WO2024122507A1 - Battery packaging material - Google Patents
Battery packaging material Download PDFInfo
- Publication number
- WO2024122507A1 WO2024122507A1 PCT/JP2023/043334 JP2023043334W WO2024122507A1 WO 2024122507 A1 WO2024122507 A1 WO 2024122507A1 JP 2023043334 W JP2023043334 W JP 2023043334W WO 2024122507 A1 WO2024122507 A1 WO 2024122507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- heat
- packaging material
- battery packaging
- battery
- Prior art date
Links
- 239000005022 packaging material Substances 0.000 title claims abstract description 77
- 229920005989 resin Polymers 0.000 claims abstract description 114
- 239000011347 resin Substances 0.000 claims abstract description 114
- 239000000314 lubricant Substances 0.000 claims abstract description 81
- -1 N-substituted amide Chemical group 0.000 claims abstract description 72
- 230000004888 barrier function Effects 0.000 claims abstract description 20
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 4
- 239000010410 layer Substances 0.000 claims description 261
- 238000000465 moulding Methods 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000002356 single layer Substances 0.000 claims description 11
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 7
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 31
- 230000006866 deterioration Effects 0.000 abstract description 12
- 238000007493 shaping process Methods 0.000 abstract 1
- 239000012790 adhesive layer Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 21
- 239000011888 foil Substances 0.000 description 14
- 238000007789 sealing Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 239000012948 isocyanate Substances 0.000 description 10
- 238000007788 roughening Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 125000003368 amide group Chemical group 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 229920006284 nylon film Polymers 0.000 description 7
- 239000004952 Polyamide Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 150000004671 saturated fatty acids Chemical class 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 239000002003 electrode paste Substances 0.000 description 4
- 229920006015 heat resistant resin Polymers 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000005025 cast polypropylene Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical class NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- CPUBMKFFRRFXIP-YPAXQUSRSA-N (9z,33z)-dotetraconta-9,33-dienediamide Chemical compound NC(=O)CCCCCCC\C=C/CCCCCCCCCCCCCCCCCCCCCC\C=C/CCCCCCCC(N)=O CPUBMKFFRRFXIP-YPAXQUSRSA-N 0.000 description 1
- KVPQFVHBQUTWLQ-CVBJKYQLSA-N (z)-docos-13-enamide;ethene Chemical compound C=C.CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O.CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O KVPQFVHBQUTWLQ-CVBJKYQLSA-N 0.000 description 1
- VZGOTNLOZGRSJA-ZZEZOPTASA-N (z)-n-octadecyloctadec-9-enamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCC\C=C/CCCCCCCC VZGOTNLOZGRSJA-ZZEZOPTASA-N 0.000 description 1
- FYGFTTWEWBXNMP-UHFFFAOYSA-N 10-amino-10-oxodecanoic acid Chemical compound NC(=O)CCCCCCCCC(O)=O FYGFTTWEWBXNMP-UHFFFAOYSA-N 0.000 description 1
- RDYWHMBYTHVOKZ-UHFFFAOYSA-N 18-hydroxyoctadecanamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCO RDYWHMBYTHVOKZ-UHFFFAOYSA-N 0.000 description 1
- XHSVWKJCURCWFU-UHFFFAOYSA-N 19-[3-(19-amino-19-oxononadecyl)phenyl]nonadecanamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCC1=CC=CC(CCCCCCCCCCCCCCCCCCC(N)=O)=C1 XHSVWKJCURCWFU-UHFFFAOYSA-N 0.000 description 1
- VESQWGARFWAICR-UHFFFAOYSA-N 2,2-dihydroxyoctadecanamide;ethene Chemical compound C=C.CCCCCCCCCCCCCCCCC(O)(O)C(N)=O VESQWGARFWAICR-UHFFFAOYSA-N 0.000 description 1
- KHTJRKQAETUUQH-UHFFFAOYSA-N 2-(hydroxymethyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCC(CO)C(N)=O KHTJRKQAETUUQH-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- ORAWFNKFUWGRJG-UHFFFAOYSA-N Docosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCC(N)=O ORAWFNKFUWGRJG-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Chemical class 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- GKAWAQNIMXHVNI-UHFFFAOYSA-N decanamide;ethene Chemical compound C=C.CCCCCCCCCC(N)=O.CCCCCCCCCC(N)=O GKAWAQNIMXHVNI-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- VJJBJJBTUXPNEO-UHFFFAOYSA-N docosanamide;ethene Chemical compound C=C.CCCCCCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCCCCCC(N)=O VJJBJJBTUXPNEO-UHFFFAOYSA-N 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- GFQOFGWPGYRLAO-UHFFFAOYSA-N dodecanamide;ethene Chemical compound C=C.CCCCCCCCCCCC(N)=O.CCCCCCCCCCCC(N)=O GFQOFGWPGYRLAO-UHFFFAOYSA-N 0.000 description 1
- LJZKUDYOSCNJPU-UHFFFAOYSA-N dotetracontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O LJZKUDYOSCNJPU-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- SWSBIGKFUOXRNJ-CVBJKYQLSA-N ethene;(z)-octadec-9-enamide Chemical compound C=C.CCCCCCCC\C=C/CCCCCCCC(N)=O.CCCCCCCC\C=C/CCCCCCCC(N)=O SWSBIGKFUOXRNJ-CVBJKYQLSA-N 0.000 description 1
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- JXZAVFLAOZYIOR-UHFFFAOYSA-N ethyl octadecanoate;octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(=O)OCC JXZAVFLAOZYIOR-UHFFFAOYSA-N 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical class C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- FEEPBTVZSYQUDP-UHFFFAOYSA-N heptatriacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O FEEPBTVZSYQUDP-UHFFFAOYSA-N 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VMRGZRVLZQSNHC-ZCXUNETKSA-N n-[(z)-octadec-9-enyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCCCCCC\C=C/CCCCCCCC VMRGZRVLZQSNHC-ZCXUNETKSA-N 0.000 description 1
- PECBPCUKEFYARY-ZPHPHTNESA-N n-[(z)-octadec-9-enyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCCCCCCC\C=C/CCCCCCCC PECBPCUKEFYARY-ZPHPHTNESA-N 0.000 description 1
- DJWFNQUDPJTSAD-UHFFFAOYSA-N n-octadecyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC DJWFNQUDPJTSAD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- WOQDVIVTFCTQCE-UHFFFAOYSA-N pentacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O WOQDVIVTFCTQCE-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
Definitions
- the present invention relates to a battery packaging material that is suitable for use as a case for secondary batteries, particularly small, portable lithium-ion secondary batteries, for example, for in-vehicle, stationary, notebook computers, mobile phones, and cameras.
- Electricity storage devices such as lithium-ion batteries
- laminated packaging materials such as aluminum foil or metal cases, with resin film attached to both sides.
- Laminate-type battery packaging materials are formed into three-dimensional shapes, such as roughly rectangular parallelepiped shapes, by deep drawing or stretch forming. By forming the battery packaging material into a three-dimensional shape, it is possible to ensure storage space for the electrodes and electrolyte.
- Patent Document 3 describes how using a multi-layer sealant film with three or more layers as the heat-sealable resin layer and specifying the lubricant content of each layer improves slipperiness and prevents the generation of white powder caused by bleeding out of the lubricant.
- the heat-sealable resin layer of battery packaging forms the inner surface of the battery case and is the layer that comes into contact with the electrodes and electrolyte, but until now, the effect of lubricants on battery performance had not been studied.
- the present invention aims to improve the slipperiness during molding and suppress deterioration of battery performance by using a specific lubricant in the heat-sealable resin layer of battery packaging material.
- a battery packaging material including, in order from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer,
- the battery packaging material wherein the heat-sealable resin layer contains a polyolefin resin and one or more lubricants, and at least one of the lubricants is an N-substituted amide represented by the following formula (I):
- R1 is a hydrocarbon chain represented by C m1 H n1 ; and R2 is a hydrocarbon chain represented by C m2 H n2 .
- the heat-sealable resin layer is a single layer or a multi-layer of two or more layers
- the innermost layer contains an N-substituted amide
- the total concentration of all lubricants including the N-substituted amide in the innermost layer is 100 ppm by mass to 2500 ppm by mass.
- a battery case member characterized in that a recess is formed by deep drawing or stretch molding in the battery packaging material described in any one of claims 1 to 6.
- the battery packaging material described in [1] above contains an N-substituted amide as a lubricant added to the heat-sealable resin layer that forms the inner surface of the battery case.
- the lubricant precipitates on the layer surface and exhibits a slipperiness-improving effect, enabling deeper forming in deep drawing and stretch forming, thereby increasing the battery capacity.
- the N-substituted amide has hydrocarbon chains (aliphatic hydrocarbons) R1 and R2 bonded to both ends of the amide group, even if it dissolves into the electrolyte, it does not interfere with the movement of lithium ions during charging and discharging, and the deterioration of battery performance caused by the lubricant can be suppressed.
- the battery packaging material described in [2] above has a total carbon number of 34 or more in the N-substituted amide, and the carbon number of R1 (m1) and the carbon number of R2 (m2) satisfy the relationship
- the battery packaging material described in [3] above has a single or multiple heat-sealable resin layer, the innermost layer contains an N-substituted amide, and the total concentration of all lubricants including the N-substituted amide is 100 ppm by mass to 2500 ppm by mass, so that the lubricating properties are good and the amount of bleed-out is suppressed.
- the battery packaging material described in [4] above has an excellent slipperiness because the heat-sealable resin layer contains an unsaturated fatty acid amide as a lubricant.
- the battery packaging material described in [5] above has an N-substituted amide content of 30% to 100% by mass relative to the total amount of lubricant in the innermost layer of the heat-sealable resin layer, so that a good balance can be achieved between the effect of improving lubricity and the effect of suppressing the deterioration of battery performance.
- the battery packaging material described in [6] above has an N-substituted amide-containing lubricant layer formed on the surface of the heat-sealable resin layer, which improves lubricity and inhibits deterioration of battery performance.
- the battery case member described in [7] above contains an N-substituted amide as a lubricant in the heat-sealable resin layer on the inner surface of the recess, which allows for deep forming in deep drawing and stretch forming, thereby increasing the battery capacity. Moreover, even if the lubricant dissolves in the electrolyte, it does not interfere with the movement of lithium ions during charging and discharging, and the deterioration of battery performance caused by the lubricant can be suppressed.
- FIG. 1 is a cross-sectional view showing an example of a battery packaging material of the present invention.
- FIG. 2 is a cross-sectional view showing another example of the battery packaging material of the present invention.
- FIG. 2 is a cross-sectional view showing still another example of the battery packaging material of the present invention.
- 2 is a cross-sectional view of a battery case made from the battery packaging material of FIG. 1 .
- FIGS 1 to 3 show an example of the battery packaging material of the present invention and its modified example.
- the battery packaging material of the present invention is basically a laminate including, from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer.
- the battery packaging material 1 in FIG. 1 is a laminate in which a base layer 13 is bonded to one side of a barrier layer 11 via a first adhesive layer 12, and a heat-sealable resin layer 15 is bonded to the other side via a second adhesive layer 14.
- the battery packaging material 1 is processed into a main body 51 with a recess 52 formed therein and a flat lid 55, and the heat-sealable resin layers 15 of both are arranged facing each other to house a battery main body 56 in the recess 52, and the flange portion 53 around the recess 52 and the lid 55 are heat-sealed to produce a battery case 50.
- the base material layer 13 is on the outside and the heat-sealable resin layer 15 is on the inside.
- the direction toward the base material side is referred to as the outside and the direction toward the heat-sealable resin layer is referred to as the inside, in accordance with the direction between the inside and outside of the case.
- the battery packaging material 1 of the present invention uses a specific lubricant in the heat-sealable resin layer 15 that forms the inner surface of the case 50 and comes into contact with the battery body 56, thereby improving the slipperiness during molding and preventing a decrease in battery performance.
- the heat-sealable resin layer 15 provides excellent chemical resistance against highly corrosive electrolytes and the like, and also provides the battery packaging material 1 with heat sealability.
- the heat-sealable resin layer 15 contains a polyolefin resin and one or more lubricants, at least one of which is an N-substituted amide represented by the following formula (I):
- R1 is a hydrocarbon chain represented by Cm1Hn1
- R2 is a hydrocarbon chain represented by Cm2Hn2
- the lubricant improves the sliding property with the mold during molding, and when the heat-fusible resin layer 15 is formed from a resin composition in which a resin and a lubricant are mixed, the lubricant precipitates on the layer surface and exhibits a sliding property improving effect. Therefore, deep molding is possible in deep drawing and stretch molding, and the battery capacity can be increased.
- polystyrene resin examples include polyethylene resin and polypropylene resin, and propylene resin is particularly preferred.
- propylene resin unstretched films such as cast polypropylene (CPP) and inflation polypropylene (IPP) are preferred.
- propylene resin examples include propylene homopolymers (hPP) and ethylene-propylene copolymers containing ethylene and propylene as copolymerization components.
- the ethylene-propylene copolymer may be either a random copolymer (rPP) or a block copolymer (bPP).
- the heat-sealable resin layer may be either a single layer or a multilayer.
- the heat-sealable resin layer 15 of the battery packaging material 1 in FIG. 1 is a single layer
- the heat-sealable resin layer 20 of the battery packaging material 2 in FIG. 2 is a three-layer layer
- the heat-sealable resin layer 25 of the battery packaging material 3 in FIG. 3 is a two-layer layer.
- the multilayer film constituting the multilayer heat-sealable resin layer can be produced by co-extrusion or the like.
- the heat-sealable resin layer 20 of the battery packaging material 2 in FIG. 2 is composed of a three-layer film having a laminate layer 22 bonded to the second adhesive layer 14 on one side of the intermediate layer 21 and a seal layer 23 on the other side.
- the heat-sealable resin layer 25 of the battery packaging material 3 in Figure 3 is a two-layer film consisting of a laminate layer 22 and a seal layer 23.
- the lubricant must contain an N-substituted amide, and multiple N-substituted amides or other lubricants can be used in combination.
- N-substituted amides represented by the above formula (I) include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide.
- Table 1 shows the total carbon number of these N-substituted amides, the carbon number of R1 (m1), and the carbon number of R2 (m2).
- N-substituted amides have hydrocarbon chains (aliphatic hydrocarbons) R1 and R2 attached to both ends of the amide group, so even if they dissolve into the electrolyte, they do not interfere with the movement of lithium ions during charging and discharging. In particular, this can prevent performance degradation of lithium ion secondary batteries, such as an increase in internal resistance and a decrease in discharge rate.
- the amide group interacts with Li ions and easily forms a non-covalent bond, thus interfering with the movement of Li ions.
- N-substituted amides having a total carbon number of 34 or more and in which the number of carbon atoms in R1 (m1) and the number of carbon atoms in R2 (m2) satisfy the relationship
- N-substituted amides that satisfy this condition have a smaller effect of the amide group due to steric hindrance and a smaller intramolecular polarity, so that the effect of the amide group impeding the movement of lithium ions can be reduced. Specifically, they are highly effective in suppressing the increase in the internal resistance of the battery and improving the discharge rate.
- the heat-sealable resin layer is a single layer or multiple layers, and in order to improve the slipperiness and prevent the deterioration of the battery performance, it is preferable to include an N-substituted amide in the innermost layer and to specify the total concentration of all lubricants including the N-substituted amide in the innermost layer.
- the innermost layer is the layer that forms the inner surface of the battery case 50 and comes into contact with the mating material during heat sealing.
- the innermost layer of the three-layer heat-sealable resin layer 20 in FIG. 2 or the two-layer heat-sealable resin layer 25 in FIG. 3 is the seal layer 23.
- the entire heat-sealable resin layer 15 is the innermost layer.
- the total concentration of all lubricants in the innermost layer is preferably 100 ppm by mass to 2500 ppm by mass. If it is less than 100 ppm by mass, good slipperiness cannot be obtained, and if it exceeds 2500 ppm by mass, the amount of bleed-out increases, and the lubricant may precipitate in the form of white powder on the surface of the innermost layer and adhere to the molding die or production line. If it is 2500 ppm by mass or less, the amount of bleed-out is suppressed.
- a particularly preferred total concentration of all lubricants in the innermost layer is 200 ppm by mass to 2000 ppm by mass.
- the lubricant added to the innermost layer may be only N-substituted amide, or other lubricants may be used in combination.
- the ratio of N-substituted amide to the total amount of lubricant in the innermost layer of the heat-sealable resin layer is 30% by mass or more in order to prevent a decrease in battery performance. If the ratio of N-substituted amide is less than 30% by mass and the ratio of other lubricants increases, the other lubricants dissolved in the electrolyte may hinder the movement of lithium ions during charging and discharging, causing a decrease in battery performance.
- the preferred ratio of N-substituted amide to the total amount of lubricant in the innermost layer is 30% to 100% by mass.
- the particularly preferred ratio of N-substituted amide to the total amount of lubricant in the innermost layer is 40% by mass or more.
