信号资源包括下行参考信号资源。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源已预先测量过,该K2个下行发射空间滤波器的标识信息为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源未预先测量过,该K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
在一些实施例中,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源确定。
在一些实施例中,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K2个下行发射空间滤波器的标识信息分别为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
在一些实施例中,该第二参考信号预测集中的上行参考信号资源包括SRS资源。
在一些实施例中,在该终端设备接收该第二指示信息之前,该通信单元410还用于接收第二信息;其中,
该第二信息用于配置以下至少之一:该上行参考信号测量集,该第二参考信号预测集;或者,该第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的该上行参考信号测量集,预配置的多个参考信号预测集中的该第二参考信号预测集。
在一些实施例中,其中,该第一能力信息包括以下至少之一:
在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;
支持的配置的上行参考信号测量集的最大数量;
支持的同时发送的上行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;
支持的上行参考信号测量集中的上行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K2的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图14所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图25示出了根据本申请实施例的网络设备500的示意性框图。如图25所示,网络设备500包括:
通信单元510,用于接收第一能力信息;其中,该第一能力信息用于指示终端设备是否支持基于下行测量结果进行上行空间滤波器预测,或者,该第一能力信息用于指示终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
在一些实施例中,在该终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,该通信单元510还用于接收第一预测信息,其中,该第一预测信息包括以下至少之一:K1个上行发射空间滤波器的标识信息关联的部分或全部参考信号资源索引,K1个上行接收空间滤波器的标识信息关联的部分或全部参考信号资源索引;
其中,该K1个上行发射空间滤波器的标识信息和/或该K1个上行接收空间滤波器的标识信息属于终端侧部署的第一网络模型在输入第一测量数据集之后输出的第一预测数据集;
其中,该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的该K1个上行发射空间滤波器的标识信息,预测得到的该K1个上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息,K1为正整数。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
在一些实施例中,该下行参考信号资源集由该网络设备配置,或者,该下行参考信号资源集由协议约定。
在一些实施例中,在该第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,该基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入该第一网络模型;
其中,该第一顺序与该下行参考信号测量集中的下行参考信号资源索引关联。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;
其中,该第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,该K1个上行发射空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;
其中,在该第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发
送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源已预先测量过,该K1个上行发射空间滤波器的标识信息为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源未预先测量过,该K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,该K1个上行接收空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源确定。
在一些实施例中,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K1个上行接收空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该通信单元510还用于发送第一指示信息;
其中,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,该第一指示信息为至少一个TCI状态指示,或者,该第一指示信息为上行参考信号资源索引;或者,
在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,该第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第一参考信号预测集中的下行参考信号资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源;和/或,
该第一参考信号预测集中的上行参考信号资源包括探测参考信号SRS资源。
在一些实施例中,在该网络设备接收该第一预测信息之前,该通信单元510还用于发送第一信息;其中,
该第一信息用于配置以下至少之一:该下行参考信号测量集,该第一参考信号预测集;或者,该第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的该下行参考信号测量集,预配置的多个参考信号预测集中的该第一参考信号预测集。
在一些实施例中,该第一能力信息还包括以下至少之一:
在预配置的所有载波单元CC或所有带宽部分BWP上支持的下行参考信号测量集的最大数量;
支持的配置的下行参考信号测量集的最大数量;
支持的同时测量的下行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;
支持的下行参考信号测量集中的下行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K1的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
在一些实施例中,在该终端设备支持基于上行测量结果进行下行空间滤波器预测的情况下,该网络设备500还包括:处理单元520;
该处理单元520用于将第二测量数据集输入第二网络模型,输出第二预测数据集;
其中,该第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
在一些实施例中,该上行参考信号资源集由网络设备配置,或者,该上行参考信号资源集由协议约定。
在一些实施例中,在该第二测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,该基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入该第二网络模型;
其中,该第二顺序与该上行参考信号测量集中的上行参考信号资源索引关联。
在一些实施例中,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的参考信号资源确定;
其中,该第二参考信号预测集中的参考信号资源包括下行参考信号资源。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源已预先测量过,该K2个下行发射空间滤波器的标识信息为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源未预先测量过,该K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
在一些实施例中,在该第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第二网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源确定。
