Nothing Special   »   [go: up one dir, main page]

WO2024106503A1 - ガラス物品及び車載用表示装置とその製造方法 - Google Patents

ガラス物品及び車載用表示装置とその製造方法 Download PDF

Info

Publication number
WO2024106503A1
WO2024106503A1 PCT/JP2023/041250 JP2023041250W WO2024106503A1 WO 2024106503 A1 WO2024106503 A1 WO 2024106503A1 JP 2023041250 W JP2023041250 W JP 2023041250W WO 2024106503 A1 WO2024106503 A1 WO 2024106503A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass article
main surface
chamfered portion
glass
less
Prior art date
Application number
PCT/JP2023/041250
Other languages
English (en)
French (fr)
Inventor
達 川田
雄一 増田
彰久 石野
丈彰 小野
涼 穂刈
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024106503A1 publication Critical patent/WO2024106503A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a glass article, an in-vehicle display device, and a method for manufacturing the same.
  • a glass article having glass, an anti-reflection film disposed on the first main surface of the glass, and a frame-shaped printed portion disposed on the second main surface of the glass plate has been used as a cover glass in a display device such as an in-vehicle display device.
  • the cover glass for such in-vehicle display devices is required to have a shape in which the edge close to the first main surface is chamfered. In this case, it is known that if the chamfered portion is curved, a phenomenon occurs in which the edge appears red (hereinafter referred to as red discoloration, etc.) (see, for example, Patent Document 1).
  • red is a warning color
  • such red discoloration is not liked by users of the display device, and there is a risk that users of the display device may mistake the red discoloration for, for example, an abnormality or malfunction of the display device. For this reason, there is a demand to avoid the red discoloration.
  • the composition of the anti-reflection layer is adjusted to avoid red discoloration at the edges.
  • Patent Document 1 requires adjustments to the configuration of the anti-reflection layer itself, which may narrow the design flexibility of the anti-reflection layer, and an alternative solution was sought.
  • the present invention was made in consideration of the above problems, and aims to provide a glass article that can suppress red discoloration at the edges using a new method different from that of Patent Document 1.
  • a glass article according to the present invention is a glass article having a first main surface, a second main surface, and an end surface connecting the first main surface and the second main surface, wherein the end surface includes a side portion and a curved first chamfered portion connecting the side portion and the first main surface, and the first main surface and the first chamfered portion have an anti-reflection layer, and in a region where the angle between the first chamfered portion and the first main surface is greater than 0° and not greater than 40°, an average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article is 0.20 ⁇ m or less, an average value Ra 3 of the arithmetic mean roughness Ra of the surface of the glass article in a region where the angle between the first chamfered portion and the first main surface is greater than 80° and in the side portion is 0.30 ⁇ m or more, and an average value Ra 2 of the arithmetic mean roughness Ra of the surface of the glass article satisfies the following formula
  • the glass article of the present invention can provide a glass article in which red discoloration at the edges is suppressed.
  • FIG. 1 is a schematic diagram showing an in-vehicle display device.
  • FIG. 2 is a schematic diagram showing a cross section of the glass article according to this embodiment.
  • FIG. 3 is a schematic diagram showing a cross section of the glass article according to this embodiment.
  • FIG. 4 is a schematic diagram showing a cross section of the glass article according to this embodiment.
  • FIG. 5 is a schematic diagram showing a method for manufacturing a glass article according to this embodiment, in which (A) of FIG. 5 is a schematic diagram showing how a first chamfered portion is formed by grinding, and (B) of FIG. 5 is a schematic diagram showing how the first chamfered portion is polished.
  • FIG. 6 is a graph showing the surface roughness of the end faces of the glasses of Examples 1 to 4.
  • FIG. 7 is a graph showing the surface roughness of the end faces of the glasses of Examples 5 to 7.
  • FIG. 1 is a schematic diagram showing an in-vehicle display device when the glass article according to the present embodiment is used as a cover material for the in-vehicle display device.
  • the in-vehicle display device 2 is a display device provided in a vehicle, and is provided, for example, in front of a steering shaft 1 in the vehicle.
  • the in-vehicle display device 2 includes a display panel 3 and a glass article 100.
  • the display panel 3 displays, for example, images of a car navigation screen, various meters such as a speedometer, and a start button.
  • the glass article 100 is used as a cover material (display cover material) for the front surface of the display panel 3.
  • the in-vehicle display device to which the glass article 100 is applied may have any configuration.
  • the glass article 100 is not limited to being used as a cover material for the surface of the in-vehicle display device, and may be used for any purpose, such as a cover material for a display device such as a smartphone.
  • ⁇ Glass Articles> 2 is a schematic diagram showing a cross section of a glass article 100.
  • the glass article 100 in this embodiment has a glass 10, a first main surface 11, a second main surface 12, and an end surface 13 connecting the first main surface 11 and the second main surface 12.
  • the end surface 13 includes a side surface portion 14 and a curved first chamfered portion 15 connecting the side surface portion 14 and the first main surface 11.
  • the end surface 13 may have the side surface portion 14 and the first chamfered portion 15 in the shape shown in FIG. 2 formed over the entire circumference of the glass article 100, or may be formed only on a part of the circumference.
  • An anti-reflection layer 20 is formed on the surface of the glass 10 at the first main surface 11 and the first chamfered portion 15.
  • the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article 100 is 0.20 ⁇ m or less, and in the region where the angle between the first chamfered portion 15 and the first main surface 11 is greater than 80° and in the region of the side portion 14 where the average value Ra 3 of the arithmetic mean roughness Ra of the surface of the glass article 100 is 0.30 ⁇ m or more, and the average value Ra 2 of the arithmetic mean roughness Ra of the surface of the glass article 100 satisfies the following formula (1): 0.2 ⁇ ( Ra2 ⁇ Ra1 )/( Ra3 ⁇ Ra1 ) ⁇ 0.8 (1)
  • the first chamfered portion 15 is formed by chamfering the edge surface 13 of the glass 10, and the side surface portion 14 is the area of the edge surface 13 that is not chamfered.
  • the first chamfered portion 15 is also visible to the driver, so the surface roughness of the first chamfered portion 15 of the glass 10 may be reduced by polishing to improve the appearance.
  • the surface shape of the glass article 100 having the anti-reflection layer 20 and other decorative layers provided on the surface of the glass 10 follows the surface shape of the glass 10, and the arithmetic mean roughness of the surfaces of the glass article 100 and the glass 10 generally coincide.
  • the entire end face 13, including the side portion 14, was generally polished to reduce the surface roughness.
  • red discoloration of the end was unavoidable when the first chamfered portion 15 was formed into a curved shape to reduce the surface roughness of the end face 13.
  • the inventors have discovered that in the region where the angle with the first main surface 11, which is most visible to the driver, is greater than 0° and is less than or equal to 40°, the aesthetic appearance as seen by the driver can be improved by setting the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article 100 to 0.20 ⁇ m or less, while in the region where the angle with the first main surface 11 of the first chamfered portion 15 is greater than 80° and in the side portion 14, the red discoloration of the end face 13 can be suppressed without impairing the aesthetic appearance by setting the average value Ra 3 of the arithmetic mean roughness Ra of the surface of the glass article 100 to 0.30 ⁇ m or more.
  • the color of the reflected light at the first main surface is white.
  • the configuration of the anti-reflection layer is adjusted so that the color of the reflected light at the first main surface is white, the color of the specularly reflected light at the end face 13 will be red, and the red color will be strongly perceived, causing red discoloration.
  • the surface roughness of the glass article 100 is increased at the end face 13, the light incident on the end face 13 is scattered.
  • the driver observes light that is the sum of scattered light incident on the end face 13 from various angles, and in this case, the color of the reflected light becomes closer to white. Therefore, by increasing the surface roughness in the area where the angle between the first chamfered portion 15 and the first main surface 11 is greater than 80° and in the side portion 14, which are relatively difficult to see by the driver, the scattered light is increased and the color of the end portion is made closer to white.
  • the surface roughness at the end face 13 changes suddenly, the boundary will be visible as a line. Therefore, in the region where the angle between the first chamfered portion 15 and the first main surface 11 is 60° or more and 80° or less, the surface roughness is designed to be intermediate between the surface roughness of the region where the angle is 40° or less and the surface roughness of the region where the angle is greater than 80°.
  • the angle between first chamfered portion 15 and first main surface 11 will be described with reference to Fig. 3.
  • the anti-reflection layer is omitted in Fig. 3.
  • the angle at an arbitrary point P4 can be determined by the following method.
  • a cross-section of glass article 100 that is, a cross-section of glass article 100 is observed from a direction perpendicular to the thickness direction, using a digital microscope (for example, VHK-6000 manufactured by KEYENS Corporation).
  • an arbitrary point on the side portion 14 and the first chamfered portion 15 is designated as P1
  • the intersection between an arc with a radius of 3 mm centered on point P1 and the first main surface 11 is designated as position P2
  • the intersection between an arc with a radius of 5 mm centered on point P1 and the first main surface 11 is designated as position P3
  • the straight line connecting positions P2 and P3 is designated as reference line LA.
  • the angle at any point P4 is defined as the angle ⁇ between a tangent line LB on the first chamfered portion 15 at the point P4 and a reference line LA.
  • This method makes it possible to define the angle between a point on the first chamfered portion 15 and the first main surface 11 not only when the first main surface 11 is planar, but also when the first main surface 11 is curved.
  • the arithmetic mean roughness Ra of the surface of the glass article 100 is determined, for example, by the following method.
  • the definition of the arithmetic mean roughness Ra complies with JIS B 0601:2.
  • the end face 13 of the glass article 100 is measured with a laser microscope (e.g., Olympus LEXT OLS5000, using a 50x lens). At this time, the glass article 100 is placed so that the perpendicular line at the measurement point of the end face 13 coincides with the optical axis of the lens of the laser microscope.
  • An area of 256 ⁇ m in length x 256 ⁇ m in width is measured, and the arithmetic mean roughness Ra of 10 lines spaced 5 ⁇ m apart along the entire horizontal length of an area of 50 ⁇ m in length x 256 ⁇ m in width at the vertical center of the measurement area is calculated, and the average value is used as the roughness at that measurement point.
  • the average value of the arithmetic mean roughness Ra in each region is calculated by the above-mentioned method for multiple measurement points in each region, and the average value is used. For example, in a region where the angle of the first chamfered portion 15 with the first main surface 11 is greater than 0° and not greater than 40°, measurements are taken at 10°, 20°, 30°, and 40°, and the average value of the arithmetic mean roughness Ra at each measurement point is calculated. In other words, measurements may be taken at one point for every 10° angle in the region, and the average of the measurement points may be used.
  • the glass article 100 of this embodiment is used as a cover material for an in-vehicle display device 2, it is preferable that at least a portion of the first chamfered portion 15 remains exposed when the glass article 100 is attached as a cover material for the in-vehicle display device 2.
  • 10 arbitrary points distributed almost evenly are measured, and it is preferable that 5 or more of the 10 points satisfy the requirement of the arithmetic mean roughness Ra of the present invention.
  • the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article 100 is 0.20 ⁇ m or less, more preferably 0.15 ⁇ m or less, and even more preferably 0.10 ⁇ m or less. When it is in the above range, the aesthetic appearance of the end face 13 as seen by the driver can be improved.
  • the average value Ra2 of the arithmetic mean roughness Ra of the surface of the glass article 100 satisfies the following formula ( 1 ) with respect to the average value Ra1 of the arithmetic mean roughness Ra of the surface of the glass article 100 in the region where the angle between the first chamfered portion 15 and the first main surface 11 is greater than 0° and 40° or less, and the average value Ra3 of the arithmetic mean roughness Ra of the surface of the glass article 100 in the region where the angle between the first chamfered portion 15 and the first main surface 11 is greater than 80° and in the side portion 14.
  • the area where the angle is 60° or more and 80° or less can be made into a transition area having a surface roughness intermediate between the area where the angle is 40° or less and the area where the angle is 80° or more, so that the boundary area is not visually perceived as a line, and the aesthetic appearance can be improved.
  • the average value Ra2 of the arithmetic mean roughness Ra of the surface of the glass article 100 is greater than 0.10 ⁇ m and less than 0.35 ⁇ m.
  • the average value Ra2 of the arithmetic mean roughness Ra of the surface of the glass article 100 is greater than 0.10 ⁇ m and less than 0.30 ⁇ m.
  • the average value of the arithmetic mean roughness Ra of the surface of the glass article 100 is greater than 0.10 ⁇ m and less than 0.35 ⁇ m.
  • the relationship between the arithmetic mean roughness Ra 40° of the surface of the glass article 100 at a point where the angle between the first chamfered portion 15 and the first main surface 11 is 40°, the arithmetic mean roughness Ra 60° of the surface of the glass article 100 at a point where the angle between the first chamfered portion 15 and the first main surface 11 is 60°, and the arithmetic mean roughness Ra 80° of the surface of the glass article 100 at a point where the angle between the first chamfered portion 15 and the first main surface 11 is 80° is Ra 40° ⁇ Ra 60° ⁇ Ra 80° .
  • the surface roughness gradually increases from the region where the angle is 40° or less to the region where the angle is 80° or more, so that the boundary region is not visually recognized as a line, and the aesthetic appearance can be further improved. More specifically, the arithmetic mean roughness Ra 80° of the surface of the glass article 100 at the point where the angle is 80° is preferably 0.25 ⁇ m or more. When Ra 80° is in the above range, scattered light easily enters the driver's eyes, making it easy to suppress red discoloration.
  • the average value Ra3 of the arithmetic mean roughness Ra of the surface of the glass article 100 is 0.30 ⁇ m or more, and preferably 0.35 ⁇ m or more. When it is in the above range, the red discoloration of the edge can be significantly suppressed due to the above-mentioned effect.
  • the width of the first chamfered portion 15 is preferably 0.5 mm or more and 5.0 mm or less.
  • the width of the first chamfered portion 15 is more preferably 1.0 mm or more, even more preferably 1.3 mm or more, and particularly preferably 1.5 mm or more.
  • the width of first chamfered portion 15 is the distance in the direction along the main surface in the cross-sectional view, and may be, for example, width A in FIG.
  • the width of the region where the angle of the first chamfered portion 15 with the first main surface 11 is greater than 0° and less than or equal to 40° is preferably 0.43 mm or more and 4.8 mm or less.
  • the width is more preferably 0.5 mm or more, and even more preferably 0.75 mm or more, and the upper limit is more preferably 4.0 mm or less, and even more preferably 3.0 mm or less.
  • the shape of the chamfer in the first chamfered portion 15 is easy to visually recognize, and the appearance is excellent.
  • the first chamfered portion 15 has a curved shape.
  • the curved surface may have a single radius of curvature, or may have a shape in which curved surfaces having multiple radii of curvature are combined.
  • the radius of curvature of the first chamfered portion 15 at the point where the angle with the first main surface is 45° is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
  • the average radius of curvature of the first chamfered portion 15 is preferably 10 mm or less, more preferably 6 mm or less, and even more preferably 4 mm or less.
  • the first chamfered portion 15 is easily recognized as a curved surface and has an excellent aesthetic appearance.
  • the thickness of the anti-reflection layer is easily changed, so red discoloration is easily generated, and the prevention of red discoloration by the present invention is effective.
  • the end face 13 may further include a second chamfered portion 16 on the side of the second main surface 12. Note that the anti-reflection layer is omitted in FIG. 4.
  • the second chamfered portion 16 connects the second main surface 12 and the side surface portion 14.
  • the second chamfered portion 16 is a flat surface, but like the first chamfered portion 15, it may be a curved surface.
  • the end face 13 may be designed so that a parameter R expressed by the following formula (2) is in a range that satisfies formula (3).
  • the parameter R 0.38 E cg - A/t - 2.61 B/t + 4.38 C/t - 10.6 D/t ... (2) R ⁇ 23.58 (3)
  • E cg in formula (2) refers to the Young's modulus (GPa) of the glass article 100
  • A is the width (mm) of the first chamfered portion 15, and is the distance from the boundary position F1 to the boundary position F2 in the direction along the reference line LC.
  • B in formula (2) is the width (mm) of the second chamfered portion 16, and is the distance from the boundary position F3 to the boundary position F4 in the direction along the reference line LC.
  • C in formula (2) is the thickness (mm) of the side portion 14, and is the distance from the boundary position F2 to the boundary position F3.
  • D in formula (2) is the thickness (mm) of the first chamfered portion 15, and is the distance from the boundary position F1 to the boundary position F2 in the tangential direction of the outermost position of the end face 13.
  • t in formula (2) is the thickness (mm) of the glass article 100.
  • ⁇ in formula (2) means a product, and is also represented as " ⁇ ".
  • the parameter R of the glass article 100 can improve the end impact resistance by satisfying the above formula (3).
  • the parameter R has a lower value as the width A of the first chamfered portion 15 and the width B of the second chamfered portion 16 are larger. That is, by widening the width A of the first chamfered portion 15, the contact point of the impactor is separated from the end face 13, and the impact of the impactor is absorbed by the first main surface 11, thereby improving the impact resistance at the end face 13.
  • the thickness of the end face 13 becomes thinner relative to the thickness t of the glass article 100, so that the bending stress generated at the end face 13 is reduced, and the impact resistance at the end face 13 can be improved.
  • the parameter R has a lower value as the thickness D of the first chamfered portion 15 is larger. That is, by narrowing the thickness of the end face 13 relative to the thickness t of the glass article 100, the bending stress generated at the end face 13 is reduced, and the impact resistance at the end face 13 can be improved.
  • the parameter R has a higher value as the thickness C of the side portion 14 decreases.
  • the thickness of the side portion 14 is expanded, and the thickness of the end face 13 becomes thinner relative to the thickness t of the glass article 100, which reduces the bending stress generated at the end face 13 and improves the impact resistance at the end face 13.
  • the positions of the first chamfered portion 15, the second chamfered portion 16, and the side portion 14 can be identified by the boundary positions F1, F2, F3, and F4.
