Nothing Special   »   [go: up one dir, main page]

WO2024195513A1 - Gear oil composition - Google Patents

Gear oil composition Download PDF

Info

Publication number
WO2024195513A1
WO2024195513A1 PCT/JP2024/008237 JP2024008237W WO2024195513A1 WO 2024195513 A1 WO2024195513 A1 WO 2024195513A1 JP 2024008237 W JP2024008237 W JP 2024008237W WO 2024195513 A1 WO2024195513 A1 WO 2024195513A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil composition
base oil
viscosity
component
gear oil
Prior art date
Application number
PCT/JP2024/008237
Other languages
French (fr)
Japanese (ja)
Inventor
泰徳 菅野
亜喜良 多田
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2024195513A1 publication Critical patent/WO2024195513A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives

Definitions

  • the present invention relates to a gear oil composition.
  • Lubricating oil compositions are used for a variety of purposes, and various types of compositions have been researched to exhibit characteristics suited to each application. In this context, the use of lower viscosity lubricating oil compositions is being considered, particularly for lubricating oil compositions (gear oil compositions) used in gear devices, from the standpoints of environmental compatibility and energy efficiency (fuel economy, etc.).
  • Patent Document 1 discloses that a lubricating oil composition containing a lubricating base oil; a dispersant-type poly(meth)acrylate compound; a thiadiazole compound; a polysulfide compound; and a friction modifier and having a kinetic viscosity at 100°C of 7.0 mm2 /s or more and 35.0 mm2 /s or less is suitable as a lubricating oil composition for gear oil.
  • Patent Document 2 JP 2021-080429 A discloses that a lubricating oil composition containing (A) a lubricating base oil, (B) a viscosity index improver, (C) a sulfur-based extreme pressure agent, (D) a phosphorus-based extreme pressure agent, and (E) an ashless dispersant, and having a kinetic viscosity of 2 to 10 mm 2 /s at 100 ° C., is suitable as a lubricating oil composition for gear oil.
  • Patent Document 2 also discloses that at least one selected from non-dispersant polymethacrylate and dispersant polymethacrylate is preferable as the viscosity index improver.
  • JP 2007-284564 A (Patent Document 3) describes a lubricating oil composition comprising (A1) a lubricating base oil having a kinetic viscosity at 100° C. of 2.5 to 4.5 mm 2 /s and (A2) a lubricating base oil having a kinetic viscosity at 100° C. of 10 to 40 mm 2 /s and a lubricating base oil having a kinetic viscosity at 100° C. of 3.7 to 4.1 mm 2
  • the present invention discloses a lubricating oil composition for automatic transmissions having a kinetic viscosity at 100° C.
  • the present invention was made in consideration of the problems with the above-mentioned conventional technology, and aims to provide a gear oil composition that can have a low kinetic viscosity based on the kinetic viscosity at 40°C and 100°C, while also having excellent anti-seizure performance and excellent oxidation stability.
  • the lower the viscosity of a lubricating oil composition the lower the oil film forming ability and the more likely metal contact sites are to occur, which in turn reduces the anti-seizure performance.
  • lowering the viscosity and improving the anti-seizure performance are in a contradictory relationship (trade-off relationship) in which improving one characteristic reduces the other.
  • conventional gear oil compositions were unable to achieve both characteristics, and even if it was possible to reduce the kinetic viscosity of the composition, it was not possible to achieve excellent load-bearing performance (especially anti-seizure performance) when the viscosity was reduced.
  • the present inventors have conducted extensive research to achieve the above object, and first considered adding an ester-based base oil to the base oil composition used in the lubricating oil composition to reduce viscosity and improve anti-seizure performance, but it was found that such a formulation, even if it is possible to reduce viscosity and improve anti-seizure performance, makes it difficult to obtain excellent oxidation stability, and is not necessarily sufficient in terms of practical use (see Comparative Example 9 of the present application).