在一些实施例中,该K2个下行接收空间滤波器的标识信息基于该第二网络模型从该第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K2个下行发射空间滤波器的标识信息分别为该第二网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该通信单元510还用于发送第二指示信息;其中,该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息。
在一些实施例中,在该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为至少一个TCI状态指示,或者,该第二指示信息为下行参考信号资源索引;或者,
在该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
在一些实施例中,该第二参考信号预测集中的上行参考信号资源包括SRS资源。
在一些实施例中,在该网络设备基于该第二网络模型进行空间滤波器预测之前,该通信单元510
还用于发送第二信息;其中,
该第二信息用于配置以下至少之一:该上行参考信号测量集,该第二参考信号预测集;或者,该第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的该上行参考信号测量集,预配置的多个参考信号预测集中的该第二参考信号预测集。
在一些实施例中,其中,该第一能力信息还包括以下至少之一:
在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;
支持的配置的上行参考信号测量集的最大数量;
支持的同时发送的上行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;
支持的上行参考信号测量集中的上行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K2的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图14所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图26示出了根据本申请实施例的通信设备600的示意性框图。该通信设备600为第一通信设备,如图26所示,该通信设备600包括:处理单元610;
该处理单元610用于将第一测量数据集输入第一网络模型,输出第一预测数据集;
该第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数;或者,
该第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且该第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
在一些实施例中,在该第一测量数据集中包括的信息基于该下行参考信号测量集得到的情况下,该第一通信设备支持基于下行测量结果进行上行空间滤波器预测。
在一些实施例中,该下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
在一些实施例中,该下行参考信号资源集由网络设备配置,或者,该下行参考信号资源集由协议约定。
在一些实施例中,在该第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,该基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入该第一网络模型;
其中,该第一顺序与该下行参考信号测量集中的下行参考信号资源索引关联。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;
其中,该第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若该第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,该K1个上行发射
空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;
其中,在该第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源已预先测量过,该K1个上行发射空间滤波器的标识信息为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
在一些实施例中,在该第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若该第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第一参考信号预测集中的下行参考信号资源未预先测量过,该K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
在一些实施例中,该K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
在一些实施例中,在该第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,该K1个上行接收空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源确定。
在一些实施例中,该K1个上行发射空间滤波器的标识信息基于该第一网络模型从该第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K1个上行接收空间滤波器的标识信息分别为该第一网络模型从该第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该通信设备600包括:通信单元620;
该通信单元620用于发送第一预测信息,其中,该第一预测信息包括该第一网络模型从该第一参考信号预测集中预测得到的参考信号资源索引中的部分或全部。
在一些实施例中,该通信设备600包括:通信单元620;
该通信单元620用于接收第一指示信息;
其中,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
在一些实施例中,在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,该第一指示信息为至少一个TCI状态指示,或者,该第一指示信息为上行参考信号资源索引;或者,
在该第一指示信息用于指示该K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和该K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,该第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第一参考信号预测集中的下行参考信号资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源;和/或,
该第一参考信号预测集中的上行参考信号资源包括探测参考信号SRS资源。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该通信设备600包括:通信单元620;
该通信单元620用于发送第一能力信息;其中,该第一能力信息用于指示该第一通信设备支持基
于下行测量结果进行上行空间滤波器预测。
在一些实施例中,该第一能力信息还包括以下至少之一:
在预配置的所有载波单元CC或所有带宽部分BWP上支持的下行参考信号测量集的最大数量;
支持的配置的下行参考信号测量集的最大数量;
支持的同时测量的下行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;
支持的下行参考信号测量集中的下行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K1的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该通信设备600包括:通信单元620;
该通信单元620用于接收第一信息;其中,
该第一信息用于配置以下至少之一:该下行参考信号测量集,该第一参考信号预测集;或者,该第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的该下行参考信号测量集,预配置的多个参考信号预测集中的该第一参考信号预测集。
在一些实施例中,该第一通信设备为终端设备。
在一些实施例中,在该第一测量数据集中包括的信息基于该上行参考信号测量集得到的情况下,该第一通信设备支持基于上行测量结果进行下行空间滤波器预测。
在一些实施例中,该上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
在一些实施例中,该上行参考信号资源集由网络设备配置,或者,该上行参考信号资源集由协议约定。
在一些实施例中,在该第一测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,该基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入该第一网络模型;
其中,该第二顺序与该上行参考信号测量集中的上行参考信号资源索引关联。