  • the region from boundary position F1 to boundary position F2 is the first chamfered portion
  • the region from boundary position F2 to boundary position F3 is the side portion 14
  • the region from boundary position F3 to boundary position F4 is the second chamfered portion 16.
  • the boundary positions F1 to F4 can be defined as follows.
  • a cross-section of the glass article 100 is observed using a digital microscope (e.g., VHK-6000 manufactured by KEYENS), that is, when the cross-section of the glass article 100 is observed from a direction perpendicular to the thickness direction, if the first main surface 11 is a flat surface, the straight line passing through the above-mentioned positions P2 and P3 is taken as LC, and if the first main surface 11 is a curved surface, the reference line LC is taken as a circular arc line passing through three points, positions P2, P3, and any intermediate point between positions P2 and P3.
  • the reference line LC is extended outside the glass article 100 beyond position P2, the point on the first main surface 11 closest to position P2 at a distance of 50 ⁇ m from the extension of the line LC may be taken as the boundary position F1.
  • the line perpendicular to the line LC passing through the boundary position F1 is defined as line LC1.
  • the point where a line parallel to line LC1 and the end face 13 meet at one point is defined as the outermost position of the end face 13 (i.e., the position of the end face 13 that protrudes most outward from the glass article 100).
  • the intersection closer to the first main surface may be defined as boundary position F2.
  • boundary position F3 the intersection closer to the second main surface may be defined as boundary position F3.
  • the line obtained by moving the line LC in the thickness direction of the glass article 100 by the thickness t of the glass article 100 is defined as the line LD.
  • the line LD can also be said to be a line along the second main surface 12.
  • the innermost point on the second main surface 12 that is 50 ⁇ m away from the extension of the line LD may be defined as the boundary position F4.
  • the width A of the first chamfered portion 15 is preferably 2.0 mm or less, and more preferably 0.5 mm or more and 2.0 mm or less.
  • the glass article sheet thickness ratio (A/t) which is the ratio of the width A of the first chamfered portion 15 to the thickness t of the glass article 100, is preferably 0.77 or more, and more preferably 1.15 or more.
  • the width B of the second chamfered portion 16 is preferably greater than 0 mm and equal to or less than 2.0 mm, and more preferably equal to or greater than 1.0 mm and equal to or less than 2.0 mm.
  • the glass article thickness ratio (B/t) which is the ratio of the width B of the second chamfered portion 16 to the thickness t of the glass article 100, is preferably equal to or greater than 0.77 and equal to or less than 4.0, and more preferably equal to or greater than 1.15 and equal to or less than 2.86.
  • the thickness C of the side portion 14 is preferably equal to or less than the thickness t of the glass article 100, more preferably greater than 0 mm and equal to or less than 2.0 mm, and even more preferably equal to or greater than 0.25 mm and equal to or less than 2.0 mm.
  • the glass article sheet thickness ratio (C/t) which is the ratio of the thickness C of the side portion 14 to the thickness t of the glass article 100, is preferably equal to or less than 0.6, and more preferably equal to or less than 0.4.
  • the thickness D of the first chamfered portion 15 is preferably greater than 0 mm and equal to or less than the thickness t of the glass article 100, more preferably greater than 0 mm and equal to or less than 2.0 mm, and even more preferably equal to or greater than 0.1 mm and equal to or less than 2.0 mm.
  • the glass article thickness ratio (D/t) which is the ratio of the thickness D of the first chamfered portion 15 to the thickness t of the glass article 100, is preferably equal to or greater than 0.2, more preferably equal to or greater than 0.4, and the upper limit is preferably equal to or less than 0.7. In other words, the ratio (D/t) is preferably equal to or greater than 0.2 and equal to or less than 0.7.
  • the width A of the first chamfered portion 15 is 2.0 mm or less, and has a glass article thickness ratio (A/t) of 0.77 or more
  • the width B of the second chamfered portion 16 is a glass article thickness ratio (B/t) of 0.77 or more and 4.0 or less
  • the thickness C of the side portion 14 is 0.25 mm or more
  • the thickness D of the first chamfered portion 15 is a glass article thickness ratio (D/t) of 0.2 or more and 0.7 or less.
  • the width A of the first chamfered portion 15 is 2.0 mm or less, and has a glass article thickness ratio (A/t) of 1.15 or more
  • the width B of the second chamfered portion 16 is a glass article thickness ratio (B/t) of 1.15 or more and 2.86 or less
  • the thickness C of the side portion 14 is 0.25 mm or more
  • the thickness D of the first chamfered portion 15 is a glass article thickness ratio (D/t) of 0.4 or more and 0.7 or less.
  • the width A of the first chamfered portion 15 is 2.0 mm or less, and has a glass article thickness ratio (A/t) of 0.77 or more
  • the width B of the second chamfered portion 16 is 1.0 mm or more and 2.0 mm or less
  • the thickness C of the side portion 14 is 0.25 mm or more
  • the thickness D of the first chamfered portion 15 is 0.2 or more and 0.7 or less, in terms of a glass article thickness ratio (D/t).
  • the width A of the first chamfered portion 15 is 2.0 mm or less, and the glass article thickness ratio (A/t) is 1.15 or more, the width B of the second chamfered portion 16 is 1.0 mm or more and 2.0 mm or less, the thickness C of the side portion 14 is 0.25 mm or more, and the glass article thickness ratio (C/t) is 0.4 or less, and the thickness D of the first chamfered portion 15 is 0.4 or more and 0.7 or less in terms of the glass article thickness ratio (D/t). Furthermore, the second chamfered portion 16 has a C-chamfered shape.
  • the reflected light on the first main surface is preferably white.
  • the design of the antireflection layer 20 is adjusted so that the reflected color on the first main surface 11 approaches blue, so that even if the end portion is relatively reddish, it is visually recognized as white, thereby preventing red discoloration. Therefore, it was difficult to suppress the red discoloration of the end portion while keeping the first main surface 11 white.
  • the red discoloration of the end portion can be suppressed while making the first main surface 11 white.
  • the color of the reflected light from the first main surface 11 is preferably -3 ⁇ a * ⁇ 3 and -3 ⁇ b * ⁇ 3 in the L * a * b * color system, and more preferably -2.5 ⁇ a * ⁇ 2.5 and -2.5 ⁇ b * ⁇ 2.5. Within the above ranges, the color of the reflected light is recognized as sufficiently white.
  • the color of the reflected light from the first main surface 11 may be measured in the SCI mode of a spectrophotometer (for example, CM-2600D manufactured by Konica Minolta).
  • the average a * value at the measurement points that satisfy L * ⁇ 5 is 0 or more and 15.0 or less.
  • a perpendicular line to a point where the angle between the first chamfered portion 15 and the first main surface 11 is 45° is used as a reference, and white light is incident on the side portion 14 at an angle of 10°, and an image of the spectrum is obtained at an angle of 10° toward the first main surface 11 using a two-dimensional spectroradiometer (for example, the SR-5000 manufactured by Topcon Technohouse).
  • a two-dimensional spectroradiometer for example, the SR-5000 manufactured by Topcon Technohouse.
  • measurement points are divided into one pixel at a time, and the color at each measurement point is calculated in the L * a * b * color system.
  • the calculation of the L * a * b * color system is in accordance with JIS Z 8781-4.
  • the inventors have found that at points satisfying L * ⁇ 5, red is particularly easily recognized because of high lightness, and that preferentially reducing a * at points satisfying L * ⁇ 5 is effective in terms of making red less noticeable.
  • the average value of a * at measurement points satisfying L * ⁇ 5 is 0 or more and 15.0 or less, the redness seen by the viewer can be significantly reduced.
  • the average value of a * at measurement points that satisfy L * ⁇ 5 is more preferably 10.0 or less, further preferably 8.0 or less, and particularly preferably 6.0 or less.
  • non-alkali glass soda lime glass, soda lime silicate glass, aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass, borosilicate glass, etc.
  • aluminosilicate glass and lithium aluminosilicate glass are preferable because they can easily receive large stress through strengthening treatment even when they are thin, resulting in high-strength glass.
  • the glass 10 is preferably, for example, chemically strengthened glass that has been strengthened by a chemical strengthening treatment.
  • a typical method for obtaining chemically strengthened glass by subjecting glass 10 to chemical strengthening treatment is to immerse the glass in a KNO3 molten salt, perform an ion exchange treatment, and then cool it to about room temperature.
  • the treatment conditions such as the temperature of the KNO3 molten salt and the immersion time, may be set so that the surface compressive stress and the thickness of the compressive stress layer have desired values.
  • the surface compressive stress (CS) of the compressive stress layer is preferably 500 MPa or more, more preferably 600 MPa or more, and even more preferably 700 MPa or more.
  • CS is preferably 1300 MPa or less.
  • the surface compressive stress (CS) of the compressive stress layer is preferably in the range of 500 MPa or more and 1300 MPa or less.
  • the thickness (DOL) of the compressive stress layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, and particularly preferably 25 ⁇ m or more.
  • the DOL is preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the thickness (DOL) of the compressive stress layer is preferably in the range of 10 ⁇ m or more and 50 ⁇ m or less.
  • examples of the glass type include soda lime glass, aluminosilicate glass (SiO 2 —Al 2 O 3 —Na 2 O-based glass), etc.
  • aluminosilicate glass is preferable from the viewpoint of strength.
  • the glass material include glass materials containing, in mole percent based on oxides, 50% or more and 80% or less of SiO2 , 1% or more and 20% or less of Al2O3 , 6% or more and 20% or less of Na2O , 0% or more and 11% or less of K2O , 0% or more and 15% or less of MgO, 0% or more and 6% or less of CaO, and 0% or more and 5% or less of ZrO2 .
  • Chemically strengthened glass based on aluminosilicate glass is also suitably used, for example, "Dragontrail (registered trademark)" manufactured by AGC.
  • containing 0 to 25% MgO means that MgO is not essential but may be contained up to 25%.
  • the following glass (i) is included in soda-lime silicate glass, the following glasses (ii) and (iii) are included in aluminosilicate glass, and the following glasses (iv) to (vi) are included in lithium aluminosilicate glass.
  • the thickness of the glass is not particularly limited, but in order to perform the chemical strengthening treatment effectively, it is preferably 5 mm or less, and more preferably 3 mm or less. Furthermore, when used as a cover glass for an in-vehicle display device such as a car navigation system, from the viewpoint of strength, the thickness of the glass is preferably 0.2 mm or more, more preferably 0.8 mm or more, and even more preferably 1 mm or more.
  • the thickness of the glass refers to the distance in the normal direction between the first main surface 10A and the second main surface 10B of the glass 10. In other words, the thickness of the glass is preferably in the range of 0.2 mm or more and 5 mm or less.
  • the dimensions of the glass 10 can be appropriately selected depending on the application.
  • the length of the short side is, for example, 50 mm or more and 500 mm or less, and preferably 100 mm or more and 300 mm or less
  • the length of the long side is, for example, 50 mm or more and 1500 mm or less, and preferably 100 mm or more and 1200 mm or less.
  • the shape of the glass 10 may be flat, but may also be a shape including a three-dimensional curved surface having one or more curved or bent portions.
  • a curved surface refers to a surface having a radius of curvature of 10,000 mm or less
  • a flat surface refers to a surface having a radius of curvature of more than 10,000 mm.
  • the radius of curvature of the curved surface is preferably 50 mm or more, more preferably 100 mm or more, and even more preferably 200 mm or more.
  • the radius of curvature is, for example, 10,000 mm or less, preferably 5,000 mm or less, and more preferably 3,000 mm or less.
  • the Young's modulus (E cg ) of the glass 10 is preferably 60 GPa or more, more preferably 70 GPa or more.
  • the Young's modulus (E cg ) of the glass article 100 is preferably 90 GPa or less, more preferably 80 GPa or less, and even more preferably 75 GPa or less. That is, the Young's modulus of the glass 10 is preferably 60 GPa or more and 90 GPa or less, more preferably 70 GPa or more and 80 GPa or less, and even more preferably 70 GPa or more and 75 GPa or less.
  • the Young's modulus of the glass 10 may be determined by a tensile test (JIS K7161, JIS K7113).
  • An anti-reflection layer 20 is formed on the first main surface 11 side of the glass article 100. In FIG. 2, the anti-reflection layer 20 is formed on the surface of the glass 10.
  • An anti-reflection layer is a layer that has the effect of reducing luminous reflectance and reduces glare caused by reflected light, and when used in an image display device, can improve the transmittance of light from the image display device and improve the visibility of the image display device.
  • the anti-reflection layer 20 is made of, for example, a metal oxide.
  • the anti-reflection layer 20 may be configured in any way as long as it can suppress the reflection of light, and may be configured, for example, by alternately stacking high-refractive index layers with a refractive index of 1.9 or more at a wavelength of 550 nm and low-refractive index layers with a refractive index of 1.6 or less at a wavelength of 550 nm.
  • the number of low-refractive index layers and high-refractive index layers is not particularly limited, but may be, for example, 1 to 30 layers, and the number of low-refractive index layers is preferably 1 to 6 layers, and the number of high-refractive index layers is preferably the same as that of the low-refractive index layers.
  • the layer furthest from the glass 10 is defined as the outermost layer, and when the layers are counted from the outermost layer toward the glass substrate, the odd-numbered layers including the outermost layer, i.e., the outermost layer, the third layer, and the fifth layer, are composed of low refractive index layers.
  • the layer adjacent to the glass substrate side from the outermost layer is defined as the second layer, the even-numbered layers including the second layer, i.e., the second layer, the fourth layer, and the sixth layer, are composed of high refractive index layers.
  • the sixth layer which is the high refractive index layer furthest from the outermost layer, contacts the glass 10.
  • the low refractive index layer and the high refractive index layer are each constituted by one layer, the low refractive index layer is the outermost layer and the high refractive index layer is the second layer.
  • the low refractive index layer is made of a material that contains silicon.
  • it may be silicon oxide, aluminum-doped silicon oxide in which silicon oxide is doped with aluminum, or a material in which tin or zirconia is added to silicon oxide.
  • the main component of the high refractive index layer constituting the second layer is preferably one or more selected from silicon nitride, titanium oxide, niobium oxide, tantalum oxide, and zirconium oxide. Furthermore, of these materials, from the viewpoints of productivity and refractive index, silicon nitride, niobium oxide, and tantalum oxide are more preferable, and niobium oxide is most preferable.
  • the main component of the even-numbered layers from the fourth layer onwards may be the same as that of the second layer, or may be a different material from that of the second layer. If the main component constituting the second layer is niobium oxide, the even-numbered layers from the fourth layer onwards may be niobium oxide like the second layer, or may be a different material from that of the second layer.
  • the total number of high refractive index layers and low refractive index layers in the anti-reflection layer 20 may differ.
  • the outermost layer and the layer in contact with the glass are low refractive index layers, and the main component of the low refractive index layer in contact with the glass is preferably silicon oxide.
  • the total thickness of the antireflection layer 20 is, for example, 100 nm or more and 1000 nm or less, preferably 150 nm or more and 550 nm or less, more preferably 190 nm or more and 510 nm or less, and most preferably 195 nm or more and 506 nm or less.
  • the thickness of the outermost layer is, for example, 60 nm or more and 130 nm or less, preferably 70 nm or more and 100 nm or less, more preferably 75 nm or more and 90 nm or less, and further preferably 77 nm or more and 88 nm or less.
  • the thickness of the second layer is, for example, 15 nm to 200 nm, preferably 20 nm to 150 nm, and more preferably 25 nm to 115 nm.
  • the thickness of the anti-reflection layer 20 is measured on the first main surface 11.
  • the thickness can be measured by measuring the actual thickness through cross-sectional observation using a SEM (scanning electron microscopy) or a TEM (transmission electron microscopy), or by optical measurement using ellipsometry. If anti-glare treatment is applied, it is preferable to measure the actual thickness using a SEM or TEM.
  • the thickness can be derived from the spectral reflectance or transmittance (reference: "Optical Thin Films and Film Formation Technology", author Lee Jung-jung, translator ULVAC, publisher Agne Technology Center, published in 2002).
  • the refractive index of each layer it is preferable to measure the thickness using the spectral reflectance.
  • decorative layers such as an antiglare layer and an antifouling layer may be provided on the first main surface 11 side of the glass article 100.
  • the antiglare layer and antifouling layer described below are examples, and may be appropriately changed as long as the functions of each layer are maintained.
  • the antiglare layer and the antifouling layer are not essential components, and some of them may not be provided depending on the configuration of the glass article 100.
  • the anti-glare layer is provided on the first main surface 11 side and provides anti-glare properties to the glass 10.
  • the anti-glare layer is, for example, made of an uneven shape formed on the first main surface 11 side.
  • the uneven shape may be formed directly on the surface of the glass 10, or may be formed by a layer different from the glass 10.
  • the anti-glare layer may also be provided on both the first main surface 11 and the second main surface 12 sides.
  • the root mean square roughness (RMS) of this uneven shape is preferably 10 nm to 1000 nm, and more preferably 15 nm to 500 nm.
  • the anti-glare layer can be realized by an uneven shape imparted by performing an anti-glare treatment and an etching treatment on the surface of the glass 10.
  • a coating film in which particles having an arbitrary refractive index are dispersed on the surface of the glass 10 may be used, or an uneven shape may be formed on the main surface of the transparent resin film to be attached, and this uneven shape may be used to realize the anti-glare layer.
  • the anti-stain layer has the function of suppressing adhesion of various stains such as fingerprints, sweat, and dust, making the stains less noticeable, or making the stains easier to clean, thereby keeping the display surface clean.
  • the anti-stain layer is provided on the first main surface 11 side, and from the viewpoint of the properties of the anti-stain layer, it is preferable that the anti-stain layer is formed on the outermost surface on the first main surface 11 side of the glass article 100.
  • the anti-stain layer is provided on an anti-reflection layer.
  • the anti-stain layer is made of a fluorine-containing compound (a compound having a fluorine-containing organic group) that can impart anti-stain properties, water repellency, and oil repellency.
  • the fluorine-containing compound is preferably a fluorine-containing organic compound, and more preferably a fluorine-containing organosilicon compound.
  • a printed layer may be provided on the second main surface side of the glass article 100.
  • the printed layer is provided, for example, on the outer periphery of the glass article 100, has an opening, and serves to conceal wiring members and the like arranged on the periphery of the display panel 3 so that they cannot be seen by the driver.
  • the opening is used as a display area when the display panel 3 is turned on. There may be one opening, or two or more openings.
  • the printed layer is not particularly limited as long as it can block visible light, and is, for example, black or has a wood grain pattern.
