Nothing Special   »   [go: up one dir, main page]

JP6943547B2 - Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method - Google Patents

Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method Download PDF

Info

Publication number
JP6943547B2
JP6943547B2 JP2016115176A JP2016115176A JP6943547B2 JP 6943547 B2 JP6943547 B2 JP 6943547B2 JP 2016115176 A JP2016115176 A JP 2016115176A JP 2016115176 A JP2016115176 A JP 2016115176A JP 6943547 B2 JP6943547 B2 JP 6943547B2
Authority
JP
Japan
Prior art keywords
exterior material
layer
storage device
power storage
stretched film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016115176A
Other languages
Japanese (ja)
Other versions
JP2017220390A (en
Inventor
大介 中嶋
大介 中嶋
誠 唐津
誠 唐津
賢二 吉野
賢二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Packaging Corp
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2016115176A priority Critical patent/JP6943547B2/en
Priority to TW106116011A priority patent/TWI760335B/en
Priority to KR1020170065172A priority patent/KR102325253B1/en
Priority to CN201710422573.7A priority patent/CN107487050B/en
Publication of JP2017220390A publication Critical patent/JP2017220390A/en
Application granted granted Critical
Publication of JP6943547B2 publication Critical patent/JP6943547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイスの外装材を構成するのに用いられるシーラントフィルム、該シーラントフィルムを用いた蓄電デバイス用外装材の製造方法に関する。 The present invention provides the exterior of a power storage device such as a battery or capacitor used in a portable device such as a smartphone or tablet, a hybrid vehicle, an electric vehicle, wind power generation, solar power generation, or a battery or capacitor used for storing electricity at night. The present invention relates to a sealant film used to form a material, and a method for manufacturing an exterior material for a power storage device using the sealant film.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層(内側シーラント層)からなる積層体が用いられている。また、電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。前記積層体に対して張り出し成形や深絞り成形が行われることによって、略直方体形状等の立体形状に成形される。このような立体形状に成形することにより、蓄電デバイス本体部を収容するための収容空間を確保することができる。 In recent years, as mobile electric devices such as smartphones and tablet terminals have become thinner and lighter, storage devices such as lithium ion secondary batteries, lithium polymer secondary batteries, lithium ion capacitors, and electric double-layer capacitors mounted on these devices have become thinner and lighter. As the exterior material, a laminate composed of a heat-resistant resin layer / adhesive layer / metal foil layer / adhesive layer / thermoplastic resin layer (inner sealant layer) is used instead of the conventional metal can. In addition, power supplies for electric vehicles, large power supplies for power storage, capacitors, and the like are increasingly being exteriorized with a laminate (exterior material) having the above configuration. By performing overhang molding or deep drawing molding on the laminated body, it is molded into a three-dimensional shape such as a substantially rectangular parallelepiped shape. By molding into such a three-dimensional shape, it is possible to secure an accommodation space for accommodating the main body of the power storage device.

このような立体形状にピンホールや破断等なく良好状態に成形するには内側シーラント層の表面の滑り性を向上させることが求められる。内側シーラント層の表面の滑り性を向上させて良好な成形性を確保するものとして、外装樹脂フィルム、第1の接着剤層、化成処理アルミニウム箔、第2の接着剤層、シーラントフィルムを順次積層した積層材であって、前記シーラントフィルムはα−オレフィンの含有量が2〜10重量%であるプロピレンとα−オレフィンのランダム共重合体から成り、これに滑剤を1000〜5000ppm含有させたものである二次電池容器用積層材が提案されている(特許文献1参照)。 In order to form such a three-dimensional shape in a good state without pinholes or breakage, it is required to improve the slipperiness of the surface of the inner sealant layer. The exterior resin film, the first adhesive layer, the chemical-treated aluminum foil, the second adhesive layer, and the sealant film are sequentially laminated to improve the slipperiness of the surface of the inner sealant layer and ensure good moldability. The sealant film is made of a random copolymer of propylene and α-olefin having an α-olefin content of 2 to 10% by weight, and contains 1000 to 5000 ppm of a lubricant. A certain laminated material for a secondary battery container has been proposed (see Patent Document 1).

特開2003−288865号公報Japanese Unexamined Patent Publication No. 2003-288865

しかしながら、上記従来技術では、外装材(積層材)の生産工程での加温保持時間や保管期間によって表面滑剤析出量のコントロールが難しく、成形時のすべり性は良いものの、滑剤が表面に過度に析出するために、外装材の成形時に成形金型の成形面に滑剤が付着堆積していって白粉(滑剤による白粉)が発生する。このような白粉が成形面に付着堆積した状態になると、良好な成形を行い難くなることから、白粉が付着堆積する毎に清掃して白粉の除去を行う必要が生じるが、このような白粉の清掃除去を行うことで外装材の生産性が低下するという問題があった。 However, in the above-mentioned conventional technique, it is difficult to control the amount of surface lubricant deposited depending on the heating retention time and storage period in the production process of the exterior material (laminated material), and although the slipperiness during molding is good, the lubricant is excessively applied to the surface. Due to the precipitation, the lubricant adheres and accumulates on the molding surface of the molding die when the exterior material is molded, and white powder (white powder due to the lubricant) is generated. When such white powder adheres and accumulates on the molding surface, it becomes difficult to perform good molding. Therefore, it is necessary to clean and remove the white powder every time the white powder adheres and accumulates. There is a problem that the productivity of the exterior material is lowered by cleaning and removing.

勿論、滑剤の添加量(滑剤含有率)を低減すれば、白粉の付着堆積を抑制することが可能になるが、この場合には表面滑剤析出量が不足して成形性が悪くなるという問題を生じる。このように従来では、優れた成形性と、外装材表面での白粉表出の抑制とを両立させることが難しかった。 Of course, if the amount of lubricant added (lubricant content) is reduced, it is possible to suppress the adhesion and accumulation of white powder, but in this case, there is a problem that the amount of surface lubricant deposited is insufficient and the moldability deteriorates. Occurs. As described above, conventionally, it has been difficult to achieve both excellent moldability and suppression of white powder appearance on the surface of the exterior material.

本発明は、かかる技術的背景に鑑みてなされたものであって、外装材の表面に析出する滑剤量の減少を抑制し得て成形時に良好なすべり性を確保できて成形性に優れると共に、表面に白粉が表出し難い、蓄電デバイスの外装材用シーラントフィルム及び蓄電デバイス用外装材とその製造方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and is excellent in moldability as well as being able to suppress a decrease in the amount of lubricant deposited on the surface of the exterior material, ensuring good slipperiness during molding, and being excellent in moldability. It is an object of the present invention to provide a sealant film for an exterior material of a power storage device, an exterior material for a power storage device, and a method for manufacturing the same, in which white powder is hard to appear on the surface.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]第1無延伸フィルム層と、該第1無延伸フィルム層の一方の面に積層された第2無延伸フィルム層と、を含む2層以上の積層体からなり、
前記第1無延伸フィルム層は、外装材の最内層を形成するものであり、
前記第1無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体と、滑剤と、を含有し、
前記第2無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するブロック共重合体と、滑剤と、を含有し、
前記第1無延伸フィルム層における滑剤の含有濃度が200ppm〜3000ppmであり、前記第2無延伸フィルム層における滑剤の含有濃度が500ppm〜5000ppmであることを特徴とする蓄電デバイスの外装材用シーラントフィルム。
[1] It is composed of two or more laminated bodies including a first non-stretched film layer and a second non-stretched film layer laminated on one surface of the first non-stretched film layer.
The first non-stretched film layer forms the innermost layer of the exterior material.
The first non-stretched film layer contains a random copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
The second non-stretched film layer contains a block copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
A sealant film for an exterior material of a power storage device, characterized in that the concentration of the lubricant in the first non-stretched film layer is 200 ppm to 3000 ppm, and the concentration of the lubricant in the second non-stretched film layer is 500 ppm to 5000 ppm. ..

[2]第2無延伸フィルム層と、該第2無延伸フィルム層の一方の面に積層された第1無延伸フィルム層と、前記第2無延伸フィルム層の他方の面に積層された第1無延伸フィルム層と、を含む3層以上の積層体からなり、
いずれか一方の前記第1無延伸フィルム層が、外装材の最内層を形成するものであり、
前記第1無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体と、滑剤と、を含有し、
前記第2無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するブロック共重合体と、滑剤と、を含有し、
前記第1無延伸フィルム層における滑剤の含有濃度が200ppm〜3000ppmであり、前記第2無延伸フィルム層における滑剤の含有濃度が500ppm〜5000ppmであることを特徴とする蓄電デバイスの外装材用シーラントフィルム。
[2] A second non-stretched film layer, a first non-stretched film layer laminated on one surface of the second non-stretched film layer, and a second laminated on the other surface of the second non-stretched film layer. It is composed of a laminate of three or more layers including one non-stretched film layer.
One of the first non-stretched film layers forms the innermost layer of the exterior material.
The first non-stretched film layer contains a random copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
The second non-stretched film layer contains a block copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
A sealant film for an exterior material of a power storage device, characterized in that the concentration of the lubricant in the first non-stretched film layer is 200 ppm to 3000 ppm, and the concentration of the lubricant in the second non-stretched film layer is 500 ppm to 5000 ppm. ..

[3]前記第2無延伸フィルム層における滑剤含有濃度は、外装材の最内層を形成する前記第1無延伸フィルム層における滑剤含有濃度の0.5倍〜5倍である前項1または2に記載の蓄電デバイスの外装材用シーラントフィルム。 [3] The lubricant-containing concentration in the second non-stretched film layer is 0.5 to 5 times the lubricant-containing concentration in the first non-stretched film layer forming the innermost layer of the exterior material, according to item 1 or 2 above. The sealant film for the exterior material of the power storage device described.

[4]前項1〜3のいずれか1項に記載のシーラントフィルムからなる内側シーラント層と、該内側シーラント層の片面側に積層された金属箔層とを含むことを特徴とする蓄電デバイス用外装材。 [4] An exterior for a power storage device, which includes an inner sealant layer made of the sealant film according to any one of items 1 to 3 above, and a metal foil layer laminated on one side of the inner sealant layer. Material.

[5]外側層としての耐熱性樹脂層と、前項1〜3のいずれか1項に記載のシーラントフィルムからなる内側シーラント層と、これら両層間に配置された金属箔層とを含むことを特徴とする蓄電デバイス用外装材。 [5] It is characterized by including a heat-resistant resin layer as an outer layer, an inner sealant layer made of the sealant film according to any one of items 1 to 3 above, and a metal foil layer arranged between both layers. Exterior material for power storage devices.

[6]外装材の最内層を形成する前記第1無延伸フィルム層の表面に存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲である前項4または5に記載の蓄電デバイス用外装材。 [6] lubricant amount existing on the surface of the first non-oriented film layer forming the innermost layer of the outer package is described in the preceding paragraph 4 or 5 is in the range of 0.1μg / cm 2 ~1.0μg / cm 2 Exterior material for power storage devices.

[7]前項4〜6のいずれか1項に記載の外装材の成形体からなる蓄電デバイス用外装ケース。 [7] An exterior case for a power storage device made of a molded body of the exterior material according to any one of items 4 to 6 above.

[8]前項1〜3のいずれか1項に記載のシーラントフィルムと、金属箔とを第1接着剤を介して積層した積層体を準備する工程と、
前記積層体を加熱処理して蓄電デバイス用外装材を得るエージング工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
[8] A step of preparing a laminate in which the sealant film according to any one of the above items 1 to 3 and a metal foil are laminated via a first adhesive.
A method for manufacturing an exterior material for a power storage device, which comprises an aging step of heat-treating the laminate to obtain an exterior material for the power storage device.

[9]前記第1接着剤が熱硬化性接着剤である前項8に記載の蓄電デバイス用外装材の製造方法。 [9] The method for manufacturing an exterior material for a power storage device according to item 8 above, wherein the first adhesive is a thermosetting adhesive.