  • a gear oil composition containing (A) a base oil composition, (B) a poly(meth)acrylate-based thickener, and (C) a succinimide dispersant;
  • the (A) component is a poly(meth)acrylate-based thickener having a kinetic viscosity at 100°C of 3.5 to 4.5 mm2 a base oil composition containing 10 mass% or more of a mineral base oil (A-1) having a viscosity index of 140 or more based on the total amount of the base oil composition; the content of the mineral base oil in the (A) component is 93 mass% or more;
  • the (B) component is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less;
  • the (C) component is at least one selected from the group consisting of a bis-type unmodified succinimide and a bis-type boric acid modified succinimide; the content of the (C) component
  • the present invention provides the following aspects:
  • a gear oil composition comprising: (A) a base oil composition; (B) a poly(meth)acrylate thickener; and (C) a succinimide dispersant;
  • the component (A) is a base oil composition containing 10 mass % or more of a mineral base oil (A-1) having a kinematic viscosity at 100°C of 3.5 to 4.5 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition;
  • the content of the mineral oil base oil in the component (A) is 93% by mass or more
  • the component (B) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less
  • the component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid modified succinimides,
  • the content of the component (B) based on the total amount of the gear oil composition is 1 to 4 mass %, The
  • the present invention makes it possible to provide a gear oil composition that has a low kinetic viscosity based on the kinetic viscosity at 40°C and 100°C, while still having excellent anti-seizure performance.
  • the gear oil composition of the present invention comprises A gear oil composition comprising: (A) a base oil composition; (B) a poly(meth)acrylate thickener; and (C) a succinimide dispersant;
  • the component (A) is a base oil composition containing 10 mass % or more of a mineral base oil (A-1) having a kinematic viscosity at 100°C of 3.5 to 4.5 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition;
  • the content of the mineral oil base oil in the component (A) is 93% by mass or more
  • the component (B) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less
  • the component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid modified succinimides,
  • the content of the component (B) based on the total amount of the gear oil composition
  • the gear oil composition of the present invention contains a base oil composition as component (A).
  • the base oil composition used as component (A) contains the mineral oil-based base oil (A-1).
  • the base oil composition contains 10 mass % or more of the base oil (A-1) based on the total amount of the base oil composition. It is a composition containing a base oil containing at least 5% by mass of the base oil.
  • the base oil (A-1) contained in such a base oil composition is a mineral base oil that satisfies the conditions that the kinematic viscosity at 100°C is 3.5 to 4.5 mm 2 /s and the viscosity index is 140 or more.
  • the base oil (A-1) is a mineral base oil, and is a high-performance base oil having a low kinematic viscosity at 100°C of 3.5 to 4.5 mm 2 /s and an extremely high viscosity index of 140 or more.
  • the kinematic viscosity of the base oil or composition at 40°C or 100°C means the kinematic viscosity at each temperature (40°C or 100°C) specified in JIS K 2283-2000.
  • the "viscosity index" of the base oil or composition means the viscosity index measured in accordance with JIS K 2283-2000.
  • the base oil (A-1) must be a mineral oil-based base oil having a kinetic viscosity at 100°C of 3.5 to 4.5 mm2 /s.
  • the kinetic viscosity at 100°C of such base oil (A-1) 3.5 mm2 /s or more the oil film forming performance at the lubricated parts is improved, and it is possible to improve the seizure resistance.
  • the finally obtained gear oil composition can be made lower in viscosity, and it is possible to reduce the stirring loss during use.
  • the kinetic viscosity at 100°C of such base oil (A-1) is more preferably 3.7 to 4.3 mm2 /s, since a higher effect can be obtained in terms of improving the seizure resistance due to the oil film forming performance and improving the fuel saving performance due to the low viscosity.
  • the base oil (A-1) must have a viscosity index of 140 or more.
  • a viscosity index of the base oil (A-1) 140 or more it is possible to obtain a gear oil composition with smaller viscosity changes due to temperature, and it is possible to maintain a low viscosity under the conditions of use and further improve fuel economy performance.
  • the viscosity index of the base oil (A-1) is 141 or more, since this provides a greater effect in terms of fuel economy performance.
  • the base oil (A-1) is more preferably a base oil having a kinetic viscosity at 40°C of 15.8 to 16.5 mm2 /s (more preferably 16.0 to 16.3 mm2 /s).
  • the kinetic viscosity at 40°C of such base oil (A-1) is not less than the lower limit, it is possible to improve the oil film forming ability at the lubricated parts and provide more excellent lubricity compared to when the kinetic viscosity is below the lower limit, and it is possible to reduce the evaporation loss of the gear oil composition and reduce the consumption of the gear oil composition.
  • the base oil (A-1) is preferably a base oil having a sulfur content of 10 ppm by mass or less (more preferably 8 ppm by mass or less, and even more preferably 5 ppm by mass or less).