  • the glass article 100 having a printed layer on the second main surface side can be used as a display cover glass.
  • Glass preparation A glass 10 having a first main surface 11 and a second main surface 12 is prepared.
  • the method for producing the glass 10 is not particularly limited, but for example, the glass can be produced by charging a desired glass raw material into a melting furnace, heating and melting the glass at 1500 to 1600°C, clarifying the glass, and then supplying the glass to a forming device to form the molten glass into a flat plate shape and slowly cooling the glass.
  • the method for forming the glass is not particularly limited, and examples of the method that can be used include a downdraw method (e.g., an overflow downdraw method, a slot-down method, a redraw method, etc.), a float method, a roll-out method, a press method, etc.
  • the method may also include a forming process in which the flat glass obtained above is cut into any shape and size, and is then heated and curved into a three-dimensional shape.
  • the forming process forms a curved surface on the glass 10.
  • FIG. 5A shows a schematic diagram of the first chamfered portion 15 being formed by the grinding process.
  • the glass 10 is shown without the shading for the sake of explanation.
  • the end surface 13 of the glass 10 is pressed against a grindstone 40 to grind the end surface 13, and the side surface portion 14, the first chamfered portion 15, and the second chamfered portion 16 are formed as shown by the broken lines.
  • an electroplated wheel e.g., with a grit of #325 or more
  • the grinding process may be performed over the entire circumference of the glass 10, or may be performed in a partial section of the circumference.
  • the surface roughness of the end surface 13 chamfered by the above method may be, for example, 0.2 ⁇ m to 1.0 ⁇ m in arithmetic mean roughness Ra.
  • the method of forming the chamfered portion is not limited to the above, and the chamfered portion may be formed by laser cutting or the like.
  • the first chamfered portion 15 is polished to reduce the surface roughness.
  • a conventional polishing method will be described.
  • a nonwoven brush or a carpet-like pad has been used to polish the chamfered portion (for example, International Publication No. 2015/108076 and International Publication No. 2013/031548).
  • the entire end face 13 including the first chamfered portion 15 and even a part of the first main surface 11 and the second main surface 12 are polished, so that the surface roughness of the entire end face 13 is reduced.
  • the first chamfered portion 15 is ground using a rotary grindstone 50 as shown in FIG. 5B.
  • a grindstone containing cerium oxide is used as the rotary grindstone 50.
  • a groove is provided in the rotary grindstone 50, and the lower part of the groove is shaped to fit the curved surface of the first chamfered portion 15.
  • the surface of the first chamfered portion 15 is ground by pressing the first chamfered portion 15 against that portion.
  • the positions of the glass 10 and the grindstone 50 it is preferable to adjust the positions of the glass 10 and the grindstone 50 so that the area of the first chamfered portion 15 where the angle with the first main surface 11 is greater than 0° and less than or equal to 40° is polished intensively.
  • each area is polished to have the surface roughness described above in the ⁇ Glass article>.
  • the chemical strengthening method is not particularly limited, and includes a method of ion-exchanging the main surface of the transparent substrate to form a surface layer in which compressive stress remains. Specifically, at a temperature below the glass transition point, alkali metal ions with a small ionic radius (e.g., Li ions, Na ions) contained in the glass near the main surface of the base are replaced with alkali metal ions with a larger ionic radius (e.g., Na ions or K ions for Li ions, and K ions for Na ions). As a result, compressive stress remains on the main surface of the transparent substrate 10, improving the strength of the transparent substrate.
  • alkali metal ions with a small ionic radius e.g., Li ions, Na ions
  • alkali metal ions with a larger ionic radius e.g., Na ions or K ions for Li ions, and K ions for Na ions.
  • Print layer forming process When the glass article 100 is used as a cover glass for a display device, it is preferable to form a printed layer on the second main surface 12 side of the obtained glass 10.
  • the printed layer is formed, for example, by a method of printing ink, and is preferably printed with a design having an opening on the outer periphery of the second main surface 12.
  • the printing method is not particularly limited, but preferred methods include an inkjet method, a screen printing method, and a transfer decoration method.
  • An anti-reflection layer 20 is formed on the first main surface 11 side of the obtained glass 10.
  • the anti-reflection layer is preferably a laminated structure of metal oxide layers as described above (anti-reflection layer).
  • the method of forming the metal oxide layer is not particularly limited, and various film-forming methods can be used. For example, physical vapor deposition methods such as vacuum deposition, ion beam assisted deposition, ion plate method, sputtering method, and plasma CVD method can be used. Among these film-forming methods, the sputtering method is preferable because it can form a dense and durable film. In particular, it is preferable to form the film by a sputtering method such as a pulse sputtering method, an AC sputtering method, or a digital sputtering method.
  • the glass 10 When forming a metal oxide layer by sputtering, the glass 10 is placed in a chamber with a mixed gas atmosphere of inert gas and oxygen gas, and a raw material target that will give the desired composition for each layer is selected and formed.
  • the thickness of each layer can be adjusted, for example, by adjusting the discharge power, the film formation time, etc.
  • a decorative layer such as an antiglare layer or an antifouling layer may be formed on the first main surface 11 of the glass 10, or on the first main surface 11 and the second main surface 12.
  • the antiglare layer, the antireflection layer, and the antifouling layer are formed by a known method as appropriate.
  • the order of forming the antiglare layer, the antireflection layer, and the antifouling layer is not particularly limited, but it is preferable that the antiglare layer is formed after the chemical strengthening step, and the antifouling layer is formed after the antireflection layer.
  • the glass article 100 can be manufactured.
  • the present invention also provides a display device (specifically, an in-vehicle display device) having a display cover glass using the above-mentioned glass article 100 and a display, with the second main surface side of the glass article 100 bonded to the display.
  • a display device specifically, an in-vehicle display device
  • the glass article 100 described above can be used as a display cover glass, and the second main surface 12 side can be bonded to a display panel 3, thereby producing a display device (a display device for vehicle mounting).
  • a glass article having a first main surface, a second main surface, and an end surface connecting the first main surface and the second main surface, wherein the end surface includes a side portion and a curved first chamfer connecting the side portion and the first main surface; an anti-reflection layer on the first main surface and the first chamfered portion; In a region where the angle between the first chamfered portion and the first main surface is greater than 0° and not greater than 40°, the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article is 0.20 ⁇ m or less; The average value Ra3 of the arithmetic mean roughness Ra of the surface of the glass article in a region where the angle between the first chamfered portion and the first main surface is greater than 80° and in the side surface portion is 0.30 ⁇ m or more; A glass article, in a region where the angle between the first chamfered portion and the first main surface is 60° or
  • the first chamfered portion a perpendicular line to a point where the first chamfered portion forms an angle of 45° with the first main surface is used as a reference, white light is incident on the side of the side portion at an angle of 10°, and an image is obtained by a two-dimensional spectroradiometer at an angle of 10° toward the first main surface.
  • the measurement points are divided into pixel-by-pixel sections, and the color at each measurement point is calculated in the L * a * b * color system.
  • Ecg in formula (2) is the Young's modulus (GPa) of the glass article
  • A is the width (mm) of the first chamfered portion
  • B is the width (mm) of the second chamfered portion
  • C is the thickness (mm) of the side portion
  • D is the thickness (mm) of the first chamfered portion
  • t is the thickness (mm) of the glass article.
  • the width A of the first chamfered portion is 2.0 mm or less, and the glass article thickness ratio (A / t) which is the ratio of the width A of the first chamfered portion to the thickness of the glass article is 0.77 or more;
  • the width B of the second chamfered portion is 1.0 mm or more and 2.0 mm or less,
  • the thickness C of the side surface portion is 0.25 mm or more, and the glass article plate thickness ratio (C/t) which is the ratio of the thickness C of the side surface portion to the thickness of the glass article is 0.6 or less
  • the glass article according to [7] wherein a glass article thickness ratio (D/t) which is a ratio of a thickness D of the first chamfered portion to a thickness of the glass article is 0.2 or more and 0.7 or less.
  • the anti-reflection layer is made of a metal oxide film and is configured by alternately laminating a high refractive index layer having a refractive index of 1.9 or more at a wavelength of 550 nm and a low refractive index layer having a refractive index of 1.6 or less at a wavelength of 550 nm.
  • a display device having a display cover glass according to any one of [14] to [16] and a display, the second main surface of which is bonded to the display.
  • An in-vehicle display device having a display cover glass according to any one of [14] to [16] and a display, the second main surface of which is bonded to the display.
  • a glass article having a first main surface, a second main surface, and an end surface connecting the first main surface and the second main surface, wherein the end surface includes a side portion and a curved first chamfer connecting the side portion and the first main surface, an anti-reflection layer on the first main surface and the first chamfered portion; In a region where the angle between the first chamfered portion and the first main surface is greater than 0° and not greater than 40°, the average value of the arithmetic mean roughness Ra of the surface of the glass article is 0.10 ⁇ m or less; In a region where the angle between the first chamfered portion and the first main surface is greater than 40° and not greater than 80°, the average value of the arithmetic mean roughness Ra of the surface of the glass article is greater than 0.10 ⁇ m and less than 0.35 ⁇ m; A glass article, characterized in that an average value of arithmetic mean roughness Ra of the surface of the glass article in a region where the angle between the first
  • Examples 1, 2, 5, and 6 are examples, and Examples 3, 4, and 7 are comparative examples.
  • Examples 1 and 2 In Examples 1 and 2, Dragontrail manufactured by AGC was used as the glass 10, and a glass having a substantially rectangular main surface shape with a short side of 50 mm, a long side of 150 mm, and a plate thickness t of 1.3 mm was prepared.
  • the glass 10 was flat having a first main surface 11 and a second main surface 12, and had a Young's modulus of 74 GPa.
  • the end face 13 of the glass 10 was ground by the method shown in FIG. 5A to form the side portion 14, the first chamfered portion 15, and the second chamfered portion 16. Diamond electroplated wheels with grit sizes #400 and #800 were used for grinding.
  • the radius of curvature of the curved shape of the first chamfered portion 15 when the angle between the first main surface and the first chamfered portion 15 was 9° to 19° was 5.5 mm
  • the radius of curvature when the angle between the first chamfered portion and the first main surface was 45° was 0.4 mm.
  • the width A of the first chamfered portion 15 was 1.67 mm
  • the thickness D was 0.69 mm
  • the width B of the second chamfered portion 16 was 0.15 mm
  • the thickness C of the side portion 14 was 0.46 mm. That is, the parameter R expressed by the above formula (1) was 22.45.
  • the width of the region where the angle between the first chamfered portion 15 and the first main surface 11 was greater than 0° and less than 40° was 1.96 mm.
  • the end face 13 was polished by the method shown in Fig. 5B.
  • a grindstone containing cerium oxide was used for the polishing.
  • an anti-reflection layer 20 was formed on the first main surface 11 side of the surface of the glass 10.
  • the anti-reflection layer 20 was formed by a sputtering method, and the configuration of each layer was as shown in Table 1 below.
  • the glass article 100 was produced.
  • the obtained glass article 100 was evaluated by the following method. In Example 1, the surface roughness and color tone of the end face 13 were measured on the short side. In Example 2, the surface roughness and color tone of the end face 13 were measured on the long side. The results are shown in Tables 2 to 4 and in FIG.
  • the method for measuring the surface roughness is as follows.
  • the end face 13 of the glass article 100 was measured with a laser microscope (Olympus LEXT OLS5000, using a 50x lens).
  • the glass was placed so that the perpendicular line at the measurement point of the end face 13 coincided with the optical axis of the lens of the laser microscope.
  • An area of 256 ⁇ m in length ⁇ 256 ⁇ m in width was measured, and the arithmetic mean roughness Ra of 10 lines was calculated at 5 ⁇ m intervals over the entire horizontal length of an area of 50 ⁇ m in length ⁇ 256 ⁇ m in width at the vertical center of the measurement area, and the average value was adopted as the roughness at that measurement point.
  • the definition of the arithmetic mean roughness Ra follows JIS B 0601:2.
  • the surface shape of a glass article having an anti-reflection layer provided on the surface of the glass follows the surface shape of the glass, and the arithmetic mean roughness of the surface of the glass article and the surface of the glass are roughly the same.
  • the method for measuring the color tone is as follows. Using the perpendicular line of the point where the first chamfered portion 15 of the glass article 100 forms an angle of 45° with the first main surface 11, white light was incident on the side surface portion 14 at an angle of 10°, and a spectrum was obtained by a two-dimensional spectroradiometer at an angle of 10° on the first main surface 11 side.
  • the light source lighting sensitive to the visible light region was used. Specifically, white LED lighting (OPF-S100X100W-PS, manufactured by Optex FA) was used.
  • As the detector a spectroradiometer (SR-5000, manufactured by Topcon Technohouse) was used. The obtained data was divided into 10 measurement points for each pixel, and the color at each measurement point was calculated in the L * a * b * color system. The calculation of the L * a * b * color system was in accordance with JIS Z 8781-4.
  • Example 3 and 4 glass articles 100 were produced in the same manner as in Examples 1 and 2, except that brush polishing was used to polish end faces 13, including side faces 14. In addition, cerium oxide was used as the abrasive used in brush polishing.
  • the obtained glass article 100 was evaluated by the above-mentioned method.
  • Example 3 the surface roughness and color tone of the end face 13 were measured on the short side.
  • Example 4 the surface roughness and color tone of the end face 13 were measured on the long side. The results are shown in Tables 2, 5 and 6, and in FIG.
  • the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article 100 was 0.20 ⁇ m or less in the region where the angle between the first chamfered portion 15 and the first main surface 11 was greater than 0° and less than 40°
  • the average value Ra 2 of the arithmetic mean roughness Ra satisfied formula ( 1 ) in the region where the angle was greater than 60° and less than 80°
  • the average value Ra 3 of the arithmetic mean roughness Ra in the region where the angle was greater than 80° and in the side portion was 0.30 ⁇ m or more.
  • Examples 5 and 6 In Examples 5 and 6, Dragontrail manufactured by AGC was used as the glass 10, and a glass having a substantially rectangular main surface shape with a short side of 50 mm, a long side of 150 mm, and a plate thickness t of 1.3 mm was prepared.
  • the glass 10 was flat having a first main surface 11 and a second main surface 12, and had a Young's modulus of 74 GPa.
  • the end face 13 of the glass 10 was ground by the method shown in FIG. 5A to form the side portion 14, the first chamfered portion 15, and the second chamfered portion 16. Diamond electroplated wheels with grit sizes #400 and #800 were used for grinding.
  • the radius of curvature of the curved shape of the first chamfered portion 15 when the angle between the first main surface and the first chamfered portion 15 was 9° to 30° was 2.4 mm
  • the radius of curvature when the angle between the first chamfered portion and the first main surface was 45° was 0.2 mm.
  • the width A of the first chamfered portion 15 was 1.48 mm
  • the thickness D was 0.65 mm
  • the width B of the second chamfered portion 16 was 0.15 mm
  • the thickness C of the side portion 14 was 0.5 mm. That is, the parameter R expressed by the above formula (1) was 23.07.
  • the width of the region where the angle between the first chamfered portion 15 and the first main surface 11 was greater than 0° and less than 40° was 1.60 mm.
  • the glass article 100 was produced.
  • the obtained glass article 100 was evaluated by the above-mentioned method.
  • Example 5 the surface roughness and color tone of the end face 13 of the short side were measured.
  • Example 6 the surface roughness and color tone of the end face 13 of the long side were measured. The results are shown in Tables 7 to 9 and in FIG.
  • the method for measuring the surface roughness was the same as in Examples 1 to 4.
  • the method of measuring the color was the same as in Examples 1 to 4 , except that the measurement points were divided into a total of nine points for each pixel, and the color at each measurement point was calculated in the L* a * b * color system.
  • Example 7 glass article 100 was produced in the same manner as in Examples 1 and 2, except that brush polishing was used to polish end face 13, including side face 14. In addition, cerium oxide was used as the abrasive used for brush polishing. In Example 7, the surface roughness and color of the end face 13 on the long side were measured. The results are shown in Tables 7 and 10, and in FIG.
  • the average value Ra 1 of the arithmetic mean roughness Ra of the surface of the glass article 100 in the region where the angle between the first chamfered portion 15 and the first main surface 11 is greater than 0° and less than 40° is 0.20 ⁇ m or less
  • the average value Ra 2 of the arithmetic mean roughness Ra satisfies formula (1) in the region where the angle is greater than 60° and less than 80°
  • the average value Ra 3 of the arithmetic mean roughness Ra in the region where the angle is greater than 80° and in the side portion is 0.30 ⁇ m or more
  • the average value a * at the measurement points satisfying L * ⁇ 5 is 0 or more and 15.0 or less, and it was found that the reddish tinge in the reflected light was suppressed.
  • Example 7 which is a comparative example, the average a * value at the measurement points satisfying L * ⁇ 5 in terms of the color of reflected light in the L * a * b* color system was greater than 15.0, and red discoloration occurred at the edges. Furthermore, the glass articles in Examples 5 and 6 had a parameter R of 23.07, which satisfied formula (3), and therefore had excellent impact resistance at the end surface 13.
  • Table 11 shows the average value of the arithmetic mean roughness Ra of the surface of the glass article in the region where the angle between the first chamfered portion and the first main surface is greater than 0° and not greater than 40°, the average value of the arithmetic mean roughness Ra of the surface of the glass article in the region where the angle between the first chamfered portion and the first main surface is greater than 40° and not greater than 80°, and the average value of the arithmetic mean roughness Ra of the surface of the glass article in the region and side portion where the angle between the first chamfered portion and the first main surface is greater than 80°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明のガラス物品は、第1主面、第2主面、及び第1主面と第2主面を接続する端面を有し、端面は、側面部と、側面部と第1主面とを接続する曲面状の第1面取り部とを含み、第1主面および第1面取り部に反射防止層を有し、第1面取り部の第1主面とのなす角が0°より大きく40°以下である領域において、ガラス物品の表面の算術平均粗さの平均値Raが0.20μm以下であり、第1面取り部の第1主面とのなす角が80°より大きい領域および側面部におけるガラス物品の表面の算術平均粗さの平均値Raが0.30μm以上であり、第1面取り部の第1主面とのなす角が60°以上80°以下である領域において、ガラス物品の表面の算術平均粗さの平均値Raが、式(1):0.2≦(Ra-Ra)/(Ra-Ra)≦0.8を満たす。