在一些实施例中,在该第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第一网络模型从第二参考信号预测集中预测得到的参考信号资源确定;
其中,该第二参考信号预测集中的参考信号资源包括下行参考信号资源。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源已预先测量过,该K2个下行发射空间滤波器的标识信息为该第一网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
在一些实施例中,若该第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若该第二参考信号预测集中的下行参考信号资源未预先测量过,该K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;
其中,在该第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
在一些实施例中,在该第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,该K2个下行发射空间滤波器的标识信息基于该第一网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,该K2个下行接收空间滤波器的标识信息基于该第一网络模型从该第二参考信号预测集中预测得到的上行参考信号资源确定。
在一些实施例中,该K2个下行接收空间滤波器的标识信息基于该第一网络模型从该第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,
该K2个下行发射空间滤波器的标识信息分别为该第一网络模型从该第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
在一些实施例中,该通信设备600包括:通信单元620;
该通信单元620用于发送第二指示信息;
其中,该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间
滤波器的标识信息,或者,该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息。
在一些实施例中,在该第二指示信息用于指示该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为至少一个TCI状态指示,或者,该第二指示信息为下行参考信号资源索引;或者,
在该第二指示信息用于指示该K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和该K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,该第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
在一些实施例中,该第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
在一些实施例中,该第二参考信号预测集中的上行参考信号资源包括SRS资源。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该通信设备600包括:通信单元620;
该通信单元620用于接收第二能力信息;
其中,该第二能力信息包括以下至少之一:
在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;
支持的配置的上行参考信号测量集的最大数量;
支持的同时发送的上行参考信号测量集的最大数量;
在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;
在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;
支持的上行参考信号测量集中的上行参考信号资源的最大数量;
在一个CC或一个BWP上支持的参考信号预测集的最大数量;
K2的最大取值;
支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
在一些实施例中,在该第一通信设备基于该第一网络模型进行空间滤波器预测之前,该通信设备600包括:通信单元620;
该通信单元620用于发送第二信息;其中,
该第二信息用于配置以下至少之一:该上行参考信号测量集,该第二参考信号预测集;或者,该第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的该上行参考信号测量集,预配置的多个参考信号预测集中的该第二参考信号预测集。
在一些实施例中,该第一通信设备为网络设备。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备600可对应于本申请方法实施例中的第一通信设备,并且通信设备600中的各个单元的上述和其它操作和/或功能分别为了实现图23所示方法300中第一通信设备的相应流程,为了简洁,在此不再赘述。
图27是本申请实施例提供的一种通信设备700示意性结构图。图27所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图27所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,如图27所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,处理器710可以实现终端设备中的处理单元的功能,或者,处理器710可以实现网络设备中的处理单元的功能,或者,处理器710可以实现第一通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器730可以实现终端设备中的通信单元的功能,或者,收发器730可以实现网络设备中的通信单元的功能,或者,收发器730可以实现第一通信设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信设备700具体可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备700具体可为本申请实施例的第一通信设备,并且该通信设备700可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
图28是本申请实施例的装置的示意性结构图。图28所示的装置800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图28所示,装置800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,处理器810可以实现第一通信设备中的处理单元的功能,或者,处理器810可以实现终端设备中的处理单元的功能,或者,处理器810可以实现网络设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该装置800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。可选地,处理器810可以位于芯片内或芯片外。
在一些实施例中,输入接口830可以实现第一通信设备中的通信单元的功能。在一些实施例中,输入接口830可以实现终端设备中的通信单元的功能。在一些实施例中,输入接口830可以实现网络设备中的通信单元的功能。
在一些实施例中,该装置800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。可选地,处理器810可以位于芯片内或芯片外。
在一些实施例中,输出接口840可以实现第一通信设备中的通信单元的功能。在一些实施例中,输出接口840可以实现终端设备中的通信单元的功能。在一些实施例中,输出接口840可以实现网络设备中的通信单元的功能。
在一些实施例中,该装置可应用于本申请实施例中的第一通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图29是本申请实施例提供的一种通信系统900的示意性框图。如图29所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存
取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是
或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (109)
- 一种无线通信的方法,其特征在于,包括:终端设备发送第一能力信息;其中,所述第一能力信息用于指示所述终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和/或,所述第一能力信息用于指示所述终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
- 如权利要求1所述的方法,其特征在于,在所述终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,所述方法还包括:所述终端设备将第一测量数据集输入第一网络模型,输出第一预测数据集;其中,所述第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且所述第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数。