[10]金属箔の一方の面に第2接着剤を介して耐熱性樹脂フィルムが積層されると共に前記金属箔の他方の面に第1接着剤を介して前項1〜3のいずれか1項に記載のシーラントフィルムが積層された構成の積層体を準備する工程と、
前記積層体を加熱処理して蓄電デバイス用外装材を得るエージング工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
[10] A heat-resistant resin film is laminated on one surface of the metal foil via a second adhesive, and any one of the above items 1 to 3 is laminated on the other surface of the metal foil via a first adhesive. A step of preparing a laminate having a structure in which the sealant films described in the above are laminated, and
A method for manufacturing an exterior material for a power storage device, which comprises an aging step of heat-treating the laminate to obtain an exterior material for the power storage device.

[11]前記第1接着剤が熱硬化性接着剤であり、前記第2接着剤が熱硬化性接着剤である前項10に記載の蓄電デバイス用外装材の製造方法。 [11] The method for producing an exterior material for a power storage device according to item 10, wherein the first adhesive is a thermosetting adhesive and the second adhesive is a thermosetting adhesive.

[12]加熱処理して得た前記蓄電デバイス用外装材の最内層を形成する前記第1無延伸フィルム層の表面に存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲である前項8〜11のいずれか1項に記載の蓄電デバイス用外装材の製造方法。 [12] The amount of lubricant present on the surface of the first non-stretched film layer forming the innermost layer of the exterior material for a power storage device obtained by heat treatment is 0.1 μg / cm 2 to 1.0 μg / cm 2 . The method for manufacturing an exterior material for a power storage device according to any one of items 8 to 11 above, which is within the range.

[1]及び[2]の発明では、エージング処理後の外装材の表面(内側シーラント層の最内層の表面7a)に存在する(析出する)滑剤量の減少を抑制し得て成形時に良好なすべり性を確保できて成形性に優れるとともに、外装材の表面(内側シーラント層の最内層の表面7a)に白粉が表出し難い。また、前記エージング処理後の外装材の表面に存在する滑剤量は、輸送や保管時等に熱履歴を受けても変動しないので、優れた成形性を安定して備えた外装材の提供が可能となる。 In the inventions of [1] and [2], a decrease in the amount of lubricant present (precipitated) on the surface of the exterior material after the aging treatment (the surface 7a of the innermost layer of the inner sealant layer) can be suppressed, which is good at the time of molding. The slipperiness can be ensured and the moldability is excellent, and white powder is hard to appear on the surface of the exterior material (the surface 7a of the innermost layer of the inner sealant layer). Further, since the amount of lubricant existing on the surface of the exterior material after the aging treatment does not change even if it receives a heat history during transportation or storage, it is possible to provide an exterior material having excellent moldability in a stable manner. It becomes.

[3]の発明では、第2無延伸フィルム層における滑剤含有濃度は、外装材の最内層を形成する第1無延伸フィルム層における滑剤含有濃度の0.5倍〜5倍である構成になっており、エージング処理の際に、0.5倍以上であることで最内層の第1無延伸フィルム層7から第2無延伸フィルム層8への滑剤の滑剤濃度勾配による界面(両フィルム層7、8の界面)への集中的な移動を抑制できるし、5倍以下であることで第2無延伸フィルム層8から最内層の第1無延伸フィルム層7への滑剤の滑剤濃度勾配による界面(両フィルム層7、8の界面)への集中的な移動を抑制できて、エージング処理後の外装材の最内層を形成する第1無延伸フィルム層の表面7aに存在する滑剤量を0.1μg/cm2〜1.0μg/cm2の範囲に制御することが可能となる。 In the invention of [3], the lubricant-containing concentration in the second non-stretched film layer is 0.5 to 5 times the lubricant-containing concentration in the first non-stretched film layer forming the innermost layer of the exterior material. At the time of aging treatment, the interface between the innermost first unstretched film layer 7 and the second unstretched film layer 8 due to the lubricant concentration gradient of the lubricant (both film layers 7) is 0.5 times or more. , 8) can be suppressed, and if it is 5 times or less, the interface due to the lubricant concentration gradient of the lubricant from the second non-stretched film layer 8 to the innermost first non-stretched film layer 7. The amount of lubricant present on the surface 7a of the first unstretched film layer, which can suppress the intensive movement to (the interface between the two film layers 7 and 8) and form the innermost layer of the exterior material after the aging treatment, is 0. it becomes possible to control the range of 1μg / cm 2 ~1.0μg / cm 2 .

[4]及び[5]の発明では、外装材の表面(内側シーラント層の最内層の表面7a)に存在する(析出する)滑剤量の減少を抑制し得て成形時に良好なすべり性を確保できて成形性に優れるとともに、外装材の表面(内側シーラント層の最内層の表面7a)に白粉が表出し難い、蓄電デバイス用外装材を提供できる。 In the inventions of [4] and [5], a decrease in the amount of lubricant present (precipitated) on the surface of the exterior material (surface 7a of the innermost layer of the inner sealant layer) can be suppressed, and good slipperiness during molding can be ensured. It is possible to provide an exterior material for a power storage device, which is excellent in moldability and hardly causes white powder to appear on the surface of the exterior material (the surface 7a of the innermost layer of the inner sealant layer).

また、[5]の発明では、さらに外側層としての耐熱性樹脂層を備えているから、金属箔層における内側シーラント層と反対側の絶縁性を十分に確保できるし、外装材の物理的強度及び耐衝撃性を向上させることができる。 Further, in the invention of [5], since the heat-resistant resin layer is further provided as the outer layer, it is possible to sufficiently secure the insulating property on the side opposite to the inner sealant layer in the metal foil layer, and the physical strength of the exterior material. And impact resistance can be improved.

[6]の発明では、成形時により良好なすべり性を発現し、さらに良好な成形性を確保できると共に白粉の表出を防止できる蓄電デバイス用外装材を提供できる。 According to the invention of [6], it is possible to provide an exterior material for a power storage device that exhibits better slipperiness during molding, can secure better moldability, and can prevent the appearance of white powder.

[7]の発明では、良好な成形がなされると共に外装ケースの表面(内側シーラント層の最内層の表面)に白粉が表出し難い蓄電デバイス用外装ケースを提供できる。 According to the invention of [7], it is possible to provide an outer case for a power storage device in which white powder is less likely to appear on the surface of the outer case (the surface of the innermost layer of the inner sealant layer) while being well molded.

[8]〜[11]の発明では、外装材の表面(内側シーラント層の最内層の表面7a)に存在する(析出する)滑剤量の減少を抑制し得て成形時に良好なすべり性を確保できて成形性に優れるとともに、外装材の表面(内側シーラント層の最内層の表面7a)に白粉が表出し難い、蓄電デバイス用外装材を製造できる。 In the inventions of [8] to [11], a decrease in the amount of lubricant (precipitated) present on the surface of the exterior material (surface 7a of the innermost layer of the inner sealant layer) can be suppressed, and good slipperiness during molding can be ensured. It is possible to manufacture an exterior material for a power storage device, which is excellent in moldability and hardly causes white powder to appear on the surface of the exterior material (the surface 7a of the innermost layer of the inner sealant layer).

また[10]及び[11]の発明では、さらに外側層としての耐熱性樹脂層を備えているから、金属箔層における内側シーラント層と反対側の絶縁性を十分に確保できるし、外装材の物理的強度および耐衝撃性を向上させることができる。 Further, in the inventions of [10] and [11], since the heat-resistant resin layer is further provided as the outer layer, it is possible to sufficiently secure the insulating property of the metal foil layer on the opposite side to the inner sealant layer, and the exterior material can be used. Physical strength and impact resistance can be improved.

[12]の発明では、最内層の表面に存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲であるから、成形時により良好なすべり性を発現し、さらに良好な成形性を確保できると共に白粉の表出を防止できる蓄電デバイス用外装材を製造することができる。また、得られた蓄電デバイス用外装材の表面に存在する滑剤量(0.1μg/cm2〜1.0μg/cm2)は、輸送や保管時等に熱履歴を受けても変動しないので、優れた成形性を安定して備えた外装材の提供が可能となる。 In the invention [12], since the lubricant amount existing on the outermost layer of the surface is in the range of 0.1μg / cm 2 ~1.0μg / cm 2 , thereby demonstrating a good sliding property with time of molding, a better It is possible to manufacture an exterior material for a power storage device that can ensure moldability and prevent the appearance of white powder. In addition, the amount of lubricant (0.1 μg / cm 2 to 1.0 μg / cm 2 ) present on the surface of the obtained exterior material for the power storage device does not change even if it receives a heat history during transportation or storage. It is possible to provide an exterior material having excellent moldability in a stable manner.

本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the exterior material for a power storage device which concerns on this invention. 本発明に係る蓄電デバイス用外装材の他の実施形態を示す断面図である。It is sectional drawing which shows the other embodiment of the exterior material for a power storage device which concerns on this invention. 本発明に係る蓄電デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the power storage device which concerns on this invention. 図3の蓄電デバイスを構成する外装材(平面状のもの)、蓄電デバイス本体部及び外装ケース(立体形状に成形された成形体)をヒートシールする前の分離した状態で示す斜視図である。FIG. 3 is a perspective view showing an exterior material (planar shape), a power storage device main body, and an exterior case (molded body molded into a three-dimensional shape) constituting the power storage device in FIG. 3 in a separated state before heat sealing.

本発明に係る、蓄電デバイスの外装材用シーラントフィルムの第1実施形態を図1に示す。前記シーラントフィルム3は、外装材1の最内層を形成する第1無延伸フィルム層7と、該第1無延伸フィルム層7の一方の面に積層された第2無延伸フィルム層8と、を含む積層体からなり、前記第1無延伸フィルム層7は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体と、滑剤と、を含有し、前記第2無延伸フィルム層8は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するブロック共重合体と、滑剤と、を含有する。 FIG. 1 shows a first embodiment of a sealant film for an exterior material of a power storage device according to the present invention. The sealant film 3 comprises a first non-stretched film layer 7 forming the innermost layer of the exterior material 1 and a second non-stretched film layer 8 laminated on one surface of the first non-stretched film layer 7. The first non-stretched film layer 7 is composed of a laminate containing the above-mentioned second non-stretched film layer 7 and contains a random copolymer containing propylene and other copolymerization components other than propylene as copolymerization components and a lubricant. The stretched film layer 8 contains a block copolymer containing propylene and other copolymerization components other than propylene as copolymerization components, and a lubricant.

また、本発明に係る、蓄電デバイスの外装材用シーラントフィルムの第2実施形態を図2に示す。このシーラントフィルム3は、第2無延伸フィルム層8と、該第2無延伸フィルム層の一方の面に積層された第1無延伸フィルム層7と、前記第2無延伸フィルム層の他方の面に積層された第1無延伸フィルム層9と、を含む積層体からなり、前記一方の第1無延伸フィルム層7は、外装材1の最内層を形成するものであり、前記第1無延伸フィルム層7、9は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体と、滑剤と、を含有し、前記第2無延伸フィルム層8は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するブロック共重合体と、滑剤と、を含有する構成である。 Further, FIG. 2 shows a second embodiment of the sealant film for the exterior material of the power storage device according to the present invention. The sealant film 3 includes a second non-stretched film layer 8, a first non-stretched film layer 7 laminated on one surface of the second non-stretched film layer, and the other surface of the second non-stretched film layer. The first non-stretched film layer 7 is composed of a laminated body including the first non-stretched film layer 9 laminated in the above, and the one first non-stretched film layer 7 forms the innermost layer of the exterior material 1, and the first non-stretched film layer 7 is formed. The film layers 7 and 9 contain propylene and a random copolymer containing other copolymerization components other than propylene as a copolymerization component, and a lubricant, and the second non-stretched film layer 8 is a copolymerization component. It is a composition containing a block copolymer containing propylene and other copolymerization components other than propylene, and a lubricant.