Description

ガラス物品及び車載用表示装置とその製造方法
 本発明は、ガラス物品及び車載用表示装置とその製造方法に関する。
 従来、ガラスと、ガラスの第1主面上に配置された反射防止膜と、ガラス板の第2主面上に配置された額縁状の印刷部とを有するガラス物品が車載用表示装置などの表示装置においてカバーガラスとして使用されている。近年、このような車載用表示装置のカバーガラスでは、衝撃耐性向上や意匠性の観点から、第1主面に近い側の端部が面取りされた形状が求められている。この時、面取り部が曲面であると、端部が赤色に見える現象(以下、赤変等と表現する)が生じることが知られている(例えば、特許文献1参照)。
 赤色は警戒色であるため、このような赤変は、表示装置のユーザに好まれず、表示装置のユーザが赤変を、例えば表示装置の異常や故障と誤認するおそれもある。そのため赤変を回避することが求められている。例えば特許文献1では、反射防止層の構成を調整することで、端部の赤変を回避している。
国際公開第2021/161879号
 しかしながら、特許文献1記載の技術では反射防止層の構成自体を調整する必要があるため、反射防止層の設計幅が狭まる可能性があり、代替案が求められていた。
 本発明は上記課題に鑑みてなされたものであり、特許文献1とは異なる新たな方法で、端部の赤変を抑制できるガラス物品を提供することを目的とする。
 本発明に係るガラス物品は、第1主面、第2主面、及び前記第1主面と前記第2主面を接続する端面を有するガラス物品であって、前記端面は、側面部と、前記側面部と前記第1主面とを接続する曲面状の第1面取り部とを含み、前記第1主面および前記第1面取り部に、反射防止層を有し、前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、前記第1面取り部の前記第1主面とのなす角が80°より大きい領域および前記側面部における前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.30μm以上であり、前記第1面取り部の前記第1主面とのなす角が60°以上、80°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが、下記式(1)を満たす、ことを特徴とする。
 0.2≦(Ra-Ra)/(Ra-Ra)≦0.8 ・・・(1)
 本発明のガラス物品によれば、端部の赤変を抑制したガラス物品を提供できる。
図1は、車載用表示装置を示す模式図である。 図2は、本実施形態に係るガラス物品の断面を示す模式図である。 図3は、本実施形態に係るガラス物品の断面を示す模式図である。 図4は、本実施形態に係るガラス物品の断面を示す模式図である。 図5は、本実施形態に係るガラス物品の製造方法を示す模式図であり、図5の(A)は研削加工により第1面取り部が形成される様子を模式的に示す図であり、図5の(B)は第1面取り部を研磨する様子を模式的に示す図である。 図6は、例1~4のガラスの端面の表面粗さを示すグラフである。 図7は、例5~7のガラスの端面の表面粗さを示すグラフである。
 以下で、図面を参照して本発明の実施形態の詳細を説明する。
 <車載用表示装置>
 図1は、本実施形態に係るガラス物品が車載用表示装置のカバー材に用いられる場合の、車載用表示装置を示す模式図である。図1に示すように、車載用表示装置2は、車両に設けられる表示装置であり、例えば、車内においてステアリングシャフト1の前側に設けられる。車載用表示装置2は、ディスプレイパネル3とガラス物品100とを備える。ディスプレイパネル3には、例えばカーナビゲーション画面や、スピードメータなどの各種メータ等及びスタートボタンなどの画像が表示される。ガラス物品100は、ディスプレイパネル3の前面のカバー材(ディスプレイカバー材)として用いられる。ただし、図1の構成は一例であり、ガラス物品100が適用される車載用表示装置は、任意の構成であってよい。また、ガラス物品100は、車載用表示装置の表面のカバー材として用いられることに限られず、スマートフォンなどの表示装置のカバー材など、任意の用途に用いるものであってもよい。
<ガラス物品>
 図2はガラス物品100の断面を示す模式図である。図2に示すように、本実施形態におけるガラス物品100は、ガラス10と、第1主面11、第2主面12、及び第1主面11と第2主面12を接続する端面13を有する。端面13は、側面部14と、側面部14と第1主面11とを接続する曲面状の第1面取り部15とを含む。なお、端面13は、ガラス物品100の周の全域にわたって図2のような形状の側面部14および第1面取り部15が形成されていてもよく、周の一部のみに形成されていてもよい。そして、第1主面11および第1面取り部15のガラス10の表面上には反射防止層20が形成されている。
 この時、第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域において、ガラス物品100の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、第1面取り部15の第1主面11とのなす角が80°より大きい領域、および側面部14における、ガラス物品100の表面の算術平均粗さRaの平均値Raが0.30μm以上であり、第1面取り部15の第1主面11とのなす角が60°以上、80°以下である領域において、ガラス物品100の表面の術平均粗さRaの平均値Raが、下記式(1)を満たす。
 0.2≦(Ra-Ra)/(Ra-Ra)≦0.8 ・・・(1)
 第1面取り部15は、ガラス10の端面13を面取りすることにより形成され、側面部14は端面13のうち、面取りされていない領域である。ガラス物品100をカバーガラスとして車載用表示装置2に組み付けた場合、第1面取り部15も運転者から視認されるため、美観向上の目的でガラス10の第1面取り部15を研磨により表面粗さを小さくすることがある。なお、ガラス10の表面に反射防止層20およびその他加飾層を設けたガラス物品100の表面形状は、ガラス10の表面形状に追従し、ガラス物品100とガラス10の表面の算術平均粗さは概ね一致する。
 この時、下記(研磨工程)で説明する従来の面取り方法では、側面部14を含む端面13全体を研磨し、表面粗さを小さくすることが一般的であった。しかしながら、第1面取り部15を曲面状に形成し、端面13の表面粗さを小さくすることで、端部の赤変が不可避に発生するという課題があった。
 本発明者らは検討の結果、運転者から最も視認されやすい第1主面11とのなす角が0°より大きく40°以下である領域ではガラス物品100の表面の算術平均粗さRaの平均値Raを0.20μm以下とすることで、運転者から見た際の美観を向上しつつも、第1面取り部15の第1主面11とのなす角が80°より大きい領域および側面部14では、ガラス物品100の表面の算術平均粗さRaの平均値Raを0.30μm以上とすることで、美観を損ねずに端面13の赤変を抑制できることを発見した。
 以下で、赤変を抑制できる仕組みについて説明する。なお、赤変を抑制できる仕組みは下記に限定されるものではなく、下記の以外の原理で成り立っていてもよい。
 端面13においてガラス物品100の表面粗さが小さい場合、表面粗さの散乱が起きにくいため、運転者は端面13に入射した光のうち、正反射光を特に強く観測することになる。ここで、第1主面における反射光の色味は白色であることが好まれる。この時、第1主面における反射光の色味が白色になるように反射防止層の構成を調整すると、端面13における正反射光の色味が赤色となり、赤色が強く認識されることで赤変が発生する。
 一方、端面13においてガラス物品100の表面粗さを大きくすると、端面13に入射した光は散乱される。従って、運転者は、端面13に様々な角度から入射した光が散乱され合算された光を観測することになり、この場合、反射光の色味は白色に近くなる。
 そこで、運転者から比較的視認されにくい、第1面取り部15の第1主面11とのなす角が80°より大きい領域および側面部14において表面粗さを大きくすることで、散乱光を増加させ、端部の色味を白色に近づけられる。
 しかし、端面13における表面粗さが急激に変化すると、その境界部分が線状に視認される。そこで、第1面取り部15の第1主面11とのなす角が60°以上、80°以下である領域においては、なす角が40°以下の領域と、なす角度が80°より大きい領域の表面粗さの中間の表面粗さとなるようにする。
 ここで、図3を用いて、第1面取り部15と第1主面11とのなす角の求め方について説明する。なお、図3では反射防止層を省略して示している。例えば任意の点P4におけるなす角は、下記方法で求められる。
 デジタルマイクロスコープ(例えば、KEYENS社製VHK-6000)により、ガラス物品100の断面図、すなわち厚み方向に垂直な方向からガラス物品100の断面を観察する。
 この時、側面部14および第1面取り部15上の任意の点をP1とし、点P1を中心とした半径3mmの円弧と第1主面11との交点を位置P2とし、点P1を中心とした半径5mmの円弧と第1主面11との交点を位置P3として、位置P2と位置P3を結ぶ直線を基準線LAとする。
 任意の点P4におけるなす角は、任意の点P4における第1面取り部15上の接線LBと、基準線LAとのなす角αとして定義される。
 本方法によれば、第1主面11が平面状の場合のみならず、第1主面11が湾曲状である場合も、第1面取り部15上の点と、第1主面11とのなす角を定義できる。
 次に、ガラス物品100の表面の算術平均粗さRaは、例えば下記方法で求められる。
 算術平均粗さRaの定義は、JIS B 0601:2に従う。
 ガラス物品100の端面13を、レーザー顕微鏡(例えば、Olympus社製LEXT OLS5000、50倍レンズ使用)にて測定する。この時、端面13の測定点における垂線と、レーザー顕微鏡のレンズの光軸が一致するように、ガラス物品100を設置する。
 縦256μm×横256μmの領域を測定し、測定領域の縦方向中央において、縦50μm×横256μmの領域で横方向の長さいっぱいに5μm間隔で10ラインの算術平均粗さRaを算出し、その平均値をその測定点における粗さとして採用する。
 各領域での算術平均粗さRaの平均値は、各領域内において複数の測定点について上述の方法で算術平均粗さRaを算出しその平均値を採用する。例えば、第1面取り部15の第1主面11とのなす角が0°より大きく40°以下である領域において、10°、20°、30°、40°において測定を行い各測定点の算術平均粗さRaの平均値を算出するというように、領域内でなす角10°毎に1点で測定し、各測定点の平均を用いてもよい。
 なお、本実施形態に係るガラス物品100が車載用表示装置2のカバー材として用いられる場合、ガラス物品100が車載用表示装置2のカバー材として取り付けられた状態において、第1面取り部15の少なくとも一部は露出されたままとなることが好ましい。
 この時、ガラス物品100において、露出された状態である第1面取り部15の領域のうち、ほぼ均等に分散した任意の10点を測定し、その10点のうち5点以上が本発明における算術平均粗さRaの要件を満たすことが好ましい。10点のうち5点以上が本発明の要件を満たすことにより、ユーザが表示装置端部の赤変を感じることを有意に低減できる。
 以下では、ガラス物品100の好ましい様態について詳細を説明する。
 (端面13)
 第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域において、ガラス物品100の表面の算術平均粗さRaの平均値Raは0.20μm以下であり、より好ましくは0.15μm以下であり、更に好ましくは0.10μm以下である。上記範囲であると、運転者から見た際の端面13の美観を向上できる。
 ここで、第1面取り部15の第1主面11とのなす角が60°以上、80°以下である領域において、ガラス物品100の表面の算術平均粗さRaの平均値Raは、第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域におけるガラス物品100の表面の算術平均粗さRaの平均値Raと、第1面取り部15の第1主面11とのなす角が80°より大きい領域および側面部14におけるガラス物品100の表面の算術平均粗さRaの平均値Raに対して、下記式(1)を満たす。
 0.2≦(Ra-Ra)/(Ra-Ra)≦0.8 ・・・(1)
 このようにすることで、なす角が60°以上、80°以下である領域を、なす角が40°以下の領域となす角が80°以上の領域に対して中間的な表面粗さを持つ過渡領域とすることができるため、境界領域が線状に視認されることが無く、美観が向上できる。
 好ましくは、第1面取り部15の第1主面11とのなす角が60°以上、80°以下である領域において、ガラス物品100の表面の算術平均粗さRaの平均値Raは0.10μmより大きく、0.35μm未満である。
 より好ましくは、第1面取り部15の第1主面11とのなす角が60°以上、80°以下である領域において、ガラス物品100の表面の算術平均粗さRaの平均値Raは0.10μmより大きく、0.30μm未満である。
 なお、第1面取り部15の第1主面11とのなす角が40°より大きく、80°以下である領域においては、ガラス物品100の表面の算術平均粗さRaの平均値は0.10μmより大きく、0.35μm未満であるのが好ましい。
 また、第1面取り部15の第1主面11とのなす角が40°の点におけるガラス物品100の表面の算術平均粗さRa40°と、第1面取り部の前記第1主面とのなす角が60°の点における前記ガラス物品の表面の算術平均粗さRa60°と、第1面取り部15の第1主面11とのなす角が80°の点におけるガラス物品100の表面の算術平均粗さRa80°との関係が、Ra40°<Ra60°<Ra80°であるのが好ましい。上記範囲であると、なす角が40°以下の領域から、なす角が80°以上の領域にかけて、表面粗さが徐々に大きくなるため、境界領域が線状に視認されることが無く、より美観が向上できる。
 より詳細には、なす角が80°の点におけるガラス物品100の表面の算術平均粗さRa80°は0.25μm以上であることが好ましい。Ra80°が上記範囲であることで、運転者の目に散乱光が入りやすく、赤変を抑制しやすい。
 第1面取り部15の第1主面11とのなす角が80°より大きい領域および側面部14では、ガラス物品100の表面の算術平均粗さRaの平均値Raは0.30μm以上であり、好ましくは0.35μm以上である。上記範囲であると、上述の効果により、端部の赤変を有意に抑制できる。
 第1面取り部15の幅は、0.5mm以上5.0mm以下であることが好ましい。第1面取り部15の幅は、より好ましくは1.0mm以上であり、更に好ましくは1.3mm以上であり、特に好ましくは1.5mm以上である。上記範囲であると、車載用表示装置のカバーガラスにおいても端部の曲面形状を視認しやすく、意匠性に優れる。
 なお、第1面取り部15の幅とは、断面図において主面に沿った方向における距離であり、例えば図4の幅Aを用いてよい。
 第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域の幅は、0.43mm以上、4.8mm以下であることが好ましい。前記幅は、より好ましくは0.5mm以上であり、さらに好ましくは0.75mm以上であり、また上限は、より好ましくは4.0mm以下であり、さらに好ましくは3.0mm以下である。上記範囲であると、第1面取り部15における面取りの形状を視認しやすく、美観にすぐれる。
 第1面取り部15は曲面形状である。曲面は単一の曲率半径を有していてもよく、複数の曲率半径を有する曲面が組み合わさった形状であってもよい。この時、第1面取り部15の、第1主面とのなす角が45°の点における曲率半径は、0.05mm以上であることが好ましく、0.1mm以上であることがより好ましい。上記範囲であると、側面部14と第1面取り部15が滑らかに接続され、美観の向上や欠けの防止に役立つ。一方、第1面取り部15の平均曲率半径は、10mm以下であることが好ましく、6mm以下であることがより好ましく、4mm以下であることが更に好ましい。上記範囲であると、第1面取り部15が曲面として視認されやすく、美観に優れる。一方で、上記範囲においては反射防止層の厚さの変化が生じやすいことから、赤変が発生しやすく、本発明による赤変防止が効果的である。