- 如权利要求2所述的方法,其特征在于,所述下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
- 如权利要求3所述的方法,其特征在于,所述下行参考信号资源集由网络设备配置,或者,所述下行参考信号资源集由协议约定。
- 如权利要求2至4中任一项所述的方法,其特征在于,在所述第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,所述基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入所述第一网络模型;其中,所述第一顺序与所述下行参考信号测量集中的下行参考信号资源索引关联。
- 如权利要求2至5中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;其中,所述第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
- 如权利要求6所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
- 如权利要求7所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
- 如权利要求6所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,所述K1个上行发射空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
- 如权利要求9所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;其中,在所述第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求6所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源已预先测量过,所述K1个上行发射空间滤波器的标识信息为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求11所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
- 如权利要求6所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源未预先测量过,所述K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求13所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
- 如权利要求2至5中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,所述K1个上行接收空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源确定。
- 如权利要求15所述的方法,其特征在于,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K1个上行接收空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求6至16中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备发送第一预测信息,其中,所述第一预测信息包括所述第一网络模型从所述第一参考信号预测集中预测得到的参考信号资源索引中的部分或全部。
- 如权利要求17所述的方法,其特征在于,所述方法还包括:所述终端设备接收第一指示信息;其中,所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和所述K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
- 如权利要求18所述的方法,其特征在于,在所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息的情况下,所述第一指示信息为至少一个TCI状态指示,或者,所述第一指示信息为上行参考信号资源索引;或者,在所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和所述K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,所述第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
- 如权利要求6至19中任一项所述的方法,其特征在于,所述第一参考信号预测集中的下行参考信号资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源;和/或,所述第一参考信号预测集中的上行参考信号资源包括探测参考信号SRS资源。
- 如权利要求6至20中任一项所述的方法,其特征在于,在所述终端设备基于所述第一网络模型进行空间滤波器预测之前,所述方法还包括:所述终端设备接收第一信息;其中,所述第一信息用于配置以下至少之一:所述下行参考信号测量集,所述第一参考信号预测集;或者,所述第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的所述下行参考信号测量集,预配置的多个参考信号预测集中的所述第一参考信号预测集。
- 如权利要求1至21中任一项所述的方法,其特征在于,在所述第一能力信息指示所述终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,所述第一能力信息还包括以下至少之一:在预配置的所有载波单元CC或所有带宽部分BWP上支持的下行参考信号测量集的最大数量;支持的配置的下行参考信号测量集的最大数量;支持的同时测量的下行参考信号测量集的最大数量;在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;支持的下行参考信号测量集中的下行参考信号资源的最大数量;在一个CC或一个BWP上支持的参考信号预测集的最大数量;K1的最大取值;支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
- 如权利要求1所述的方法,其特征在于,在所述终端设备支持基于上行测量结果进行下行空间滤波器预测的情况下,所述方法还包括:所述终端设备接收第二指示信息;其中,所述第二指示信息用于指示K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,所述第二指示信息用于指示K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息;其中,所述K2个下行发射空间滤波器的标识信息和/或所述K2个下行接收空间滤波器的标识信息属于网络侧部署的第二网络模型在输入第二测量数据集之后输出的第二预测数据集;其中,所述第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且所述第二预测数据集包括以下之一:预测得到的所述K2个下行发射空间滤波器的标识信息,预测得到的所述K2个下行发射空间滤波器的标识信息和所述K2个下行接收空间滤波器的标识信息,K2为正整数。
- 如权利要求23所述的方法,其特征在于,在所述第二指示信息用于指示所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,所述第二指示信息为至少一个TCI状态指示,或者,所述第二指示信息为下行参考信号资源索引;或者,在所述第二指示信息用于指示所述K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,所述第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
- 如权利要求23或24所述的方法,其特征在于,所述上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
- 如权利要求25所述的方法,其特征在于,所述上行参考信号资源集由网络设备配置,或者,所述上行参考信号资源集由协议约定。
- 如权利要求23至26中任一项所述的方法,其特征在于,在所述第二测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,所述基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入所述第二网络模型;其中,所述第二顺序与所述上行参考信号测量集中的上行参考信号资源索引关联。
- 如权利要求23至27中任一项所述的方法,其特征在于,在所述第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第二网络模型从第二参考信号预测集中预测得到的参考信号资源确定;其中,所述第二参考信号预测集中的参考信号资源包括下行参考信号资源。