前記第1無延伸フィルム層7、9は、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するランダム共重合体、および滑剤を含有してなる。前記ランダム共重合体に関して、前記「プロピレンを除く他の共重合成分」としては、特に限定されるものではないが、例えば、エチレン、1−ブテン、1−ヘキセン、1−ペンテン、4メチル−1−ペンテン等のオレフィン成分の他、ブタジエン等が挙げられる。 The first non-stretched film layers 7 and 9 contain a random copolymer containing "propylene" and "other copolymerization components other than propylene" as copolymerization components, and a lubricant. Regarding the random copolymer, the "other copolymerization component other than propylene" is not particularly limited, but for example, ethylene, 1-butane, 1-hexene, 1-pentene, 4methyl-1. -In addition to olefin components such as pentene, butadiene and the like can be mentioned.

前記第2無延伸フィルム層8は、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するブロック共重合体、および滑剤を含有してなる。前記ブロック共重合体に関して、前記「プロピレンを除く他の共重合成分」としては、特に限定されるものではないが、例えば、エチレン、1−ブテン、1−ヘキセン、1−ペンテン、4メチル−1−ペンテン等のオレフィン成分の他、ブタジエン等が挙げられる。 The second non-stretched film layer 8 contains a block copolymer containing "propylene" and "other copolymerization components other than propylene" as copolymerization components, and a lubricant. Regarding the block copolymer, the "other copolymer components other than propylene" are not particularly limited, but for example, ethylene, 1-butane, 1-hexene, 1-pentene, 4methyl-1. -In addition to olefin components such as penten, butadiene and the like can be mentioned.

そして、本発明に係るシーラントフィルム3は、前記第1無延伸フィルム層7、9における滑剤の含有濃度が200ppm〜3000ppmに設定され、前記第2無延伸フィルム層8における滑剤の含有濃度が500ppm〜5000ppmに設定されることが重要である。このような条件を満足していることで、接着剤を硬化させるためのエージング処理を行った際に、第1無延伸フィルム層7に存在する滑剤が、第2無延伸フィルム層8内に移動するのを抑制できるので、外装材の表面(最内層である第1無延伸フィルム層の表面7a)に析出する滑剤量を確保できて外装材の成形時に良好なすべり性を確保できて優れた成形性が得られる。第1無延伸フィルム層7における滑剤の含有濃度が200ppm未満では、接着剤を硬化させるためのエージング処理を行った後において最内層の表面7aに存在する滑剤量が十分でなくなり優れた成形性が得られなくなるし、3000ppmを超えると、接着剤を硬化させるためのエージング処理を行った後において最内層の表面7aに白粉を顕著に生じるものとなり、白粉を清掃、除去する作業が必要となって生産性が低下するという問題を生じるし、また外装材として使用する際にも金属箔層との接着力低下や電解液の汚染を生じやすいという問題を生じる。また、第2無延伸フィルム層8における滑剤の含有濃度が500ppm未満では、接着剤を硬化させるためのエージング処理を行った際に最内層の第1無延伸フィルム層7から第2無延伸フィルム層8へ滑剤が移動しやすく、最内層の表面7aに存在する滑剤量が十分でなくなり、成形時の滑り性が悪くなるし、5000ppmを超えると、接着剤を硬化させるためのエージング処理を行った際に第2無延伸フィルム層8から第1無延伸フィルム層7、9へ滑剤が移動しやすく、生産中の装置内の白粉汚染が生じるし、外装材として使用する際に金属箔層との接着力低下や電解液の汚染を生じやすい。 Then, in the sealant film 3 according to the present invention, the content concentration of the lubricant in the first non-stretched film layers 7 and 9 is set to 200 ppm to 3000 ppm, and the content concentration of the lubricant in the second non-stretched film layer 8 is 500 ppm to ~. It is important to set it to 5000 ppm. By satisfying such conditions, the lubricant existing in the first non-stretched film layer 7 moves into the second non-stretched film layer 8 when the aging treatment for curing the adhesive is performed. Since it is possible to suppress the amount of lubricant deposited on the surface of the exterior material (the surface 7a of the first non-stretched film layer which is the innermost layer), it is possible to secure good slipperiness during molding of the exterior material, which is excellent. Formability is obtained. If the concentration of the lubricant in the first non-stretched film layer 7 is less than 200 ppm, the amount of the lubricant present on the surface 7a of the innermost layer after the aging treatment for curing the adhesive is insufficient, and excellent moldability is obtained. If it exceeds 3000 ppm, white powder is remarkably generated on the surface 7a of the innermost layer after the aging treatment for curing the adhesive, and it is necessary to clean and remove the white powder. It causes a problem that productivity is lowered, and also causes a problem that an adhesive force with a metal foil layer is lowered and an electrolytic solution is easily contaminated when used as an exterior material. Further, when the content concentration of the lubricant in the second non-stretched film layer 8 is less than 500 ppm, the innermost first non-stretched film layer 7 to the second non-stretched film layer are subjected to the aging treatment for curing the adhesive. The lubricant easily moves to No. 8, the amount of lubricant present on the innermost surface 7a becomes insufficient, the slipperiness at the time of molding deteriorates, and when it exceeds 5000 ppm, an aging treatment for curing the adhesive is performed. At that time, the lubricant easily moves from the second non-stretched film layer 8 to the first non-stretched film layers 7 and 9, and white powder is contaminated in the apparatus during production. It is easy to reduce the adhesive strength and contaminate the electrolyte.

中でも、前記第1無延伸フィルム層7、9における滑剤の含有濃度は、300ppm〜2700ppmの範囲であるのが好ましく、800ppm〜1200ppmの範囲であるのがより好ましい。また、前記第2無延伸フィルム層8における滑剤の含有濃度は、700ppm〜4500ppmの範囲であるのが好ましく、800ppm〜2700ppmの範囲であるのがより好ましい。 Above all, the content concentration of the lubricant in the first non-stretched film layers 7 and 9 is preferably in the range of 300 ppm to 2700 ppm, more preferably in the range of 800 ppm to 1200 ppm. The concentration of the lubricant in the second non-stretched film layer 8 is preferably in the range of 700 ppm to 4500 ppm, more preferably in the range of 800 ppm to 2700 ppm.

本発明に係るシーラントフィルム3において、前記第2無延伸フィルム層8における滑剤含有濃度は、外装材1の最内層を形成する前記第1無延伸フィルム層7における滑剤含有濃度の0.5倍〜5倍である構成が好ましい。0.5倍以上であることで、接着剤を硬化させるためのエージング処理を行った際に最内層の第1無延伸フィルム層7から第2無延伸フィルム層8への滑剤の滑剤濃度勾配による界面(両フィルム層7、8の界面)への集中的な移動を抑制できて、最内層の表面7aに存在する滑剤量が十分なものとなってより優れた成形性が得られるし、5倍以下であることで、接着剤を硬化させるためのエージング処理を行った際に第2無延伸フィルム層8から最内層の第1無延伸フィルム層7への滑剤の滑剤濃度勾配による界面(両フィルム層7、8の界面)への集中的な移動を抑制できて、最内層の第1無延伸フィルム層7の滑剤含有量の変動を十分に抑制できる。中でも、前記第2無延伸フィルム層8における滑剤含有濃度は、外装材1の最内層を形成する前記第1無延伸フィルム層7における滑剤含有濃度の1.0倍〜3.0倍である構成がより好ましい。 In the sealant film 3 according to the present invention, the lubricant-containing concentration in the second non-stretched film layer 8 is 0.5 times the lubricant-containing concentration in the first non-stretched film layer 7 forming the innermost layer of the exterior material 1. A configuration of 5 times is preferable. When it is 0.5 times or more, it depends on the lubricant concentration gradient of the lubricant from the first non-stretched film layer 7 to the second non-stretched film layer 8 of the innermost layer when the aging treatment for curing the adhesive is performed. Concentrated movement to the interface (the interface between the two film layers 7 and 8) can be suppressed, the amount of lubricant present on the innermost surface 7a is sufficient, and better moldability can be obtained. If it is less than twice, the interface due to the lubricant concentration gradient of the lubricant from the second non-stretched film layer 8 to the innermost first non-stretched film layer 7 when the aging treatment for curing the adhesive is performed (both). Concentrated movement to the interface of the film layers 7 and 8) can be suppressed, and fluctuations in the lubricant content of the innermost first unstretched film layer 7 can be sufficiently suppressed. Above all, the lubricant-containing concentration in the second non-stretched film layer 8 is 1.0 to 3.0 times the lubricant-containing concentration in the first non-stretched film layer 7 forming the innermost layer of the exterior material 1. Is more preferable.

前記滑剤としては、特に限定されるものではないが、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族系ビスアミド等が挙げられる。 The lubricant is not particularly limited, and examples thereof include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Can be mentioned.

前記飽和脂肪酸アミドとしては、特に限定されるものではないが、例えば、ラウリン酸アミド、パルチミン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド等が挙げられる。前記不飽和脂肪酸アミドとしては、特に限定されるものではないが、例えば、オレイン酸アミド、エルカ酸アミド等が挙げられる。 The saturated fatty acid amide is not particularly limited, and examples thereof include lauric acid amide, partimate amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide. The unsaturated fatty acid amide is not particularly limited, and examples thereof include oleic acid amide and erucic acid amide.

前記置換アミドとしては、特に限定されるものではないが、例えば、N−オレイルパルチミン酸アミド、N−ステアリルステアリン酸アミド、N−ステアリルオレイン酸アミド、N−オレイルステアリン酸アミド、N−ステアリルエルカ酸アミド等が挙げられる。また、前記メチロールアミドとしては、特に限定されるものではないが、例えば、メチロールステアリン酸アミド等が挙げられる。 The substitution amide is not particularly limited, but is, for example, N-oleylpartimate amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid. Examples include amides. The methylolamide is not particularly limited, and examples thereof include methylolstearic amide.

前記飽和脂肪酸ビスアミドとしては、特に限定されるものではないが、例えば、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’−ジステアリルアジピン酸アミド、N,N’−ジステアリルセバシン酸アミド等が挙げられる。 The saturated fatty acid bisamide is not particularly limited, but for example, methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene. Bisbechenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbechenic acid amide, hexamethylene hydroxystearic acid amide, N, N'-distearyl adipate amide, N, N'-distearyl sebacic acid amide and the like. Be done.

前記不飽和脂肪酸ビスアミドとしては、特に限定されるものではないが、例えば、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルセバシン酸アミド等が挙げられる。 The unsaturated fatty acid bisamide is not particularly limited, and examples thereof include ethylene bisoleic acid amide, ethylene biserucate amide, hexamethylene bisoleic acid amide, and N, N'-diorail sebacic acid amide. Can be mentioned.

前記脂肪酸エステルアミドとしては、特に限定されるものではないが、例えば、ステアロアミドエチルステアレート等が挙げられる。前記芳香族系ビスアミドとしては、特に限定されるものではないが、例えば、m−キシリレンビスステアリン酸アミド、m−キシリレンビスヒドロキシステアリン酸アミド、N,N’−システアリルイソフタル酸アミド等が挙げられる。 The fatty acid ester amide is not particularly limited, and examples thereof include stearoamide ethyl stearate and the like. The aromatic bisamide is not particularly limited, and examples thereof include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-cystelyl isophthalic acid amide. Can be mentioned.

前記シーラントフィルム3の厚さは、10μm〜100μmに設定されるのが好ましい。10μm以上とすることでピンホールの発生を十分に防止できると共に、100μm以下に設定することで樹脂使用量を低減できてコスト低減を図ることができる。 The thickness of the sealant film 3 is preferably set to 10 μm to 100 μm. When it is set to 10 μm or more, the occurrence of pinholes can be sufficiently prevented, and when it is set to 100 μm or less, the amount of resin used can be reduced and the cost can be reduced.