 図4に示すように、端面13は、更に第2主面12の側に第2面取り部16を備えていてもよい。なお、図4では反射防止層を省略して表示している。第2面取り部16は、第2主面12と側面部14とを接続する。図4では第2面取り部16は平面であるが、第1面取り部15と同様に、曲面であってもよい。
 この時、端面13は、次の式(2)で表されるパラメータRが、式(3)を満たす範囲となるように設計されてもよい。パラメータRが所定の範囲となることで、端面13の耐衝撃性を向上させて割れを抑制できるため好ましい。
 R=0.38・Ecg-A/t-2.61・B/t+4.38・C/t-10.6・D/t ・・・(2)
 R≦23.58 ・・・(3)
 ここで、式(2)におけるEcgは、ガラス物品100のヤング率(GPa)を指し、Aは、第1面取り部15の幅(mm)であり、基準線LCに沿う方向における、境界位置F1から境界位置F2までの距離である。また、式(2)におけるBは、第2面取り部16の幅(mm)であり、基準線LCに沿う方向における、境界位置F3から境界位置F4までの距離である。また、式(2)におけるCは、側面部14の厚み(mm)であり、境界位置F2から境界位置F3までの距離である。また、式(2)におけるDは、第1面取り部15の厚み(mm)であり、端面13の最外位置の接線方向における、境界位置F1から境界位置F2までの距離である。また、式(2)におけるtは、ガラス物品100の厚み(mm)である。また、式(2)における「・」は、積を意味し、「×」とも表記される。
 ガラス物品100は、パラメータRが、上記式(3)を満たすことで、端部耐衝撃性を向上させることが可能となる。ここで、パラメータRは、第1面取り部15の幅Aや第2面取り部16の幅Bが大きいほど低い値となっている。すなわち、第1面取り部15の幅Aが広がることで、インパクターの接触箇所が端面13から離れ、インパクターの衝撃を第1主面11で吸収することで、端面13における衝撃性を向上できる。また、第1面取り部15と第2面取り部16の幅が広がることで、ガラス物品100の厚みtに対して端面13の厚みが薄くなることにより、端面13に発生する曲げ応力が低下し、端面13における衝撃性を向上できる。また、パラメータRは、第1面取り部15の厚みDが大きいほど低い値となっている。すなわち、ガラス物品100の厚みtに対して端面13の厚みが薄くなることにより、端面13に発生する曲げ応力が低下し、端面13における耐衝撃性を向上できる。また、パラメータRは、側面部14の厚みCが低いほど高い値となっている。すなわち、側面部14の厚みが小さくなることで、第1面取り部15の領域を広げて、ガラス物品100の厚みtに対して端面13の厚みが薄くなることにより、端面13に発生する曲げ応力が低下し、端面13における衝撃性を向上できる。
 ここで、第1面取り部15、第2面取り部16、及び側面部14の位置は、境界位置F1、F2、F3及びF4により特定できる。具体的には、ガラス物品100の端面13のうちで、境界位置F1から境界位置F2までの領域が、第1面取り部15であり、境界位置F2から境界位置F3までの領域が、側面部14であり、境界位置F3から境界位置F4までの領域が、第2面取り部16である。
 境界位置F1~F4は、次のように規定できる。
 デジタルマイクロスコープ(例えば、KEYENS社製VHK-6000)により、ガラス物品100の断面図、すなわち厚み方向に垂直な方向からガラス物品100の断面を観察した場合において、第1主面11が平面である場合は、上述の位置P2、P3を通る直線をLCとし、第1主面11が曲面である場合は、位置P2、P3と、位置P2と位置P3の間の任意の中間点の3点を通る円弧線を基準線LCとする。基準線LCを、位置P2よりもガラス物品100の外側に延長した場合において、線LCの延長線との距離が50μmとなる第1主面11上の点であって位置P2に最も近い点を、境界位置F1としてよい。
 境界位置F1を通る線LCと垂直な線を、線LC1とする。ここで、線LC1と平行な線と、端面13とが1点で接する点を、端面13の最外位置(すなわち、端面13のうちでガラス物品100の外側に最も突出した位置)とする。この場合、端面13の最外位置における線LC1と平行な線をその線に垂直な方向に50μm移動させた線と端面13との交点のうち、第1主面寄りの交点を、境界位置F2としてよい。一方、端面13の最外位置における線LA1と平行な線をその線に垂直な方向に50μm移動させた線と端面13との交点のうち、第2主面寄りの交点を境界位置F3としてよい。
 ガラス物品100の厚み方向に、線LCをガラス物品100の厚みt分移動させた線を、線LDとする。線LDは、第2主面12に沿った線ともいえる。線LDを端面13の側に延長した場合において、線LDの延長線との距離が50μmとなる第2主面12上の点であって、最も内側の点を境界位置F4としてよい。
 端部耐衝撃性を高める観点からは、第1面取り部15の幅Aは、2.0mm以下であることが好ましく、0.5mm以上2.0mm以下であることがより好ましい。また、ガラス物品100の厚みtに対する第1面取り部15の幅Aの比率であるガラス物品板厚比(A/t)は、0.77以上であることが好ましく、1.15以上であることがより好ましい。幅Aをこの範囲とすることで、端面13における衝撃性をより好適に向上できる。
 第2面取り部16の幅Bは、0mmより大きく2.0mm以下であることが好ましく、1.0mm以上2.0mm以下であることが更に好ましい。また、ガラス物品100の厚みtに対する第2面取り部16の幅Bの比率であるガラス物品板厚比(B/t)は、0.77以上4.0以下であることが好ましく、1.15以上2.86以下であることがより好ましい。幅Bをこの範囲とすることで、端面13における衝撃性をより好適に向上できる。
 側面部14の厚みCは、ガラス物品100の厚みt以下であることが好ましく、0mmより大きく2.0mm以下であることがより好ましく、0.25mm以上2.0mm以下であることが更に好ましい。また、ガラス物品100の厚みtに対する側面部14の厚みCの比率であるガラス物品板厚比(C/t)は、0.6以下であることが好ましく、0.4以下であることがより好ましい。厚みCをこの範囲とすることで、端面13における衝撃性をより好適に向上できる。
 第1面取り部15の厚みDは、0mmより大きくガラス物品100の厚みt以下であることが好ましく、0mmより大きく2.0mm以下であることがより好ましく、0.1mm以上2.0mm以下であることが更に好ましい。また、ガラス物品100の厚みtに対する第1面取り部15の厚みDの比率であるガラス物品板厚比(D/t)は、0.2以上であることが好ましく、0.4以上であることがより好ましく、また上限は0.7以下であることが好ましい。すなわち、比(D/t)は、0.2以上0.7以下であることが好ましい。厚みDをこの範囲とすることで、端面13における衝撃性をより好適に向上できる。
 すなわち、面取り部の好適な一実施形態として、下記が挙げられる。
(i)第1面取り部15の幅Aは2.0mm以下であり、ガラス物品板厚比(A/t)で0.77以上であり、第2面取り部16の幅Bは、ガラス物品板厚比(B/t)で、0.77以上、4.0以下であり、側面部14の厚みCは、0.25mm以上、ガラス物品板厚比(C/t)で0.6以下であり、第1面取り部15の厚みDは、ガラス物品板厚比(D/t)で0.2以上0.7以下である。
(ii)第1面取り部15の幅Aは2.0mm以下であり、ガラス物品板厚比(A/t)で1.15以上であり、第2面取り部16の幅Bは、ガラス物品板厚比(B/t)で、1.15以上、2.86以下であり、側面部14の厚みCは、0.25mm以上、ガラス物品板厚比(C/t)で0.4以下であり、第1面取り部15の厚みDは、ガラス物品板厚比(D/t)で0.4以上0.7以下である。
(iii)第1面取り部15の幅Aは2.0mm以下であり、ガラス物品板厚比(A/t)で0.77以上であり、第2面取り部16の幅Bは、1.0mm以上2.0mm以下であり、側面部14の厚みCは、0.25mm以上、ガラス物品板厚比(C/t)で0.6以下であり、第1面取り部15の厚みDは、ガラス物品板厚比(D/t)で0.2以上0.7以下である。
(iv)第1面取り部15の幅Aは2.0mm以下であり、ガラス物品板厚比(A/t)で1.15以上であり、第2面取り部16の幅Bは、1.0mm以上2.0mm以下であり、側面部14の厚みCは、0.25mm以上、ガラス物品板厚比(C/t)で0.4以下であり、第1面取り部15の厚みDは、ガラス物品板厚比(D/t)で0.4以上0.7以下である。更に、第2面取り部16はC面取りされた形状である。
(反射光の色味)
 第1主面における反射光は、表示装置に映る画像の色を正しく認識する観点から、白色であることが好まれる。しかしながら、例えば特許文献1の方法では、第1主面11における反射色を青色に近づけるよう反射防止層20の設計を調整することで、端部が相対的に赤みを帯びても、白色と視認されるようにすることで赤変を防止している。そのため、第1主面11を白色に保ったまま端部赤変を抑制することが困難であった。しかしながら、本実施形態のガラス物品によれば、第1主面11を白色にしつつも、端部の赤変を抑制できる。
 第1主面11の反射光の色味は、L表色系において-3<a<3かつ-3<b<3であることが好ましく、より好ましくは-2.5<a<2.5かつ-2.5<b<2.5である。上記範囲であると、反射光の色味が十分に白色として認識される。ここで、第1主面11における反射光の色味は分光測色計(例えば、コニカミノルタ社製CM-2600D)のSCIモードにて測定されるものであってよい。
 一方下記測定方法によって測定される、第1面取り部15における各測定点の反射光のL表色系による色味について、L≧5を満たす測定点におけるaの平均値は、0以上15.0以下であることが好ましい。
(測定方法)
 第1面取り部15において、前記第1面取り部15の前記第1主面11とのなす角が45°の点の垂線を基準とし、側面部14側に10°の角度から白色光を入射させ、第1主面11側に10°の角度において二次元分光放射計(例えばトプコンテクノハウス社製「SR-5000」)にて分光スペクトルの画像を取得する。
 前記取得した画像において、1画素ごとに測定点を区切り、各測定点における色味をL表色系において算出する。なお、L表色系の算出は、JIS Z 8781-4に準拠する。
 発明者らはL≧5を満たす点では、明度が高いため特に赤色を強く認識しやすく、L≧5を満たす点において優先的にaを小さくすることが、赤色を目立たせにくくする観点で効果的であることを見出した。そこで実験の結果、L≧5を満たす測定点におけるaの平均値は、0以上15.0以下であると、視認者から見た際の赤味を有意に低減できることが分かった。
 更に、L≧5を満たす測定点におけるaの平均値は、より好ましくは10.0以下であり、さらに好ましくは8.0以下であり、特に好ましくは6.0以下であると、より効果的である。
(ガラス)
 ガラス10としては、無アルカリガラス、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボロシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラスなどを使用でき、厚さが薄くても強化処理によって大きな応力が入りやすく高強度なガラスが得られるアルミノシリケートガラスやリチウムアルミノシリケートガラスが好ましい。
 ガラス10は、例えば、化学強化処理により強化された化学強化ガラスであることが好ましい。
 ガラス10に化学強化処理を施して化学強化ガラスを得る方法は、典型的には、ガラスをKNO溶融塩に浸漬し、イオン交換処理した後、室温付近まで冷却する方法が挙げられる。KNO溶融塩の温度や浸漬時間などの処理条件は、表面圧縮応力および圧縮応力層の厚さが所望の値となるように設定すればよい。
 圧縮応力層の表面圧縮応力(CS)は、500MPa以上が好ましく、600MPa以上がより好ましく、700MPa以上が更に好ましい。一方、CSは、1300MPa以下が好ましい。すなわち、圧縮応力層の表面圧縮応力(CS)は、500MPa以上1300MPa以下の範囲が好ましい。
 圧縮応力層の厚さ(DOL)は、10μm以上が好ましく、15μm以上がより好ましく、20μm以上が更に好ましく、25μm以上が特に好ましい。また、DOLは、50μm以下が好ましく、40μm以下がより好ましい。すなわち、圧縮応力層の厚さ(DOL)は、10μm以上50μm以下の範囲が好ましい。
 化学強化を実施する場合、ガラス種としては、例えば、ソーダライムガラス、アルミノシリケートガラス(SiO-Al-NaO系ガラス)等が挙げられる。なかでも、強度の観点からは、アルミノシリケートガラスが好ましい。
 ガラス材料としては、例えば、酸化物基準のモル%表示で、SiOを50%以上80%以下、Alを1%以上20%以下、NaOを6%以上20%以下、KOを0%以上11%以下、MgOを0%以上15%以下、CaOを0%以上6%以下、および、ZrOを0%以上5%以下含有するガラス材料が挙げられる。
 アルミノシリケートガラスをベースとする化学強化用ガラスも好適に用いられ、例えば、AGC社製「ドラゴントレイル(登録商標)」が挙げられる。
 より具体的には、ガラスのより好ましい組成として、以下が挙げられる。なお、例えば、「MgOを0~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。下記(i)のガラスはソーダライムシリケートガラスに含まれ、下記(ii)および下記(iii)のガラスはアルミノシリケートガラスに含まれ、下記(iv)~(vi)のガラスはリチウムアルミノシリケートガラスに含まれる。
 (i)酸化物基準のモル%で表示した組成で、SiOを63~73%、Alを0.1~5.2%、NaOを10~16%、KOを0~1.5%、LiOを0~5.0%、MgOを5~18%及びCaOを1~10%を含むガラス。
 (ii)酸化物基準のモル%で表示した組成が、SiOを50~74%、Alを5~15%、NaOを10~20%、KOを0~8%、LiOを0~5.0%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が65~85%、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が1~15%であるガラス。
 (iii)酸化物基準のモル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、LiOを0~5.0%、MgOを4~15%およびZrOを0~1%含有するガラス。
 (iv)酸化物基準のモル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、LiOを0~5.0%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
 (v)酸化物基準のモル%で表示した組成が、SiOを50~73%、Alを5~20%、Bを0~6%、Pを0~10%、LiOを4~12%、NaOを3~20%、KOを0~5%、MgOを0~8%、CaOを0~2%、SrOを0~5%、BaOを0~5%、ZnOを0~5%、TiOを0~2%、ZrOを0~4%含有するガラス。
 (vi)酸化物基準のモル%で表示した組成が、SiOを58~80%、Alを13~18%、Bを0~5%、Pを0.5~4%、LiOを3~10%、NaOを5~20%、KOを0~2%、MgOを0~11%、CaOを0~20%、SrOを0~20%、BaOを0~15%、ZnOを0~10%、TiOを0~1%、ZrOを0~2%を含有するガラス。