- N-substituted amide or other lubricant when adding an N-substituted amide or other lubricant to layers other than the innermost layer in a multi-layer heat-sealable resin layer, it is preferable to increase or decrease the concentration of the other layers using the total concentration of all lubricants, including the N-substituted amide, in the innermost layer as the reference concentration.
- the total concentration of all lubricants in the innermost sealing layer 23 is desirable to set the total concentration of all lubricants in the innermost sealing layer 23 as the reference concentration, the concentration in the intermediate layer 21 to 1000 ppm or more and less than twice the reference concentration, and the concentration in the laminate layer 22 to 1/2 the reference concentration or less (including 0 ppm by mass).
- the N-substituted amide concentration in the intermediate layer 21 higher than that in the sealing layer 23, it is possible to suppress the migration of the N-substituted amide in the sealing layer 26 to the intermediate layer 21 and promote the bleeding out of the N-substituted amide to the surface of the sealing layer 23.
- the N-substituted amide concentration in the laminate layer 21 lower than that in the sealing layer 23, it is possible to suppress the bleeding out of the N-substituted amide to the laminate layer/adhesive layer interface and prevent a decrease in laminate strength.
- the total concentration of all the lubricants in the seal layer 23 is set as the reference concentration, and it is preferable that the lubricant concentration in the laminate layer 22 be 1/2 or less of the reference concentration.
- Lubricants that can be used in combination with N-substituted amides include methylol amides, saturated fatty acid amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
- fatty acid amides, especially unsaturated fatty acid amides are recommended as they have a greater effect on improving lubrication than N-substituted amides.
- methylol amide methylol stearic acid amide can be used.
- saturated fatty acid amide lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide
- saturated fatty acid bisamide methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, and N,N'-distearyl sebacic acid amide can be used.
- unsaturated fatty acid bisamide oleic acid amide, erucic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, and N,N'-dioleyl sebacate amide
- unsaturated fatty acid bisamide oleic acid amide, erucic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, and N,N'-dioleyl sebacate amide
- stearamide ethyl stearate can be used as the fatty acid ester amide.
- Aromatic bisamides that can be used include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
- the lubricant added to the heat-fusible resin layer 15 improves the lubricity by precipitating on the layer surface.
- the preferred amount of lubricant precipitating on the layer surface is 0.1 ⁇ g/cm 2 to 1 ⁇ g/cm 2 .
- the heat-sealable resin layer 15 may contain solid particles added as an antiblocking agent to prevent adhesion with the base layer 13, or as a surface roughening agent to improve slipperiness.
- the solid particles include silica, alumina, calcium carbonate, barium carbonate, titanium oxide, aluminum silicate, talc, kaolin, acrylic resin beads, and polyethylene resin beads.
- the preferred average particle size is 0.05 ⁇ m to 5 ⁇ m, and the preferred content is 500 ppm to 3500 ppm.
- the preferred average particle size is more than 5 ⁇ m and not more than 20 ⁇ m, and the preferred content is 200 ppm to 5000 ppm.
- the roughening material is a component added to form irregularities on the layer surface, so in the multi-layered heat-sealable resin layers 20 and 25, it is sufficient to add it only to the innermost seal layer 23, and it is preferable not to add it to the laminate layer 22 on the barrier layer 11 side.
- the preferred average particle size of the roughening material is more than 5 ⁇ m and not more than 20 ⁇ m
- the thickness of the layer to which the roughening material is added is preferably in the range of 5 ⁇ m to 20 ⁇ m. If the roughening material is added to a layer with a thickness of less than 5 ⁇ m, it will easily fall off.
- the layer thickness exceeds 20 ⁇ m, many parts of the roughening material with an average particle size of more than 5 ⁇ m and not more than 20 ⁇ m will be embedded in the resin, which may result in a loss of rigidity of the film. In addition, the roughening material will not be uniformly dispersed in the layer, which may reduce impact resistance and interlayer strength.
- the coefficient of dynamic friction of the heat-resistant resin layers 15, 20, and 25 is preferably 0.02 to 0.3. If the coefficient of dynamic friction is less than 0.02, the slipperiness is too good, and the battery packaging material is likely to slip or meander on the production line. On the other hand, if the coefficient of dynamic friction exceeds 0.3, the slipperiness decreases and the effect of improving moldability cannot be expected.
- the thickness of the heat-sealable resin layer 15 is preferably 20 ⁇ m to 120 ⁇ m. The same is true for the total thickness of the multilayer films 20, 25. A particularly preferred thickness is 30 ⁇ m to 80 ⁇ m.
- a lubricant layer containing an N-substituted amide is formed on the surface of the heat-sealing resin layer 15, 20, 25.
- the lubricant layer is the total amount of the lubricant layer due to precipitation from the heat-sealing resin layer and the lubricant layer due to application or transfer from the base layer 13, and this lubricant layer also provides an effect of improving the slipperiness and suppressing the deterioration of the battery performance.
- the lubricant layer may be a layer that completely covers the surface of the heat-sealing resin layer 15, 20, 25, or a layer in which the lubricant is intermittently present on the surface of the heat-sealing resin layer 15, 20, 25.
- the preferred amount of lubricant in the lubricant layer is 0.15 ⁇ g/cm 2 to 0.6 ⁇ g/cm 2 .
- the barrier layer 11 plays a role of imparting gas barrier properties that prevent the intrusion of oxygen and moisture to the battery packaging material 1.
- the barrier layer 11 is not particularly limited as long as it is a metal foil, but examples thereof include aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, titanium foil, and clad foil, and aluminum foil can be preferably used.
- the thickness of the barrier layer 11 is preferably 10 ⁇ m to 120 ⁇ m.
- a particularly preferable thickness of the barrier layer 11 is 30 ⁇ m to 90 ⁇ m.
- the barrier layer 11 is subjected to a base treatment such as a chemical conversion treatment at least on the surface of the metal foil on the side of the heat-fusible resin layer 15.
- a base treatment such as a chemical conversion treatment
- corrosion of the metal foil surface due to the contents can be sufficiently prevented.
- the base layer 13 is made of a heat-resistant resin film that does not melt at the heat-sealing temperature when the battery packaging material 1 is heat-sealed.
- the heat-resistant resin is a heat-resistant resin having a melting point 10° C. or higher, preferably 20° C. or higher, than the melting point of the resin constituting the heat-fusible resin layer 15.
- Examples of resins that satisfy this condition include polyamide films such as nylon films, polyester films, etc., and these stretched films are preferably used. Among them, it is particularly preferable to use biaxially stretched polyamide films such as biaxially stretched nylon films, biaxially stretched polybutylene terephthalate (PBT) films, biaxially stretched polyethylene terephthalate (PET) films, or biaxially stretched polyethylene naphthalate (PEN) films as the base layer 13.
- the nylon film is not particularly limited, but examples include 6 nylon film, 6,6 nylon film, and MXD nylon film.
- the base layer 13 may be formed of a single layer, or may be formed of a multilayer structure consisting of, for example, a polyester film/polyamide film (such as a multilayer structure consisting of a PET film/nylon film).
- the thickness of the base material layer 13 is preferably 9 ⁇ m to 50 ⁇ m, which can ensure sufficient strength as a packaging material and can reduce stress during molding such as stretch molding and drawing, thereby improving moldability.
- the thickness of the base material layer 13 is more preferably 9 ⁇ m to 30 ⁇ m.
- the total thickness is defined as the above thickness.
- the thickness of the adhesive that bonds the multiple layers is also included in the above thickness.
- the first adhesive layer 12 is not particularly limited, and examples thereof include an adhesive layer formed by a two-liquid curing adhesive.
- the two-liquid curing adhesive examples include a two-liquid curing adhesive composed of a first liquid (base) consisting of one or more polyols selected from the group consisting of polyurethane polyols, polyester polyols, polyether polyols, and polyester urethane polyols, and a second liquid (curing agent) consisting of an isocyanate.
- a two-liquid curing adhesive composed of a first liquid consisting of one or more polyols selected from the group consisting of polyester polyols and polyester urethane polyols, and a second liquid (curing agent) consisting of an isocyanate.
- the preferred thickness of the first adhesive layer 12 is 2 ⁇ m to 5 ⁇ m.
- the second adhesive layer 14 is not particularly limited, but for example, an adhesive containing one or more of polyurethane resin, acrylic resin, epoxy resin, polyolefin resin, elastomer resin, fluorine resin, and acid-modified polypropylene resin is recommended. Among them, an adhesive made of polyurethane composite resin containing acid-modified polyolefin as a main component is preferable.
- the preferred thickness of the second adhesive layer 14 is 2 ⁇ m to 5 ⁇ m.
- the first adhesive layer 12 and the second adhesive layer 14 are not essential layers, and the base layer 13 may be directly bonded to the barrier layer 11, or the heat-sealable resin layer 15 may be directly bonded to the barrier layer 11.
- a layer can be added to the outside of the substrate layer 13 of the battery packaging material 1 of the present invention.
- a substrate protective layer made of a resin composition containing a resin component and solid fine particles can be formed to impart slipperiness to the outer surface, improving moldability, and imparting excellent chemical resistance, solvent resistance, and abrasion resistance.
- the preferred materials for the resin composition constituting the substrate protective layer are as follows:
- the resin component it is preferable to use at least one of the following resins: acrylic resin, epoxy resin, urethane resin, polyolefin resin, fluorine resin, and phenoxy resin. These resins have high chemical resistance and solvent resistance, so that the solid particles are less likely to fall off due to deterioration of the resin.
- the resin component may be a base resin containing at least one of the above-mentioned resins and a curing agent that cures the base resin.
- the curing agent is not particularly limited and may be selected appropriately according to the base resin.
- the base resin is a mixture of a urethane resin and a phenoxy resin, it is preferable to use an isocyanate compound.
- the isocyanate compound various polyfunctional isocyanate compounds of aliphatic, alicyclic, and aromatic types can be recommended.
- Examples of aliphatic polyfunctional isocyanate compounds include hexamethylene diisocyanate (HDI), etc.
- examples of alicyclic polyfunctional isocyanate compounds include isophorone diisocyanate (IPDI), etc.
- examples of aromatic polyfunctional isocyanate compounds include tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI).
- Modified products of these polyfunctional isocyanate compounds may also be used, and examples of such modified polyfunctional isocyanates include those obtained by polymerization reactions such as isocyanuration, carbodiimide formation, and polymerization.
- the hardener is preferably blended in an amount of 5 to 30 parts by weight per 100 parts by weight of the base resin. If the amount is less than 5 parts by weight, adhesion to the base layer 13 and solvent resistance may decrease. If the amount is more than 30 parts by weight, the base protection layer 30 may become hard and moldability may decrease.
- a particularly preferred blend amount of hardener is 10 to 20 parts by weight per 100 parts by weight of the base resin.
- the substrate protective layer has a smaller shrinkage rate than the film that constitutes the substrate layer 13, so it is possible to reduce the stress caused by the expansion and contraction of the outer layer on the substrate layer 13 side.
- polyamide has a tendency to shrink in response to moisture, but the substrate protective layer 30 blocks moisture in the air, so it is less likely to shrink and stress on the outer layer is also reduced.
- urethane resins and polyester urethane resins are also preferable to use as the base resin.
- the solid fine particles may be either inorganic or organic, or may be mixed together.
- inorganic fine particles include silica, alumina, calcium oxide, calcium carbonate, calcium sulfate, calcium silicate, and carbon black.
- organic fine particles include fine particles of acrylic ester compounds, polystyrene compounds, epoxy resins, polyamide compounds, or crosslinked products thereof.
- One type of solid fine particle may be used, or two or more types may be used in combination.
- These solid particles preferably have an average particle size of 1 ⁇ m to 10 ⁇ m, with 2 ⁇ m to 5 ⁇ m being particularly preferred.
- solid particles that are too small, less than 1 ⁇ m in particle size they will be buried in the coating liquid, making it difficult to obtain the desired properties.
- solid particles that are large, more than 10 ⁇ m in particle size their particle size will exceed the coating thickness and they will be prone to falling off the substrate protective layer.
- the content of solid fine particles in the resin composition is preferably in the range of 0.1% by mass to 60% by mass, and even more preferably in the range of 5% by mass to 55% by mass.
- the thickness of the base protective layer after curing is preferably 1 to 10 ⁇ m.
- a layer thinner than the lower limit has little effect in improving slipperiness, while a layer thicker than the upper limit increases costs.
- a particularly preferred thickness is in the range of 2 to 5 ⁇ m.
- the battery case member of the present invention has a recess formed by deep drawing or stretch molding the battery packaging material described above.
- the main body 51 having the recess 52 in FIG. 4 corresponds to the battery case member of the present invention.
- the battery packaging material of the present invention has good slipperiness and excellent formability of the heat-sealable resin layer, which is advantageous for forming the recess 52 and is suitable for forming a deep recess.
- the battery capacity can be increased by forming a deep recess to expand the storage space of the battery main body.
- the inner surface of the recess is a heat-sealable resin layer to which an N-substituted amide has been added, the deterioration of the battery performance can be suppressed.
- battery packaging material 2 As Examples 1, 2, and 4 to 7 and Comparative Examples 1 and 2, battery packaging material 2 was produced in the laminated form shown in Fig. 2, and as Example 3, battery packaging material 1 was produced in the laminated form shown in Fig. 1.
- These battery packaging materials 1 and 2 have in common that, from the outside to the inside, a base material layer 13, a first adhesive layer 12, a barrier layer 11, and a second adhesive layer 14 are laminated, but the number of heat-sealable resin layers 15, 20 laminated on the inside of the second adhesive layer 14 is different.
- the heat-sealable resin layer 15 of battery packaging material 1 is a single layer
- the heat-sealable resin layer 20 of battery packaging material 2 is a three-layer structure consisting of a seal layer 23, an intermediate layer 21, and a laminate layer 22 (see Table 2).
- the materials common to the battery packaging materials 1 and 2 of each example are as follows.
- the barrier layer 11 was made of aluminum foil made of A8021-O specified in JIS H4160 and having a thickness of 40 ⁇ m. Both sides of the aluminum foil were coated with a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), a chromium (III) salt compound, water, and alcohol, and then dried at 180° C. to form a chemical conversion film.
- the chromium deposition amount of this chemical conversion film was 5 mg/ m2 per side.
- a biaxially oriented nylon 6 film with a thickness of 25 ⁇ m was used as the substrate layer 13.
- a two-component curing urethane adhesive was used for the first adhesive layer 12.
- a two-component curing type maleic acid modified propylene adhesive was used as the second adhesive layer 14.
- a two-component curing type maleic acid modified propylene adhesive was used as the second adhesive layer 14.
- a two-component curing type maleic acid modified propylene adhesive was used as the second adhesive layer 14.
- an unstretched PP film having a thickness of 30 ⁇ m was prepared by blending two types of lubricants shown in Table 3 and silica having an average particle size of 2 ⁇ m as an antiblocking material (AB material) with ethylene-propylene random copolymer (rPP).
- AB material antiblocking material
- rPP ethylene-propylene random copolymer
- the sealing layer 23 is made of ethylene-propylene random copolymer (rPP) blended with one or two types of lubricant shown in Table 3, silica with an average particle size of 2 ⁇ m as an antiblocking material (AB material), and HDPE beads with an average particle size of 12 ⁇ m as a roughening material.
- the middle layer 21 is made of ethylene-propylene block copolymer (bPP) blended with one or two types of lubricant shown in Table 3.
- the laminate layer 22 is made of ethylene-propylene random copolymer (rPP) blended with the lubricant shown in Table 3 and silica with an average particle size of 2 ⁇ m as an antiblocking material.
- the lubricant name and lubricant concentration, antiblocking material content, and roughening material content concentration of each layer are as shown in Table 3.
- the mixed materials for each of the above layers were co-extruded to produce a three-layer film with a sealing layer 23 thickness of 12 ⁇ m, an intermediate layer 21 thickness of 56 ⁇ m, and a laminate layer 22 thickness of 12 ⁇ m, for a total thickness of 80 ⁇ m.
- Table 2 shows the total concentration (ppm by mass) of all lubricants in the innermost layers of the heat-sealable resin layers 15 and 20, the concentration of N-substituted amide (ppm by mass), and the ratio (% by mass) of N-substituted amide to the total amount of lubricant in the innermost layer.
- the heat-sealable resin layer 15 itself is the innermost layer, and in the three-layer heat-sealable resin layer 20, the innermost layer is the sealing layer 23.
- the single-layer film for the heat-sealable resin layer 15 thus prepared was subjected to a corona treatment on one surface, while the three-layer film for the multi-layer heat-sealable resin layer 20 was subjected to a corona treatment on the surface of the laminate layer 22.
- a 3 ⁇ m-thick first adhesive layer 12 was formed on one side of the barrier layer 11 on which the chemical conversion film was formed, and the substrate layer 13 was dry laminated.
- a 2 ⁇ m-thick second adhesive layer 14 was formed on the other side of the barrier layer 11, and the corona-treated surface of the single-layer heat-sealable resin layer 15 or the laminate layer 22 (corona-treated surface) of the multi-layer heat-sealable resin layer 20 was superimposed on the second adhesive layer 14, and the laminate was dry laminated by sandwiching and pressing between a lamination roll heated to 100°C to produce a laminate, which was then wound up on a roll shaft.