前記シーラントフィルム3として図1の2層積層構成を採用する場合において、2層の厚さの比率は、第1無延伸フィルム層7の厚さ/第2無延伸フィルム層8の厚さ=5〜90/95〜10の範囲に設定されるのが好ましく、中でも、第1無延伸フィルム層7の厚さ/第2無延伸フィルム層8の厚さ=5〜40/95〜60の範囲に設定されるのが特に好ましい。 When the two-layer laminated structure of FIG. 1 is adopted as the sealant film 3, the ratio of the thickness of the two layers is the thickness of the first non-stretched film layer 7 / the thickness of the second non-stretched film layer 8 = 5. It is preferably set in the range of ~ 90/95 to 10, and above all, the thickness of the first unstretched film layer 7 / the thickness of the second unstretched film layer 8 = 5 to 40/95 to 60. It is particularly preferable to set it.

また、前記シーラントフィルム3として図2の3層積層構成を採用する場合において、3層の厚さの比率は、第1無延伸フィルム層7の厚さ/第2無延伸フィルム層8の厚さ/第1無延伸フィルム層9の厚さ=5〜45/90〜10/5〜45の範囲に設定されるのが好ましく、中でも、第1無延伸フィルム層7の厚さ/第2無延伸フィルム層8の厚さ/第1無延伸フィルム層9の厚さ=5〜20/90〜60/5〜20の範囲に設定されるのが特に好ましい。 Further, when the three-layer laminated structure of FIG. 2 is adopted as the sealant film 3, the ratio of the thickness of the three layers is the thickness of the first non-stretched film layer 7 / the thickness of the second non-stretched film layer 8. / The thickness of the first non-stretched film layer 9 is preferably set in the range of 5 to 45/90 to 10/5 to 45, and above all, the thickness of the first non-stretched film layer 7 / the second non-stretched film layer 7 is set. It is particularly preferable that the thickness of the film layer 8 / the thickness of the first unstretched film layer 9 is set in the range of 5 to 20/90 to 60/5 to 20.

前記最内層を形成する第1無延伸フィルム層7に、さらにアンチブロッキング剤を含有せしめてもよい。また、前記最内層を形成する第1無延伸フィルム層7および金属箔層側の第1無延伸フィルム層9の両方にアンチブロッキング剤を含有せしめてもよい。前記アンチブロッキング剤としては、特に限定されるものではないが、例えば、シリカ粒子、アクリル樹脂粒子、ケイ酸アルミニウム粒子等が挙げられる。前記アンチブロッキング剤の粒子径は、平均粒子径で0.1μm〜10μmの範囲にあるのが好ましく、中でも平均粒子径で1μm〜5μmの範囲にあるのがより好ましい。前記アンチブロッキング剤を第1無延伸フィルム層7、9に含有せしめる際のその含有濃度は100ppm〜5000ppmに設定されるのが好ましい。 The first non-stretched film layer 7 forming the innermost layer may further contain an anti-blocking agent. Further, both the first non-stretched film layer 7 forming the innermost layer and the first non-stretched film layer 9 on the metal foil layer side may contain an anti-blocking agent. The antiblocking agent is not particularly limited, and examples thereof include silica particles, acrylic resin particles, and aluminum silicate particles. The particle size of the antiblocking agent is preferably in the range of 0.1 μm to 10 μm in terms of average particle size, and more preferably in the range of 1 μm to 5 μm in terms of average particle size. When the anti-blocking agent is contained in the first non-stretched film layers 7 and 9, the concentration thereof is preferably set to 100 ppm to 5000 ppm.

前記アンチブロッキング剤(粒子)を前記最内層を形成する第1無延伸フィルム層7に含有せしめることにより、最内層7の表面7aに微小突起を形成しフィルム同士の接触面積を小さくしてシーラントフィルム同士のブロッキングを抑制できる。また、前記滑剤とともにアンチブロッキング剤(粒子)を含有させることで前記成形時のすべり性をさらに向上させることができる。 By incorporating the anti-blocking agent (particles) into the first non-stretched film layer 7 forming the innermost layer, microprojections are formed on the surface 7a of the innermost layer 7 to reduce the contact area between the films and the sealant film. Blocking between each other can be suppressed. Further, by containing an anti-blocking agent (particles) together with the lubricant, the slipperiness at the time of molding can be further improved.

前記シーラントフィルム3は、多層押出成形、インフレーション成形、Tダイキャストフィルム成形等の成形法により製造されるのが好ましい。 The sealant film 3 is preferably manufactured by a molding method such as multi-layer extrusion molding, inflation molding, or T-die cast film molding.

本発明に係る蓄電デバイス用外装材1は、上記構成を備えたシーラントフィルムを用いて作製されたものである。上記第1実施形態のシーラントフィルム3と、金属箔4とを第1接着剤(内側接着剤)6を介して積層した構成の積層体を準備する。この時、シーラントフィルム3の第2無延伸フィルム層8が第1接着剤6と接する(図1参照)。次に、得られた積層体を加熱処理する(エージング処理を行う)ことによって、図1に示す構成の本発明の蓄電デバイス用外装材1を得ることができる。 The exterior material 1 for a power storage device according to the present invention is produced by using a sealant film having the above configuration. A laminated body having a structure in which the sealant film 3 of the first embodiment and the metal foil 4 are laminated via a first adhesive (inner adhesive) 6 is prepared. At this time, the second non-stretched film layer 8 of the sealant film 3 comes into contact with the first adhesive 6 (see FIG. 1). Next, by heat-treating the obtained laminate (performing an aging treatment), the exterior material 1 for a power storage device of the present invention having the configuration shown in FIG. 1 can be obtained.

また、金属箔4の一方の面に第2接着剤(外側接着剤)5を介して耐熱性樹脂フィルム(外側層)2が積層されると共に前記金属箔4の他方の面に第1接着剤(内側接着剤)6を介して上記第2実施形態のシーラントフィルム3が積層された構成の積層体を準備する。この時、シーラントフィルム3の第1無延伸フィルム層9が第1接着剤(内側接着剤)6と接する(図2参照)。即ち、シーラントフィルム3の他方の第1無延伸フィルム層7が最内層を形成する(図2参照)。次に、得られた積層体を加熱処理する(エージング処理を行う)ことによって、図2に示す構成の本発明の蓄電デバイス用外装材1を得ることができる。 Further, the heat-resistant resin film (outer layer) 2 is laminated on one surface of the metal foil 4 via the second adhesive (outer adhesive) 5, and the first adhesive is applied to the other surface of the metal foil 4. A laminated body having a structure in which the sealant film 3 of the second embodiment is laminated via the (inner adhesive) 6 is prepared. At this time, the first non-stretched film layer 9 of the sealant film 3 comes into contact with the first adhesive (inner adhesive) 6 (see FIG. 2). That is, the other first non-stretched film layer 7 of the sealant film 3 forms the innermost layer (see FIG. 2). Next, by heat-treating the obtained laminate (performing an aging treatment), the exterior material 1 for a power storage device of the present invention having the configuration shown in FIG. 2 can be obtained.

前記第1接着剤(内側接着剤)6としては、特に限定されるものではないが、例えば、熱硬化性接着剤等が挙げられる。また、前記第2接着剤(外側接着剤)5としては、特に限定されるものではないが、例えば、熱硬化性接着剤等が挙げられる。前記熱硬化性接着剤としては、特に限定されるものではないが、例えば、オレフィン系接着剤、エポキシ系接着剤、アクリル系接着剤等が挙げられる。 The first adhesive (inner adhesive) 6 is not particularly limited, and examples thereof include a thermosetting adhesive. The second adhesive (outer adhesive) 5 is not particularly limited, and examples thereof include a thermosetting adhesive. The thermosetting adhesive is not particularly limited, and examples thereof include an olefin-based adhesive, an epoxy-based adhesive, and an acrylic-based adhesive.

前記エージング処理の加熱温度は、65℃以下に設定するのが好ましく、中でも、接着剤の硬化度および外装材の表面7aに存在する滑剤量の好適量の保持の観点から、35℃〜45℃に設定するのがより好ましい。また、前記エージング処理の加熱時間については、接着剤の種類により硬化時間が変わるため、接着剤の種類に合わせ十分な接着強度が得られる時間以上であれば良いが、工程のリードタイムを考慮すると、加熱時間は、十分な接着強度が得られる限りにおいてなるべく短い方が良い。 The heating temperature of the aging treatment is preferably set to 65 ° C. or lower, and above all, from the viewpoint of maintaining a suitable amount of the lubricant present on the surface 7a of the exterior material and the degree of curing of the adhesive, 35 ° C. to 45 ° C. It is more preferable to set to. Further, the heating time of the aging treatment varies depending on the type of adhesive, so it may be longer than the time when sufficient adhesive strength can be obtained according to the type of adhesive, but considering the lead time of the process. The heating time should be as short as possible as long as sufficient adhesive strength can be obtained.

このようなエージング処理を経て得られた本発明の蓄電デバイス用外装材1は、金属箔層4の一方の面に第2接着剤層(外側接着剤層)5を介して耐熱性樹脂層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面に第1接着剤層(内側接着剤層)6を介して内側シーラント層(シーラントフィルム)(内側層)3が積層一体化された構成である(図1、2参照)。 The exterior material 1 for a power storage device of the present invention obtained through such an aging treatment has a heat-resistant resin layer (a heat-resistant resin layer) on one surface of the metal foil layer 4 via a second adhesive layer (outer adhesive layer) 5. The outer layer) 2 is laminated and integrated, and the inner sealant layer (sealant film) (inner layer) 3 is formed on the other surface of the metal foil layer 4 via the first adhesive layer (inner adhesive layer) 6. It is a laminated and integrated configuration (see FIGS. 1 and 2).

上記エージング処理を経て得られた蓄電デバイス用外装材1は、製造に使用するシーラントフィルム3が、上述したとおり、第1無延伸フィルム層における滑剤の含有濃度が200ppm〜3000ppmに設定され、第2無延伸フィルム層における滑剤の含有濃度が500ppm〜5000ppmに設定されているので、エージング処理後の蓄電デバイス用外装材1の最内層を形成する第1無延伸フィルム層7の表面7aに存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲に制御され得る。従って、得られた蓄電デバイス用外装材1は、表面(内側シーラント層の最内層の表面7a)に存在する(析出する)滑剤量の減少を抑制し得て成形時に良好なすべり性を確保できて成形性に優れると共に、外装材の表面(内側シーラント層の最内層の表面7a)に白粉が表出し難い。 In the exterior material 1 for a power storage device obtained through the above aging treatment, the sealant film 3 used for manufacturing has a lubricant content of 200 ppm to 3000 ppm in the first unstretched film layer as described above, and the second Since the concentration of the lubricant in the non-stretched film layer is set to 500 ppm to 5000 ppm, the lubricant present on the surface 7a of the first non-stretched film layer 7 forming the innermost layer of the exterior material 1 for the power storage device after the aging treatment. the amount can be controlled in the range of 0.1μg / cm 2 ~1.0μg / cm 2 . Therefore, the obtained exterior material 1 for a power storage device can suppress a decrease in the amount of lubricant existing (precipitated) on the surface (surface 7a of the innermost layer of the inner sealant layer), and can secure good slipperiness during molding. In addition to being excellent in moldability, white powder is less likely to appear on the surface of the exterior material (the surface 7a of the innermost layer of the inner sealant layer).

前記蓄電デバイス用外装材1において、前記第1無延伸フィルム層(最内層)7の表面7aの動摩擦係数は、0.10〜0.50の範囲にあるのが好ましい。0.50以下であることですべり性を向上できて良好な成形性を確保できると共に、0.10以上であることで最内層の表面7aへの滑剤のブリード量を低減できる。 In the exterior material 1 for a power storage device, the coefficient of kinetic friction of the surface 7a of the first unstretched film layer (innermost layer) 7 is preferably in the range of 0.10 to 0.50. When it is 0.50 or less, the slipperiness can be improved and good moldability can be ensured, and when it is 0.10 or more, the amount of bleeding of the lubricant on the surface 7a of the innermost layer can be reduced.