 ガラスの厚みは、特に制限されるものではないが、化学強化処理を効果的に行うために、5mm以下が好ましく、3mm以下がより好ましい。また、カーナビゲーション等の車載用ディスプレイ装置のカバーガラスに用いる場合には、強度の観点から、ガラスの厚みは0.2mm以上が好ましく、0.8mm以上がより好ましく、1mm以上が更に好ましい。なお、ガラスの厚さは、ガラス10の第1主面10Aと第2主面10Bとの法線方向における距離をいう。すなわち、ガラスの厚みは、0.2mm以上5mm以下の範囲が好ましい。
 ガラス10の寸法は、用途に応じて適宜選択できる。車載用表示装置のカバー材として使用する場合は、短辺の長さが例えば50mm以上500mm以下であり、好ましくは100mm以上300mm以下であり、長辺の長さが例えば50mm以上1500mm以下、好ましくは100mm以上1200mm以下である。
 ガラス10の形状は、平坦な形状であってもよいが、一か所以上の湾曲部や屈曲部を有する3次元の曲面を含む形状としてもよい。
 ここで、本実施形態における曲面とは、曲率半径が10000mm以下であることを指し、反対に平面とは、曲率半径が10000mm超であることを指す。
 ガラス10が曲面を有する場合、曲面における曲率半径は50mm以上が好ましく、100mm以上がより好ましく、200mm以上が更に好ましい。曲率半径は例えば10000mm以下であり、好ましくは5000mm以下であり、より好ましくは3000mm以下である。
 ガラス10のヤング率(Ecg)は、60GPa以上が好ましく、70GPa以上がより好ましい。また、ガラス物品100のヤング率(Ecg)は、90GPa以下が好ましく、80GPa以下がより好ましく、75GPa以下が更に好ましい。すなわち、ガラス10のヤング率は、60GPa以上90GPa以下が好ましく、70GPa以上80GPa以下がより好ましく、70GPa以上75GPa以下が更に好ましい。ガラス10のヤング率は、引張試験(JIS K7161・JIS K7113)により求めてよい。
(反射防止層)
 ガラス物品100の第1主面11の側には、反射防止層20が形成されている。図2において、反射防止層20はガラス10の表面上に形成されている。
 反射防止層とは、視感反射率低減の効果をもたらし、光の映り込みによる眩しさを低減するほか、画像表示装置に使用した場合には、画像表示装置からの光の透過率を向上でき、画像表示装置の視認性を向上できる層のことである。
 反射防止層20は例えば金属酸化物からなる。反射防止層20の構成としては光の反射を抑制できる構成であればよく、例えば、波長550nmでの屈折率が1.9以上の高屈折率層と、波長550nmでの屈折率が1.6以下の低屈折率層とを交互に積層した構成にできる。低屈折率層と高屈折率層との層数については、特に限られないが、例えば1層以上、30層以下であり、低屈折率層は、1層以上6層以下であることが好ましく、高屈折率層は低屈折率層と同じ層数からなることが好ましい。
 反射防止層20として、低屈折率層と高屈折率層とがそれぞれ複数、例えば6層から構成される場合、ガラス10から最も離れた層を最表層とし、最表層を1番目としてガラス基体側に向けて層を数えたときに、最表層を含む奇数の層、つまり最表層、3番目の層、5番目の層は、低屈折率層から構成される。最表層よりガラス基体側に隣接する層を2番目の層とすると、2番目の層を含む偶数の層、つまり、2番目の層、4番目の層、6番目の層は、高屈折率層から構成される。最表層から最も離れた高屈折率層である6番目の層がガラス10に接する。
 低屈折率層と高屈折率層とがそれぞれ1層ずつから構成される場合、低屈折率層が最表層であり、高屈折率層が2番目の層である。
 低屈折率層は、例えばケイ素を含有する材料からなる。例えば酸化ケイ素であってもよく、酸化ケイ素にアルミをドープしたアルミドープ酸化ケイ素であってもよく、酸化ケイ素にスズやジルコニアを添加した材料であってもよい。
 2番目の層を構成する高屈折率層の主成分は、例えば、窒化ケイ素、酸化チタン、酸化ニオブ、酸化タンタル、酸化ジルコニウムから選ばれる1種以上が好ましい。さらに、これらの材料のうち、生産性や、屈折率の観点から、窒化ケイ素、酸化ニオブ、酸化タンタルがより好ましく、酸化ニオブが最も好ましい。
 4番目の層以降の偶数の層、例えば4番目の層と6番目の層との主成分は、2番目の層と主成分が同様であってもよく、2番目の層とは異なる材料でもよい。2番目の層を構成する主成分が酸化ニオブの場合、この4番目の層以降の偶数の層は、2番目の層と同様に酸化ニオブでもよく、2番目の層とは異なる材料でもよい。
 なお、反射防止層20は高屈折率層と低屈折率層の総数が異なってもよく、総数が異なる場合、例えば最表層およびガラスに接する層が低屈折率層であることが好ましく、ガラスに接する低屈折率層の主成分が酸化ケイ素であることが好ましい。
 反射防止層20の総厚さは、例えば100nm以上1000nm以下であり、好ましくは150nm以上550nm以下、より好ましくは190nm以上510nm以下、もっとも好ましくは195nm以上506nm以下である。
 最表層の厚さは、例えば60nm以上130nm以下であり、好ましくは70nm以上100nm以下、より好ましくは75nm以上90nm以下、さらに好ましくは77nm以上88nm以下である。
 2番目の層の厚さは、例えば15nm以上200nm以下であり、好ましくは20nm以上150nm以下、より好ましくは25nm以上115nm以下である。
 なお、反射防止層20の厚さは、第1主面11上において測定される。厚さの測定は、SEM(Scanning Electron Microscopy)もしくはTEM(Transmission Electron Microscopy)による断面観察による実厚さの測定、または、偏光解析法による光学測定が挙げられる。防眩処理がなされている場合は、SEMやTEMを使って、実厚さを測定することが好ましい。また、各層の屈折率が既知の場合は、分光反射率や透過率から、厚さを導出できる(参考文献:「学薄膜と成膜技術」、著者李正中、訳者アルバック、出版社アグネ技術センター、出版年2002年)。特に、各層の屈折率が既知である場合には、分光反射率で厚さを測定することが好ましい。
(その他加飾層)
 その他、図示しないが、ガラス物品100の第1主面11の側には防眩層、防汚層といった加飾層が設けられてもよい。下記防眩層、防汚層は一例であり、各層の機能を備える範囲で適宜変更してもよい。また、防眩層、防汚層は必須の構成ではなく、ガラス物品100の構成により一部を設けなくてもよい。
 防眩層は、第1主面11の側に設けられ、ガラス10に防眩性を付与する。防眩層は、例えば第1主面11の側に形成される凹凸形状からなる。凹凸形状はガラス10表面に直接凹凸を形成したものでもよく、ガラス10とは異なる、別の層により形成されたものでもよい。また、第1主面11および第2主面12の両方の側に設けられてもよい。この凹凸形状の二乗平均粗さ(RMS)は、10nm~1000nmであることが好ましく、15nm~500nmであることがより好ましい。防眩層は、ガラス10の表面に、防眩処理およびエッチング処理を施すことで付与される凹凸形状により実現され得る。また、ガラス10の表面上に、任意の屈折率を有する粒子が分散された塗膜を用いることや、貼合される透明樹脂フィルムの主面に凹凸形状を形成し、この凹凸形状により実現してもよい。
 防汚層は、指紋跡や、汗、埃など様々な汚れの付着を抑え、汚れを目立ちにくくする機能または付着した汚れを洗浄し易くする機能を有する防汚層であり、表示面をきれいに保つ。防汚層は第1主面11の側に設けられるが、防汚層の特性の観点からガラス物品100の第1主面11の側の最表面に形成されることが好ましい。例えば、防汚層は、反射防止層の上に設けられる。防汚層は、防汚性、撥水性、撥油性を付与できるフッ素含有化合物(フッ素含有有機基を有する化合物)からなる。フッ素含有化合物は、好ましくはフッ素含有有機化合物であり、より好ましくは含フッ素有機ケイ素化合物である。
(印刷層)
 図示しないが、ガラス物品100の第2主面の側には、印刷層が設けられていてもよい。印刷層は、例えばガラス物品100の外周部に設けられ、開口部を有する形状であり、ディスプレイパネル3の周縁部に配置される配線部材などを隠蔽して運転者から視認できないようにする役割を果たす。開口部はディスプレイパネル3の点灯時に、表示領域として使用される。開口部は1つであってもよく、2つ以上であってもよい。印刷層は可視光が遮蔽できるものであれば特に限られないが、例えば黒色や木目柄である。
 第2主面の側に印刷層を設けたガラス物品100はディスプレイカバーガラスとして利用できる。
<ガラス物品の製造方法>
 次に、本実施形態におけるガラス物品の製造方法について説明する。
(ガラスの準備)
 第1主面11および第2主面12を有するガラス10を準備する。ガラス10の製造方法は特に限定されないが、例えば所望のガラス原料を溶融炉に投入し、1500~1600℃で加熱溶融し清澄した後、成形装置に供給して溶融ガラスを平板状に成形し、徐冷することにより製造できる。なお、ガラスの成形方法は特に限定されず、例えば、ダウンドロー法(例えば、オーバーフローダウンドロー法、スロットダウン法、リドロー法等)、フロート法、ロールアウト法、プレス法等が用いられる。
 また、上記で得られた平板上のガラスを任意の形状、寸法に切り出し、加熱しながら3次元形状に湾曲させる成形工程を有してもよい。成形工程によって、ガラス10に曲面が形成される。
(面取り部形成工程)
 まず、得られたガラスの端面13を研削加工し、第1面取り部15の曲面形状を形成する。図5の(A)には、研削加工により第1面取り部15が形成される様子を模式的に示した。なお、図5の(A)では、説明のためガラス10の網掛けを省略して示している。図5の(A)に示すように、ガラス10の端面13を回転砥石40に押し付けることで、端面13が研削され、破線で示すような側面部14、第1面取り部15、および第2面取り部16が形成される。研削加工には、例えば電着ホイール(例えば、番手が#325以上)等が用いられる。研削加工はガラス10の全周に渡って実施されてもよく、周の一部の区間で実施されてもよい。上記方法で面取りされた端面13の表面粗さは、例えば算術平均粗さRaで0.2μm~1.0μmであってよい。なお、面取り部の形成方法は上記に限られず、レーザー切断等により形成されてもよい。
(研磨工程)
 次に、第1面取り部15を研磨することで、表面粗さを低減する。
 ここで、従来の研磨方法について説明する。従来、面取り部の研磨には、不織布ブラシや、絨毯状のパッドが用いられていた(例えば、国際公開第2015/108076号、および国際公開第2013/031548号)。従来の方法によれば、第1面取り部15を含む端面13全体と、第1主面11および第2主面12の一部領域までが研磨されるため、端面13全体の表面粗さが低減されていた。
 一方、本実施形態における製造方法では、図5の(B)に示すような回転砥石50を用いて、第1面取り部15を研磨する。回転砥石50には例えば酸化セリウムを含む砥石が用いられる。図5の(B)では、回転砥石50に溝が設けられており、溝の下部は第1面取り部15の曲面に沿う形状になっている。第1面取り部15を当該部分に押し付けることで、第1面取り部15の表面が研磨される。
 この時、第1面取り部15の、第1主面11とのなす角が0°より大きく40°以下である領域が重点的に研磨されるように、ガラス10および回転砥石50の位置を調整することが好ましい。一方、第1面取り部15の第1主面11とのなす角が80°より大きい領域、および側面部14は、回転砥石50に強く接触させないことが好ましい。また、なす角が40°以下の領域からなす角が80°より大きい領域にかけては、徐々に粗さが大きくなるように、押しつけ位置や押し付け圧等を適宜調整して研磨されることが好ましい。
 以上により、上記<ガラス物品>で述べた表面粗さを有するように、各領域が研磨される。
(化学強化工程)
 ガラス物品100を表示装置のカバーガラスとして用いる場合、得られたガラス10を化学強化することが好ましい。化学強化処理方法は特に限定されず、透明基板の主面をイオン交換し、圧縮応力が残留する表面層を形成する方法が挙げられる。具体的には、ガラス転移点以下の温度で、基体の主面近傍のガラスに含まれるイオン半径が小さなアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径がより大きなアルカリ金属イオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に置換する。これにより、透明基板10の主面に圧縮応力が残留し、透明基板の強度が向上する。
(印刷層形成工程)
 ガラス物品100を表示装置のカバーガラスとして用いる場合、得られたガラス10の第2主面12の側に、印刷層を形成することが好ましい。印刷層は例えばインクを印刷する方法で形成され、第2主面12の外周部に、開口部を有するデザインで印刷されることが好ましい。印刷法としては、特に限定はされないが、好ましい方法として、インクジェット法や、スクリーン印刷法、転写加飾法などが挙げられる。
(反射防止層形成工程)
 得られたガラス10の第1主面11の側に、反射防止層20を形成する。反射防止層は上記(反射防止層)で記載したような金属酸化物層の積層構造であることが好ましい。金属酸化物層の製膜方法は特に限られず、各種製膜方法を使用できる。例えば、真空蒸着法、イオンビームアシスト蒸着法、イオンプレート法、スパッタリング法、プラズマCVD法等の物理蒸着法を使用できる。これらの製膜方法のなかで、スパッタリング法を用いることで、緻密で耐久性の高い膜を形成できるので好ましい。特に、パルススパッタリング法、ACスパッタリング法、デジタルスパッタリング法等のスパッタリング法により製膜することが好ましい。
 金属酸化物層をスパッタリング法により製膜する場合は、不活性ガスと酸素ガスとの混合ガス雰囲気のチャンバ内にガラス10を配置し、各層毎に所望の組成となるような原料のターゲットを選択し、製膜する。各層の層厚の調整は、例えば、放電電力の調整、製膜時間の調整等により可能である。
(その他加飾層形成工程)
 その他、ガラス10の第1主面11、または、第1主面11および第2主面12の側に、防眩層、防汚層といった加飾層を形成してもよい。防眩層、反射防止層、防汚層は、適宜公知の方法によって形成される。防眩層、反射防止層、防汚層の形成順序は特に限られないが、防眩層形成は化学強化工程の後に、防汚層の形成は反射防止層の形成の後に実施されることが好ましい。
 以上の工程により、ガラス物品100が製造され得る。
(車載用表示装置の製造方法)
 本発明は、上記ガラス物品100を用いたディスプレイカバーガラスと、ディスプレイとを有し、ガラス物品100の第2主面の側がディスプレイに貼合されている、表示装置(具体的に車載用表示装置)も提供する。
 上記ガラス物品100をディスプレイカバーガラスとして用い、第2主面12の側をディスプレイパネル3に貼合することで、表示装置(車載用表示装置)を製造できる。
 本開示は、以下の発明を記載するものである。なお、これに限定されるものではない。
[1]第1主面、第2主面、及び前記第1主面と前記第2主面を接続する端面を有するガラス物品であって、前記端面は、側面部と、前記側面部と前記第1主面とを接続する曲面状の第1面取り部とを含み、
 前記第1主面および前記第1面取り部に、反射防止層を有し、
 前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、
 前記第1面取り部の前記第1主面とのなす角が80°より大きい領域および前記側面部における前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.30μm以上であり、