- 如权利要求28所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若所述第二参考信号预测集中的下行参考信号资源已预先测量过,所述K2个下行发射空间滤波器的标识信息为所述第二网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求28所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第二参考信号预测集中的下行参考信号资源未预先测量过,所述K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
- 如权利要求23至27中任一项所述的方法,其特征在于,在所述第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第二网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,所述K2个下行接收空间滤波器的标识信息基于所述第二网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源确定。
- 如权利要求31所述的方法,其特征在于,所述K2个下行接收空间滤波器的标识信息基于所述第二网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K2个下行发射空间滤波器的标识信息分别为所述第二网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求28至32中任一项所述的方法,其特征在于,所述第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
- 如权利要求31或32所述的方法,其特征在于,所述第二参考信号预测集中的上行参考信号资源包括SRS资源。
- 如权利要求28至34中任一项所述的方法,其特征在于,在所述终端设备接收所述第二指示信息之前,所述方法还包括:所述终端设备接收第二信息;其中,所述第二信息用于配置以下至少之一:所述上行参考信号测量集,所述第二参考信号预测集;或者,所述第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的所述上行参考信号测量集,预配置的多个参考信号预测集中的所述第二参考信号预测集。
- 如权利要求23至35中任一项所述的方法,其特征在于,其中,所述第一能力信息包括以下至少之一:在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;支持的配置的上行参考信号测量集的最大数量;支持的同时发送的上行参考信号测量集的最大数量;在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;支持的上行参考信号测量集中的上行参考信号资源的最大数量;在一个CC或一个BWP上支持的参考信号预测集的最大数量;K2的最大取值;支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
- 一种无线通信的方法,其特征在于,包括:网络设备接收第一能力信息;其中,所述第一能力信息用于指示终端设备是否支持基于下行测量结果进行上行空间滤波器预测,和/或,所述第一能力信息用于指示终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
- 如权利要求37所述的方法,其特征在于,在所述终端设备支持基于下行测量结果进行上行空间滤波器预测的情况下,所述方法还包括:所述网络设备接收第一预测信息,其中,所述第一预测信息包括以下至少之一:K1个上行发射空间滤波器的标识信息关联的部分或全部参考信号资源索引,K1个上行接收空间滤波器的标识信息关联的部分或全部参考信号资源索引;其中,所述K1个上行发射空间滤波器的标识信息和/或所述K1个上行接收空间滤波器的标识信息属于终端侧部署的第一网络模型在输入第一测量数据集之后输出的第一预测数据集;其中,所述第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且所述第一预测数据集包括以下之一:预测得到的所述K1个上行发射空间滤波器的标识信息,预测得到的所述K1个上行发射空间滤波器的标识信息和所述K1个上行接收空间滤波器的标识信息,K1为正整数。
- 如权利要求38所述的方法,其特征在于,所述下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
- 如权利要求39所述的方法,其特征在于,所述下行参考信号资源集由所述网络设备配置,或者,所述下行参考信号资源集由协议约定。
- 如权利要求38至40中任一项所述的方法,其特征在于,在所述第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,所述基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入所述第一网络模型;其中,所述第一顺序与所述下行参考信号测量集中的下行参考信号资源索引关联。
- 如权利要求38至41中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;其中,所述第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
- 如权利要求42所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
- 如权利要求43所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
- 如权利要求42所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,所述K1个上行发射空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
- 如权利要求45所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;其中,在所述第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求42所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源已预先测量过,所述K1个上行发射空间滤波器的标识信息为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求47所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
- 如权利要求42所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源未预先测量过,所述K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求49所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
- 如权利要求38至41中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,所述K1个上行接收空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源确定。
- 如权利要求51所述的方法,其特征在于,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K1个上行接收空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求38至52中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备发送第一指示信息;其中,所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息,或者,所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和所述K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息。
- 如权利要求53所述的方法,其特征在于,在所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间 滤波器的标识信息的情况下,所述第一指示信息为至少一个TCI状态指示,或者,所述第一指示信息为上行参考信号资源索引;或者,在所述第一指示信息用于指示所述K1个上行发射空间滤波器的标识信息中使用的上行发射空间滤波器的标识信息和所述K1个上行接收空间滤波器的标识信息中使用的上行接收空间滤波器的标识信息的情况下,所述第一指示信息为下行参考信号资源索引和上行参考信号资源索引。
- 如权利要求42至52中任一项所述的方法,其特征在于,所述第一参考信号预测集中的下行参考信号资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源;和/或,所述第一参考信号预测集中的上行参考信号资源包括探测参考信号SRS资源。
- 如权利要求42至52中任一项所述的方法,其特征在于,在所述网络设备接收所述第一预测信息之前,所述方法还包括:所述网络设备发送第一信息;其中,所述第一信息用于配置以下至少之一:所述下行参考信号测量集,所述第一参考信号预测集;或者,所述第一信息用于激活以下至少之一:预配置的多个下行参考信号测量集中的所述下行参考信号测量集,预配置的多个参考信号预测集中的所述第一参考信号预测集。