- the laminate wound around a roll shaft was aged at 40° C. for 10 days to obtain battery packaging materials 1 and 2.
- the slipperiness of the battery packaging materials 1 and 2 thus produced was evaluated by the dynamic friction coefficient measured by the following method, and the moldability was evaluated by the maximum molding depth measured by the following method. Furthermore, the performance of the batteries using the cases produced from these battery packaging materials was evaluated by the following method. The evaluation results are shown in Table 4. (Kinematic Friction Coefficient) The dynamic friction coefficient between the heat-sealable resin layers 15, 20 of the battery packaging materials 1, 2 was measured using a friction tester TR model manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7125: 1999.
- the battery packaging materials 1 and 2 thus produced were cut into pieces of 100 mm x 150 mm to prepare molding materials.
- a deep drawing mold equipped with a die, a punch, and a blank holder was attached to a servo press machine, and deep drawing was performed to obtain a rectangular parallelepiped shape of 55 mm in length, 35 mm in width, and a depth D.
- the deep drawing was performed at a forming speed of 20 spm in a manner in which the top surface of the punch was brought into contact with the heat-sealable resin layers 15 and 20 of the molding material to protrude the base layer 13 outward, and the forming depth D was changed in increments of 0.5 mm.
- a forming blank measuring 140 mm in length and 55 mm in width was sampled from the battery packaging materials 1 and 2 to prepare a battery case for evaluation, and one half of the forming blank (70 mm in length and 55 mm in width) was deep-drawn to form a rectangular parallelepiped recess measuring 55 mm in length, 35 mm in width and 4 mm deep. The other part (non-formed part) of the forming blank was then folded to prepare a battery case that served as a lid part.
- Positive electrode sheet 90 g of LiCoO 2 as a positive electrode active material, 5 g of carbon black (manufactured by TIMCAL) as a conductive assistant, and 5 g of polyvinylidene fluoride (PVdF) as a binder were stirred and mixed while appropriately adding N-methyl-pyrrolidone to obtain a paste-like positive electrode paste.
- the positive electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m with a roll coater, and dried to harden the paste.
- Negative electrode sheet Artificial graphite particles and carbon-coated SiO2 particles were used as the negative electrode active material, and these were mixed in a mass ratio of 4:1 to prepare a mixed negative electrode active material.
- Carbon black and vapor-grown carbon fiber (VGCF (registered trademark)-H, manufactured by Showa Denko K.K.) were used as the conductive assistant, and these were mixed in a mass ratio of 3:2 to prepare a mixed conductive assistant.
- Styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as the binder.
- SBR styrene butadiene rubber
- CMC carboxymethyl cellulose
- the negative electrode paste was uniformly applied to a copper foil having a thickness of 20 ⁇ m with a doctor blade to a thickness of 150 ⁇ m, dried on a hot plate, and then vacuum dried. The dried sheet was pressed with a uniaxial press at a pressure of 3 ton/cm 2 to obtain a negative electrode sheet.
- the same positive electrode sheet was used, but the discharge amount per weight of active material of the negative electrode sheet was evaluated in advance in a half cell with a Li counter electrode, and the capacity of the negative electrode sheet was fine-tuned so that the ratio of the capacity (QA) of the negative electrode sheet to the capacity (QC) of the positive electrode sheet was a constant value of 1.2.
- Nonaqueous electrolyte A non-aqueous solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed in a volume ratio of 3:5:2 was mixed with 1 mass% vinylene carbonate (VC) and 5 mass% fluoroethylene carbonate (FEC) as additives.
- An electrolyte LiPF6 was dissolved in the non-aqueous solvent to a concentration of 1 mol/L to prepare a non-aqueous electrolyte solution.
- Preparation of evaluation battery A battery for evaluation was fabricated in a glove box kept in a dry argon gas atmosphere with a dew point of ⁇ 80° C. or less, according to the following procedure.
- the positive electrode sheet and the negative electrode sheet were punched out to obtain positive electrode pieces and negative electrode pieces with an area of 20 cm2 .
- An Al tab was attached to the aluminum foil of the positive electrode piece, and a Ni tab was attached to the copper foil of the negative electrode piece.
- a polypropylene film microporous membrane was sandwiched between the positive electrode piece and the negative electrode piece, and the Al tab and Ni tab were pulled out from one side of the battery case and inserted into the recess of the case, and 0.5 mL of nonaqueous electrolyte was poured in. The opening of the battery case was then sealed by heat fusion to obtain a battery for evaluation.
- the evaluation batteries were fabricated using Al and Ni tabs, and the internal resistance and discharge rate were measured using a HIOKI electrode resistance measurement system RM2610, and the battery performance was evaluated based on these.
- the internal resistance was measured at DCR when the state of charge (SOC) was 20% and 80%, and a value of less than 6 ⁇ was considered to be acceptable.
- the discharge rate (%) was defined as the percentage of the discharge capacity when discharging at 1C or 3C, with the discharge capacity taken as 100%.
- a discharge rate of 70% or more at 1C was considered acceptable, and a discharge rate of 18% or more at 3C was considered acceptable.
- the battery packaging material of the present invention can be suitably used as a case material for secondary batteries for in-vehicle, stationary, notebook computers, mobile phones, cameras, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Laminated Bodies (AREA)
Abstract
According to the present invention, a specific lubricant is used for a thermally fusible resin layer of a battery packaging material, thereby improving the lubricity during shaping and suppressing deterioration in the battery performance. The present invention provides a battery packaging material 1 which comprises, from the outer side toward the inner side, at least a base material layer 13, a barrier layer 11 and a thermally fusible resin layer 15. This battery packaging material is characterized in that: the thermally fusible resin layer 15 contains a polyolefin resin and one or more lubricants; and at least one lubricant is an N-substituted amide that is represented by formula (I). In the formula, R1 represents a hydrocarbon chain expressed by Cm1Hn1; and R2 represents a hydrocarbon chain expressed by Cm2Hn2.
Description
本発明は、例えば、車載用、定置型、ノートパソコン用、携帯電話用、カメラ用の二次電池、特に小型携帯用のリチウムイオン二次電池のケースとして好適に用いられる電池用包装材に関する。
The present invention relates to a battery packaging material that is suitable for use as a case for secondary batteries, particularly small, portable lithium-ion secondary batteries, for example, for in-vehicle, stationary, notebook computers, mobile phones, and cameras.
リチウムイオン電池を代表とする蓄電デバイスは、缶ケースからアルミニウム箔等の両面に樹脂フィルムを貼り合わせたラミネートタイプの包装材を用いることで、多様な形状に加工することが可能となり、さらに薄型、軽量化も可能となった。
Electricity storage devices, such as lithium-ion batteries, can now be made into a variety of shapes and can also be made thinner and lighter by using laminated packaging materials, such as aluminum foil or metal cases, with resin film attached to both sides.
また、ラミネートタイプの電池用包装材は、深絞り成形や張り出し成形やによって略直方体形状等の立体形状に成形される。電池用包装材を立体形状に成形することにより、電極や電解液を収容するための収容空間を確保することができる。
Laminate-type battery packaging materials are formed into three-dimensional shapes, such as roughly rectangular parallelepiped shapes, by deep drawing or stretch forming. By forming the battery packaging material into a three-dimensional shape, it is possible to ensure storage space for the electrodes and electrolyte.
電池用包装材をピンホールや破断等なく良好状態に立体形状に成形するには内側の熱融着性樹脂層(シーラント層)の表面の滑り性を向上させることが求められる。熱融着性樹脂層の滑り性を向上させる方法として、従来より樹脂への滑剤添加が行われている(特許文献1~3参照)。
In order to mold battery packaging materials into a three-dimensional shape in good condition without pinholes or breaks, it is necessary to improve the slipperiness of the surface of the inner heat-sealable resin layer (sealant layer). Adding a lubricant to the resin has been a method of improving the slipperiness of the heat-sealable resin layer (see Patent Documents 1 to 3).
特許文献1には、熱融着性樹脂層として特定組成のα-オレフィンのランダム共重合体に特定の滑剤を含有させたシーラントフィルムを用いることにより、滑り性を改善できることが記載されている。
Patent Document 1 describes how slipperiness can be improved by using a sealant film in which a specific lubricant is added to a random copolymer of α-olefins with a specific composition as the heat-sealable resin layer.
特許文献2には、熱融着性樹脂層として所定量の飽和脂肪酸アミドおよび不飽和脂肪酸アミドを添加したシーラントフィルムを用いることにより、滑り性を改善するととも滑剤のブリードアウトによる白粉発生を防止できることが記載されている。
Patent Document 2 describes how the use of a sealant film containing a specified amount of saturated fatty acid amide and unsaturated fatty acid amide as a heat-sealable resin layer improves slipperiness and prevents the generation of white powder caused by bleeding out of the lubricant.
特許文献3には、熱融着性樹脂層として3層以上の多層シーラントフィルムを用い、各層の滑剤含有量を規定することにより、滑り性を改善するととも滑剤のブリードアウトによる白粉発生を防止できることが記載されている。
Patent Document 3 describes how using a multi-layer sealant film with three or more layers as the heat-sealable resin layer and specifying the lubricant content of each layer improves slipperiness and prevents the generation of white powder caused by bleeding out of the lubricant.
上述した文献に記載された技術は、シーラントフィルムの組成、滑剤の種類および添加量に着眼して成形時の滑り性を改善するものである。このように、電池用包装材の熱融着性樹脂層の材料はもっぱら成形時の滑り性の改善を目的として改良されてきた。
The technology described in the above-mentioned documents focuses on the composition of the sealant film and the type and amount of lubricant added to improve slipperiness during molding. In this way, the materials for the heat-sealable resin layer of battery packaging materials have been improved solely for the purpose of improving slipperiness during molding.
電池用包装材の熱融着性樹脂層は電池ケースの内面となり電極や電解液と接触する層であるが、従来は滑剤が電池性能に与える影響について検討されていなかった。
The heat-sealable resin layer of battery packaging forms the inner surface of the battery case and is the layer that comes into contact with the electrodes and electrolyte, but until now, the effect of lubricants on battery performance had not been studied.
上述した背景技術に鑑み、本発明は、電池用包装材の熱融着性樹脂層に特定の滑剤を用いることにより、成形時の滑り性を向上させるとともに電池性能の劣化を抑制することを目的とする。
In view of the above-mentioned background technology, the present invention aims to improve the slipperiness during molding and suppress deterioration of battery performance by using a specific lubricant in the heat-sealable resin layer of battery packaging material.
即ち、本発明は、下記[1]~[7]に記載の構成を有する。
In other words, the present invention has the configurations described in [1] to [7] below.
[1]外側から内側へ順に、少なくとも基材層、バリア層、熱融着性樹脂層を含む電池用包装材であって、
前記熱融着性樹脂層がポリオレフィン系樹脂と1種以上の滑剤を含み、少なくとも1つの滑剤が下記式(I)で表されるN置換アミドであることを特徴とする電池用包装材。 [1] A battery packaging material including, in order from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer,
The battery packaging material, wherein the heat-sealable resin layer contains a polyolefin resin and one or more lubricants, and at least one of the lubricants is an N-substituted amide represented by the following formula (I):
前記熱融着性樹脂層がポリオレフィン系樹脂と1種以上の滑剤を含み、少なくとも1つの滑剤が下記式(I)で表されるN置換アミドであることを特徴とする電池用包装材。 [1] A battery packaging material including, in order from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer,
The battery packaging material, wherein the heat-sealable resin layer contains a polyolefin resin and one or more lubricants, and at least one of the lubricants is an N-substituted amide represented by the following formula (I):
R1はCm1Hn1で表される炭化水素鎖
R2はCm2Hn2で表される炭化水素鎖
[2]前記N置換アミドの炭素数が34以上であり、R1の炭素数(m1)とR2の炭素数(m2)が|m1-m2|≦15の関係を満たす前項1に記載の電池用包装材。 R1 is a hydrocarbon chain represented by C m1 H n1 ; and R2 is a hydrocarbon chain represented by C m2 H n2 . [2] The battery packaging material described in the precedingparagraph 1, wherein the N-substituted amide has 34 or more carbon atoms, and the number of carbon atoms of R1 (m1) and the number of carbon atoms of R2 (m2) satisfy the relationship |m1-m2|≦15.
R2はCm2Hn2で表される炭化水素鎖
[2]前記N置換アミドの炭素数が34以上であり、R1の炭素数(m1)とR2の炭素数(m2)が|m1-m2|≦15の関係を満たす前項1に記載の電池用包装材。 R1 is a hydrocarbon chain represented by C m1 H n1 ; and R2 is a hydrocarbon chain represented by C m2 H n2 . [2] The battery packaging material described in the preceding
[3]前記熱融着性樹脂層が単層または2層以上の多層であり、最内層がN置換アミドを含み、最内層中のN置換アミドを含む全滑剤の合計濃度が100質量ppm~2500質量ppmである前項1または2に記載の電池用包装材。
[3] The battery packaging material according to paragraph 1 or 2 above, in which the heat-sealable resin layer is a single layer or a multi-layer of two or more layers, the innermost layer contains an N-substituted amide, and the total concentration of all lubricants including the N-substituted amide in the innermost layer is 100 ppm by mass to 2500 ppm by mass.
[4]前記熱融着性樹脂層が滑剤として不飽和脂肪酸アミドを含む前項1~3のいずれかに記載の電池用包装材。
[4] The battery packaging material according to any one of the preceding paragraphs 1 to 3, wherein the heat-sealable resin layer contains an unsaturated fatty acid amide as a lubricant.
[5]前記熱融着性樹脂層の最内層の全滑剤量に対するN置換アミドの割合が30質量%~100質量%である前項3または4に記載の電池用包装材。
[5] The battery packaging material according to paragraph 3 or 4 above, in which the ratio of the N-substituted amide to the total amount of lubricant in the innermost layer of the heat-sealable resin layer is 30% by mass to 100% by mass.
[6]前記熱融着性樹脂層の表面にN置換アミドを含む滑剤層が形成されている前項1~5のいずれかに記載の電池用包装材。
[6] A battery packaging material according to any one of paragraphs 1 to 5 above, in which a lubricant layer containing an N-substituted amide is formed on the surface of the heat-sealable resin layer.
[7]請求項1~6のいずれかに記載された電池用包装材に、深絞り成形または張り出し成形による凹部が形成されていることを特徴とする電池ケース用部材。
[7] A battery case member, characterized in that a recess is formed by deep drawing or stretch molding in the battery packaging material described in any one of claims 1 to 6.
上記[1]に記載の電池用包装材は、電池ケースの内面となる熱融着性樹脂層に添加される滑剤としてN置換アミドを含んでいる。滑剤は層表面に析出して滑り性向上効果を発揮し、深絞り成形や張り出し成形において深い成形が可能となり、電池容量を増やすことができる。しかも、N置換アミドはアミド基の両端に炭化水素鎖(脂肪族炭化水素)R1、R2が結合しているので、電解液に溶出しても充放電の際にリチウムイオンの動きを妨げず、滑剤による電池性能の低下を抑制できる。
The battery packaging material described in [1] above contains an N-substituted amide as a lubricant added to the heat-sealable resin layer that forms the inner surface of the battery case. The lubricant precipitates on the layer surface and exhibits a slipperiness-improving effect, enabling deeper forming in deep drawing and stretch forming, thereby increasing the battery capacity. Furthermore, since the N-substituted amide has hydrocarbon chains (aliphatic hydrocarbons) R1 and R2 bonded to both ends of the amide group, even if it dissolves into the electrolyte, it does not interfere with the movement of lithium ions during charging and discharging, and the deterioration of battery performance caused by the lubricant can be suppressed.
上記[2]に記載の電池用包装材は、N置換アミドの総炭素数が34以上で、かつR1の炭素数(m1)とR2の炭素数(m2)が|m1-m2|≦15の関係を満たしているから、立体障害によるアミド基の影響が小さくなり分子内極性が小さくなるので、アミド基によるリチウムイオン移動の妨げによる影響を少なくでき、電池の内部抵抗の上昇を抑制するとともに放電レートを向上させる効果がある。
The battery packaging material described in [2] above has a total carbon number of 34 or more in the N-substituted amide, and the carbon number of R1 (m1) and the carbon number of R2 (m2) satisfy the relationship |m1-m2|≦15. This reduces the effect of the amide group due to steric hindrance and reduces the intramolecular polarity, thereby reducing the effect of the amide group impeding the movement of lithium ions, suppressing the increase in the internal resistance of the battery, and improving the discharge rate.
上記[3]に記載の電池用包装材は熱融着性樹脂層は単層または多層であり、最内層にN置換アミドが含まれ、N置換アミドを含む全滑剤の合計濃度が100質量ppm~2500質量ppmであるから、滑り性が良く、かつブリードアウト量も抑制される。
The battery packaging material described in [3] above has a single or multiple heat-sealable resin layer, the innermost layer contains an N-substituted amide, and the total concentration of all lubricants including the N-substituted amide is 100 ppm by mass to 2500 ppm by mass, so that the lubricating properties are good and the amount of bleed-out is suppressed.