  • the sulfur content is below the upper limit, it is possible to obtain a gear oil composition having higher oxidation stability compared to when the sulfur content exceeds the upper limit.
  • the "sulfur content" in the base oil can be measured in accordance with ASTM D4951.
  • the base oil (A-1) is preferably a base oil having a pour point of -20°C or less.
  • the pour point is equal to or less than the upper limit, the low-temperature fluidity of the final gear oil composition can be improved compared to when the pour point exceeds the upper limit.
  • the pour point is -40°C or more from the viewpoint of enabling a higher viscosity index.
  • pour point means the pour point measured in accordance with JIS K 2269-1987.
  • the base oil (A-1) is a base oil having a flash point of 200°C or higher. Furthermore, by setting the flash point at or above the lower limit, safety during use at high temperatures tends to be improved compared to when the flash point is below the lower limit.
  • flash point refers to the flash point measured in accordance with JIS K 2265-4-2007 (Cleveland Opening Method).
  • the base oil (A-1) is preferably a base oil having a % CP of 90 to 95.
  • the % CP of the base oil (A-1) is preferably a base oil having a % CP of 90 to 95.
  • the % CP of the base oil (A-1) equal to or greater than the lower limit, it becomes possible to further improve the viscosity-temperature characteristics, fuel saving performance, and effects obtained by adding components other than the base oil (including other additives, etc.).
  • the % CP of the base oil equal to or less than the upper limit, it becomes possible to increase the solubility of other components such as extreme pressure agents.
  • the base oil (A-1) is preferably a base oil having a % CA of 0.
  • the base oil (A-1) it is possible to further improve the viscosity-temperature characteristics and also to further improve the fuel economy performance.
  • the base oil (A-1) is preferably a base oil having a % C N of 5 to 10.
  • the % C N of the base oil (A-1) is preferably a base oil having a % C N of 5 to 10.
  • %C P , %C N and %C A respectively mean the percentage of paraffin carbon number to the total carbon number, the percentage of naphthene carbon number to the total carbon number and the percentage of aromatic carbon number to the total carbon number, which are determined by a method (nd-M ring analysis) in accordance with ASTM D 3238-85.
  • nd-M ring analysis the preferred ranges of %C P , %C N and %C A described above are based on the values determined by the above method, and for example, even in the case of a lubricating base oil that does not contain naphthene content, the %C N determined by the above method may show a value exceeding 0.
  • the base oil (A-1) may be any mineral oil-based base oil, and is not particularly limited, but is preferably a mineral oil-based hydrocarbon oil.
  • mineral oil-based hydrocarbon oils include paraffinic base oils, naphthenic base oils, aromatic base oils, wax isomerized base oils, solvent refined base oils, hydrorefined base oils, hydrocracked base oils, normal paraffins, and isoparaffins, which are obtained by using at least one selected from the group consisting of kerosene fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; normal paraffins obtained by extraction operations from kerosene fractions; and lubricating oil fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; or wax derived from crude oils such as slack wax obtained by a lubricating oil dewaxing process and/or synthetic waxes such as Fischer-Tropsch wax and GTL wax obtained by a gas-to-liquid (GTL) process or the
  • the base oil (A-1) is preferably a mineral oil-based base oil having a saturated content of 90% by mass or more (more preferably 95% by mass or more, and even more preferably 99% by mass or more).
  • the saturated content means a value measured in accordance with ASTM D 2007-93.
  • the base oil (A-1) is preferably a mineral oil-based base oil having an aromatic content of 0 to 10 mass% (more preferably 0 to 5 mass%, particularly preferably 0 to 1 mass% or less).
  • the aromatic content may be 0.1 mass% or more.
  • Aromatics usually include alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene and their alkylated products, compounds with 4 or more condensed benzene rings, pyridines, quinolines, phenols, naphthols and other aromatic compounds having heteroatoms.
  • such base oil (A-1) is preferably a Group III base oil in the base oil classification by API (American Petroleum Institute) (hereinafter, the API base oil classification group may be simply referred to as "API group").
  • API Group III base oils are mineral oil-based base oils with a sulfur content of 0.03 mass% or less, a saturate content of 90 mass% or more, and a viscosity index of 120 or more.
  • the base oil composition (component (A)) contains 10 mass% or more of the base oil (A-1) based on the total amount of the base oil composition.