- 如权利要求38至56中任一项所述的方法,其特征在于,所述第一能力信息还包括以下至少之一:在预配置的所有载波单元CC或所有带宽部分BWP上支持的下行参考信号测量集的最大数量;支持的配置的下行参考信号测量集的最大数量;支持的同时测量的下行参考信号测量集的最大数量;在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;在一个CC或一个BWP上支持的下行参考信号测量集的最大数量;支持的下行参考信号测量集中的下行参考信号资源的最大数量;在一个CC或一个BWP上支持的参考信号预测集的最大数量;K1的最大取值;支持一个CC或一个BWP上参考信号预测集的数量与下行参考信号测量集的数量相同。
- 如权利要求37所述的方法,其特征在于,在所述终端设备支持基于上行测量结果进行下行空间滤波器预测的情况下,所述方法还包括:所述网络设备将第二测量数据集输入第二网络模型,输出第二预测数据集;其中,所述第二测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且所述第二预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
- 如权利要求58所述的方法,其特征在于,所述上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
- 如权利要求59所述的方法,其特征在于,所述上行参考信号资源集由网络设备配置,或者,所述上行参考信号资源集由协议约定。
- 如权利要求58至60中任一项所述的方法,其特征在于,在所述第二测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,所述基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入所述第二网络模型;其中,所述第二顺序与所述上行参考信号测量集中的上行参考信号资源索引关联。
- 如权利要求58至61中任一项所述的方法,其特征在于,在所述第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第二网络模型从第二参考信号预测集中预测得到的参考信号资源确定;其中,所述第二参考信号预测集中的参考信号资源包括下行参考信号资源。
- 如权利要求62所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若所述第二参考信号预测集中的下行参考信号资源已预先测量过,所述K2个下行发射空间滤波器的标识信息为所述第二网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求63所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第二参 考信号预测集中的下行参考信号资源未预先测量过,所述K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
- 如权利要求58至61中任一项所述的方法,其特征在于,在所述第二预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第二网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,所述K2个下行接收空间滤波器的标识信息基于所述第二网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源确定。
- 如权利要求65所述的方法,其特征在于,所述K2个下行接收空间滤波器的标识信息基于所述第二网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K2个下行发射空间滤波器的标识信息分别为所述第二网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求62至66中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备发送第二指示信息;其中,所述第二指示信息用于指示所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息,或者,所述第二指示信息用于指示所述K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息。
- 如权利要求67所述的方法,其特征在于,在所述第二指示信息用于指示所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,所述第二指示信息为至少一个TCI状态指示,或者,所述第二指示信息为下行参考信号资源索引;或者,在所述第二指示信息用于指示所述K2个下行发射空间滤波器的标识信息中使用的下行发射空间滤波器的标识信息和所述K2个下行接收空间滤波器的标识信息中使用的下行接收空间滤波器的标识信息的情况下,所述第二指示信息为下行参考信号资源索引和上行参考信号资源索引。
- 如权利要求62至68中任一项所述的方法,其特征在于,所述第二参考信号预测集中的下行参考信号资源包括CSI-RS资源和/或SSB资源。
- 如权利要求65或66所述的方法,其特征在于,所述第二参考信号预测集中的上行参考信号资源包括SRS资源。
- 如权利要求62至70中任一项所述的方法,其特征在于,在所述网络设备基于所述第二网络模型进行空间滤波器预测之前,所述方法还包括:所述网络设备发送第二信息;其中,所述第二信息用于配置以下至少之一:所述上行参考信号测量集,所述第二参考信号预测集;或者,所述第二信息用于激活以下至少之一:预配置的多个上行参考信号测量集中的所述上行参考信号测量集,预配置的多个参考信号预测集中的所述第二参考信号预测集。
- 如权利要求58至71中任一项所述的方法,其特征在于,其中,所述第一能力信息还包括以下至少之一:在预配置的所有CC或所有BWP上支持的上行参考信号测量集的最大数量;支持的配置的上行参考信号测量集的最大数量;支持的同时发送的上行参考信号测量集的最大数量;在预配置的所有CC或所有BWP上支持的参考信号预测集的最大数量;在一个CC或一个BWP上支持的上行参考信号测量集的最大数量;支持的上行参考信号测量集中的上行参考信号资源的最大数量;在一个CC或一个BWP上支持的参考信号预测集的最大数量;K2的最大取值;支持一个CC或一个BWP上参考信号预测集的数量与上行参考信号测量集的数量相同。
- 一种无线通信的方法,其特征在于,包括:第一通信设备将第一测量数据集输入第一网络模型,输出第一预测数据集;所述第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且所述第一预测数据 集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数;或者,所述第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且所述第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
- 如权利要求73所述的方法,其特征在于,在所述第一测量数据集中包括的信息基于所述下行参考信号测量集得到的情况下,所述第一通信设备支持基于下行测量结果进行上行空间滤波器预测。
- 如权利要求74所述的方法,其特征在于,所述下行参考信号测量集中的下行参考信号资源为下行参考信号资源集中的部分或者全部下行参考信号资源。
- 如权利要求75所述的方法,其特征在于,所述下行参考信号资源集由网络设备配置,或者,所述下行参考信号资源集由协议约定。
- 如权利要求74至76中任一项所述的方法,其特征在于,在所述第一测量数据集仅包括基于下行参考信号测量集测量得到的链路质量信息的情况下,所述基于下行参考信号测量集测量得到的链路质量信息按照第一顺序输入所述第一网络模型;其中,所述第一顺序与所述下行参考信号测量集中的下行参考信号资源索引关联。
- 如权利要求74至77中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的参考信号资源确定;其中,所述第一参考信号预测集中的参考信号资源包括以下至少之一:上行参考信号资源,下行参考信号资源。
- 如权利要求78所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源配置或激活了空间关系信息,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定。
- 如权利要求79所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的上行参考信号资源的接收空间滤波器。
- 如权利要求78所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括上行参考信号资源的情况下,若所述第一参考信号预测集中的上行参考信号资源未配置或激活空间关系信息,所述K1个上行发射空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的发射空间滤波器。