本発明の蓄電デバイス用外装材1は、例えば、リチウムイオン2次電池用外装材として用いられる。前記蓄電デバイス用外装材1は、成形を施されることなくそのまま外装材として使用されてもよいし、例えば、深絞り成形、張り出し成形等の成形に供されて外装ケース10として使用されてもよい(図4参照)。 The exterior material 1 for a power storage device of the present invention is used, for example, as an exterior material for a lithium ion secondary battery. The exterior material 1 for a power storage device may be used as it is as an exterior material without being molded, or may be used as an exterior case 10 by being subjected to molding such as deep drawing molding or overhang molding. Good (see Figure 4).

本発明の蓄電デバイス用外装材1において、前記内側シーラント層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液等に対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。 In the exterior material 1 for a power storage device of the present invention, the inner sealant layer (inner layer) 3 has excellent chemical resistance to a highly corrosive electrolytic solution or the like used in a lithium ion secondary battery or the like. At the same time, it plays a role of imparting heat sealability to the exterior material.

また、前記耐熱性樹脂層(基材層;外側層)2は、必須の構成層ではないものの、前記金属箔層4の他方の面(内側シーラント層とは反対側の面)に第2接着剤層(外側接着剤層)5を介して耐熱性樹脂層2が積層された構成を採用するのが好ましい(図1、2参照)。このような耐熱性樹脂層2を設けることにより、金属箔層4の他方の面(内側シーラント層とは反対側の面)側の絶縁性を十分に確保できるし、外装材1の物理的強度および耐衝撃性を向上させることができる。 Although the heat-resistant resin layer (base material layer; outer layer) 2 is not an essential constituent layer, it is second-bonded to the other surface of the metal foil layer 4 (the surface opposite to the inner sealant layer). It is preferable to adopt a structure in which the heat-resistant resin layer 2 is laminated via the agent layer (outer adhesive layer) 5 (see FIGS. 1 and 2). By providing such a heat-resistant resin layer 2, the insulating property on the other surface (the surface opposite to the inner sealant layer) of the metal foil layer 4 can be sufficiently ensured, and the physical strength of the exterior material 1 can be secured. And impact resistance can be improved.

前記耐熱性樹脂層(基材層;外側層)2を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、第2無延伸フィルム層8を構成するブロック共重合体の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、第2無延伸フィルム層8を構成するブロック共重合体の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。 As the heat-resistant resin constituting the heat-resistant resin layer (base material layer; outer layer) 2, a heat-resistant resin that does not melt at the heat-sealing temperature when the exterior material is heat-sealed is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher than the melting point of the block copolymer constituting the second non-stretched film layer 8 by 10 ° C. or more, and form the second non-stretched film layer 8. It is particularly preferable to use a heat-resistant resin having a melting point of 20 ° C. or higher higher than the melting point of the block copolymer.

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。 The heat-resistant resin layer (outer layer) 2 is not particularly limited, and examples thereof include a polyamide film such as a nylon film and a polyester film, and these stretched films are preferably used. Among them, the heat-resistant resin layer 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film, or a biaxially stretched polyethylene film. It is particularly preferable to use a phthalate (PEN) film. The nylon film is not particularly limited, and examples thereof include a 6-nylon film, a 6,6 nylon film, and an MXD nylon film. The heat-resistant resin layer 2 may be formed of a single layer, or may be formed of, for example, a multi-layer made of a polyester film / polyamide film (a multi-layer made of a PET film / nylon film, etc.). Is also good.

前記耐熱性樹脂層(外側層)2の厚さは、2μm〜50μmであるのが好ましい。ポリエステルフィルムを用いる場合には厚さは2μm〜50μmであるのが好ましく、ナイロンフィルムを用いる場合には厚さは7μm〜50μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。 The thickness of the heat-resistant resin layer (outer layer) 2 is preferably 2 μm to 50 μm. When a polyester film is used, the thickness is preferably 2 μm to 50 μm, and when a nylon film is used, the thickness is preferably 7 μm to 50 μm. Sufficient strength as an exterior material can be secured by setting it to the above-mentioned preferable lower limit value or more, and stress during molding such as overhang molding and draw forming can be reduced and formability is improved by setting it to the above-mentioned preferable upper limit value or less. Can be made to.

本発明の蓄電デバイス用外装材1において、前記耐熱性樹脂層(外側層)2における金属箔層4の反対側の表面には、蓄電デバイス用外装材1の最内層を形成する第1無延伸フィルム7に含有されていた滑剤が付着している。この付着滑剤は、ラミネート加工して得た蓄電デバイス用外装材1を巻いた状態でエージングする際に、巻いた状態での内側シーラント層3の表面7aとの接触により該内側層3から転写されたものである。前記転写後の付着量は、0.1μg/cm2〜0.8μg/cm2の範囲であるのが好ましい。付着量がこのような範囲であれば、蓄電デバイス用外装材1の成形性を高めることができる。中でも、前記転写後の付着量は、0.1μg/cm2〜0.6μg/cm2の範囲であるのがより好ましく、0.15μg/cm2〜0.45μg/cm2の範囲であるのが特に好ましい。前記蓄電デバイス用外装材1を深絞り成形等により成形した後は、この転写滑剤は、除去してもよいし、或いは放置しておいてもよいし、或いはまた自然に消失してしまってもよい。 In the exterior material 1 for a power storage device of the present invention, the first non-stretched layer forming the innermost layer of the exterior material 1 for a power storage device is formed on the surface of the heat-resistant resin layer (outer layer) 2 on the opposite side of the metal foil layer 4. The lubricant contained in the film 7 is attached. This adhesive lubricant is transferred from the inner layer 3 by contact with the surface 7a of the inner sealant layer 3 in the wound state when the exterior material 1 for a power storage device obtained by laminating is aged in the wound state. It is a lumber. Deposition amount after the transfer is preferably in a range of 0.1μg / cm 2 ~0.8μg / cm 2 . When the amount of adhesion is within such a range, the moldability of the exterior material 1 for the power storage device can be improved. Among them, deposition amount after the transfer, and more preferably in the range of 0.1μg / cm 2 ~0.6μg / cm 2 , in the range of 0.15μg / cm 2 ~0.45μg / cm 2 Is particularly preferable. After the exterior material 1 for the power storage device is molded by deep drawing or the like, the transfer lubricant may be removed, left unattended, or disappears spontaneously. good.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔等が挙げられ、中でも、アルミニウム箔、SUS箔(ステンレス箔)を用いるのが好ましい。前記金属箔層4の厚さは、5μm〜120μmであるのが好ましい。5μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、120μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔層4の厚さは、10μm〜80μmであるのがより好ましい。 The metal foil layer 4 plays a role of imparting a gas barrier property to prevent the invasion of oxygen and moisture to the exterior material 1. The metal foil layer 4 is not particularly limited, and examples thereof include aluminum foil, SUS foil (stainless foil), and copper foil. Among them, aluminum foil and SUS foil (stainless foil) are used. Is preferable. The thickness of the metal foil layer 4 is preferably 5 μm to 120 μm. When it is 5 μm or more, it is possible to prevent the occurrence of pinholes during rolling when manufacturing a metal foil, and when it is 120 μm or less, the stress during molding such as overhang molding and draw forming can be reduced and the formability is improved. be able to. Above all, the thickness of the metal foil layer 4 is more preferably 10 μm to 80 μm.

前記金属箔層4は、少なくとも内側の面(内側シーラント層3側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
It is preferable that at least the inner surface (the surface on the inner sealant layer 3 side) of the metal foil layer 4 is subjected to chemical conversion treatment. By performing such a chemical conversion treatment, it is possible to sufficiently prevent corrosion of the metal foil surface by the contents (electrolyte solution of the battery, etc.). For example, the metal foil is subjected to chemical conversion treatment by performing the following treatment. That is, for example, on the surface of the metal leaf that has been degreased,
1) Phosphoric acid and
With chromic acid
An aqueous solution of a mixture containing at least one compound selected from the group consisting of a metal salt of fluoride and a non-metal salt of fluoride 2) Phosphoric acid.
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins, and
An aqueous solution of a mixture containing at least one compound selected from the group consisting of chromic acid and a chromium (III) salt 3) phosphoric acid.
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins, and
At least one compound selected from the group consisting of chromic acid and chromium (III) salt, and
An aqueous solution of a mixture containing at least one compound selected from the group consisting of a metal salt of fluoride and a non-metal salt of fluoride An aqueous solution of any one of 1) to 3) above is applied and then dried. By doing so, the chemical conversion process is performed.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2〜50mg/m2が好ましく、特に2mg/m2〜20mg/m2が好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第2接着剤層(外側接着剤層)5の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材1の薄膜化、軽量化の観点から、前記外側接着剤層5の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The thickness of the second adhesive layer (outer adhesive layer) 5 is preferably set to 1 μm to 5 μm. Above all, from the viewpoint of thinning and weight reduction of the exterior material 1, the thickness of the outer adhesive layer 5 is particularly preferably set to 1 μm to 3 μm.

前記第1接着剤層(内側接着剤層)6の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材1の薄膜化、軽量化の観点から、前記内側接着剤層6の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The thickness of the first adhesive layer (inner adhesive layer) 6 is preferably set to 1 μm to 5 μm. Above all, from the viewpoint of thinning and weight reduction of the exterior material 1, the thickness of the inner adhesive layer 6 is particularly preferably set to 1 μm to 3 μm.

本発明の外装材1を成形(深絞り成形、張り出し成形等)することにより、外装ケース(電池ケース等)10を得ることができる(図4参照)。なお、本発明の外装材1は、成形に供されずにそのまま使用することもできる(図4参照)。 The exterior case (battery case, etc.) 10 can be obtained by molding the exterior material 1 of the present invention (deep drawing molding, overhang molding, etc.) (see FIG. 4). The exterior material 1 of the present invention can be used as it is without being subjected to molding (see FIG. 4).

本発明の外装材1を用いて構成された蓄電デバイス30の一実施形態を図3に示す。この蓄電デバイス30は、リチウムイオン2次電池である。本実施形態では、図3、4に示すように、外装材1を成形して得られた外装ケース10と、平面状の外装材1とにより外装部材15が構成されている。しかして、本発明の外装材1を成形して得られた外装ケース10の収容凹部内に、略直方体形状の蓄電デバイス本体部(電気化学素子等)31が収容され、該蓄電デバイス本体部31の上に、本発明の外装材1が成形されることなくその内側シーラント層3側を内方(下側)にして配置され、該平面状外装材1の内側シーラント層3(第1無延伸フィルム層7)の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29の内側シーラント層3(第1無延伸フィルム層7)とがヒートシールによりシール接合されて封止されることによって、本発明の蓄電デバイス30が構成されている(図3、4参照)。なお、前記外装ケース10の収容凹部の内側の表面は、内側シーラント層3(第1無延伸フィルム層7)になっており、収容凹部の外面が耐熱性樹脂層(外側層)2になっている(図4参照)。 FIG. 3 shows an embodiment of the power storage device 30 configured by using the exterior material 1 of the present invention. The power storage device 30 is a lithium ion secondary battery. In the present embodiment, as shown in FIGS. 3 and 4, the exterior member 15 is composed of the exterior case 10 obtained by molding the exterior material 1 and the flat exterior material 1. Thus, a substantially rectangular body-shaped power storage device main body (electrochemical element or the like) 31 is housed in the storage recess of the exterior case 10 obtained by molding the exterior material 1 of the present invention, and the power storage device main body 31 is housed. The exterior material 1 of the present invention is placed on the inner sealant layer 3 (first non-stretched) of the flat exterior material 1 with the inner sealant layer 3 side facing inward (lower side) without being molded. The peripheral edge of the film layer 7) and the inner sealant layer 3 (first unstretched film layer 7) of the flange portion (sealing peripheral edge) 29 of the outer case 10 are sealed and sealed by heat sealing. As a result, the power storage device 30 of the present invention is configured (see FIGS. 3 and 4). The inner surface of the accommodating recess of the outer case 10 is an inner sealant layer 3 (first non-stretched film layer 7), and the outer surface of the accommodating recess is a heat-resistant resin layer (outer layer) 2. (See Fig. 4).