  • the content of such base oil (A-1) is more preferably 50 to 70 mass%, and even more preferably 50 to 60 mass%.
  • the base oil composition (component (A)) according to the present invention has a mineral base oil content of 93 mass% or more (more preferably 95 to 100 mass%, and even more preferably 98 to 100 mass%) in the base oil composition (base oil (A)). That is, in the base oil composition (component (A)) according to the present invention, the mineral base oil content is 93 mass% or more based on the total amount of the base oil composition. By setting the content of such mineral base oil to the above lower limit or more, it is possible to further improve oxidation stability.
  • the base oil composition (component (A)) according to the present invention can contain other base oils selected appropriately in addition to the base oil (A-1) so that the base oil composition satisfies the above conditions.
  • the base oil other than the base oil (A-1) to be contained in such a base oil composition may be any base oil that can cause the resulting composition to satisfy the above conditions of the base oil composition, and can be appropriately selected from known base oils depending on the type of base oil (A-1).
  • other mineral oil-based base oils, synthetic oils made of polyalphaolefins (PAO), etc. may be appropriately used.
  • a mineral oil-based base oil (A-2) having a kinematic viscosity at 100° C. of 6.0 to 7.0 mm 2 /s and a viscosity index of 140 or more as the base oil to be used in combination with the base oil (A-1), since it is possible to improve the viscosity-temperature characteristics.
  • the base oil (A-2) together with the base oil (A-1) it is possible to improve the viscosity-temperature characteristics more efficiently.
  • the base oil (A-2) that can be suitably used in combination with the base oil (A-1) in the base oil composition (component (A)) will be described.
  • Such a base oil (A-2) is a mineral oil-based base oil having a kinetic viscosity at 100 ° C. of 6.0 to 7.0 mm 2 /s.
  • the kinetic viscosity at 100 ° C. of such a base oil (A-2) is equal to or higher than the lower limit, it is possible to improve the oil film forming property at the lubricated portion and to make the lubrication property more excellent compared to the case where it is below the lower limit, and it is possible to reduce the evaporation loss of the gear oil composition and to reduce the consumption amount of the gear oil composition.
  • the kinetic viscosity at 100 ° C. of such a base oil (A-2) is more preferably 6.0 to 6.5 mm 2 / s (more preferably 6.1 to 6.5 mm 2 / s) because a higher effect is obtained in terms of the low viscosity, fuel saving, and oil film forming property of the gear oil composition.
  • the base oil (A-2) is a mineral oil-based base oil with a viscosity index of 140 or more.
  • the viscosity index of such base oil (A-2) is more preferably 140 to 145, as this provides a greater effect in terms of fuel efficiency performance.
  • the base oil (A-2) is more preferably a base oil having a kinetic viscosity at 40° C. of 33.5 to 34.5 mm 2 /s (more preferably 34.0 to 34.3 mm 2 /s).
  • a higher effect in terms of oil film formation tends to be obtained compared to when the kinetic viscosity is below the above-mentioned lower limit, while when the kinetic viscosity at 40° C.
  • base oil (A-2) is not more than the above-mentioned upper limit, a higher effect in terms of lowering the viscosity of the gear oil composition and fuel saving tends to be obtained compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
  • the base oil (A-2) is a base oil having a sulfur content of 1 mass ppm or less.
  • the sulfur content is equal to or less than the upper limit, it is possible to improve oxidation stability compared to when the sulfur content exceeds the upper limit.
  • the base oil (A-2) is preferably a base oil having a pour point of -10°C or lower.
  • the lower limit of the pour point is not particularly limited, but from the viewpoint of enabling a higher viscosity index, it is more preferable that the pour point is -40°C or higher.
  • the base oil (A-2) is preferably a base oil having a flash point of 200°C or higher (more preferably 230°C or higher).
  • the base oil (A-2) is preferably a base oil having a % CP of 70 to 90.
  • the % CP of the base oil (A-2) is preferably a base oil having a % CP of 70 to 90.
  • the % CP of the base oil (A-2) is made equal to or greater than the lower limit, it becomes possible to further improve the viscosity-temperature characteristics, fuel saving performance, and effects obtained by adding components other than the base oil (including other additives, etc.).
  • the % CP of the base oil equal to or less than the upper limit, it becomes possible to increase the solubility of other components such as extreme pressure agents.