- 如权利要求81所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器基于第一上行扫描方式确定;其中,在所述第一上行扫描方式中,以预测得到的上行参考信号资源对应的上行发射空间滤波器发送上行参考信号,使用不同的接收空间滤波器接收上行参考信号,并基于接收到的上行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求78所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源配置或激活了传输配置指示TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源已预先测量过,所述K1个上行发射空间滤波器的标识信息为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求83所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为对应的下行参考信号资源的发射空间滤波器。
- 如权利要求78所述的方法,其特征在于,在所述第一参考信号预测集中的参考信号资源至少包括下行参考信号资源的情况下,若所述第一参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第一参考信号预测集中的下行参考信号资源未预先测量过,所述K1个上行发射空间滤波器的标识信息为基于第一下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第一下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的接收空间滤波器。
- 如权利要求85所述的方法,其特征在于,所述K1个上行发射空间滤波器对应的上行接收空间滤波器分别为预测得到的下行参考信号资源对应的下行发射空间滤波器。
- 如权利要求74至77中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息的情况下,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从第一参考信号预测集中预测得到的上行参考信号资源确定,所述K1个上行接收空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源确定。
- 如权利要求87所述的方法,其特征在于,所述K1个上行发射空间滤波器的标识信息基于所述第一网络模型从所述第一参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K1个上行接收空间滤波器的标识信息分别为所述第一网络模型从所述第一参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求73至88中任一项所述的方法,其特征在于,所述第一通信设备为终端设备。
- 如权利要求73所述的方法,其特征在于,在所述第一测量数据集中包括的信息基于所述上行参考信号测量集得到的情况下,所述第一通信设备支持基于上行测量结果进行下行空间滤波器预测。
- 如权利要求90所述的方法,其特征在于,所述上行参考信号测量集中的上行参考信号资源为上行参考信号资源集中的部分或者全部上行参考信号资源。
- 如权利要求91所述的方法,其特征在于,所述上行参考信号资源集由网络设备配置,或者,所述上行参考信号资源集由协议约定。
- 如权利要求90至92中任一项所述的方法,其特征在于,在所述第一测量数据集仅包括基于上行参考信号测量集测量得到的链路质量信息的情况下,所述基于上行参考信号测量集测量得到的链路质量信息按照第二顺序输入所述第一网络模型;其中,所述第二顺序与所述上行参考信号测量集中的上行参考信号资源索引关联。
- 如权利要求90至93中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第一网络模型从第二参考信号预测集中预测得到的参考信号资源确定;其中,所述第二参考信号预测集中的参考信号资源包括下行参考信号资源。
- 如权利要求94所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源配置或激活了TCI状态,或者,若所述第二参考信号预测集中的下行参考信号资源已预先测量过,所述K2个下行发射空间滤波器的标识信息为所述第一网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的接收空间滤波器。
- 如权利要求94所述的方法,其特征在于,若所述第二参考信号预测集中的下行参考信号资源未配置或激活TCI状态,或者,若所述第二参考信号预测集中的下行参考信号资源未预先测量过,所述K2个下行发射空间滤波器的标识信息为基于第二下行扫描方式确定的下行接收空间滤波器的标识信息;其中,在所述第二下行扫描方式中,以预测得到的下行参考信号资源对应的下行发射空间滤波器发送下行参考信号,使用不同的接收空间滤波器接收下行参考信号,并基于接收到的下行参考信号的信号质量确定最优的下行接收空间滤波器。
- 如权利要求90至93中任一项所述的方法,其特征在于,在所述第一预测数据集包括预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息的情况下,所述K2个下行发射空间滤波器的标识信息基于所述第一网络模型从第二参考信号预测集中预测得到的下行参考信号资源确定,所述K2个下行接收空间滤波器的标识信息基于所述第一网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源确定。
- 如权利要求97所述的方法,其特征在于,所述K2个下行接收空间滤波器的标识信息基于所述第一网络模型从所述第二参考信号预测集中预测得到的上行参考信号资源对应的空间关系信息确定;和/或,所述K2个下行发射空间滤波器的标识信息分别为所述第一网络模型从所述第二参考信号预测集中预测得到的下行参考信号资源对应的下行发射空间滤波器的标识信息。
- 如权利要求90至98中任一项所述的方法,其特征在于,所述第一通信设备为网络设备。
- 一种终端设备,其特征在于,包括:通信单元,用于发送第一能力信息;其中,所述第一能力信息用于指示所述终端设备是否支持基于下行测量结果进行上行空间滤波器预测,或者,所述第一能力信息用于指示所述终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
- 一种网络设备,其特征在于,包括:通信单元,用于接收第一能力信息;其中,所述第一能力信息用于指示终端设备是否支持基于下行测量结果进行上行空间滤波器预测,或者,所述第一能力信息用于指示终端设备是否支持基于上行测量结果进行下行空间滤波器预测。
- 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:处理单元,用于将第一测量数据集输入第一网络模型,输出第一预测数据集;所述第一测量数据集包括以下至少之一:基于下行参考信号测量集测量得到的链路质量信息,基于下行参考信号测量集测量得到的链路质量信息对应的下行参考信号资源索引;且所述第一预测数据集包括以下之一:预测得到的K1个上行发射空间滤波器的标识信息,预测得到的K1个上行发射空间滤波器的标识信息和K1个上行接收空间滤波器的标识信息,K1为正整数;或者,所述第一测量数据集包括以下至少之一:基于上行参考信号测量集测量得到的链路质量信息,基于上行参考信号测量集测量得到的链路质量信息对应的上行参考信号资源索引;且所述第一预测数据集包括以下之一:预测得到的K2个下行发射空间滤波器的标识信息,预测得到的K2个下行发射空间滤波器的标识信息和K2个下行接收空间滤波器的标识信息,K2为正整数。
- 一种终端设备,其特征在于,包括:所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至36中任一项所述的方法。
- 一种网络设备,其特征在于,包括:所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求37至72中任一项所述的方法。
- 一种通信设备,其特征在于,包括:所述通信设备为第一通信设备,所述通信设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求73至99中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至36中任一项所述的方法,或者,使得安装有所述芯片的设备执行如权利要求37至72中任一项所述的方法,或者,使得安装有所述芯片的设备执行如权利要求73至99中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求1至36中任一项所述的方法被实现,或者,如权利要求37至72中任一项所述的方法被实现,或者,如权利要求73至99中任一项所述的方法被实现。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求1至36中任一项所述的方法被实现,或者,如权利要求37至72中任一项所述的方法被实现,或者,如权利要求73至99中任一项所述的方法被实现。