図3において、39は、前記外装材1の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29とが接合(溶着)されたヒートシール部である。なお、前記蓄電デバイス30において、蓄電デバイス本体部31に接続されたタブリードの先端部が、外装部材15の外部に導出されているが、図示は省略している。 In FIG. 3, 39 is a heat-sealed portion in which the peripheral edge portion of the exterior material 1 and the flange portion (sealing peripheral edge portion) 29 of the exterior case 10 are joined (welded). In the power storage device 30, the tip of the tab lead connected to the power storage device main body 31 is led out to the outside of the exterior member 15, but the illustration is omitted.

前記蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。 The power storage device main body 31 is not particularly limited, and examples thereof include a battery main body, a capacitor main body, and a capacitor main body.

前記ヒートシール部39の幅は、0.5mm以上に設定するのが好ましい。0.5mm以上とすることで封止を確実に行うことができる。中でも、前記ヒートシール部39の幅は、3mm〜15mmに設定するのが好ましい。 The width of the heat seal portion 39 is preferably set to 0.5 mm or more. Sealing can be reliably performed by setting the thickness to 0.5 mm or more. Above all, the width of the heat seal portion 39 is preferably set to 3 mm to 15 mm.

なお、上記実施形態では、外装部材15が、外装材1を成形して得られた外装ケース10と、平面状の外装材1と、からなる構成であったが(図3、4参照)、特にこのような組み合わせに限定されるものではなく、例えば、外装部材15が、一対の平面状の外装材1からなる構成であってもよいし、或いは、一対の外装ケース10からなる構成であってもよい。 In the above embodiment, the exterior member 15 is composed of an exterior case 10 obtained by molding the exterior material 1 and a flat exterior material 1 (see FIGS. 3 and 4). The combination is not particularly limited, and for example, the exterior member 15 may be composed of a pair of flat exterior materials 1, or may be composed of a pair of exterior cases 10. You may.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.

参考例1
厚さ40μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
< Reference example 1 >
A chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied to both sides of an aluminum foil 4 having a thickness of 40 μm, and then dried at 180 ° C. , A chemical conversion film was formed. The amount of chromium adhered to this chemical conversion film was 10 mg / m 2 per side.

次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ25μmの二軸延伸6ナイロンフィルム2をドライラミネートした(貼り合わせた)。 Next, a biaxially stretched 6 nylon film 2 having a thickness of 25 μm was dry-laminated (bonded) on one surface of the chemical conversion-treated aluminum foil 4 via a two-component curable urethane adhesive 5.

次に、エチレン−プロピレンランダム共重合体、1000ppmのエルカ酸アミドおよび2000ppmのシリカ粒子(アンチブロッキング剤)を含有してなる厚さ12μmの第1無延伸フィルム7、エチレン−プロピレンブロック共重合体および2500ppmのエルカ酸アミドを含有してなる厚さ28μmの第2無延伸フィルム8がこの順で2層積層されるようにTダイを用いて共押出することにより、これら2層が積層されてなる厚さ40μmのシーラントフィルム(第1無延伸フィルム層7/第2無延伸フィルム層8)3を得た後、該シーラントフィルム3の第2無延伸フィルム層8面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、しかる後、40℃で10日間エージングする(加熱する)ことによって、図1に示す構成の蓄電デバイス用外装材1を得た。 Next, a 12 μm-thick first unstretched film 7 containing an ethylene-propylene random copolymer, 1000 ppm erucic acid amide and 2000 ppm silica particles (anti-blocking agent), an ethylene-propylene block copolymer and The second unstretched film 8 having a thickness of 28 μm containing 2500 ppm of erucic acid amide is co-extruded using a T-die so that two layers are laminated in this order, whereby these two layers are laminated. After obtaining a sealant film (first non-stretched film layer 7 / second non-stretched film layer 8) 3 having a thickness of 40 μm, eight surfaces of the second non-stretched film layer of the sealant film 3 are coated with a two-component curable polymer. It is dried by being laminated on the other surface of the aluminum foil 4 after the dry lamination via the acid-modified polypropylene adhesive 6, sandwiched between the rubber nip roll and the laminate roll heated to 100 ° C., and crimped. After laminating and then aging (heating) at 40 ° C. for 10 days, an exterior material 1 for a power storage device having the configuration shown in FIG. 1 was obtained.

なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の第2無延伸フィルム層8面に重ね合わせた。 As the two-component curable maleic acid-modified polypropylene adhesive, 100 parts by mass of maleic acid-modified polypropylene (melting point 80 ° C., acid value 10 mgKOH / g) as a main agent, and an isocyanurate of hexamethylene diisocyanate as a curing agent. (NCO content: 20% by mass) Using an adhesive solution prepared by mixing 8 parts by mass and a solvent, the adhesive solution was applied to the aluminum foil 4 so that the solid content coating amount was 2 g / m 2. It was applied to the other surface, dried by heating, and then laminated on the 8 surfaces of the second non-stretched film layer of the sealant film 3.

得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.27μg/cm2であった(表1)。 In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.27 μg / cm 2 (Table 1).

<実施例2>
厚さ40μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
<Example 2>
A chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied to both sides of an aluminum foil 4 having a thickness of 40 μm, and then dried at 180 ° C. , A chemical conversion film was formed. The amount of chromium adhered to this chemical conversion film was 10 mg / m 2 per side.

次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ25μmの二軸延伸6ナイロンフィルム2をドライラミネートした(貼り合わせた)。 Next, a biaxially stretched 6 nylon film 2 having a thickness of 25 μm was dry-laminated (bonded) on one surface of the chemical conversion-treated aluminum foil 4 via a two-component curable urethane adhesive 5.

次に、エチレン−プロピレンランダム共重合体、1000ppmのエルカ酸アミドおよび2000ppmのシリカ粒子(アンチブロッキング剤)を含有してなる厚さ6μmの第1無延伸フィルム7、エチレン−プロピレンブロック共重合体および2500ppmのエルカ酸アミドを含有してなる厚さ28μmの第2無延伸フィルム8、エチレン−プロピレンランダム共重合体、1000ppmのエルカ酸アミドおよび2000ppmのシリカ粒子(アンチブロッキング剤)を含有してなる厚さ6μmの第1無延伸フィルム9がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ40μmのシーラントフィルム(第1無延伸フィルム層7/第2無延伸フィルム層8/第1無延伸フィルム層9)3を得た後、該シーラントフィルム3の一方の第1無延伸フィルム層9面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、しかる後、40℃で10日間エージングする(加熱する)ことによって、図2に示す構成の蓄電デバイス用外装材1を得た。 Next, a 6 μm-thick first unstretched film 7 containing an ethylene-propylene random copolymer, 1000 ppm erucic acid amide and 2000 ppm silica particles (anti-blocking agent), an ethylene-propylene block copolymer and A 28 μm-thick second unstretched film containing 2500 ppm erucic acid amide, an ethylene-propylene random copolymer, 1000 ppm erucic acid amide and 2000 ppm silica particles (anti-blocking agent). By co-extruding a 6 μm first unstretched film 9 with a T-die so that three layers are laminated in this order, a 40 μm-thick sealant film (first unstretched film) formed by laminating these three layers. After obtaining the film layer 7 / second non-stretched film layer 8 / first non-stretched film layer 9) 3, one of the first non-stretched film layers 9 surfaces of the sealant film 3 is coated with a two-component curable maleic acid. Dry-laminate by superimposing it on the other surface of the aluminum foil 4 after the dry-laminate via the modified polypropylene adhesive 6, sandwiching it between the rubber nip roll and the laminate roll heated to 100 ° C., and crimping it. Then, by aging (heating) at 40 ° C. for 10 days, the exterior material 1 for a power storage device having the configuration shown in FIG. 2 was obtained.

なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の一方の第1無延伸フィルム層9面に重ね合わせた。 As the two-component curable maleic acid-modified polypropylene adhesive, 100 parts by mass of maleic acid-modified polypropylene (melting point 80 ° C., acid value 10 mgKOH / g) as a main agent, and an isocyanurate of hexamethylene diisocyanate as a curing agent. (NCO content: 20% by mass) Using an adhesive solution prepared by mixing 8 parts by mass and a solvent, the adhesive solution was applied to the aluminum foil 4 so that the solid content coating amount was 2 g / m 2. After being applied to the other surface and dried by heating, it was laminated on one of the first non-stretched film layers 9 surfaces of the sealant film 3.

得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.25μg/cm2であった(表1)。 In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.25 μg / cm 2 (Table 1).

<実施例3>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を1000ppmに設定した以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.20μg/cm2であった(表1)。
<Example 3>
An exterior material 1 for a power storage device having the configuration shown in FIG. 2 was obtained in the same manner as in Example 2 except that the concentration of erucic acid amide in the second unstretched film layer 8 before lamination was set to 1000 ppm. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.20 μg / cm 2 (Table 1).

<実施例4>
積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を500ppmに設定した以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.15μg/cm2であった(表1)。
<Example 4>
An exterior material 1 for a power storage device having the configuration shown in FIG. 2 was obtained in the same manner as in Example 2 except that the concentration of erucic acid amide in the first unstretched film layers 7 and 9 before lamination was set to 500 ppm. .. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.15 μg / cm 2 (Table 1).

<実施例5>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を1000ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を2000ppmに設定した以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.35μg/cm2であった(表1)。
<Example 5>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 1000 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 2000 ppm. In the same manner as above, the exterior material 1 for the power storage device having the configuration shown in FIG. 2 was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.35 μg / cm 2 (Table 1).

<実施例6>
第1無延伸フィルム層7、9および第2無延伸フィルム層8において滑剤としてエルカ酸アミドに代えてベヘン酸アミドを用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.19μg/cm2であった(表1)。
<Example 6>
The storage storage having the configuration shown in FIG. 2 is the same as in Example 2 except that bechenic acid amide is used as the lubricant in the first non-stretched film layers 7 and 9 and the second non-stretched film layer 8 instead of the erucic acid amide. The exterior material 1 for the device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.19 μg / cm 2 (Table 1).

<実施例7>
第1無延伸フィルム層7、9および第2無延伸フィルム層8において滑剤としてエルカ酸アミドに代えてオレイン酸アミドを用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.50μg/cm2であった(表1)。
<Example 7>
The storage capacity shown in FIG. 2 is the same as in Example 2 except that oleic acid amide is used as the lubricant in the first non-stretched film layers 7 and 9 and the second non-stretched film layer 8 instead of erucic acid amide. The exterior material 1 for the device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.50 μg / cm 2 (Table 1).

<実施例8>
第1無延伸フィルム層7、9および第2無延伸フィルム層8において滑剤としてエルカ酸アミドに代えてステアリン酸アミドを用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.30μg/cm2であった(表1)。
<Example 8>
The storage capacity shown in FIG. 2 is the same as in Example 2 except that stearic acid amide is used as the lubricant in the first non-stretched film layers 7 and 9 and the second non-stretched film layer 8 instead of erucic acid amide. An exterior material 1 for a device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.30 μg / cm 2 (Table 1).

<実施例9>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を4500ppmに設定した以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.10μg/cm2であった(表1)。
<Example 9>
An exterior material 1 for a power storage device having the configuration shown in FIG. 2 was obtained in the same manner as in Example 2 except that the concentration of erucic acid amide in the second unstretched film layer 8 before lamination was set to 4500 ppm. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.10 μg / cm 2 (Table 1).

<比較例1>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を300ppmに設定した以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.07μg/cm2であった(表1)。
<Comparative example 1>
An exterior material for a power storage device was obtained in the same manner as in Example 1 except that the concentration of erucic acid amide in the second unstretched film layer 8 before lamination was set to 300 ppm. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.07 μg / cm 2 (Table 1).

<比較例2>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を300ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.08μg/cm2であった(表1)。
<Comparative example 2>
An exterior material for a power storage device was obtained in the same manner as in Example 2 except that the concentration of erucic acid amide in the second unstretched film layer 8 before lamination was set to 300 ppm. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.08 μg / cm 2 (Table 1).