上記[4]に記載の電池用包装材は熱融着性樹脂層が滑剤として不飽和脂肪酸アミドを含んでいるので優れた滑り性が得られる。
The battery packaging material described in [4] above has an excellent slipperiness because the heat-sealable resin layer contains an unsaturated fatty acid amide as a lubricant.
上記[5]に記載の電池用包装材は熱融着性樹脂層の最内層の滑剤総量に対するN置換アミドの割合が30質量%~100質量%であるから、滑り性の向上効果と電池性能の低下抑制効果がバランス良く得られる。
The battery packaging material described in [5] above has an N-substituted amide content of 30% to 100% by mass relative to the total amount of lubricant in the innermost layer of the heat-sealable resin layer, so that a good balance can be achieved between the effect of improving lubricity and the effect of suppressing the deterioration of battery performance.
上記[6]に記載の電池用包装材は熱融着性樹脂層の表面に形成されたN置換アミドを含む滑剤層により、滑り性の向上効果と電池性能の低下抑制効果が得られる。
The battery packaging material described in [6] above has an N-substituted amide-containing lubricant layer formed on the surface of the heat-sealable resin layer, which improves lubricity and inhibits deterioration of battery performance.
上記[7]に記載の電池ケース用部材は、凹部の内面の熱融着性樹脂層が滑剤としてN置換アミドを含んでいるから、深絞り成形や張り出し成形において深い成形が可能となり、電池容量を増やすことができる。しかも、滑剤電解液に溶出しても充放電の際にリチウムイオンの動きを妨げず、滑剤による電池性能の低下を抑制できる。
The battery case member described in [7] above contains an N-substituted amide as a lubricant in the heat-sealable resin layer on the inner surface of the recess, which allows for deep forming in deep drawing and stretch forming, thereby increasing the battery capacity. Moreover, even if the lubricant dissolves in the electrolyte, it does not interfere with the movement of lithium ions during charging and discharging, and the deterioration of battery performance caused by the lubricant can be suppressed.
図1~図3に、本発明の電池用包装材にかかる一例およびその変形例を示す。
Figures 1 to 3 show an example of the battery packaging material of the present invention and its modified example.
以下の説明において、同一符号を付した層は同一物または同等物を表しており、重複する説明を省略する。
[電池用包装材]
本発明の電池用包装材は、基本構成として、外側から内側へ順に、少なくとも基材層、バリア層、熱融着性樹脂層を含む積層体である。 In the following description, layers with the same reference numerals denote the same or equivalent parts, and duplicated descriptions will be omitted.
[Battery packaging material]
The battery packaging material of the present invention is basically a laminate including, from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer.
[電池用包装材]
本発明の電池用包装材は、基本構成として、外側から内側へ順に、少なくとも基材層、バリア層、熱融着性樹脂層を含む積層体である。 In the following description, layers with the same reference numerals denote the same or equivalent parts, and duplicated descriptions will be omitted.
[Battery packaging material]
The battery packaging material of the present invention is basically a laminate including, from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer.
図1の電池用包装材1は、バリア層11の一方の面に第1接着剤層12を介して基材層13が貼り合わされ、他方の面に第2接着剤層14を介して熱融着性樹脂層15が貼り合わされた積層体である。
The battery packaging material 1 in FIG. 1 is a laminate in which a base layer 13 is bonded to one side of a barrier layer 11 via a first adhesive layer 12, and a heat-sealable resin layer 15 is bonded to the other side via a second adhesive layer 14.
前記電池用包装材1は、図4に示すように、凹部52を形成した本体51とフラットな蓋55に加工され、両者の熱融着性樹脂層15同士を向かい合わせに配置して、凹部52内に電池本体56を収容し、凹部52の周囲のフランジ部53と蓋55をヒートシールすることにより電池ケース50が作製される。電池ケース50において、前記基材層13が外側となり、前記熱融着性樹脂層15が内側となる。従って、本発明において、電池用包装材を構成する各層の位置を方向で説明する場合に、ケースの内外の方向に合わせて、基材側の方向を外側、熱融着性樹脂層の方向を内側と称する。
As shown in FIG. 4, the battery packaging material 1 is processed into a main body 51 with a recess 52 formed therein and a flat lid 55, and the heat-sealable resin layers 15 of both are arranged facing each other to house a battery main body 56 in the recess 52, and the flange portion 53 around the recess 52 and the lid 55 are heat-sealed to produce a battery case 50. In the battery case 50, the base material layer 13 is on the outside and the heat-sealable resin layer 15 is on the inside. Therefore, in the present invention, when describing the positions of the layers constituting the battery packaging material in terms of direction, the direction toward the base material side is referred to as the outside and the direction toward the heat-sealable resin layer is referred to as the inside, in accordance with the direction between the inside and outside of the case.
本発明の電池用包装材1は、ケース50の内面となり電池本体56と接触する熱融着性樹脂層15に特定の滑剤を用いることにより成形時の滑り性を向上させるとともに電池性能の低下を防止することができる。
The battery packaging material 1 of the present invention uses a specific lubricant in the heat-sealable resin layer 15 that forms the inner surface of the case 50 and comes into contact with the battery body 56, thereby improving the slipperiness during molding and preventing a decrease in battery performance.
以下に、前記電池用包装材1を構成する各層について詳述する。
(熱融着性樹脂層)
熱融着性樹脂層15は腐食性の強い電解質などに対しても優れた耐薬品性を具備させるとともに、電池用包装材1にヒートシール性を付与する役割を担うものである。 Each layer constituting thebattery packaging material 1 will be described in detail below.
(Heat-fusible resin layer)
The heat-sealable resin layer 15 provides excellent chemical resistance against highly corrosive electrolytes and the like, and also provides the battery packaging material 1 with heat sealability.
(熱融着性樹脂層)
熱融着性樹脂層15は腐食性の強い電解質などに対しても優れた耐薬品性を具備させるとともに、電池用包装材1にヒートシール性を付与する役割を担うものである。 Each layer constituting the
(Heat-fusible resin layer)
The heat-
前記熱融着性樹脂層15はポリオレフィン系樹脂と1種以上の滑剤を含み、少なくとも1つの滑剤が下記式(I)で表されるN置換アミドである。
The heat-sealable resin layer 15 contains a polyolefin resin and one or more lubricants, at least one of which is an N-substituted amide represented by the following formula (I):
R1はCm1Hn1で表される炭化水素鎖
R2はCm2Hn2で表される炭化水素鎖
滑剤は成形時に金型との滑り性を向上させるものであり、樹脂と滑剤を混合した樹脂組成物で熱融着性樹脂層15を形成すると滑剤が層表面に析出して滑り性向上効果を発揮する。従って、深絞り成形や張り出し成形において深い成形が可能となり、電池容量を増やすことができる。 R1 is a hydrocarbon chain represented by Cm1Hn1 R2 is a hydrocarbon chain represented by Cm2Hn2 The lubricant improves the sliding property with the mold during molding, and when the heat-fusible resin layer 15 is formed from a resin composition in which a resin and a lubricant are mixed, the lubricant precipitates on the layer surface and exhibits a sliding property improving effect. Therefore, deep molding is possible in deep drawing and stretch molding, and the battery capacity can be increased.
R2はCm2Hn2で表される炭化水素鎖
滑剤は成形時に金型との滑り性を向上させるものであり、樹脂と滑剤を混合した樹脂組成物で熱融着性樹脂層15を形成すると滑剤が層表面に析出して滑り性向上効果を発揮する。従って、深絞り成形や張り出し成形において深い成形が可能となり、電池容量を増やすことができる。 R1 is a hydrocarbon chain represented by Cm1Hn1 R2 is a hydrocarbon chain represented by Cm2Hn2 The lubricant improves the sliding property with the mold during molding, and when the heat-fusible resin layer 15 is formed from a resin composition in which a resin and a lubricant are mixed, the lubricant precipitates on the layer surface and exhibits a sliding property improving effect. Therefore, deep molding is possible in deep drawing and stretch molding, and the battery capacity can be increased.
前記ポリオレフィン系樹脂はポリエチレン系樹脂またはポリプロピレン系樹脂を例示でき、特にプロピレン系樹脂が好ましい。プロピレン系樹脂としては、キャストポリプロピレン(CPP)やインフレーションポリプロピレン(IPP)等の無延伸フィルムが好ましい。前記プロピレン系樹脂として、プロピレンの単独重合体(hPP)の他、共重合成分としてエチレンおよびプロピレンを含有するエチレン-プロピレン共重合体を例示できる。前記エチレン-プロピレン共重合体は、ランダム共重合体(rPP)、ブロック共重合体(bPP)のいずれでもよい。
Examples of the polyolefin resin include polyethylene resin and polypropylene resin, and propylene resin is particularly preferred. As the propylene resin, unstretched films such as cast polypropylene (CPP) and inflation polypropylene (IPP) are preferred. Examples of the propylene resin include propylene homopolymers (hPP) and ethylene-propylene copolymers containing ethylene and propylene as copolymerization components. The ethylene-propylene copolymer may be either a random copolymer (rPP) or a block copolymer (bPP).
また、熱融着性樹脂層は単層、多層のいずれでもよい。図1の電池用包装材1の熱融着性樹脂層15は単層であり、図2の電池用包装材2の熱融着性樹脂層20は3層であり、図3の電池用包装材3の熱融着性樹脂層25は2層である。前記多層の熱融着性樹脂層を構成する多層フィルムは共押出し等で作製することができる。3層フィルムは、上述した種々のプロピレン系樹脂フィルムのうち、ヒートシール性、デラミネーション耐性、絶縁性が優れている点で、hPPまたはbPPを中間層とし、中間層の両外側にrPP層を配した3層共押出CPPフィルムを推奨できる。図2の電池用包装材2の熱融着性樹脂層20は、中間層21の一方の面に第2接着剤層14に貼り合わされるラミネート層22を配し、他方の面にシール層23を配した3層フィルムで構成されている。図3の電池用包装材3の熱融着性樹脂層25はラミネート層22とシール層23の2層フィルムである。
The heat-sealable resin layer may be either a single layer or a multilayer. The heat-sealable resin layer 15 of the battery packaging material 1 in FIG. 1 is a single layer, the heat-sealable resin layer 20 of the battery packaging material 2 in FIG. 2 is a three-layer layer, and the heat-sealable resin layer 25 of the battery packaging material 3 in FIG. 3 is a two-layer layer. The multilayer film constituting the multilayer heat-sealable resin layer can be produced by co-extrusion or the like. Among the various propylene-based resin films mentioned above, a three-layer co-extruded CPP film having an hPP or bPP intermediate layer and rPP layers on both outer sides of the intermediate layer is recommended for the three-layer film, because of its excellent heat sealability, delamination resistance, and insulation properties. The heat-sealable resin layer 20 of the battery packaging material 2 in FIG. 2 is composed of a three-layer film having a laminate layer 22 bonded to the second adhesive layer 14 on one side of the intermediate layer 21 and a seal layer 23 on the other side. The heat-sealable resin layer 25 of the battery packaging material 3 in Figure 3 is a two-layer film consisting of a laminate layer 22 and a seal layer 23.
前記滑剤はN置換アミドを含んでいることが条件であり、複数のN置換アミドを併用することも他の滑剤を併用することもできる。
The lubricant must contain an N-substituted amide, and multiple N-substituted amides or other lubricants can be used in combination.
上記式(I)で表されるN置換アミドとして、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドを例示できる。表1にこれらのN置換アミドの総炭素数、R1の炭素数(m1)、R2の炭素数(m2)を示す。
Examples of N-substituted amides represented by the above formula (I) include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide. Table 1 shows the total carbon number of these N-substituted amides, the carbon number of R1 (m1), and the carbon number of R2 (m2).
N置換アミドはアミド基の両端に炭化水素鎖(脂肪族炭化水素)R1、R2が結合しているので、電解液に溶出しても充放電の際にリチウムイオンの動きを妨げない。特に内部抵抗の上昇や放電レートの低下などのリチウムイオン2次電池の性能低下を防止できる。一方、アミド基が分子鎖末端に存在するエルカ酸アミドなどの場合、アミド基がLiイオンと相互作用し、容易に非共有結合を形成するためLiイオンの運動を妨げる。
N-substituted amides have hydrocarbon chains (aliphatic hydrocarbons) R1 and R2 attached to both ends of the amide group, so even if they dissolve into the electrolyte, they do not interfere with the movement of lithium ions during charging and discharging. In particular, this can prevent performance degradation of lithium ion secondary batteries, such as an increase in internal resistance and a decrease in discharge rate. On the other hand, in the case of erucic acid amide, where the amide group is present at the end of the molecular chain, the amide group interacts with Li ions and easily forms a non-covalent bond, thus interfering with the movement of Li ions.
前記N置換アミドのなかでも、総炭素数が34以上で、かつR1の炭素数(m1)とR2の炭素数(m2)が|m1-m2|≦15の関係を満たすアミド、即ちm1-m2の絶対値が15以下であるアミドを用いることが好ましい。この条件を満たすN置換アミドは立体障害によるアミド基の影響が小さくなり分子内極性が小さくなるので、アミド基によるリチウムイオン移動の妨げによる影響を少なくできる。具体的には、電池の内部抵抗の上昇を抑制するとともに、放電レートを向上させる効果が大きい。
Among the above N-substituted amides, it is preferable to use amides having a total carbon number of 34 or more and in which the number of carbon atoms in R1 (m1) and the number of carbon atoms in R2 (m2) satisfy the relationship |m1-m2|≦15, i.e., the absolute value of m1-m2 is 15 or less. N-substituted amides that satisfy this condition have a smaller effect of the amide group due to steric hindrance and a smaller intramolecular polarity, so that the effect of the amide group impeding the movement of lithium ions can be reduced. Specifically, they are highly effective in suppressing the increase in the internal resistance of the battery and improving the discharge rate.
熱融着性樹脂層は単層または多層であり、滑り性の向上を図るとともに電池の性能低下を抑制するためには、最内層にN置換アミドを含み、かつ最内層中のN置換アミドを含む全滑剤の合計濃度を規定することが好ましい。最内層とは、電池ケース50の内面を形成し、ヒートシール時に相手材と接触する層である。図2の3層の熱融着性樹脂層20または図3の2層の熱融着性樹脂層25の最内層はシール層23である。単層の場合は熱融着性樹脂層15全体が最内層である。最内層中の全滑剤の合計濃度は100質量ppm~2500質量ppmが好ましい。100質量ppm未満では良好な滑り性が得られず、2500質量ppmを超えるとブリードアウト量が多くなり、滑剤が最内層表面に白粉状に析出して成形金型や製造ラインに付着するおそれがある。2500質量ppm以下であればブリードアウト量が抑制される。最内層中の特に好ましい全滑剤の合計濃度は200質量ppm~2000質量ppmである。
The heat-sealable resin layer is a single layer or multiple layers, and in order to improve the slipperiness and prevent the deterioration of the battery performance, it is preferable to include an N-substituted amide in the innermost layer and to specify the total concentration of all lubricants including the N-substituted amide in the innermost layer. The innermost layer is the layer that forms the inner surface of the battery case 50 and comes into contact with the mating material during heat sealing. The innermost layer of the three-layer heat-sealable resin layer 20 in FIG. 2 or the two-layer heat-sealable resin layer 25 in FIG. 3 is the seal layer 23. In the case of a single layer, the entire heat-sealable resin layer 15 is the innermost layer. The total concentration of all lubricants in the innermost layer is preferably 100 ppm by mass to 2500 ppm by mass. If it is less than 100 ppm by mass, good slipperiness cannot be obtained, and if it exceeds 2500 ppm by mass, the amount of bleed-out increases, and the lubricant may precipitate in the form of white powder on the surface of the innermost layer and adhere to the molding die or production line. If it is 2500 ppm by mass or less, the amount of bleed-out is suppressed. A particularly preferred total concentration of all lubricants in the innermost layer is 200 ppm by mass to 2000 ppm by mass.
前記最内層に添加する滑剤はN置換アミドのみでもよく、他の滑剤を併用することもできる。他の滑剤を併用する場合は、電池性能の低下を防止するために、熱融着性樹脂層の最内層中の滑剤総量に対するN置換アミドの割合を30質量%以上とすることが好ましい。N置換アミドの割合が30質量%未満で他の滑剤の割合が増えると、電解液に溶出した他の滑剤が放充電時のリチウムイオンの動きを妨げて電池性能を低下させるおそれがある。従って、最内層中の滑剤総量に対するN置換アミドの好ましい割合は30質量%~100質量%である。最内層中の滑剤総量に対するN置換アミドの特に好ましい割合は40質量%以上である。N置換アミドと併用する滑剤名については後に詳述する。
The lubricant added to the innermost layer may be only N-substituted amide, or other lubricants may be used in combination. When using other lubricants in combination, it is preferable that the ratio of N-substituted amide to the total amount of lubricant in the innermost layer of the heat-sealable resin layer is 30% by mass or more in order to prevent a decrease in battery performance. If the ratio of N-substituted amide is less than 30% by mass and the ratio of other lubricants increases, the other lubricants dissolved in the electrolyte may hinder the movement of lithium ions during charging and discharging, causing a decrease in battery performance. Therefore, the preferred ratio of N-substituted amide to the total amount of lubricant in the innermost layer is 30% to 100% by mass. The particularly preferred ratio of N-substituted amide to the total amount of lubricant in the innermost layer is 40% by mass or more. The names of lubricants used in combination with N-substituted amide will be described in detail later.