  • the base oil (A-2) is preferably a base oil having a % CA of 0 to 30.
  • the % CA of the base oil (A-2) is preferably a base oil having a % CA of 0 to 30.
  • the base oil (A-2) is preferably a base oil having a % CN of 0 to 30.
  • the % CN of the base oil (A-2) is set to the above upper limit or less, it is possible to improve the viscosity-temperature characteristics and further improve fuel economy.
  • the base oil (A-2) is preferably a mineral oil-based base oil having a saturated content of 90% by mass or more (more preferably 95% by mass or more, and even more preferably 99% by mass or more).
  • the saturated content means a value measured in accordance with ASTM D 2007-93.
  • the base oil (A-2) is preferably a mineral oil-based base oil having an aromatic content of 0 to 10 mass% (more preferably 0 to 5 mass%, particularly preferably 0 to 1 mass% or less).
  • the aromatic content may be 0.1 mass% or more.
  • Aromatics usually include alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene and their alkylated products, compounds with 4 or more condensed benzene rings, pyridines, quinolines, phenols, naphthols, and other aromatic compounds having heteroatoms.
  • the base oil (A-2) may be a mineral oil, and is not particularly limited, but is preferably a mineral hydrocarbon oil (e.g., hydrotreated base oil, etc.). Furthermore, such a base oil (A-2) is preferably an API Group III base oil.
  • the content of the base oil (A-2) is preferably 30 mass% or more (more preferably 30 to 50 mass%, and even more preferably 40 to 50 mass%) based on the total amount of the base oil composition.
  • the content of the base oil (A-2) equal to or less than the upper limit, it is possible to obtain a higher effect in terms of low-temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to when it is less than the upper limit.
  • such a base oil composition (component (A)) contains the base oil (A-2), it is possible to further improve the oil film forming ability at the lubricated parts, thereby making the lubrication more excellent, and it is also possible to further improve the fuel saving performance. From this viewpoint, it is more preferable that the content (total amount) of the base oil (A-1) and the base oil (A-2) relative to the total amount of the base oil composition is 93 mass% or more (more preferably 95 to 100 mass%, and particularly preferably 98 to 100 mass%). Note that, as a preferred embodiment of such a base oil composition (component (A)), for example, one consisting only of the base oil (A-1) and the base oil (A-2) may be used.
  • the base oil composition (component (A)) is more preferably a mixture of mineral oil-based hydrocarbon base oils.
  • a preferred embodiment of such a base oil composition that is a mixture of hydrocarbon base oils is, for example, a mixture of all base oil components contained in the base oil composition (when the base oil composition consists only of the base oil (A-1) and the base oil (A-2), all of the base oil (A-1) and the base oil (A-2)) as mineral hydrocarbon oils.
  • the base oil composition (component (A)) according to the present invention preferably has a kinetic viscosity at 40° C. of 34.0 to 36.0 mm 2 /s (more preferably 34.5 to 36.0 mm 2 /s).
  • a kinetic viscosity at 40° C. of such a base oil composition is not less than the above-mentioned lower limit, it is possible to further improve the oil film formability at lubricated parts and provide more excellent lubricity, and it is possible to further reduce the evaporation loss of the gear oil composition and thus reduce the consumption of the gear oil composition.
  • the kinetic viscosity is not more than the above-mentioned upper limit, it is possible to further improve the low temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
  • the base oil composition (component (A)) according to the present invention preferably has a kinetic viscosity at 100° C. of 6.0 to 8.0 mm 2 /s (more preferably 7.0 to 8.0 mm 2 /s). When the kinetic viscosity at 100° C.
  • such a base oil composition is not less than the above-mentioned lower limit, the oil film forming performance at lubricated points is higher and seizure resistance can be further improved compared to when the kinetic viscosity is below the above-mentioned lower limit, and on the other hand, when the kinetic viscosity is not more than the above-mentioned upper limit, the gear oil composition has a lower viscosity and it is possible to further reduce stirring loss during use compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
  • the base oil composition (component (A)) according to the present invention is preferably a base oil having a viscosity index of 140 or more.
  • a base oil composition 140 or more By making the viscosity index of such a base oil composition 140 or more, it is possible to obtain a gear oil composition with smaller viscosity changes due to temperature, and it is possible to maintain a low viscosity state under usage conditions and further improve fuel economy performance.