 前記第1面取り部の前記第1主面とのなす角が60°以上、80°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが、下記式(1)を満たす、ガラス物品。
 0.2≦(Ra-Ra)/(Ra-Ra)≦0.8 ・・・(1)
[2]前記第1面取り部の幅は、0.5mm以上、5.0mm以下である、[1]に記載のガラス物品。
[3]前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域の幅が、0.43mm以上、4.8mm以下である、[1]または[2]に記載のガラス物品。
[4]前記第1面取り部の前記第1主面とのなす角が40°の点における前記ガラス物品の表面の算術平均粗さRa40°と、前記第1面取り部の前記第1主面とのなす角が60°の点における前記ガラス物品の表面の算術平均粗さRa60°と、前記第1面取り部の前記第1主面とのなす角が80°の点における前記ガラス物品の表面の算術平均粗さRa80°との関係が、Ra40°<Ra60°<Ra80°である、[1]から[3]のいずれか1つに記載のガラス物品。
[5]下記測定方法によって測定される、前記第1面取り部の各測定点の反射光のL表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が、0以上15.0以下である、[1]から[4]のいずれか1つに記載のガラス物品。
(測定方法)
 前記第1面取り部において、前記第1面取り部の前記第1主面とのなす角が45°の点の垂線を基準とし、前記側面部側に10°の角度から白色光を入射させ、前記第1主面側に10°の角度において二次元分光放射計にて画像を取得する。前記画像において、1画素ごとに前記測定点を区切り、各前記測定点における色味をL表色系において算出する。
[6]前記第1主面の反射光の色味は、L表色系において、-3<a<3かつ-3<b<3を満たす、[1]から[5]のいずれか1つに記載のガラス物品。
[7]前記端面は、側面部と、前記側面部と前記第2主面とを接続する第2面取り部とを含み、下記式(2)で規定されるパラメータRが、式(3)を満たす、[1]から[6]のいずれか1つに記載のガラス物品。
 R=0.38・Ecg-A/t-2.61・B/t+4.38・C/t-10.6・D/t ・・・(2)
 R≦23.58 ・・・(3)
 ここで、式(2)におけるEcgは、前記ガラス物品のヤング率(GPa)であり、Aは、前記第1面取り部の幅(mm)であり、Bは、前記第2面取り部の幅(mm)であり、Cは、前記側面部の厚み(mm)であり、Dは、前記第1面取り部の厚み(mm)であり、tは、前記ガラス物品の厚み(mm)である。
[8]前記第1面取り部の幅Aが2.0mm以下であり、前記ガラス物品の厚みに対する前記第1面取り部の幅Aの比率であるガラス物品板厚比(A/t)が0.77以上であり、
 前記第2面取り部の幅Bが1.0mm以上2.0mm以下であり、
 前記側面部の厚みCが0.25mm以上であり、前記ガラス物品の厚みに対する前記側面部の厚みCの比率であるガラス物品板厚比(C/t)が0.6以下であり、
 前記ガラス物品の厚みに対する前記第1面取り部の厚みDの比率であるガラス物品板厚比(D/t)が0.2以上0.7以下である、[7]に記載のガラス物品。
[9]前記反射防止層は金属酸化物膜からなり、波長550nmでの屈折率が1.9以上の高屈折率層と、波長550nmでの屈折率が1.6以下の低屈折率層とを交互に積層した構成である、[1]から[8]のいずれか1つに記載のガラス物品。
[10]前記低屈折率層は、1層以上6層以下である、[9]に記載のガラス物品。
[11]前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.15μm以下である、[1]から[10]のいずれか1つに記載のガラス物品。
[12]前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.10μm以下である、[1]から[11]のいずれか1つに記載のガラス物品。
[13]前記第1面取り部の前記第1主面とのなす角が80°より大きい領域、および前記側面部における、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.35μm以上である、[1]から[12]のいずれか1つに記載のガラス物品。
[14]前記第2主面の側に印刷層を有する、[1]から[13]のいずれか1つに記載のガラス物品を用いたディスプレイカバーガラス。
[15]前記第1主面の側に、防眩層を有する、[14]に記載のディスプレイカバーガラス。
[16]前記反射防止層の上に、防汚層を有する、[14]または[15]に記載のディスプレイカバーガラス。
[17]前記[14]から[16]のいずれか1つに記載のディスプレイカバーガラスと、ディスプレイとを有し、前記第2主面の側が前記ディスプレイに貼合されている、表示装置。
[18]前記[14]から[16]のいずれか1つに記載のディスプレイカバーガラスと、ディスプレイとを有し、前記第2主面の側が前記ディスプレイに貼合されている、車載用表示装置。
[19]第1主面、第2主面、及び前記第1主面と前記第2主面を接続する端面を有するガラス物品であって、前記端面は、側面部と、前記側面部と前記第1主面とを接続する曲面状の第1面取り部とを含み、
 前記第1主面および前記第1面取り部に、反射防止層を有し、
 前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値が0.10μm以下であり、
 前記第1面取り部の前記第1主面とのなす角が40°より大きく、80°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値が0.10μmより大きく、0.35μm未満であり、
 前記第1面取り部の前記第1主面とのなす角が80°より大きい領域および前記側面部における前記ガラス物品の表面の算術平均粗さRaの平均値が0.35μm以上であることを特徴とする、ガラス物品。
 次に実施例について説明する。例1、2、5、6は実施例であり、例3、4、7は比較例である。
(例1、2)
 例1、2では、ガラス10として、AGC社製Dragontrailを用い、短辺50mm×長辺150mm、板厚tが1.3mmの略矩形状の主面形状のものを準備した。ガラス10は第1主面11および第2主面12を有する平面状であり、ヤング率は74GPaであった。
 ガラス10の端面13を、図5の(A)に示す方法で研削し、側面部14、第1面取り部15、第2面取り部16を形成した。研削には番手#400及び#800のダイヤモンド電着ホイールを用いた。この時、第1面取り部15の曲面形状における、第1主面とのなす角度が9°~19°における曲率半径は5.5mmであり、なす角度が45°における曲率半径は0.4mmであった。第1面取り部15の幅Aは1.67mmであり、厚さDは0.69mmであり、第2面取り部16の幅Bは0.15mmであり、側面部14の厚さCは0.46mmであった。すなわち、上述の式(1)で表されるパラメータRは22.45であった。また、第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域の幅は1.96mmであった。
 次に、端面13を図5の(B)に示す方法で研磨した。研磨には、酸化セリウムを含有した砥石を用いた。
 最後にガラス10の表面の、第1主面11の側に反射防止層20を形成した。反射防止層20はスパッタリング法により形成され、各層の構成は下記表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
 以上により、ガラス物品100を作製した。
 得られたガラス物品100に対して、下記方法で評価を実施した。
 例1では、短辺において、端面13の表面粗さおよび色味の測定を行った。
 例2では、長辺において、端面13の表面粗さおよび色味の測定を行った。
 結果を表2~表4、並びに図6に示す。
 表面粗さの測定方法は下記の通りである。
 ガラス物品100の端面13を、レーザー顕微鏡(Olympus製LEXT OLS5000、50倍レンズ使用)にて測定した。この時、端面13の測定点における垂線と、レーザー顕微鏡のレンズの光軸が一致するように、ガラスを設置した。
 縦256μm×横256μmの領域を測定し、測定領域の縦方向中央において、縦50μm×横256μmの領域で横方向の長さいっぱいに5μm間隔で10ラインの算術平均粗さRaを算出し、その平均値をその測定点における粗さとして採用した。なお、算術平均粗さRaの定義は、JIS B 0601:2に従った。
 なお、ガラスの表面に反射防止層を設けたガラス物品の表面形状は、ガラスの表面形状に追従し、ガラス物品とガラスの表面の算術平均粗さは概ね一致する。
 色味の測定方法は下記の通りである。
 ガラス物品100の第1面取り部15において前記第1面取り部15の前記第1主面11とのなす角が45°の点の垂線を基準とし、側面部14側に10°の角度から白色光を入射させ、第1主面11側に10°の角度において二次元分光放射計にて分光スペクトルを取得した。光源としては、可視光領域に感度がある照明を用いた。具体的には、白色LED照明(オプテックスFA社製、OPF-S100X100W-PS)を用いた。検出器としては、分光放射計(トプコンテクノハウス社製「SR-5000」)を用いた。
 前記取得データにおいて、1画素ごと、計10点に測定点を区切り、各測定点における色味をL表色系において算出した。なお、L表色系の算出は、JIS Z 8781-4に準拠した。
(例3、4)
 例3、4では、端面13の研磨において、ブラシ研磨を用い、側面部14も含めて研磨した点以外は例1、2と同様にガラス物品100を作製した。また、ブラシ研磨に用いる研磨材としては、酸化セリウムを用いた。
 得られたガラス物品100に対して、上記方法で評価を実施した。
 例3では、短辺において、端面13の表面粗さおよび色味の測定を行った。
 例4では、長辺において、端面13の表面粗さおよび色味の測定を行った。
 結果を表2及び表5~6、並びに図6に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記結果より、実施例である例1、例2では、第1面取り部15と第1主面11とのなす角が0°より大きく、40°以下である領域においてガラス物品100の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、なす角が60°以上、80°以下である領域において算術平均粗さRaの平均値Raが式(1)を満たし、なす角が80°より大きい領域および側面部における算術平均粗さRaの平均値Raが0.30μm以上であった。また、例1、例2は、反射光のL表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が0以上15.0以下となり、反射光における赤味が抑制できたことが分かった。
 一方、比較例である例3、4では、反射光のL表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が15.0より大きく、端部の赤変が発生した。
 また、例1、例2におけるガラス物品は、パラメータRが22.45であり、式(3)を満たすことから、端面13における耐衝撃性にも優れていた。
(例5、6)
 例5、6では、ガラス10として、AGC社製Dragontrailを用い、短辺50mm×長辺150mm、板厚tが1.3mmの略矩形状の主面形状のものを準備した。ガラス10は第1主面11および第2主面12を有する平面状であり、ヤング率は74GPaであった。
 ガラス10の端面13を、図5の(A)に示す方法で研削し、側面部14、第1面取り部15、第2面取り部16を形成した。研削には番手#400及び#800のダイヤモンド電着ホイールを用いた。この時、第1面取り部15の曲面形状における、第1主面とのなす角度が9°~30°における曲率半径は2.4mmであり、なす角度が45°における曲率半径は0.2mmであった。第1面取り部15の幅Aは1.48mmであり、厚さDは0.65mmであり、第2面取り部16の幅Bは0.15mmであり、側面部14の厚さCは0.5mmであった。すなわち、上述の式(1)で表されるパラメータRは23.07であった。また、第1面取り部15の第1主面11とのなす角が0°より大きく、40°以下である領域の幅は1.60mmであった。
 次に、例1、2と同様にして、端面13を研磨し、最後にガラス10の表面の、第1主面11の側に反射防止層20を形成した。
 以上により、ガラス物品100を作製した。
 得られたガラス物品100に対して、上記方法で評価を実施した。
 例5では、短辺において、端面13の表面粗さおよび色味の測定を行った。
 例6では、長辺において、端面13の表面粗さおよび色味の測定を行った。
 結果を表7~表9、並びに図7に示す。
 表面粗さの測定方法は、例1~例4と同様である。
 色味の測定方法は、1画素ごと、計9点に測定点を区切り、各測定点における色味をL表色系において算出したり、各測定点における色味をL表色系において算出したほかは例1~4と同様である。
(例7)
 例7では、端面13の研磨において、ブラシ研磨を用い、側面部14も含めて研磨した点以外は例1、2と同様にガラス物品100を作製した。また、ブラシ研磨に用いる研磨材としては、酸化セリウムを用いた。
 例7では、長辺における端面13の表面粗さおよび色味の測定を行った。
 結果を表7及び表10、並びに図7に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 上記結果より、実施例である例5、6では、第1面取り部15と第1主面11とのなす角が0°より大きく、40°以下である領域においてガラス物品100の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、なす角が60°以上、80°以下である領域において算術平均粗さRaの平均値Raが式(1)を満たし、なす角が80°より大きい領域および側面部における算術平均粗さRaの平均値Raが0.30μm以上であり、反射光のL表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が0以上15.0以下となり、反射光における赤味が抑制できたことが分かった。
 一方、比較例である例7では、反射光のLb*表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が15.0より大きく、端部の赤変が発生した。
 また、例5、6におけるガラス物品は、パラメータRが23.07であり、式(3)を満たすことから、端面13における耐衝撃性にも優れていた。
 また、上記で作製した例1~4のガラス物品について、第1面取り部の第1主面とのなす角が0°より大きく40°以下である領域におけるガラス物品の表面の算術平均粗さRaの平均値、第1面取り部の第1主面とのなす角が40°より大きく80°以下である領域におけるガラス物品の表面の算術平均粗さRaの平均値、及び第1面取り部の第1主面とのなす角が80°より大きい領域および側面部におけるガラス物品の表面の算術平均粗さRaの平均値を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えられることは当業者にとって明らかである。本出願は、2022年11月18日出願の日本特許出願(特願2022-185227)に基づくものであり、その内容はここに参照として取り込まれる。
 1 ステアリングシャフト
 2 車載用表示装置
 3 ディスプレイパネル
 100 ガラス物品
 10 ガラス
 11 第1主面
 12 第2主面
 13 端面
 14 側面部
 15 第1面取り部
 16 第2面取り部
 20 反射防止層
 40 回転砥石(研削用)
 50 回転砥石(研磨用)
 t 膜厚