また、多層の熱融着性樹脂層において最内層以外の層にN置換アミドまたは他の滑剤を添加する場合は、最内層のN置換アミドを含む全滑剤の合計濃度を基準濃度として他の層の濃度を増減することが好ましい。
In addition, when adding an N-substituted amide or other lubricant to layers other than the innermost layer in a multi-layer heat-sealable resin layer, it is preferable to increase or decrease the concentration of the other layers using the total concentration of all lubricants, including the N-substituted amide, in the innermost layer as the reference concentration.
図2の3層の熱融着性樹脂層20においては、最内層であるシール層23の全滑剤の合計濃度を基準濃度とし、中間層21の濃度を1000ppm以上で基準濃度の2倍以下とし、ラミネート層22の濃度を基準濃度の1/2以下(0質量ppmを含む)にすることが望ましい。シール層23よりも中間層21のN置換アミド濃度を高くすることによって、シール層26のN置換アミドが中間層21へ移行することを抑制し、シール層23表面へのN置換アミドのブリードアウトを促進させることができる。また、シール層23よりもラミネート層21のN置換アミド濃度を低くすることによって、ラミネート層/接着剤層界面へのN置換アミドのブリードアウトを抑制し、ラミネート強度の低下を防止する為である。図3の3層の熱融着性樹脂層25においては、シール層23の全滑剤の合計濃度を基準濃度とし、ラミネート層22の滑剤濃度を基準濃度の1/2以下にすること好ましい。
In the three-layer heat-sealable resin layer 20 in FIG. 2, it is desirable to set the total concentration of all lubricants in the innermost sealing layer 23 as the reference concentration, the concentration in the intermediate layer 21 to 1000 ppm or more and less than twice the reference concentration, and the concentration in the laminate layer 22 to 1/2 the reference concentration or less (including 0 ppm by mass). By making the N-substituted amide concentration in the intermediate layer 21 higher than that in the sealing layer 23, it is possible to suppress the migration of the N-substituted amide in the sealing layer 26 to the intermediate layer 21 and promote the bleeding out of the N-substituted amide to the surface of the sealing layer 23. In addition, by making the N-substituted amide concentration in the laminate layer 21 lower than that in the sealing layer 23, it is possible to suppress the bleeding out of the N-substituted amide to the laminate layer/adhesive layer interface and prevent a decrease in laminate strength. In the three-layer heat-sealable resin layer 25 of FIG. 3, the total concentration of all the lubricants in the seal layer 23 is set as the reference concentration, and it is preferable that the lubricant concentration in the laminate layer 22 be 1/2 or less of the reference concentration.
N置換アミドと併用する滑剤として、メチロールアミド、飽和脂肪酸アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族系ビスアミドを挙げることができる。これらの滑剤のなかでも、N置換アミドよりも滑り性向上効果の大きい脂肪酸アミド、特に不飽和脂肪酸アミドを推奨できる。
Lubricants that can be used in combination with N-substituted amides include methylol amides, saturated fatty acid amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Among these lubricants, fatty acid amides, especially unsaturated fatty acid amides, are recommended as they have a greater effect on improving lubrication than N-substituted amides.
メチロールアミドとして、メチロールステアリン酸アミドを用いることができる。
As the methylol amide, methylol stearic acid amide can be used.
飽和脂肪酸アミドとして、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドを用いることができる。
飽和脂肪酸ビスアミドとして、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドを用いることができる。 As the saturated fatty acid amide, lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide can be used.
As the saturated fatty acid bisamide, methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, and N,N'-distearyl sebacic acid amide can be used.
飽和脂肪酸ビスアミドとして、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドを用いることができる。 As the saturated fatty acid amide, lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide can be used.
As the saturated fatty acid bisamide, methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, and N,N'-distearyl sebacic acid amide can be used.
不飽和脂肪酸ビスアミドとして、オレイン酸アミド、エルカ酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドを用いることができる。
As the unsaturated fatty acid bisamide, oleic acid amide, erucic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, and N,N'-dioleyl sebacate amide can be used.
脂肪酸エステルアミドとして、ステアロアミドエチルステアレートを用いることができる。
As the fatty acid ester amide, stearamide ethyl stearate can be used.
芳香族系ビスアミドとして、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドを用いることができる。
Aromatic bisamides that can be used include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
前記熱融着性樹脂層15に添加した滑剤は層表面に析出することで滑り性を向上させる。層表面に析出する好ましい滑剤量は0.1μg/cm2~1μg/cm2である。
The lubricant added to the heat-fusible resin layer 15 improves the lubricity by precipitating on the layer surface. The preferred amount of lubricant precipitating on the layer surface is 0.1 μg/cm 2 to 1 μg/cm 2 .
前記熱融着性樹脂層15には滑剤の他に、基材層13との密着を防止するアンチブロック材や、滑り性向上のための粗面化材として固体微粒子を添加してもよい。前記固体微粒子として、シリカ、アルミナ、炭酸カルシウム、炭酸バリウム、酸化チタン、ケイ酸アルミニウム、タルク、カオリン、アクリル樹脂ビーズ、ポリエチレン樹脂ビーズ等を例示できる。これらの固体微粒子をアンチブロック材として用いる場合、好ましい平均粒径は0.05μm~5μmであり、好ましい含有量は500ppm~3500ppmである。また、粗面化材として用いる場合の好ましい平均粒径は5μmを超え20μm以下であり、好ましい含有量は200ppm~5000ppmである。
In addition to the lubricant, the heat-sealable resin layer 15 may contain solid particles added as an antiblocking agent to prevent adhesion with the base layer 13, or as a surface roughening agent to improve slipperiness. Examples of the solid particles include silica, alumina, calcium carbonate, barium carbonate, titanium oxide, aluminum silicate, talc, kaolin, acrylic resin beads, and polyethylene resin beads. When using these solid particles as antiblocking agents, the preferred average particle size is 0.05 μm to 5 μm, and the preferred content is 500 ppm to 3500 ppm. When using them as surface roughening agents, the preferred average particle size is more than 5 μm and not more than 20 μm, and the preferred content is 200 ppm to 5000 ppm.
前記粗面化材は層表面に凹凸を形成するために添加する成分であるから、多層の熱融着性樹脂層20、25においては、最内層であるシール層23のみに添加すれば足り、バリア層11側のラミネート層22には添加しない方が望ましい。また、粗面化材の好ましい平均粒径が5μmを超え20μm以下であることから、粗面化材を添加する層の厚みは5μm~20μmの範囲が好ましい。厚みが5μm未満の層に添加すると粗面化材が脱落し易くなる。一方、層の厚みが20μmを超えると平均粒径が5μmを超え20μm以下の粗面化材は樹脂中に埋没する部分が多くなり、その結果としてフィルムの剛性が損なわれるおそれがある。また、層中の粗面化材の分散が均一でなくなるので耐衝撃性や層間強度が低下するおそれがある。
The roughening material is a component added to form irregularities on the layer surface, so in the multi-layered heat-sealable resin layers 20 and 25, it is sufficient to add it only to the innermost seal layer 23, and it is preferable not to add it to the laminate layer 22 on the barrier layer 11 side. In addition, since the preferred average particle size of the roughening material is more than 5 μm and not more than 20 μm, the thickness of the layer to which the roughening material is added is preferably in the range of 5 μm to 20 μm. If the roughening material is added to a layer with a thickness of less than 5 μm, it will easily fall off. On the other hand, if the layer thickness exceeds 20 μm, many parts of the roughening material with an average particle size of more than 5 μm and not more than 20 μm will be embedded in the resin, which may result in a loss of rigidity of the film. In addition, the roughening material will not be uniformly dispersed in the layer, which may reduce impact resistance and interlayer strength.
前記耐熱性樹脂層15、20、25の動摩擦係数は0.02~0.3が好ましい。動摩擦係数が0.02未満では滑り性が良すぎて、製造ラインで電池用包装材の巻きずれや蛇行が生じ易くなる。一方、動摩擦係数が0.3を超えると滑り性が低下して成形性向上効果を見込めない。
The coefficient of dynamic friction of the heat-resistant resin layers 15, 20, and 25 is preferably 0.02 to 0.3. If the coefficient of dynamic friction is less than 0.02, the slipperiness is too good, and the battery packaging material is likely to slip or meander on the production line. On the other hand, if the coefficient of dynamic friction exceeds 0.3, the slipperiness decreases and the effect of improving moldability cannot be expected.
前記熱融着性樹脂層15の厚さは20μm~120μmであることが好ましい。多層フィルム20、25の総厚も同じである。特に好ましい厚さは30μm~80μmである。
The thickness of the heat-sealable resin layer 15 is preferably 20 μm to 120 μm. The same is true for the total thickness of the multilayer films 20, 25. A particularly preferred thickness is 30 μm to 80 μm.
さらに、前記熱融着性樹脂層15、20、25の表面にN置換アミドを含む滑剤層が形成されていることも好ましい。前記滑剤層は熱融着性樹脂層からの析出によるものと、塗布や基材層13からの転移によるものの合計量であり、この滑剤層によっても滑り性の向上効果と電池性能の低下抑制効果が得られる。前記滑剤層は熱融着性樹脂層15、20、25の表面をくまなく覆う層でもよいし、熱融着性樹脂層15、20、25の表面に滑剤が断続的に存在する層であってもよい。また、前記滑剤層における好ましい滑剤量は0.15μg/cm2~0.6μg/cm2である。
(バリア層)
前記バリア層11は、電池用包装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記バリア層11としては、金属箔である限り特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔、ニッケル箔、チタン箔、クラッド箔が挙げられ、アルミニウム箔を好適に用いることができる。前記バリア層11の厚さは、10μm~120μmであるのが好ましい。10μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、120μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。前記バリア層11の特に好ましい厚さは30μm~90μmである。 Furthermore, it is also preferable that a lubricant layer containing an N-substituted amide is formed on the surface of the heat-sealing resin layer 15, 20, 25. The lubricant layer is the total amount of the lubricant layer due to precipitation from the heat-sealing resin layer and the lubricant layer due to application or transfer from the base layer 13, and this lubricant layer also provides an effect of improving the slipperiness and suppressing the deterioration of the battery performance. The lubricant layer may be a layer that completely covers the surface of the heat-sealing resin layer 15, 20, 25, or a layer in which the lubricant is intermittently present on the surface of the heat-sealing resin layer 15, 20, 25. The preferred amount of lubricant in the lubricant layer is 0.15 μg/cm 2 to 0.6 μg/cm 2 .
(Barrier Layer)
Thebarrier layer 11 plays a role of imparting gas barrier properties that prevent the intrusion of oxygen and moisture to the battery packaging material 1. The barrier layer 11 is not particularly limited as long as it is a metal foil, but examples thereof include aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, titanium foil, and clad foil, and aluminum foil can be preferably used. The thickness of the barrier layer 11 is preferably 10 μm to 120 μm. By having a thickness of 10 μm or more, it is possible to prevent the occurrence of pinholes during rolling in the production of the metal foil, and by having a thickness of 120 μm or less, it is possible to reduce stress during molding such as stretch molding and drawing molding, thereby improving moldability. A particularly preferable thickness of the barrier layer 11 is 30 μm to 90 μm.
(バリア層)
前記バリア層11は、電池用包装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記バリア層11としては、金属箔である限り特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔、ニッケル箔、チタン箔、クラッド箔が挙げられ、アルミニウム箔を好適に用いることができる。前記バリア層11の厚さは、10μm~120μmであるのが好ましい。10μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、120μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。前記バリア層11の特に好ましい厚さは30μm~90μmである。 Furthermore, it is also preferable that a lubricant layer containing an N-substituted amide is formed on the surface of the heat-sealing
(Barrier Layer)
The
また、前記バリア層11は前記金属箔の少なくとも熱融着性樹脂層15側の面に、化成処理等の下地処理が施されていることが好ましい。このような化成処理が施されていることによって内容物(電池の電解質等)による金属箔表面の腐食を十分に防止できる。
(基材層)
前記基材層13には電池用包装材1をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂フィルムを用いる。前記耐熱性樹脂としては、熱融着性樹脂層15を構成する樹脂の融点より10℃以上、好ましくは20℃以上高い融点を有する耐熱性樹脂を用いる。この条件を満たす樹脂として、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記基材層13としては、2軸延伸ナイロンフィルム等の2軸延伸ポリアミドフィルム、2軸延伸ポリブチレンテレフタレート(PBT)フィルム、2軸延伸ポリエチレンテレフタレート(PET)フィルム又は2軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。前記基材層13は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。 In addition, it is preferable that thebarrier layer 11 is subjected to a base treatment such as a chemical conversion treatment at least on the surface of the metal foil on the side of the heat-fusible resin layer 15. By performing such a chemical conversion treatment, corrosion of the metal foil surface due to the contents (such as a battery electrolyte) can be sufficiently prevented.
(Base layer)
Thebase layer 13 is made of a heat-resistant resin film that does not melt at the heat-sealing temperature when the battery packaging material 1 is heat-sealed. The heat-resistant resin is a heat-resistant resin having a melting point 10° C. or higher, preferably 20° C. or higher, than the melting point of the resin constituting the heat-fusible resin layer 15. Examples of resins that satisfy this condition include polyamide films such as nylon films, polyester films, etc., and these stretched films are preferably used. Among them, it is particularly preferable to use biaxially stretched polyamide films such as biaxially stretched nylon films, biaxially stretched polybutylene terephthalate (PBT) films, biaxially stretched polyethylene terephthalate (PET) films, or biaxially stretched polyethylene naphthalate (PEN) films as the base layer 13. The nylon film is not particularly limited, but examples include 6 nylon film, 6,6 nylon film, and MXD nylon film. The base layer 13 may be formed of a single layer, or may be formed of a multilayer structure consisting of, for example, a polyester film/polyamide film (such as a multilayer structure consisting of a PET film/nylon film).
(基材層)
前記基材層13には電池用包装材1をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂フィルムを用いる。前記耐熱性樹脂としては、熱融着性樹脂層15を構成する樹脂の融点より10℃以上、好ましくは20℃以上高い融点を有する耐熱性樹脂を用いる。この条件を満たす樹脂として、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記基材層13としては、2軸延伸ナイロンフィルム等の2軸延伸ポリアミドフィルム、2軸延伸ポリブチレンテレフタレート(PBT)フィルム、2軸延伸ポリエチレンテレフタレート(PET)フィルム又は2軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。前記基材層13は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。 In addition, it is preferable that the
(Base layer)
The
前記基材層13の厚さは、9μm~50μmであるのが好ましく、包装材として十分な強度を確保でき、かつ張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。前記基材層13のさらに好ましい厚さは9μm~30μmである。基材層13が複層である場合は合計厚さを上記の厚さとする。また、複数の層を貼り合わせる接着剤の厚さも上記の厚さに含まれる。
(第1接着剤層)
前記第1接着剤層12としては、特に限定されるものではないが、例えば、2液硬化型接着剤により形成された接着剤層等が挙げられる。前記2液硬化型接着剤としては、例えば、ポリウレタン系ポリオール、ポリエステル系ポリオール、ポリエーテル系ポリオール及びポリエステルウレタン系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液(主剤)と、イソシアネートからなる第2液(硬化剤)とで構成される2液硬化型接着剤などが挙げられる。中でも、ポリエステル系ポリオール及びポリエステルウレタン系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液と、イソシアネートからなる2液(硬化剤)とで構成される2液硬化型接着剤を用いるのが好ましい。前記第1接着剤層12の好ましい厚さは2μm~5μmである。 The thickness of thebase material layer 13 is preferably 9 μm to 50 μm, which can ensure sufficient strength as a packaging material and can reduce stress during molding such as stretch molding and drawing, thereby improving moldability. The thickness of the base material layer 13 is more preferably 9 μm to 30 μm. When the base material layer 13 is a multi-layered layer, the total thickness is defined as the above thickness. The thickness of the adhesive that bonds the multiple layers is also included in the above thickness.
(First Adhesive Layer)
The firstadhesive layer 12 is not particularly limited, and examples thereof include an adhesive layer formed by a two-liquid curing adhesive. Examples of the two-liquid curing adhesive include a two-liquid curing adhesive composed of a first liquid (base) consisting of one or more polyols selected from the group consisting of polyurethane polyols, polyester polyols, polyether polyols, and polyester urethane polyols, and a second liquid (curing agent) consisting of an isocyanate. Among them, it is preferable to use a two-liquid curing adhesive composed of a first liquid consisting of one or more polyols selected from the group consisting of polyester polyols and polyester urethane polyols, and a second liquid (curing agent) consisting of an isocyanate. The preferred thickness of the first adhesive layer 12 is 2 μm to 5 μm.