  • the base oil composition (component (A)) according to the present invention preferably has a sulfur content of less than 10 ppm by mass (more preferably 0 to 5 ppm by mass).
  • a sulfur content in such a base oil composition is equal to or less than the upper limit, there is a tendency for a higher effect in terms of oxidation stability to be obtained compared to when the sulfur content exceeds the upper limit.
  • the gear oil composition of the present invention contains a poly(meth)acrylate thickener as component (B).
  • the poly(meth)acrylate thickener (component (B)) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less.
  • the weight average molecular weight of such a poly(meth)acrylate means the value determined by gel permeation chromatography (GPC) (the molecular weight obtained by standard polystyrene conversion).
  • the poly(meth)acrylate used as component (B) has a weight-average molecular weight of 11,000 to 13,000.
  • the weight-average molecular weight of the poly(meth)acrylate there is a tendency for even greater effects to be obtained in terms of improving seizure resistance under poor lubrication conditions.
  • the poly(meth)acrylate used as component (B) may have a weight average molecular weight of 15,000 or less, and other conditions (e.g., structure, etc.) are not particularly limited. Any poly(meth)acrylate compound known to be usable as a thickener (which may be a so-called viscosity index improver) in the field of lubricating oils (e.g., poly(meth)acrylate compounds described in paragraphs [0079] to [0096] of JP 2010-195894 A) having a weight average molecular weight of 15,000 or less may be used.
  • “(meth)acrylate” means acrylate and/or methacrylate. Such poly(meth)acrylate may be either non-dispersed or dispersed.
  • Such component (B) may be used alone or in combination of two or more.
  • the gear oil composition of the present invention contains a succinimide dispersant as component (C).
  • the succinimide dispersant (component (C)) may be at least one of bis-type unmodified succinimide and bis-type boric acid modified succinimide, and is not particularly limited. However, from the viewpoint of further improving wear resistance, it is particularly preferable that the succinimide is a bis-type boric acid modified succinimide.
  • such bis-type unmodified succinimide and bis-type boric acid modified succinimide are not particularly limited, and known ashless dispersants (for example, unmodified succinimide described in JP 2022-041877 A, bis-type among boric acid modified succinimides, etc.) can be appropriately used.
  • a bis-type succinimide having at least one alkyl or alkenyl group in the molecule is preferred, and is represented by the following formula (I):
  • R 1 and R 2 each independently represent an alkyl group having 40 to 400 carbon atoms (more preferably 60 to 350) or an alkenyl group having 40 to 400 carbon atoms (more preferably 60 to 350), and n represents an integer of 0 to 4 (more preferably 1 to 4, even more preferably 1 to 3).) More preferred are compounds represented by the formula (I).
  • a branched alkyl or alkenyl group derived from an oligomer of isobutene called polyisobutylene, or a polybutenyl group is more preferred.
  • the alkyl or alkenyl group that can be selected as R 1 and R 2 in the formula (I) preferably has a number average molecular weight of 800 to 3500.
  • a condensation reaction product can be obtained by reacting an alkyl or alkenyl succinic acid having an alkyl or alkenyl group having 40 to 400 carbon atoms or an anhydride thereof with a polyamine to imidize both ends of the polyamine chain.
  • a "bis-type boric acid modified succinimide” is a compound modified by allowing boric acid to act on the bis-type unmodified succinimide, thereby neutralizing or amidating some or all of the amino groups and/or imino groups in the bis-type unmodified succinimide.
  • such a succinimide dispersant preferably has a weight average molecular weight (Mw) of 2500 to 3500 (more preferably 2800 to 3200).
  • Mw weight average molecular weight
  • the "weight average molecular weight” of such a succinimide dispersant and the "number average molecular weight" of the alkyl or alkenyl groups ( R1 and R2 ) in the compound represented by formula (I) above each mean a value determined by gel permeation chromatography (GPC) (a molecular weight obtained in terms of standard polystyrene).
  • such a succinimide dispersant (component (C)) is more preferably one having a nitrogen content of 1.8 to 2.4 mass% (more preferably 2.0 to 2.3 mass%).
  • such a succinimide dispersant (component (C)) is preferably a bis-type boric acid modified succinimide, and among these, a boric acid modified compound of a bis-type alkenyl succinimide (a compound modified by neutralizing or amidating a bis-type alkenyl succinimide with boric acid) can be particularly preferably used.