Claims (18)

  1.  第1主面、第2主面、及び前記第1主面と前記第2主面を接続する端面を有するガラス物品であって、前記端面は、側面部と、前記側面部と前記第1主面とを接続する曲面状の第1面取り部とを含み、
     前記第1主面および前記第1面取り部に、反射防止層を有し、
     前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.20μm以下であり、
     前記第1面取り部の前記第1主面とのなす角が80°より大きい領域および前記側面部における前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.30μm以上であり、
     前記第1面取り部の前記第1主面とのなす角が60°以上、80°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが、下記式(1)を満たす、ガラス物品。
     0.2≦(Ra-Ra)/(Ra-Ra)≦0.8 ・・・(1)
  2.  前記第1面取り部の幅は、0.5mm以上、5.0mm以下である、請求項1に記載のガラス物品。
  3.  前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域の幅が、0.43mm以上、4.8mm以下である、請求項1に記載のガラス物品。
  4.  前記第1面取り部の前記第1主面とのなす角が40°の点における前記ガラス物品の表面の算術平均粗さRa40°と、前記第1面取り部の前記第1主面とのなす角が60°の点における前記ガラス物品の表面の算術平均粗さRa60°と、前記第1面取り部の前記第1主面とのなす角が80°の点における前記ガラス物品の表面の算術平均粗さRa80°との関係が、Ra40°<Ra60°<Ra80°である、請求項1に記載のガラス物品。
  5.  下記測定方法によって測定される、前記第1面取り部の各測定点の反射光のL表色系における色味について、L≧5を満たす前記測定点におけるaの平均値が、0以上15.0以下である、請求項1に記載のガラス物品。
    (測定方法)
     前記第1面取り部において、前記第1面取り部の前記第1主面とのなす角が45°の点の垂線を基準とし、前記側面部側に10°の角度から白色光を入射させ、前記第1主面側に10°の角度において二次元分光放射計にて画像を取得する。前記画像において、1画素ごとに前記測定点を区切り、各前記測定点における色味をL表色系において算出する。
  6.  前記第1主面の反射光の色味は、L表色系において、-3<a<3かつ-3<b<3を満たす、請求項1に記載のガラス物品。
  7.  前記端面は、側面部と、前記側面部と前記第2主面とを接続する第2面取り部とを含み、
     下記式(2)で規定されるパラメータRが、式(3)を満たす、請求項1に記載のガラス物品。
     R=0.38・Ecg-A/t-2.61・B/t+4.38・C/t-10.6・D/t ・・・(2)
     R≦23.58 ・・・(3)
     ここで、式(2)におけるEcgは、前記ガラス物品のヤング率(GPa)であり、Aは、前記第1面取り部の幅(mm)であり、Bは、前記第2面取り部の幅(mm)であり、Cは、前記側面部の厚み(mm)であり、Dは、前記第1面取り部の厚み(mm)であり、tは、前記ガラス物品の厚み(mm)である。
  8.  前記第1面取り部の幅Aが2.0mm以下であり、前記ガラス物品の厚みに対する前記第1面取り部の幅Aの比率であるガラス物品板厚比(A/t)が0.77以上であり、
     前記第2面取り部の幅Bが1.0mm以上2.0mm以下であり、
     前記側面部の厚みCが0.25mm以上であり、前記ガラス物品の厚みに対する前記側面部の厚みCの比率であるガラス物品板厚比(C/t)が0.6以下であり、
     前記ガラス物品の厚みに対する前記第1面取り部の厚みDの比率であるガラス物品板厚比(D/t)が0.2以上0.7以下である、請求項7に記載のガラス物品。
  9.  前記反射防止層は金属酸化物膜からなり、波長550nmでの屈折率が1.9以上の高屈折率層と、波長550nmでの屈折率が1.6以下の低屈折率層とを交互に積層した構成である、請求項1に記載のガラス物品。
  10.  前記低屈折率層は、1層以上6層以下である、請求項9に記載のガラス物品。
  11.  前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.15μm以下である、請求項1に記載のガラス物品。
  12.  前記第1面取り部の前記第1主面とのなす角が0°より大きく、40°以下である領域において、前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.10μm以下である、請求項1に記載のガラス物品。
  13.  前記第1面取り部の前記第1主面とのなす角が80°より大きい領域および前記側面部における前記ガラス物品の表面の算術平均粗さRaの平均値Raが0.35μm以上である、請求項1に記載のガラス物品。
  14.  前記第2主面の側に印刷層を有する、請求項1~13のいずれか1項に記載のガラス物品を用いたディスプレイカバーガラス。
  15.  前記第1主面の側に、防眩層を有する、請求項14に記載のディスプレイカバーガラス。
  16.  前記反射防止層の上に、防汚層を有する、請求項14に記載のディスプレイカバーガラス。
  17.  請求項14に記載のディスプレイカバーガラスと、ディスプレイとを有し、前記第2主面の側が前記ディスプレイに貼合されている、表示装置。
  18.  請求項14に記載のディスプレイカバーガラスと、ディスプレイとを有し、前記第2主面の側が前記ディスプレイに貼合されている、車載用表示装置。
PCT/JP2023/041250 2022-11-18 2023-11-16 ガラス物品及び車載用表示装置とその製造方法 WO2024106503A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-185227 2022-11-18
JP2022185227 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024106503A1 true WO2024106503A1 (ja) 2024-05-23

Family

ID=91084547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041250 WO2024106503A1 (ja) 2022-11-18 2023-11-16 ガラス物品及び車載用表示装置とその製造方法

Country Status (2)

Country Link
TW (1) TW202430404A (ja)
WO (1) WO2024106503A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208995A1 (ja) * 2016-05-31 2017-12-07 旭硝子株式会社 カバーガラスおよび表示装置
JP2019064874A (ja) * 2017-10-02 2019-04-25 Agc株式会社 透明基体および表示装置
JP2020140077A (ja) * 2019-02-28 2020-09-03 Agc株式会社 カバーガラスの製造方法、カバーガラスおよび表示装置
WO2021161879A1 (ja) * 2020-02-13 2021-08-19 Agc株式会社 ガラス板構造体および車載表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208995A1 (ja) * 2016-05-31 2017-12-07 旭硝子株式会社 カバーガラスおよび表示装置
JP2019064874A (ja) * 2017-10-02 2019-04-25 Agc株式会社 透明基体および表示装置
JP2020140077A (ja) * 2019-02-28 2020-09-03 Agc株式会社 カバーガラスの製造方法、カバーガラスおよび表示装置
WO2021161879A1 (ja) * 2020-02-13 2021-08-19 Agc株式会社 ガラス板構造体および車載表示装置

Also Published As

Publication number Publication date
TW202430404A (zh) 2024-08-01

Similar Documents

Publication Publication Date Title
CN110054418B (zh) 玻璃板和显示装置
US11884577B2 (en) Display cover member and production method therefor
JP7310791B2 (ja) カバーガラス、およびインセル型液晶表示装置
JP6402772B2 (ja) ディスプレイのカバー部材及びその製造方法
JP2017523111A (ja) 低スパークルガラス板
WO2018174033A1 (ja) 移動体用ガラス板および表示装置
JP2021533415A (ja) カバーガラスシート
JP7552322B2 (ja) ディスプレイ用カバーガラス、車載表示装置、および、ディスプレイ用カバーガラスの製造方法
WO2024106503A1 (ja) ガラス物品及び車載用表示装置とその製造方法
JP6885340B2 (ja) ガラス構造体、金型、及びガラス構造体の製造方法
JP7567790B2 (ja) ガラス基体およびその製造方法
EP1283432B1 (en) Windowpane for head up display
US11590844B2 (en) Glass substrate and in-vehicle display device
WO2020022296A1 (ja) カバーガラス及びカバーガラス用ガラス板の製造方法
JP7521530B2 (ja) ガラス基体
WO2023204145A1 (ja) ガラス積層体、カバーガラス、および表示装置
JP2020001987A (ja) カバーガラス
TW202228099A (zh) 玻璃板、顯示裝置及玻璃板之製造方法
TW202110766A (zh) 具有受控色彩的低反射率、防反射的膜結構及具有該等膜結構的製品
JP2023507757A (ja) 示差的テクスチャ化を有するカバーガラスシート
JP2016225224A (ja) 表示装置用の導光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891650

Country of ref document: EP

Kind code of ref document: A1