(第1接着剤層)
前記第1接着剤層12としては、特に限定されるものではないが、例えば、2液硬化型接着剤により形成された接着剤層等が挙げられる。前記2液硬化型接着剤としては、例えば、ポリウレタン系ポリオール、ポリエステル系ポリオール、ポリエーテル系ポリオール及びポリエステルウレタン系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液(主剤)と、イソシアネートからなる第2液(硬化剤)とで構成される2液硬化型接着剤などが挙げられる。中でも、ポリエステル系ポリオール及びポリエステルウレタン系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液と、イソシアネートからなる2液(硬化剤)とで構成される2液硬化型接着剤を用いるのが好ましい。前記第1接着剤層12の好ましい厚さは2μm~5μmである。 The thickness of the
(First Adhesive Layer)
The first
また、前記外層が複層で構成される場合(基材層が複層の場合を含む)においても、上述の接着剤を推奨できる。
(第2接着剤層)
前記第2接着剤層14としては、特に限定されるものではないが、例えば、ポリウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリオレフィン系樹脂、エラストマー系樹脂、フッ素系樹脂、酸変性ポリプロピレン樹脂のうちの1種以上を含む接着剤を推奨できる。中でも、酸変性ポリオレフィンを主剤とするポリウレタン複合樹脂からなる接着剤が好ましい。前記第2接着剤層14の好ましい厚さは2μm~5μmである。 Furthermore, the above-mentioned adhesives are also recommended when the outer layer is made up of multiple layers (including when the base layer is made up of multiple layers).
(Second Adhesive Layer)
The secondadhesive layer 14 is not particularly limited, but for example, an adhesive containing one or more of polyurethane resin, acrylic resin, epoxy resin, polyolefin resin, elastomer resin, fluorine resin, and acid-modified polypropylene resin is recommended. Among them, an adhesive made of polyurethane composite resin containing acid-modified polyolefin as a main component is preferable. The preferred thickness of the second adhesive layer 14 is 2 μm to 5 μm.
(第2接着剤層)
前記第2接着剤層14としては、特に限定されるものではないが、例えば、ポリウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリオレフィン系樹脂、エラストマー系樹脂、フッ素系樹脂、酸変性ポリプロピレン樹脂のうちの1種以上を含む接着剤を推奨できる。中でも、酸変性ポリオレフィンを主剤とするポリウレタン複合樹脂からなる接着剤が好ましい。前記第2接着剤層14の好ましい厚さは2μm~5μmである。 Furthermore, the above-mentioned adhesives are also recommended when the outer layer is made up of multiple layers (including when the base layer is made up of multiple layers).
(Second Adhesive Layer)
The second
前記第1接着剤層12および第2接着剤層14は必須の層ではなく、基材層13が直接バリア層11に貼り合わされていてもよく、また熱融着性樹脂層15が直接バリア層11に貼り合わされていてもよい。
The first adhesive layer 12 and the second adhesive layer 14 are not essential layers, and the base layer 13 may be directly bonded to the barrier layer 11, or the heat-sealable resin layer 15 may be directly bonded to the barrier layer 11.
本発明の電池用包装材1の基材層13の外側には層を追加することができる。例えば、樹脂成分および固体微粒子を含有する樹脂組成物で構成された基材保護層を形成して、外側の面に滑り性を付与して成形性を向上させるとともに、優れた耐薬品性、耐溶剤性、耐摩耗性を付与することができる。
A layer can be added to the outside of the substrate layer 13 of the battery packaging material 1 of the present invention. For example, a substrate protective layer made of a resin composition containing a resin component and solid fine particles can be formed to impart slipperiness to the outer surface, improving moldability, and imparting excellent chemical resistance, solvent resistance, and abrasion resistance.
前記基材保護層を構成する樹脂組成物の、好ましい材料は以下のとおりである。
The preferred materials for the resin composition constituting the substrate protective layer are as follows:
前記樹脂成分として、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、フェノキシ樹脂のうち少なくとも1種の樹脂を用いることが好ましい。これらの樹脂は高い耐薬品性、耐溶剤性を有しているため、樹脂の劣化などによる固体微粒子の脱落が起こりにくくなる。
As the resin component, it is preferable to use at least one of the following resins: acrylic resin, epoxy resin, urethane resin, polyolefin resin, fluorine resin, and phenoxy resin. These resins have high chemical resistance and solvent resistance, so that the solid particles are less likely to fall off due to deterioration of the resin.
また、樹脂成分は、上述した少なくとも1種の樹脂を含む主剤樹脂とこの主剤樹脂を硬化させる硬化剤とであっても良い。硬化剤は特に限定されるものではなく、主剤樹脂に応じて適宜選択すればよい。例えば主剤樹脂がウレタン系樹脂とフェノキシ系樹脂の混合物の場合は、イソシアネート化合物を用いることが好ましい。イソシアネート化合物は、脂肪族系、脂環族系、芳香族系の各種多官能イソシアネート化合物を推奨できる。脂肪族系多官能イソシアネート化合物としてヘキサメチレンジイソシアネート(HDI)等を挙げることができ、脂環族系多官能イソシアネート化合物としてイソホロンジイソシアネート(IPDI)等を挙げることができ、芳香族系多官能イソシアネート化合物としてはトリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)等が挙げることができる。また、これらの多官能イソシアネート化合物の変性体であってもよく、イソシアヌレート化、カルボジイミド化、ポリメリック化等の多量化反応による多官能イソシアネート変性体を例示できる。
The resin component may be a base resin containing at least one of the above-mentioned resins and a curing agent that cures the base resin. The curing agent is not particularly limited and may be selected appropriately according to the base resin. For example, when the base resin is a mixture of a urethane resin and a phenoxy resin, it is preferable to use an isocyanate compound. As the isocyanate compound, various polyfunctional isocyanate compounds of aliphatic, alicyclic, and aromatic types can be recommended. Examples of aliphatic polyfunctional isocyanate compounds include hexamethylene diisocyanate (HDI), etc., examples of alicyclic polyfunctional isocyanate compounds include isophorone diisocyanate (IPDI), etc., and examples of aromatic polyfunctional isocyanate compounds include tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI). Modified products of these polyfunctional isocyanate compounds may also be used, and examples of such modified polyfunctional isocyanates include those obtained by polymerization reactions such as isocyanuration, carbodiimide formation, and polymerization.
前記硬化剤は前記主剤樹脂100質量部に対して5質量部~30質量部を配合することが好ましい。5質量部未満では基材層13への密着性および耐溶剤性が低下するおそれがある。また30質量部を超えると、基材保護層30が硬くなって成形性が低下するおそれがある。特に好ましい硬化剤の配合量は前記主剤樹脂100質量部に対して10~20質量部である。
The hardener is preferably blended in an amount of 5 to 30 parts by weight per 100 parts by weight of the base resin. If the amount is less than 5 parts by weight, adhesion to the base layer 13 and solvent resistance may decrease. If the amount is more than 30 parts by weight, the base protection layer 30 may become hard and moldability may decrease. A particularly preferred blend amount of hardener is 10 to 20 parts by weight per 100 parts by weight of the base resin.
基材保護層は基材層13を構成するフィルムに比べて収縮率が小さいため、基材層13側への外層の伸縮による応力を軽減することができる。また、特に基材層13にポリアミドフィルムを用いた場合、ポリアミドは水分に対し縮みやすい性質があるが、基材保護層30が空気中の水分をブロックするため、縮みにくくなり外層への応力も抑えられる。
The substrate protective layer has a smaller shrinkage rate than the film that constitutes the substrate layer 13, so it is possible to reduce the stress caused by the expansion and contraction of the outer layer on the substrate layer 13 side. In particular, when a polyamide film is used for the substrate layer 13, polyamide has a tendency to shrink in response to moisture, but the substrate protective layer 30 blocks moisture in the air, so it is less likely to shrink and stress on the outer layer is also reduced.
また、主剤としてウレタン系樹脂およびポリエステルウレタン系樹脂を用いることも好ましい。
It is also preferable to use urethane resins and polyester urethane resins as the base resin.
前記固体微粒子は、無機微粒子、有機微粒子のいずれでも使用でき、それらを混合して用いることもできる。無機微粒子としては、シリカ、アルミナ、酸化カルシウム、炭酸カルシウム、硫酸カルシウム、ケイ酸カルシウム、カーボンブラック等を例示でき、有機微粒子としては、アクリル酸エステル系化合物、ポリスチレン系化合物、エポキシ系樹脂、ポリアミド系化合物、またはそれらの架橋物等の微粒子を使用しうる。前記固体微粒子は1種を使用しても、2種以上を混合して使用してもよい。
The solid fine particles may be either inorganic or organic, or may be mixed together. Examples of inorganic fine particles include silica, alumina, calcium oxide, calcium carbonate, calcium sulfate, calcium silicate, and carbon black. Examples of organic fine particles include fine particles of acrylic ester compounds, polystyrene compounds, epoxy resins, polyamide compounds, or crosslinked products thereof. One type of solid fine particle may be used, or two or more types may be used in combination.
これらの固体微粒子は、平均粒径が1μm~10μmのものが好適に用いられ、なかでも2μm~5μmが好ましい。1μm未満の粒径の小さすぎる固体微粒子を用いるときは、塗布液の中に埋もれてしまい所望の特性を得難い。一方、10μmを超える粒径の大きい固体微粒子を用いるときは、粒径が塗布厚さを超えてしまい基材保護層から脱落し易くなる。
These solid particles preferably have an average particle size of 1 μm to 10 μm, with 2 μm to 5 μm being particularly preferred. When using solid particles that are too small, less than 1 μm in particle size, they will be buried in the coating liquid, making it difficult to obtain the desired properties. On the other hand, when using solid particles that are large, more than 10 μm in particle size, their particle size will exceed the coating thickness and they will be prone to falling off the substrate protective layer.
また、樹脂組成物における固体微粒子の含有量は、0.1質量%~60質量%の範囲が好ましく、5質量%~55質量%の範囲がなお一層好ましい。
The content of solid fine particles in the resin composition is preferably in the range of 0.1% by mass to 60% by mass, and even more preferably in the range of 5% by mass to 55% by mass.
前記基材保護層の硬化後の厚さは1~10μmが好ましい。前記下限値よりも薄い層では滑り性向上効果が少なく、上限値よりも厚い層ではコストアップとなる。特に好ましい厚さは2~5μmの範囲である。
[電池ケース用部材]
本発明の電池ケース用部材は上述した電池用包装材を深絞り成形または張り出し成形により形成された凹部を有している。図4の凹部52を有する本体51が本発明の電池ケース用部材に該当する。本発明の電池用包装材は熱融着性樹脂層の滑り性が良く成形性に優れているから、凹部52の成形に有利であり深い凹部の成形に適している。深い凹部を形成して電池本体の収容空間を拡大することにより電池容量の増大を図ることができる。また、凹部の内面はN置換アミドが添加された熱融着性樹脂層であるから、電池性能の低下を抑制できる。 The thickness of the base protective layer after curing is preferably 1 to 10 μm. A layer thinner than the lower limit has little effect in improving slipperiness, while a layer thicker than the upper limit increases costs. A particularly preferred thickness is in the range of 2 to 5 μm.
[Battery case components]
The battery case member of the present invention has a recess formed by deep drawing or stretch molding the battery packaging material described above. Themain body 51 having the recess 52 in FIG. 4 corresponds to the battery case member of the present invention. The battery packaging material of the present invention has good slipperiness and excellent formability of the heat-sealable resin layer, which is advantageous for forming the recess 52 and is suitable for forming a deep recess. The battery capacity can be increased by forming a deep recess to expand the storage space of the battery main body. In addition, since the inner surface of the recess is a heat-sealable resin layer to which an N-substituted amide has been added, the deterioration of the battery performance can be suppressed.
[電池ケース用部材]
本発明の電池ケース用部材は上述した電池用包装材を深絞り成形または張り出し成形により形成された凹部を有している。図4の凹部52を有する本体51が本発明の電池ケース用部材に該当する。本発明の電池用包装材は熱融着性樹脂層の滑り性が良く成形性に優れているから、凹部52の成形に有利であり深い凹部の成形に適している。深い凹部を形成して電池本体の収容空間を拡大することにより電池容量の増大を図ることができる。また、凹部の内面はN置換アミドが添加された熱融着性樹脂層であるから、電池性能の低下を抑制できる。 The thickness of the base protective layer after curing is preferably 1 to 10 μm. A layer thinner than the lower limit has little effect in improving slipperiness, while a layer thicker than the upper limit increases costs. A particularly preferred thickness is in the range of 2 to 5 μm.
[Battery case components]
The battery case member of the present invention has a recess formed by deep drawing or stretch molding the battery packaging material described above. The
[電池用包装材]
実施例1、2、4~7および比較例1、2として図2の積層形態の電池用包装材2を作製し、実施例3として図1の積層形態の電池用包装材1を作製した。これらの電池用包装材1、2は、外側から内側へ順に、基材層13、第1接着剤層12、バリア層11、第2接着剤層14が積層されていることが共通し、第2接着剤層14の内側に積層されている熱融着性樹脂層15、20の層数が異なる。電池用包装材1の熱融着性樹脂層15は単層であり、電池用包装材2の熱融着性樹脂層20はシール層23、中間層21、ラミネート層22の3層である(表2参照)。 [Battery packaging material]
As Examples 1, 2, and 4 to 7 and Comparative Examples 1 and 2,battery packaging material 2 was produced in the laminated form shown in Fig. 2, and as Example 3, battery packaging material 1 was produced in the laminated form shown in Fig. 1. These battery packaging materials 1 and 2 have in common that, from the outside to the inside, a base material layer 13, a first adhesive layer 12, a barrier layer 11, and a second adhesive layer 14 are laminated, but the number of heat-sealable resin layers 15, 20 laminated on the inside of the second adhesive layer 14 is different. The heat-sealable resin layer 15 of battery packaging material 1 is a single layer, and the heat-sealable resin layer 20 of battery packaging material 2 is a three-layer structure consisting of a seal layer 23, an intermediate layer 21, and a laminate layer 22 (see Table 2).
実施例1、2、4~7および比較例1、2として図2の積層形態の電池用包装材2を作製し、実施例3として図1の積層形態の電池用包装材1を作製した。これらの電池用包装材1、2は、外側から内側へ順に、基材層13、第1接着剤層12、バリア層11、第2接着剤層14が積層されていることが共通し、第2接着剤層14の内側に積層されている熱融着性樹脂層15、20の層数が異なる。電池用包装材1の熱融着性樹脂層15は単層であり、電池用包装材2の熱融着性樹脂層20はシール層23、中間層21、ラミネート層22の3層である(表2参照)。 [Battery packaging material]
As Examples 1, 2, and 4 to 7 and Comparative Examples 1 and 2,
各例の電池用包装材1、2に共通する材料は下記のとおりである。
(共通材料)
バリア層11として、JIS H4160で規定されたA8021-Oからなり、厚さが40μmのアルミニウム箔を用いた。前記アルミニウム箔の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成したものを使用した。この化成皮膜のクロム付着量は片面当たり5mg/m2である。 The materials common to the battery packaging materials 1 and 2 of each example are as follows.
(Common materials)
Thebarrier layer 11 was made of aluminum foil made of A8021-O specified in JIS H4160 and having a thickness of 40 μm. Both sides of the aluminum foil were coated with a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), a chromium (III) salt compound, water, and alcohol, and then dried at 180° C. to form a chemical conversion film. The chromium deposition amount of this chemical conversion film was 5 mg/ m2 per side.
(共通材料)
バリア層11として、JIS H4160で規定されたA8021-Oからなり、厚さが40μmのアルミニウム箔を用いた。前記アルミニウム箔の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成したものを使用した。この化成皮膜のクロム付着量は片面当たり5mg/m2である。 The materials common to the
(Common materials)
The
基材層13として、厚さ25μmの2軸延伸6ナイロンフィルムを用いた。
A biaxially oriented nylon 6 film with a thickness of 25 μm was used as the substrate layer 13.
第1接着剤層12として2液硬化型ウレタン系接着剤を用いた。
A two-component curing urethane adhesive was used for the first adhesive layer 12.
第2接着剤層14として、2液硬化型マレイン酸変性プロピレン接着剤を用いた。
(熱融着性樹脂層用フィルムの作製)
実施例3の単層の熱融着性樹脂層15として、エチレン-プロピレンランダム共重合体(rPP)に表3に記載の2種類の滑剤およびアンチブロック材(AB材)として平均粒径2μmのシリカを配合し、厚さ30μmの無延伸PPフィルムを作製した。滑剤名および滑剤濃度、アンチブロック材の含有量は表3に示すとおりである。 As the secondadhesive layer 14, a two-component curing type maleic acid modified propylene adhesive was used.
(Preparation of film for heat-sealable resin layer)
As the single-layered heat-fusible resin layer 15 of Example 3, an unstretched PP film having a thickness of 30 μm was prepared by blending two types of lubricants shown in Table 3 and silica having an average particle size of 2 μm as an antiblocking material (AB material) with ethylene-propylene random copolymer (rPP). The names and concentrations of the lubricants and the content of the antiblocking material are as shown in Table 3.