<比較例3>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を8000ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を2000ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は1.31μg/cm2であった(表1)。
<Comparative example 3>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 8000 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 2000 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 1.31 μg / cm 2 (Table 1).

<比較例4>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を1500ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を8000ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は1.05μg/cm2であった(表1)。
<Comparative example 4>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 1500 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 8000 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 1.05 μg / cm 2 (Table 1).

<比較例5>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を1500ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を100ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.06μg/cm2であった(表1)。
<Comparative example 5>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 1500 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 100 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.06 μg / cm 2 (Table 1).

<比較例6>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を100ppm、積層前の第1無延伸フィルム層7におけるエルカ酸アミドの含有濃度を250ppmに設定した以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.02μg/cm2であった(表1)。
<Comparative Example 6>
Same as in Example 1 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 100 ppm and the erucic acid amide content in the first non-stretched film layer 7 before laminating was set to 250 ppm. Then, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.02 μg / cm 2 (Table 1).

<比較例7>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を100ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を250ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.02μg/cm2であった(表1)。
<Comparative Example 7>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 100 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 250 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.02 μg / cm 2 (Table 1).

<比較例8>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を21000ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を3500ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は3.20μg/cm2であった(表1)。
<Comparative Example 8>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 21000 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 3500 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 3.20 μg / cm 2 (Table 1).

<比較例9>
積層前の第2無延伸フィルム層8におけるエルカ酸アミドの含有濃度を100ppm、積層前の第1無延伸フィルム層7、9におけるエルカ酸アミドの含有濃度を3500ppmに設定した以外は、実施例2と同様にして、蓄電デバイス用外装材を得た。得られた蓄電デバイス用外装材1において、外装材の最内層(第1無延伸フィルム層7)の表面7aに存在する滑剤量は0.05μg/cm2であった(表1)。
<Comparative Example 9>
Example 2 except that the erucic acid amide content in the second non-stretched film layer 8 before laminating was set to 100 ppm and the erucic acid amide content in the first non-stretched film layers 7 and 9 before laminating was set to 3500 ppm. In the same manner as above, an exterior material for a power storage device was obtained. In the obtained exterior material 1 for a power storage device, the amount of lubricant present on the surface 7a of the innermost layer (first unstretched film layer 7) of the exterior material was 0.05 μg / cm 2 (Table 1).

Figure 0006943547
Figure 0006943547

上記のようにして得られた各蓄電デバイス用外装材(エージング処理済み)について下記評価法に基づいて評価を行った。その結果を表1に示す。なお、表1に記載の動摩擦係数は、JIS K7125−1995に準拠して各蓄電デバイス用外装材(エージング処理済み)の最内層の表面7aについて測定した動摩擦係数である。 The exterior materials (aged) for each power storage device obtained as described above were evaluated based on the following evaluation methods. The results are shown in Table 1. The coefficient of kinetic friction shown in Table 1 is a coefficient of kinetic friction measured for the surface 7a of the innermost layer of the exterior material (aged) for each power storage device in accordance with JIS K7125-1995.

<外装材の最内層の表面に存在する滑剤量の評価法>
各蓄電デバイス用外装材から縦100mm×横100mmの矩形状の試験片を2枚切り出した後、これら2枚の試験片を重ね合わせて互いのシーラント層の周縁部同士をヒートシール温度200℃でヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン1mLを注入し、シーラント層の最内層7の表面とアセトンとが接触した状態で3分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液中に含まれる滑剤量をガスクロマトグラフを用いて測定、分析することにより、外装材の最内層の表面に存在する滑剤量(μg/cm2)を求めた。即ち、最内層の表面1cm2あたりの滑剤量を求めた。
<Evaluation method for the amount of lubricant present on the surface of the innermost layer of the exterior material>
After cutting out two rectangular test pieces of 100 mm in length × 100 mm in width from the exterior material for each power storage device, these two test pieces are overlapped and the peripheral edges of each sealant layer are heat-sealed at a heat seal temperature of 200 ° C. A bag body was prepared by heat sealing. 1 mL of acetone was injected into the internal space of the bag using a syringe, and the surface of the innermost layer 7 of the sealant layer was left in contact with acetone for 3 minutes, and then the acetone in the bag was extracted. The amount of lubricant (μg / cm 2 ) present on the surface of the innermost layer of the exterior material was determined by measuring and analyzing the amount of lubricant contained in the extracted liquid using a gas chromatograph. That is, the amount of lubricant per 1 cm 2 of the surface of the innermost layer was determined.

<成形性評価法>
成形深さフリーのストレート金型を用いて外装材に対し下記成形条件で深絞り1段成形を行い、各成形深さ(9mm、8mm、7mm、6mm、5mm、4mm、3mm、2mm)毎に成形性を評価し、コーナー部にピンホールが全く発生しない良好な成形を行うことができる最大成形深さ(mm)を調べた。判定は、最大成形深さが5mm以上であるものを「○」とし、最大成形深さが2mm以上5mm未満であるものを「△」とし、最大成形深さが2mm未満であるものを「×」とした。この結果を表1に示した。なお、ピンホールの有無は、ピンホールを透過してくる透過光の有無を目視により観察することにより調べた。
(成形条件)
成形型…パンチ:33.3mm×53.9mm、ダイ:80mm×120mm、コーナーR:2mm、パンチR:1.3mm、ダイR:1mm
しわ押さえ圧…ゲージ圧:0.475MPa、実圧(計算値):0.7MPa
材質…SC(炭素鋼)材、パンチRのみクロムメッキ。
<Moldability evaluation method>
Using a straight mold with no molding depth, the exterior material is deep-drawn and one-stage molded under the following molding conditions, and for each molding depth (9 mm, 8 mm, 7 mm, 6 mm, 5 mm, 4 mm, 3 mm, 2 mm). The moldability was evaluated, and the maximum molding depth (mm) capable of performing good molding without any pinholes at the corners was investigated. Judgment is that the maximum molding depth of 5 mm or more is marked with "○", the maximum molding depth of 2 mm or more and less than 5 mm is marked with "Δ", and the maximum molding depth of less than 2 mm is marked with "x". ". The results are shown in Table 1. The presence or absence of pinholes was examined by visually observing the presence or absence of transmitted light transmitted through the pinholes.
(Molding condition)
Molding mold: Punch: 33.3 mm x 53.9 mm, Die: 80 mm x 120 mm, Corner R: 2 mm, Punch R: 1.3 mm, Die R: 1 mm
Wrinkle pressing pressure: Gauge pressure: 0.475 MPa, actual pressure (calculated value): 0.7 MPa
Material: SC (carbon steel) material, punch R only chrome plated.

<白粉の有無評価法>
各蓄電デバイス用外装材から縦600mm×横100mmの矩形状の試験片を切り出した後、得られた試験片を内側シーラント層3面(即ち最内層の表面7a)を上側にして試験台の上に載置し、この試験片の上面に、黒色のウェスが巻き付けられて表面が黒色を呈しているSUS製錘(質量1.3kg、接地面の大きさが55mm×50mm)を載せた状態で、該錘を試験片の上面と平行な水平方向に引張速度4cm/秒で引っ張ることによって錘を試験片の上面に接触状態で長さ400mmにわたって引張移動させた。引張移動後の錘の接触面のウェス(黒色)を目視で観察し、ウェス(黒色)の表面に白粉が顕著に生じていたものを「×」とし、白粉がある程度(中程度)生じていたものを「△」とし、白粉が殆どないか又は白粉が認められなかったものを「○」とした。なお、上記黒色のウェスとしては、TRUSCO社製「静電気除去シートS SD2525 3100」を使用した。
<Evaluation method for the presence or absence of white powder>
After cutting out a rectangular test piece of 600 mm in length × 100 mm in width from the exterior material for each power storage device, the obtained test piece is placed on a test table with the three inner sealant layers (that is, the innermost surface 7a) facing up. On the upper surface of this test piece, a SUS weight (mass 1.3 kg, ground plane size 55 mm x 50 mm) with a black surface wrapped around it is placed. By pulling the weight in the horizontal direction parallel to the upper surface of the test piece at a tensile speed of 4 cm / sec, the weight was pulled and moved over a length of 400 mm in contact with the upper surface of the test piece. The waste (black) on the contact surface of the weight after the tensile movement was visually observed, and the one where white powder was prominently generated on the surface of the waste (black) was marked with "x", and some (medium) white powder was generated. Those with almost no white powder or no white powder were marked with "Δ". As the black waste cloth, TRUSCO's "Static electricity removal sheet S SD2525 3100" was used.

<総合判定>
成形性評価が「○」であり、かつ白粉の有無評価も「○」であるものを総合判定で「○」と判定し、成形性評価および白粉の有無評価のうち少なくともいずれか一方が「×」であるものを総合判定で「×」と判定した。
<Comprehensive judgment>
Those whose moldability evaluation is "○" and whose presence / absence evaluation of white powder is also "○" are judged as "○" in the comprehensive judgment, and at least one of the moldability evaluation and the presence / absence evaluation of white powder is "×". Was judged as "x" in the comprehensive judgment.

表1から明らかなように、本発明のシーラントフィルムを用いて構成された実施例1〜9の本発明の蓄電デバイス用外装材は、成形性に優れていると共に、外装材の表面に白粉が表出し難いものであった。 As is clear from Table 1, the exterior materials for power storage devices of the present invention of Examples 1 to 9 configured by using the sealant film of the present invention are excellent in moldability and white powder is formed on the surface of the exterior material. It was difficult to express.

これに対し、本発明の規定範囲を逸脱している比較例1、2、5〜7、9では、外装材の成形性が良好ではなかったし、本発明の規定範囲を逸脱している比較例3、4、8では、外装材の表面に白粉が顕著に生じていた。 On the other hand, in Comparative Examples 1, 2, 5 to 7, and 9, which deviate from the specified range of the present invention, the moldability of the exterior material was not good, and the comparison deviated from the specified range of the present invention. In Examples 3, 4 and 8, white powder was remarkably generated on the surface of the exterior material.

本発明に係るシーラントフィルムを用いて製作された蓄電デバイス用外装材および本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。また、本発明に係る蓄電デバイスは、上記例示した蓄電デバイスの他、全固体電池も含む。
Specific examples of the exterior material for a power storage device manufactured by using the sealant film according to the present invention and the exterior material for a power storage device according to the present invention are, for example.
-Used as an exterior material for various power storage devices such as lithium ion batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, and electric double-layer capacitors. Further, the power storage device according to the present invention includes an all-solid-state battery in addition to the power storage device exemplified above.