- 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1至36中任一项所述的方法被实现,或者,如权利要求37至72中任一项所述的方法被实现,或者,如权利要求73至99中任一项所述的方法被实现。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/075005 WO2024164177A1 (zh) | 2023-02-08 | 2023-02-08 | 无线通信的方法及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/075005 WO2024164177A1 (zh) | 2023-02-08 | 2023-02-08 | 无线通信的方法及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024164177A1 true WO2024164177A1 (zh) | 2024-08-15 |
Family
ID=92261835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/075005 WO2024164177A1 (zh) | 2023-02-08 | 2023-02-08 | 无线通信的方法及设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024164177A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112997414A (zh) * | 2018-11-09 | 2021-06-18 | 苹果公司 | 用于部分波束对应用户设备的波束管理 |
CN113287349A (zh) * | 2019-02-22 | 2021-08-20 | 华为技术有限公司 | 使用与无线通信系统协作的感测系统的方法和装置 |
WO2022186657A1 (en) * | 2021-03-05 | 2022-09-09 | Samsung Electronics Co., Ltd. | Method and apparatus for support of machine learning or artificial intelligence techniques in communication systems |
US20220294666A1 (en) * | 2021-03-05 | 2022-09-15 | Samsung Electronics Co., Ltd. | Method for support of artificial intelligence or machine learning techniques for channel estimation and mobility enhancements |
WO2023282975A1 (en) * | 2021-07-06 | 2023-01-12 | EdgeQ, Inc. | Systems and methods to reduce network access latency and improve quality of service ln wireless communication |
-
2023
- 2023-02-08 WO PCT/CN2023/075005 patent/WO2024164177A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112997414A (zh) * | 2018-11-09 | 2021-06-18 | 苹果公司 | 用于部分波束对应用户设备的波束管理 |
CN113287349A (zh) * | 2019-02-22 | 2021-08-20 | 华为技术有限公司 | 使用与无线通信系统协作的感测系统的方法和装置 |
WO2022186657A1 (en) * | 2021-03-05 | 2022-09-09 | Samsung Electronics Co., Ltd. | Method and apparatus for support of machine learning or artificial intelligence techniques in communication systems |
US20220294666A1 (en) * | 2021-03-05 | 2022-09-15 | Samsung Electronics Co., Ltd. | Method for support of artificial intelligence or machine learning techniques for channel estimation and mobility enhancements |
WO2023282975A1 (en) * | 2021-07-06 | 2023-01-12 | EdgeQ, Inc. | Systems and methods to reduce network access latency and improve quality of service ln wireless communication |
Non-Patent Citations (2)
Title |
---|
MODERATOR (OPPO): "Discussion summary#4 for other aspects on AI/ML for beam management", 3GPP DRAFT; R1-2205454, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 21 May 2022 (2022-05-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052192083 * |
OPPO: "Other aspects of AI/ML for beam management", 3GPP DRAFT; R1-2204018, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153310 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019094774A1 (en) | Ue beam management: a combined periodic and event based report approach for traffic overhead and ue mobility tradeoff | |
CN109890079A (zh) | 一种资源配置方法及其装置 | |
US11510159B2 (en) | Signal transmission method, network device, and terminal device | |
WO2018082663A1 (zh) | 一种参考信号传输的方法及装置 | |
US20230308141A1 (en) | Communication Method, Device, and System | |
US11974362B2 (en) | V2X resource map for semi-persistent scheduling with unicast/groupcast services | |
CN109672510A (zh) | 通信方法和通信装置 | |
WO2020073257A1 (zh) | 无线通信方法和终端设备 | |
WO2024164177A1 (zh) | 无线通信的方法及设备 | |
CN114451005B (zh) | 链路失败检测的方法和装置 | |
WO2024168516A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024130739A1 (zh) | 无线通信的方法及设备 | |
WO2024092498A1 (zh) | 无线通信的方法及设备 | |
WO2024130573A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
CN115843125A (zh) | 通信方法和通信装置 | |
WO2024065696A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
EP4462757A2 (en) | Communication method and communication device | |
WO2023206163A1 (zh) | 无线通信的方法、网络设备和终端设备 | |
CN113938907A (zh) | 通信的方法及通信装置 | |
WO2024174185A1 (zh) | 一种空间滤波器确定方法、装置、设备、芯片和存储介质 | |
WO2024000521A1 (zh) | 通信方法和设备 | |
US20240357437A1 (en) | Communication method and communication apparatus | |
WO2024138692A1 (zh) | 空间滤波器预测方法、终端设备及网络设备 | |
WO2024065697A1 (zh) | 模型监测的方法、终端设备和网络设备 | |
WO2024119492A1 (zh) | 无线通信的方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23920385 Country of ref document: EP Kind code of ref document: A1 |