(熱融着性樹脂層用フィルムの作製)
実施例3の単層の熱融着性樹脂層15として、エチレン-プロピレンランダム共重合体(rPP)に表3に記載の2種類の滑剤およびアンチブロック材(AB材)として平均粒径2μmのシリカを配合し、厚さ30μmの無延伸PPフィルムを作製した。滑剤名および滑剤濃度、アンチブロック材の含有量は表3に示すとおりである。 As the second
(Preparation of film for heat-sealable resin layer)
As the single-layered heat-
実施例1、2、4~7および比較例1、2の熱融着性樹脂層20として3層フィルムを作製した。
Three-layer films were produced as the heat-sealable resin layer 20 for Examples 1, 2, and 4 to 7 and Comparative Examples 1 and 2.
シール層23はエチレン-プロピレンランダム共重合体(rPP)に表3に示す1種類または2種類の滑剤、アンチブロック材(AB材)として平均粒径2μmのシリカ、粗面化材として平均12μmのHDPEビーズを配合した。中間層21はエチレン-プロピレンブロック共重合体(bPP)に表3に示す1種類または2種類の滑剤を配合した。ラミネート層22はエチレン-プロピレンランダム共重合体(rPP)に表3に示す滑剤およびアンチブロック材として平均粒径2μmのシリカを配合した。各層の滑剤名および滑剤濃度、アンチブロック材の含有量、粗面化材の含有量濃度は表3に示すとおりである。
The sealing layer 23 is made of ethylene-propylene random copolymer (rPP) blended with one or two types of lubricant shown in Table 3, silica with an average particle size of 2 μm as an antiblocking material (AB material), and HDPE beads with an average particle size of 12 μm as a roughening material. The middle layer 21 is made of ethylene-propylene block copolymer (bPP) blended with one or two types of lubricant shown in Table 3. The laminate layer 22 is made of ethylene-propylene random copolymer (rPP) blended with the lubricant shown in Table 3 and silica with an average particle size of 2 μm as an antiblocking material. The lubricant name and lubricant concentration, antiblocking material content, and roughening material content concentration of each layer are as shown in Table 3.
上記の各層の混合材料を共押出し、シール層23の厚さが12μm、中間層21の厚さが56μm、ラミネート層22の厚さが12μm、合計厚さが80μmの3層フィルムを作製した。
The mixed materials for each of the above layers were co-extruded to produce a three-layer film with a sealing layer 23 thickness of 12 μm, an intermediate layer 21 thickness of 56 μm, and a laminate layer 22 thickness of 12 μm, for a total thickness of 80 μm.
表2に、熱融着性樹脂層15、20の最内層中の全滑剤の合計濃度(質量ppm)、N置換アミド濃度(質量ppm)、および最内層中の滑剤総量に対するN置換アミドの割合(質量%)を示す。単層の熱融着性樹脂層15は熱融着性樹脂層15そのものが最内層であり、3層の熱融着性樹脂層20の最内層はシール層23である。
Table 2 shows the total concentration (ppm by mass) of all lubricants in the innermost layers of the heat-sealable resin layers 15 and 20, the concentration of N-substituted amide (ppm by mass), and the ratio (% by mass) of N-substituted amide to the total amount of lubricant in the innermost layer. In the single-layer heat-sealable resin layer 15, the heat-sealable resin layer 15 itself is the innermost layer, and in the three-layer heat-sealable resin layer 20, the innermost layer is the sealing layer 23.
(電池用包装材の作製)
作製した熱融着性樹脂層用15の単層フィルムは一方の表面にコロナ処理を施した。また、多層の熱融着性樹脂層20用の3層フィルムはラミネート層22の表面にコロナ処理を施した。 (Preparation of battery packaging material)
The single-layer film for the heat-sealable resin layer 15 thus prepared was subjected to a corona treatment on one surface, while the three-layer film for the multi-layer heat-sealable resin layer 20 was subjected to a corona treatment on the surface of the laminate layer 22.
作製した熱融着性樹脂層用15の単層フィルムは一方の表面にコロナ処理を施した。また、多層の熱融着性樹脂層20用の3層フィルムはラミネート層22の表面にコロナ処理を施した。 (Preparation of battery packaging material)
The single-layer film for the heat-
化成皮膜を形成したバリア層11の一方の面に、厚さ3μmの第1接着剤層12を形成して基材層13をドライラミネートした。次に、前記バリア層11の他方の面に厚さ2μmの第2接着剤層14を形成し、この第2接着剤層14に、単層の熱融着性樹脂層15のコロナ処理面または多層の熱融着性樹脂層20のラミネート層22(コロナ処理面)を重ね合わせ、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして積層体を作製し、ロール軸に巻き取った。
A 3 μm-thick first adhesive layer 12 was formed on one side of the barrier layer 11 on which the chemical conversion film was formed, and the substrate layer 13 was dry laminated. Next, a 2 μm-thick second adhesive layer 14 was formed on the other side of the barrier layer 11, and the corona-treated surface of the single-layer heat-sealable resin layer 15 or the laminate layer 22 (corona-treated surface) of the multi-layer heat-sealable resin layer 20 was superimposed on the second adhesive layer 14, and the laminate was dry laminated by sandwiching and pressing between a lamination roll heated to 100°C to produce a laminate, which was then wound up on a roll shaft.
ロール軸に巻き取った積層体を40℃で10日間エージングし、電池用包装材1、2とした。
[電池用包装材の評価]
作製した電池用包装材1、2の滑り性を下記の方法で測定した動摩擦係数で評価し、成形性を下記の方法で測定した最大成形深さにより評価した。さらに、これらの電池用包装材で作製したケースを用いた電池の性能について下記の方法で評価した。評価結果を表4に示す。
(動摩擦係数)
JIS K7125:1999に準拠して、東洋精機製摩擦測定器TR型で電池用包装材1,2の熱融着性樹脂層15、20同士の動摩擦係数を測定した。動摩擦係数が0.45以下であるものを合格とした。
(成形性)
作製した電池用包装材1、2を100mm×150mmに切断して成形用素材とした。そして、ダイス、パンチ、ブランクホルダーを備えた深絞り金型をサーボプレス機に取付け、縦55mm×横35mm×深さDの直方体形状に深絞り成形を行った。前記深絞り成形はパンチの天面を成形用素材の熱融着性樹脂層15,20に接触させて基材層13を外側に突出させる態様で成形速度20spmで行い、成形深さDを0.5mm単位で変えて行った。 The laminate wound around a roll shaft was aged at 40° C. for 10 days to obtain battery packaging materials 1 and 2.
[Evaluation of Battery Packaging Materials]
The slipperiness of the battery packaging materials 1 and 2 thus produced was evaluated by the dynamic friction coefficient measured by the following method, and the moldability was evaluated by the maximum molding depth measured by the following method. Furthermore, the performance of the batteries using the cases produced from these battery packaging materials was evaluated by the following method. The evaluation results are shown in Table 4.
(Kinematic Friction Coefficient)
The dynamic friction coefficient between the heat-sealable resin layers 15, 20 of the battery packaging materials 1, 2 was measured using a friction tester TR model manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7125: 1999. Those having a dynamic friction coefficient of 0.45 or less were deemed to pass.
(Moldability)
The battery packaging materials 1 and 2 thus produced were cut into pieces of 100 mm x 150 mm to prepare molding materials. A deep drawing mold equipped with a die, a punch, and a blank holder was attached to a servo press machine, and deep drawing was performed to obtain a rectangular parallelepiped shape of 55 mm in length, 35 mm in width, and a depth D. The deep drawing was performed at a forming speed of 20 spm in a manner in which the top surface of the punch was brought into contact with the heat-sealable resin layers 15 and 20 of the molding material to protrude the base layer 13 outward, and the forming depth D was changed in increments of 0.5 mm.
[電池用包装材の評価]
作製した電池用包装材1、2の滑り性を下記の方法で測定した動摩擦係数で評価し、成形性を下記の方法で測定した最大成形深さにより評価した。さらに、これらの電池用包装材で作製したケースを用いた電池の性能について下記の方法で評価した。評価結果を表4に示す。
(動摩擦係数)
JIS K7125:1999に準拠して、東洋精機製摩擦測定器TR型で電池用包装材1,2の熱融着性樹脂層15、20同士の動摩擦係数を測定した。動摩擦係数が0.45以下であるものを合格とした。
(成形性)
作製した電池用包装材1、2を100mm×150mmに切断して成形用素材とした。そして、ダイス、パンチ、ブランクホルダーを備えた深絞り金型をサーボプレス機に取付け、縦55mm×横35mm×深さDの直方体形状に深絞り成形を行った。前記深絞り成形はパンチの天面を成形用素材の熱融着性樹脂層15,20に接触させて基材層13を外側に突出させる態様で成形速度20spmで行い、成形深さDを0.5mm単位で変えて行った。 The laminate wound around a roll shaft was aged at 40° C. for 10 days to obtain
[Evaluation of Battery Packaging Materials]
The slipperiness of the
(Kinematic Friction Coefficient)
The dynamic friction coefficient between the heat-sealable resin layers 15, 20 of the
(Moldability)
The
そして、成形品のコーナー部に照明を当ててピンホールや割れによる透過光の有無を目視観察し、ピンホールおよび割れが全く発生しない良好な成形を行うことができる最大成形深さ(mm)を調べ、最大成形深さを下記判定基準に基づいて成形性を評価し、ABを合格とした。
Then, a light was shone on the corners of the molded product, and the presence or absence of light transmitted by pinholes or cracks was visually observed. The maximum molding depth (mm) at which good molding could be performed without any pinholes or cracks was examined, and the moldability of the maximum molding depth was evaluated based on the following criteria, with AB being deemed a pass.
A:最大成形深さが7mm以上
B:最大成形深さが6mm以上7mm未満
C:最大成形深さが5mm以上6mm未満
D:最大成形深さが5mm未満
(電池性能)
評価用電池の電池ケースとして、電池用包装材1、2から、縦140mm×横55mmの成形用ブランクをサンプリングし、この成形用ブランクの片側半分(縦70mm×横55mm)の部分に深絞り成形を行い、縦55mm×横35mm×深さ4mmの直方体形状の凹部と形成した。そして、成形用ブランクの他方の部分(非成形部)を折り曲げて蓋材部分とする電池ケースを作製した。 A: Maximum molding depth is 7 mm or more. B: Maximum molding depth is 6 mm or more and less than 7 mm. C: Maximum molding depth is 5 mm or more and less than 6 mm. D: Maximum molding depth is less than 5 mm (battery performance).
A forming blank measuring 140 mm in length and 55 mm in width was sampled from the battery packaging materials 1 and 2 to prepare a battery case for evaluation, and one half of the forming blank (70 mm in length and 55 mm in width) was deep-drawn to form a rectangular parallelepiped recess measuring 55 mm in length, 35 mm in width and 4 mm deep. The other part (non-formed part) of the forming blank was then folded to prepare a battery case that served as a lid part.
B:最大成形深さが6mm以上7mm未満
C:最大成形深さが5mm以上6mm未満
D:最大成形深さが5mm未満
(電池性能)
評価用電池の電池ケースとして、電池用包装材1、2から、縦140mm×横55mmの成形用ブランクをサンプリングし、この成形用ブランクの片側半分(縦70mm×横55mm)の部分に深絞り成形を行い、縦55mm×横35mm×深さ4mmの直方体形状の凹部と形成した。そして、成形用ブランクの他方の部分(非成形部)を折り曲げて蓋材部分とする電池ケースを作製した。 A: Maximum molding depth is 7 mm or more. B: Maximum molding depth is 6 mm or more and less than 7 mm. C: Maximum molding depth is 5 mm or more and less than 6 mm. D: Maximum molding depth is less than 5 mm (battery performance).
A forming blank measuring 140 mm in length and 55 mm in width was sampled from the
前記電池ケースに収納する電池本体の材料として、下記の正極シートおよび負極シートを作製し、非水電解液を調製した。
正極シート:
正極活物質としてのLiCoO290gと、導電助剤としてのカーボンブラック(TIMCAL社製)5gと、結着材としてのポリフッ化ビニリデン(PVdF)5gに、N-メチル-ピロリドンを適宜加えながら攪拌・混合し、ペースト状の正極用ペーストを得た。前記正極用ペーストを厚さ20μmのアルミニウム箔上にロールコーターで塗布し、乾燥させてペーストを硬化させた。乾燥後のシートはロールプレスにより正極活物質密度を3.6g/cm3とし、正極シートを得た
負極シート:
負極活物質として人造黒鉛粒子およびカーボンコートされたSiO2粒子を用い、これらを質量比4:1で混合して混合負極活物質とした。導電助剤としてカーボンブラックおよび気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)を用い、これらを質量比で3:2で混合して混合導電助剤とした。結着剤としてスチレンブタジエンラバー(SBR)およびカルボキシメチルセルロース(CMC)を用いた。前記スチレンブタジエンラバー(SBR)は精製水に分散してSBR分散液とした。前記カルボキシメチルセルロース(CMC)は精製水と混合して、スターラーで一昼夜攪拌してCMC溶液とした。 As materials for the battery body to be housed in the battery case, the following positive electrode sheet and negative electrode sheet were produced, and a nonaqueous electrolyte solution was prepared.
Positive electrode sheet:
90 g of LiCoO 2 as a positive electrode active material, 5 g of carbon black (manufactured by TIMCAL) as a conductive assistant, and 5 g of polyvinylidene fluoride (PVdF) as a binder were stirred and mixed while appropriately adding N-methyl-pyrrolidone to obtain a paste-like positive electrode paste. The positive electrode paste was applied to an aluminum foil having a thickness of 20 μm with a roll coater, and dried to harden the paste. After drying, the sheet was roll pressed to make the positive electrode active material density 3.6 g/cm 3 , and a positive electrode sheet was obtained. Negative electrode sheet:
Artificial graphite particles and carbon-coated SiO2 particles were used as the negative electrode active material, and these were mixed in a mass ratio of 4:1 to prepare a mixed negative electrode active material. Carbon black and vapor-grown carbon fiber (VGCF (registered trademark)-H, manufactured by Showa Denko K.K.) were used as the conductive assistant, and these were mixed in a mass ratio of 3:2 to prepare a mixed conductive assistant. Styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as the binder. The styrene butadiene rubber (SBR) was dispersed in purified water to prepare an SBR dispersion. The carboxymethyl cellulose (CMC) was mixed with purified water and stirred overnight with a stirrer to prepare a CMC solution.
正極シート:
正極活物質としてのLiCoO290gと、導電助剤としてのカーボンブラック(TIMCAL社製)5gと、結着材としてのポリフッ化ビニリデン(PVdF)5gに、N-メチル-ピロリドンを適宜加えながら攪拌・混合し、ペースト状の正極用ペーストを得た。前記正極用ペーストを厚さ20μmのアルミニウム箔上にロールコーターで塗布し、乾燥させてペーストを硬化させた。乾燥後のシートはロールプレスにより正極活物質密度を3.6g/cm3とし、正極シートを得た
負極シート:
負極活物質として人造黒鉛粒子およびカーボンコートされたSiO2粒子を用い、これらを質量比4:1で混合して混合負極活物質とした。導電助剤としてカーボンブラックおよび気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)を用い、これらを質量比で3:2で混合して混合導電助剤とした。結着剤としてスチレンブタジエンラバー(SBR)およびカルボキシメチルセルロース(CMC)を用いた。前記スチレンブタジエンラバー(SBR)は精製水に分散してSBR分散液とした。前記カルボキシメチルセルロース(CMC)は精製水と混合して、スターラーで一昼夜攪拌してCMC溶液とした。 As materials for the battery body to be housed in the battery case, the following positive electrode sheet and negative electrode sheet were produced, and a nonaqueous electrolyte solution was prepared.
Positive electrode sheet:
90 g of LiCoO 2 as a positive electrode active material, 5 g of carbon black (manufactured by TIMCAL) as a conductive assistant, and 5 g of polyvinylidene fluoride (PVdF) as a binder were stirred and mixed while appropriately adding N-methyl-pyrrolidone to obtain a paste-like positive electrode paste. The positive electrode paste was applied to an aluminum foil having a thickness of 20 μm with a roll coater, and dried to harden the paste. After drying, the sheet was roll pressed to make the positive electrode active material density 3.6 g/cm 3 , and a positive electrode sheet was obtained. Negative electrode sheet:
Artificial graphite particles and carbon-coated SiO2 particles were used as the negative electrode active material, and these were mixed in a mass ratio of 4:1 to prepare a mixed negative electrode active material. Carbon black and vapor-grown carbon fiber (VGCF (registered trademark)-H, manufactured by Showa Denko K.K.) were used as the conductive assistant, and these were mixed in a mass ratio of 3:2 to prepare a mixed conductive assistant. Styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as the binder. The styrene butadiene rubber (SBR) was dispersed in purified water to prepare an SBR dispersion. The carboxymethyl cellulose (CMC) was mixed with purified water and stirred overnight with a stirrer to prepare a CMC solution.