1…蓄電デバイス用外装材
2…耐熱性樹脂層(外側層)
3…内側シーラント層(シーラントフィルム)(内側層)
4…金属箔層
5…第2接着剤層(外側接着剤層)
6…第1接着剤層(内側接着剤層)
7…第1無延伸フィルム層(最内層)
7a…第1無延伸フィルム層の表面(外装材の最内層の表面)
8…第2無延伸フィルム層
9…第1無延伸フィルム層(金属箔層側)
10…蓄電デバイス用外装ケース(成形体)
15…外装部材
30…蓄電デバイス
31…蓄電デバイス本体部
1 ... Exterior material for power storage device 2 ... Heat-resistant resin layer (outer layer)
3 ... Inner sealant layer (sealant film) (inner layer)
4 ... Metal leaf layer 5 ... Second adhesive layer (outer adhesive layer)
6 ... First adhesive layer (inner adhesive layer)
7 ... First non-stretched film layer (innermost layer)
7a ... Surface of first non-stretched film layer (surface of innermost layer of exterior material)
8 ... Second non-stretched film layer 9 ... First non-stretched film layer (metal foil layer side)
10 ... Exterior case (molded body) for power storage device
15 ... Exterior member 30 ... Power storage device 31 ... Power storage device main body

Claims (10)

外側層としての耐熱性樹脂層と、蓄電デバイスの外装材用シーラントフィルムからなる内側シーラント層と、これら両層間に配置された金属箔層とを含む蓄電デバイス用外装材であって、
前記外装材用シーラントフィルムは、第2無延伸フィルム層と、該第2無延伸フィルム層の一方の面に積層された第1無延伸フィルム層と、前記第2無延伸フィルム層の他方の面に積層された第1無延伸フィルム層と、を含む3層以上の積層体からなり、
いずれか一方の前記第1無延伸フィルム層が、外装材の最内層を形成するものであり、
前記第1無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体と、滑剤と、を含有し、
前記第2無延伸フィルム層は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するブロック共重合体と、滑剤と、を含有し、
前記第1無延伸フィルム層における滑剤の含有濃度が200ppm〜3000ppmであり、前記第2無延伸フィルム層における滑剤の含有濃度が500ppm〜5000ppmであり、
前記第2無延伸フィルム層における滑剤含有濃度は、外装材の最内層および前記金属箔層側を形成する前記第1無延伸フィルム層における滑剤含有濃度の0.5倍〜5倍であり、
前記金属箔層と前記内側シーラント層とは内側接着剤層を介して接着され、
前記耐熱性樹脂層と前記金属箔層とは外側接着剤層を介して接着され
外装材の最内層側および前記金属箔層側を形成する各前記第1無延伸フィルム層は、同じ共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体であって、滑剤の含有濃度が同じであることを特徴とする蓄電デバイス用外装材。
An exterior material for a power storage device including a heat-resistant resin layer as an outer layer, an inner sealant layer made of a sealant film for the exterior material of the power storage device, and a metal foil layer arranged between both layers.
The sealant film for exterior materials includes a second non-stretched film layer, a first non-stretched film layer laminated on one surface of the second non-stretched film layer, and the other surface of the second non-stretched film layer. It is composed of a laminated body of three or more layers including a first unstretched film layer laminated in
One of the first non-stretched film layers forms the innermost layer of the exterior material.
The first non-stretched film layer contains a random copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
The second non-stretched film layer contains a block copolymer containing propylene as a copolymerization component and other copolymerization components other than propylene, and a lubricant.
The concentration of the lubricant in the first non-stretched film layer is 200 ppm to 3000 ppm, and the concentration of the lubricant in the second non-stretched film layer is 500 ppm to 5000 ppm.
The lubricant-containing concentration in the second non-stretched film layer is 0.5 to 5 times the lubricant-containing concentration in the first non-stretched film layer forming the innermost layer of the exterior material and the metal foil layer side.
The metal foil layer and the inner sealant layer are adhered to each other via an inner adhesive layer.
The heat-resistant resin layer and the metal foil layer are adhered to each other via an outer adhesive layer .
Each of the first non-stretched film layers forming the innermost layer side and the metal foil layer side of the exterior material is a random copolymer containing propylene and other copolymerization components other than propylene as the same copolymerization component. , An exterior material for a power storage device, characterized in that the content concentration of the lubricant is the same.
前記第2無延伸フィルム層における滑剤含有濃度は、外装材の最内層および金属箔層側を形成する前記第1無延伸フィルム層における滑剤含有濃度の1倍〜3倍である請求項1に記載の蓄電デバイス用外装材。 The first aspect of claim 1, wherein the lubricant-containing concentration in the second non-stretched film layer is 1 to 3 times the lubricant-containing concentration in the first non-stretched film layer forming the innermost layer and the metal foil layer side of the exterior material. Exterior material for power storage devices. 外装材の最内層を形成する前記第1無延伸フィルム層の表面に存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲である請求項1または2に記載の蓄電デバイス用外装材。 Storage device according to claim 1 or 2 ranges lubricant amount existing on the surface of the first non-oriented film layer of 0.1μg / cm 2 ~1.0μg / cm 2 to form an innermost layer of the outer package Exterior material. 外装材の最内層を形成する前記第1無延伸フィルム層の表面に存在する滑剤量が0.15μg/cm2〜0.45μg/cm2の範囲である請求項3に記載の蓄電デバイス用外装材。 The exterior for a power storage device according to claim 3, wherein the amount of lubricant present on the surface of the first non-stretched film layer forming the innermost layer of the exterior material is in the range of 0.15 μg / cm 2 to 0.45 μg / cm 2. Material. 請求項1〜4のいずれか1項に記載の外装材の成形体からなる蓄電デバイス用外装ケース。 An exterior case for a power storage device made of a molded body of the exterior material according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の蓄電デバイス用外装材の製造方法であって、
前記外装材用シーラントフィルムと、金属箔とを第1接着剤を介して積層した積層体を準備する工程と、
前記積層体を加熱処理して蓄電デバイス用外装材を得るエージング工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
The method for manufacturing an exterior material for a power storage device according to any one of claims 1 to 4.
A step of preparing a laminate in which the sealant film for an exterior material and a metal foil are laminated via a first adhesive, and
A method for manufacturing an exterior material for a power storage device, which comprises an aging step of heat-treating the laminate to obtain an exterior material for the power storage device.
前記第1接着剤が熱硬化性接着剤である請求項6に記載の蓄電デバイス用外装材の製造方法。 The method for manufacturing an exterior material for a power storage device according to claim 6, wherein the first adhesive is a thermosetting adhesive. 請求項1〜4のいずれか1項に記載の蓄電デバイス用外装材の製造方法であって、
金属箔の一方の面に第2接着剤を介して耐熱性樹脂フィルムが積層されると共に前記金属箔の他方の面に第1接着剤を介して前記外装材用シーラントフィルムが積層された構成の積層体を準備する工程と、
前記積層体を加熱処理して蓄電デバイス用外装材を得るエージング工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
The method for manufacturing an exterior material for a power storage device according to any one of claims 1 to 4.
A heat-resistant resin film is laminated on one surface of the metal foil via a second adhesive, and the sealant film for an exterior material is laminated on the other surface of the metal foil via a first adhesive. The process of preparing the laminate and
A method for manufacturing an exterior material for a power storage device, which comprises an aging step of heat-treating the laminate to obtain an exterior material for the power storage device.
前記第1接着剤が熱硬化性接着剤であり、前記第2接着剤が熱硬化性接着剤である請求項8に記載の蓄電デバイス用外装材の製造方法。 The method for producing an exterior material for a power storage device according to claim 8, wherein the first adhesive is a thermosetting adhesive and the second adhesive is a thermosetting adhesive. 加熱処理して得た前記蓄電デバイス用外装材の最内層を形成する前記第1無延伸フィルム層の表面に存在する滑剤量が0.1μg/cm2〜1.0μg/cm2の範囲である請求項6〜9のいずれか1項に記載の蓄電デバイス用外装材の製造方法。 In the range lubricant amount existing on the surface of the first non-oriented film layer forming the innermost layer of 0.1μg / cm 2 ~1.0μg / cm 2 of obtained by heating the storage device for exterior materials The method for manufacturing an exterior material for a power storage device according to any one of claims 6 to 9.
JP2016115176A 2016-06-09 2016-06-09 Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method Active JP6943547B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016115176A JP6943547B2 (en) 2016-06-09 2016-06-09 Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
TW106116011A TWI760335B (en) 2016-06-09 2017-05-15 Exterior material for electrical storage device and method for producing the same
KR1020170065172A KR102325253B1 (en) 2016-06-09 2017-05-26 Sealant film for exterior material of electricity storage device, exterior material for electricity storage device and manufacturing method thereof
CN201710422573.7A CN107487050B (en) 2016-06-09 2017-06-06 Seal film for outer packaging material of electricity storage device, outer packaging material, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115176A JP6943547B2 (en) 2016-06-09 2016-06-09 Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017220390A JP2017220390A (en) 2017-12-14
JP6943547B2 true JP6943547B2 (en) 2021-10-06

Family

ID=60642472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115176A Active JP6943547B2 (en) 2016-06-09 2016-06-09 Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6943547B2 (en)
KR (1) KR102325253B1 (en)
CN (1) CN107487050B (en)
TW (1) TWI760335B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615829B (en) * 2018-04-28 2021-04-16 上海恩捷新材料科技有限公司 Flexible package and battery prepared from same
TW202005799A (en) * 2018-07-17 2020-02-01 日商昭和電工包裝股份有限公司 Laminate material that includes an outside layer, an inside layer, and a metal foil layer arranged between the outside layer and the inside layer
CN109336780A (en) * 2018-10-23 2019-02-15 广州禾工材料科技有限公司 Octadecyl oleamide, preparation method and application
JP2020092082A (en) * 2018-11-26 2020-06-11 昭和電工パッケージング株式会社 Exterior case for power storage device and method for manufacturing the same
CN113874210B (en) * 2019-07-09 2023-10-10 东丽薄膜先端加工股份有限公司 sealing film
CN113036270A (en) * 2019-12-24 2021-06-25 昭和电工包装株式会社 Sealing film for battery outer packaging material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3774163B2 (en) * 2002-03-28 2006-05-10 東洋アルミニウム株式会社 Laminated material for secondary battery container and secondary battery container
JP3774164B2 (en) * 2002-03-28 2006-05-10 東洋アルミニウム株式会社 Laminated material for secondary battery container and secondary battery container
JP2005203294A (en) * 2004-01-19 2005-07-28 Toppan Printing Co Ltd Sheathing material for lithium ion battery
JP5942384B2 (en) * 2011-11-07 2016-06-29 凸版印刷株式会社 Secondary battery exterior material and secondary battery
JP5959205B2 (en) * 2012-01-17 2016-08-02 昭和電工パッケージング株式会社 Battery exterior material, battery exterior material molding method and lithium secondary battery
JP6035754B2 (en) * 2012-01-31 2016-11-30 凸版印刷株式会社 Power storage device
KR102231414B1 (en) * 2013-02-06 2021-03-25 다이니폰 인사츠 가부시키가이샤 Battery packaging material
JP5626392B2 (en) * 2013-02-06 2014-11-19 大日本印刷株式会社 Battery packaging materials
JP6276047B2 (en) * 2014-01-31 2018-02-07 昭和電工パッケージング株式会社 Packaging material, packaging material manufacturing method and molded case
CN113675507A (en) * 2014-07-16 2021-11-19 凸版印刷株式会社 Packaging material for power storage device, and power storage device using same
EP3171425B1 (en) * 2014-07-17 2019-12-18 Dai Nippon Printing Co., Ltd. Cell packaging material
JP6592933B2 (en) * 2014-09-30 2019-10-23 大日本印刷株式会社 Battery packaging materials
JP6681724B2 (en) * 2016-01-29 2020-04-15 東レフィルム加工株式会社 Slippery film and laminate using the same

Also Published As

Publication number Publication date
KR20170139446A (en) 2017-12-19
CN107487050B (en) 2021-12-24
JP2017220390A (en) 2017-12-14
TW201743491A (en) 2017-12-16
TWI760335B (en) 2022-04-11
CN107487050A (en) 2017-12-19
KR102325253B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6943547B2 (en) Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
JP6936093B2 (en) Exterior material for power storage device, exterior case for power storage device and power storage device
JP7394949B2 (en) Exterior material for power storage devices
JP6860983B2 (en) Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
JP2021190419A (en) Laminated body for power storage device outer packaging material
US20200243810A1 (en) Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
JP2021103679A (en) Sealant film for battery external material
JP7393569B2 (en) Manufacturing method of exterior case for power storage device
JP6767795B2 (en) Exterior materials for power storage devices and their manufacturing methods
JP7033411B2 (en) Packaging materials for molding, exterior cases for power storage devices and power storage devices
JP7142558B2 (en) Exterior material for power storage device and power storage device
JP7226979B2 (en) Exterior material for power storage device and power storage device
JP6994326B2 (en) Packaging materials for molding, exterior cases for power storage devices and power storage devices
JP7583143B2 (en) Exterior materials for power storage devices
JP7319484B1 (en) Exterior material for power storage device and power storage device
JP6936088B2 (en) Packaging material for molding, exterior case for power storage device and power storage device
JP2023180219A (en) Packing material for power storage device, packing case for power storage device, and power storage device
CN111216424A (en) Outer casing for electricity storage device and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210909

R150 Certificate of patent or registration of utility model

Ref document number: 6943547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250