前記混合負極活物質90質量部と、前記混合導電助剤5質量部と、固形分として2.5質量部を含むSBR分散液と、固形分として2.5質量部を含むCMC溶液を混合し、さらに粘度調整のために水を適量加え、自転・公転ミキサーにて混練し負極用ペーストを得た。前記負極用ペーストを厚み20μmの銅箔上にドクターブレードで厚さ150μmとなるよう均一に塗布し、ホットプレートにて乾燥後、真空乾燥させた。乾燥後のシートは3ton/cm2の圧力にて一軸プレス機によりプレスして負極シートを得た。
90 parts by mass of the mixed negative electrode active material, 5 parts by mass of the mixed conductive assistant, an SBR dispersion containing 2.5 parts by mass as a solid content, and a CMC solution containing 2.5 parts by mass as a solid content were mixed, and an appropriate amount of water was added to adjust the viscosity, and the mixture was kneaded with a rotation/revolution mixer to obtain a negative electrode paste. The negative electrode paste was uniformly applied to a copper foil having a thickness of 20 μm with a doctor blade to a thickness of 150 μm, dried on a hot plate, and then vacuum dried. The dried sheet was pressed with a uniaxial press at a pressure of 3 ton/cm 2 to obtain a negative electrode sheet.
一般に、正極シートと負極シートを対向させてリチウムイオン電池を作製する際には、両者の容量バランスを考慮する必要がある。すなわち、リチウムイオンを受け入れる側の負極が少な過ぎれば過剰なLiが負極側に析出してサイクル劣化の原因となり、逆に負極が多過ぎれば負荷の小さい状態での充放電となるためエネルギー密度は低下するもののサイクル特性は向上する。
Generally, when making a lithium-ion battery by opposing a positive electrode sheet and a negative electrode sheet, it is necessary to consider the capacity balance between the two. In other words, if there is too little negative electrode on the side that accepts lithium ions, excess Li will precipitate on the negative electrode, causing cycle deterioration, and conversely, if there is too much negative electrode, charging and discharging will occur under a small load, so the energy density will decrease but the cycle characteristics will improve.
上述した負極シートの作製においては、上述した不都合を防ぐために、正極シートは同一のものを使用しつつ、負極シートは対極Liのハーフセルにて事前に活物質重量当たりの放電量を評価しておき、正極シートの容量(QC)に対する負極シートの容量(QA)の比が1.2で一定値となるよう負極シートの容量を微調整した。
非水電解液:
エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合した非水溶媒に、添加剤としてビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を5質量%混合した。これに電解質LiPF6を1mol/Lの濃度になるように溶解させて非水電解液を調製した。
評価用電池の作製:
露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の手順で評価用電池を作製した。 In preparing the above-mentioned negative electrode sheet, in order to prevent the above-mentioned inconveniences, the same positive electrode sheet was used, but the discharge amount per weight of active material of the negative electrode sheet was evaluated in advance in a half cell with a Li counter electrode, and the capacity of the negative electrode sheet was fine-tuned so that the ratio of the capacity (QA) of the negative electrode sheet to the capacity (QC) of the positive electrode sheet was a constant value of 1.2.
Nonaqueous electrolyte:
A non-aqueous solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed in a volume ratio of 3:5:2 was mixed with 1 mass% vinylene carbonate (VC) and 5 mass% fluoroethylene carbonate (FEC) as additives. An electrolyte LiPF6 was dissolved in the non-aqueous solvent to a concentration of 1 mol/L to prepare a non-aqueous electrolyte solution.
Preparation of evaluation battery:
A battery for evaluation was fabricated in a glove box kept in a dry argon gas atmosphere with a dew point of −80° C. or less, according to the following procedure.
非水電解液:
エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合した非水溶媒に、添加剤としてビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を5質量%混合した。これに電解質LiPF6を1mol/Lの濃度になるように溶解させて非水電解液を調製した。
評価用電池の作製:
露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の手順で評価用電池を作製した。 In preparing the above-mentioned negative electrode sheet, in order to prevent the above-mentioned inconveniences, the same positive electrode sheet was used, but the discharge amount per weight of active material of the negative electrode sheet was evaluated in advance in a half cell with a Li counter electrode, and the capacity of the negative electrode sheet was fine-tuned so that the ratio of the capacity (QA) of the negative electrode sheet to the capacity (QC) of the positive electrode sheet was a constant value of 1.2.
Nonaqueous electrolyte:
A non-aqueous solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed in a volume ratio of 3:5:2 was mixed with 1 mass% vinylene carbonate (VC) and 5 mass% fluoroethylene carbonate (FEC) as additives. An electrolyte LiPF6 was dissolved in the non-aqueous solvent to a concentration of 1 mol/L to prepare a non-aqueous electrolyte solution.
Preparation of evaluation battery:
A battery for evaluation was fabricated in a glove box kept in a dry argon gas atmosphere with a dew point of −80° C. or less, according to the following procedure.
前記正極シートおよび負極シートを打ち抜いて面積20cm2の正極片および負極片を得た。前記正極片のアルミニウム箔にAlタブを、負極片の銅箔にNiタブをそれぞれ取り付けた。前記正極片と負極片の間にポリプロピレン製フィルム微多孔膜を挟み入れ、前記電池ケースの1辺からAlタブおよびNiタブを引き出した状態でケースの凹部内に挿入し、非水電解液0.5mLを注液した。その後、電池ケースの開口部を熱融着によって封止して評価用電池を得た。
The positive electrode sheet and the negative electrode sheet were punched out to obtain positive electrode pieces and negative electrode pieces with an area of 20 cm2 . An Al tab was attached to the aluminum foil of the positive electrode piece, and a Ni tab was attached to the copper foil of the negative electrode piece. A polypropylene film microporous membrane was sandwiched between the positive electrode piece and the negative electrode piece, and the Al tab and Ni tab were pulled out from one side of the battery case and inserted into the recess of the case, and 0.5 mL of nonaqueous electrolyte was poured in. The opening of the battery case was then sealed by heat fusion to obtain a battery for evaluation.
作製した評価用電池について、AlタブおよびNiタブを利用し、HIOKI 電極抵抗値測定システム RM2610により内部抵抗および放電レートを測定し、これらによって電池性能を評価した。
The evaluation batteries were fabricated using Al and Ni tabs, and the internal resistance and discharge rate were measured using a HIOKI electrode resistance measurement system RM2610, and the battery performance was evaluated based on these.
内部抵抗は、充電率(SOC)が20%時および80%時のDCRを測定し、6Ω未満を合格とした。
The internal resistance was measured at DCR when the state of charge (SOC) was 20% and 80%, and a value of less than 6 Ω was considered to be acceptable.
放電レート(%)は、放電容量を100%とし、これに対する1Cまたは3Cで放電した時の放電容量の割合(%)とした。充電条件はCC=0.5C、CV=4.2V、0.05C cut off、放電条件はCC=0.5C、EV=2.8Vとした。1C時の放電レートは70%以上を合格、3C時の放電レートは18%以上を合格とした。
The discharge rate (%) was defined as the percentage of the discharge capacity when discharging at 1C or 3C, with the discharge capacity taken as 100%. Charging conditions were CC = 0.5C, CV = 4.2V, 0.05C cut off, and discharging conditions were CC = 0.5C, EV = 2.8V. A discharge rate of 70% or more at 1C was considered acceptable, and a discharge rate of 18% or more at 3C was considered acceptable.
表4より、実施例の電池用包装材は滑り性および成形性が良く、これらの電池用包装材をケースとして用いた電池において電池性能の低下が抑制されることを確認できた。
From Table 4, it was confirmed that the battery packaging materials of the examples have good slipperiness and formability, and that the deterioration of battery performance is suppressed in batteries using these battery packaging materials as cases.
本発明の電池用包装材は、車載用、定置型、ノートパソコン用、携帯電話用、カメラ用の二次電池等のケース材料として好適に利用できる。
The battery packaging material of the present invention can be suitably used as a case material for secondary batteries for in-vehicle, stationary, notebook computers, mobile phones, cameras, etc.
本願は、2022年12月6日付で出願された日本国特許出願の特願2022-194657号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
This application claims priority from Japanese Patent Application No. 2022-194657, filed on December 6, 2022, the disclosures of which are incorporated herein by reference in their entirety.
ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。
It should be understood that the terms and expressions used herein are used for explanatory purposes and not for limiting interpretation, and do not exclude any equivalents of the features shown and described herein, but also allow various modifications within the claimed scope of the invention.
1、2、3…電池用包装材
11…バリア層
12…第1接着剤層
13…基材層
14…第2接着剤層
15…熱融着性樹脂層(最内層)
20、25…熱融着性樹脂層
21…中間層
22…ラミネート層
23…シール層(最内層)
50…電池ケース
51…本体(電池ケース用部材)
52…凹部
1, 2, 3...Battery packaging material 11... Barrier layer 12... First adhesive layer 13... Base material layer 14... Second adhesive layer 15... Heat-sealable resin layer (innermost layer)
20, 25... heat-sealable resin layer 21... intermediate layer 22... laminate layer 23... seal layer (innermost layer)
50: Battery case 51: Main body (battery case member)
52...Recess
11…バリア層
12…第1接着剤層
13…基材層
14…第2接着剤層
15…熱融着性樹脂層(最内層)
20、25…熱融着性樹脂層
21…中間層
22…ラミネート層
23…シール層(最内層)
50…電池ケース
51…本体(電池ケース用部材)
52…凹部
1, 2, 3...
20, 25... heat-
50: Battery case 51: Main body (battery case member)
52...Recess
Claims (7)
- 外側から内側へ順に、少なくとも基材層、バリア層、熱融着性樹脂層を含む電池用包装材であって、
前記熱融着性樹脂層がポリオレフィン系樹脂と1種以上の滑剤を含み、少なくとも1つの滑剤が下記式(I)で表されるN置換アミドであることを特徴とする電池用包装材。
R2はCm2Hn2で表される炭化水素鎖 A battery packaging material including, in order from the outside to the inside, at least a base layer, a barrier layer, and a heat-sealable resin layer,
The battery packaging material, wherein the heat-sealable resin layer contains a polyolefin resin and one or more lubricants, and at least one of the lubricants is an N-substituted amide represented by the following formula (I):
- 前記N置換アミドの炭素数が34以上であり、R1の炭素数(m1)とR2の炭素数(m2)が|m1-m2|≦15の関係を満たす請求項1に記載の電池用包装材。 The battery packaging material according to claim 1, wherein the carbon number of the N-substituted amide is 34 or more, and the carbon number of R1 (m1) and the carbon number of R2 (m2) satisfy the relationship |m1-m2|≦15.
- 前記熱融着性樹脂層が単層または2層以上の多層であり、最内層がN置換アミドを含み、最内層中のN置換アミドを含む全滑剤の合計濃度が100質量ppm~2500質量ppmである請求項1または2に記載の電池用包装材。 The battery packaging material according to claim 1 or 2, wherein the heat-sealable resin layer is a single layer or a multi-layer of two or more layers, the innermost layer contains an N-substituted amide, and the total concentration of all lubricants including the N-substituted amide in the innermost layer is 100 ppm by mass to 2500 ppm by mass.
- 前記熱融着性樹脂層が滑剤として不飽和脂肪酸アミドを含む請求項1~3のいずれかに記載の電池用包装材。 The battery packaging material according to any one of claims 1 to 3, wherein the heat-sealable resin layer contains an unsaturated fatty acid amide as a lubricant.
- 前記熱融着性樹脂層の最内層の全滑剤量に対するN置換アミドの割合が30質量%~100質量%である請求項1~4のいずれかに記載の電池用包装材。 The battery packaging material according to any one of claims 1 to 4, wherein the ratio of the N-substituted amide to the total amount of lubricant in the innermost layer of the heat-sealable resin layer is 30% by mass to 100% by mass.
- 前記熱融着性樹脂層の表面にN置換アミドを含む滑剤層が形成されている請求項1~5のいずれかに記載の電池用包装材。 The battery packaging material according to any one of claims 1 to 5, wherein a lubricant layer containing an N-substituted amide is formed on the surface of the heat-sealable resin layer.
- 請求項1~6のいずれかに記載された電池用包装材に、深絞り成形または張り出し成形による凹部が形成されていることを特徴とする電池ケース用部材。 A battery case member, characterized in that a recess is formed by deep drawing or stretch molding in the battery packaging material described in any one of claims 1 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022194657A JP2024081206A (en) | 2022-12-06 | 2022-12-06 | Battery packing material |
JP2022-194657 | 2022-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024122507A1 true WO2024122507A1 (en) | 2024-06-13 |
Family
ID=91379329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/043334 WO2024122507A1 (en) | 2022-12-06 | 2023-12-04 | Battery packaging material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024081206A (en) |
WO (1) | WO2024122507A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012104248A (en) * | 2010-11-08 | 2012-05-31 | Toray Advanced Film Co Ltd | Laminated material for secondary battery container, secondary battery container, and method for manufacturing secondary battery container |
WO2017141960A1 (en) * | 2016-02-18 | 2017-08-24 | 凸版印刷株式会社 | Exterior material for power storage devices, and method for producing exterior material for power storage devices |
WO2019031611A1 (en) * | 2017-08-10 | 2019-02-14 | 大日本印刷株式会社 | Packaging material for battery, battery, production methods therefor, and method for improving printing suitability of ink for packaging material for battery |
JP2019160799A (en) * | 2016-10-26 | 2019-09-19 | 大日本印刷株式会社 | Battery packaging material, method for manufacturing the same, battery, and method of manufacturing the same |
-
2022
- 2022-12-06 JP JP2022194657A patent/JP2024081206A/en active Pending
-
2023
- 2023-12-04 WO PCT/JP2023/043334 patent/WO2024122507A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012104248A (en) * | 2010-11-08 | 2012-05-31 | Toray Advanced Film Co Ltd | Laminated material for secondary battery container, secondary battery container, and method for manufacturing secondary battery container |
WO2017141960A1 (en) * | 2016-02-18 | 2017-08-24 | 凸版印刷株式会社 | Exterior material for power storage devices, and method for producing exterior material for power storage devices |
JP2019160799A (en) * | 2016-10-26 | 2019-09-19 | 大日本印刷株式会社 | Battery packaging material, method for manufacturing the same, battery, and method of manufacturing the same |
WO2019031611A1 (en) * | 2017-08-10 | 2019-02-14 | 大日本印刷株式会社 | Packaging material for battery, battery, production methods therefor, and method for improving printing suitability of ink for packaging material for battery |
Also Published As
Publication number | Publication date |
---|---|
JP2024081206A (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101894449B1 (en) | Cell pouch and method of preparing the same | |
JP7548058B2 (en) | Exterior material for all-solid-state battery, all-solid-state battery and method for producing the same | |
WO2016010125A1 (en) | Cell packaging material | |
EP2830120A1 (en) | Exterior material for lithium-ion cell | |
TWI716543B (en) | Exterior materials for power storage devices and power storage devices | |
JP6943547B2 (en) | Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method | |
JP2023017866A (en) | Power storage device exterior material | |
US20200243810A1 (en) | Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil | |
JP5569065B2 (en) | Lithium ion battery container, lithium ion battery equipped with the same, and method for producing lithium ion battery container | |
TWI752039B (en) | Sealing film for exterior material of electric storage device, exterior material for electric storage device, and manufacturing method thereof | |
WO2024122507A1 (en) | Battery packaging material | |
WO2022014718A1 (en) | Adhesive film for metal terminals of all-solid-state batteries, metal terminal with adhesive film for metal terminals, all-solid-state battery using said adhesive film for metal terminals, and method for producing all-solid-state battery | |
JP4736188B2 (en) | Lithium ion battery packaging material and manufacturing method thereof | |
JP4993051B2 (en) | Lithium ion battery packaging material and manufacturing method thereof | |
JP2021103679A (en) | Sealant film for battery external material | |
JP6917255B2 (en) | Packaging material for molding, exterior case for power storage device and power storage device | |
JP2023075914A (en) | Exterior material for power storage device | |
CN114079105A (en) | Packaging material for battery | |
WO2024219399A1 (en) | Exterior material for electricity storage device | |
JP7111264B2 (en) | Exterior material for all-solid-state battery, manufacturing method thereof, and all-solid-state battery | |
KR102673916B1 (en) | Pouch film for secondary battery with low before-molding curl characteristics for high-efficiency processes, secondary battery using the same and method for preparing the secondary battery | |
WO2024009869A1 (en) | Outer covering material for power storage devices, and power storage device using same | |
WO2023140337A1 (en) | Metal-terminal adhesive film, production method therefor, metal terminal having metal-terminal adhesive film, power storage device using said metal-terminal adhesive film, kit including metal-terminal adhesive film and power-storage-device exterior material, and production method for power storage device | |
WO2023085090A1 (en) | Exterior material for power storage device, and power storage device | |
EP4173819A1 (en) | Battery packaging material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23900622 Country of ref document: EP Kind code of ref document: A1 |