  • the gear oil composition of the present invention is a gear oil composition (a lubricating oil composition for gear oils) containing the above-mentioned component (A), component (B), and component (C).
  • the content of the component (A) is not particularly limited, but is preferably 75 to 95 mass % (more preferably 80 to 90 mass %) based on the total amount of the gear oil composition.
  • the content of the component (A) is equal to or greater than the lower limit, a higher effect in terms of oxidation stability can be obtained compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, a higher effect can be obtained in terms of improving the additive effect at the lubricated points and improving lubricity compared to when the content exceeds the upper limit.
  • the content of the (B) component must be 1 to 4 mass % (more preferably 2 to 3 mass %) based on the total amount of the gear oil composition.
  • the content of the (B) component is 1 mass % or more, it is possible to improve the oil film forming ability compared to when it is less than 1 mass %, and it is possible to achieve excellent seizure resistance.
  • the content of the (B) component is 4 mass % or less, it is possible to suppress the inhibition of film formation of the additive compared to when it exceeds 4 mass %, and it is also possible to achieve excellent seizure resistance.
  • the content of the (C) component (total amount of the (C) components) is preferably 1 to 3 mass% based on the total amount of the gear oil composition.
  • the content of the (C) component is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of sludge dispersibility and corrosion prevention compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of electrical insulation compared to when the content exceeds the upper limit.
  • the sulfur content based on the total amount of the gear oil composition is preferably 2.0 to 2.3 mass%.
  • the phosphorus content based on the total amount of the gear oil composition is more preferably 1400 to 1800 mass ppm.
  • the boron content based on the total amount of the gear oil composition is more preferably 50 to 70 mass ppm.
  • the sulfur, phosphorus and boron contents in the gear oil composition can be measured in accordance with ASTM D4951.
  • the gear oil composition of the present invention may further contain additives in addition to the components (A) to (C).
  • additives may be any known additive used in the field of lubricating oil compositions (more preferably gear oil compositions), and are not particularly limited.
  • Preferred examples include, but are not limited to, (D) an extreme pressure agent; and (E) a viscosity index improver consisting of at least one of an ethylene and ⁇ -olefin copolymer and its hydrogenated product.
  • any known extreme pressure agent such as a known sulfur-based extreme pressure agent or phosphorus-based extreme pressure agent
  • a sulfur-based extreme pressure agent such as a known sulfur-based extreme pressure agent or phosphorus-based extreme pressure agent
  • any known extreme pressure agent such as a known sulfur-based extreme pressure agent or phosphorus-based extreme pressure agent
  • is not particularly limited from the viewpoint of extreme pressure properties and wear resistance, it is particularly preferable to use a sulfur-based extreme pressure agent.
  • sulfur-based extreme pressure agents known in the field of lubricating oil compositions (e.g., polysulfide compounds, sulfurized esters, sulfurized oils and fats, thiadiazole compounds, etc.) can be appropriately used and are not particularly limited, but from the viewpoint of further improving seizure resistance, sulfur-based extreme pressure agents made of polysulfide compounds are preferred.
  • polysulfide compounds refer to all compounds crosslinked by two or more sulfurs.
  • polysulfide compounds having a sulfur content of 30 to 65 mass % (more preferably 30 to 50 mass %) are preferred.
  • the sulfur content in such polysulfide compounds is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of extreme pressure properties compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of oxidation stability compared to when the content exceeds the upper limit.
  • dihydrocarbyl polysulfide compounds are more preferred.
  • dihydrocarbyl polysulfide compounds include dibutyl polysulfide, dihexyl polysulfide, dioctyl polysulfide, dinonyl polysulfide, didecyl polysulfide, didodecyl polysulfide, ditetradecyl polysulfide, dihexadecyl polysulfide, dioctadecyl polysulfide, dieicosyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, diphenethyl polysulfide, polypropenyl polysulfide, polybutenyl polysulfide, and mixtures thereof.
  • sulfur-based extreme pressure agents can be used alone or in combination of two or more.
  • the copolymer and its hydrogenated product used in the viscosity index improver (component (E)) may be of the so-called non-dispersion type or of the dispersion type.
  • the copolymer and its hydrogenated product used in the viscosity index improver (E) preferably have a number average molecular weight of 2,000 to 10,000.
  • the "number average molecular weight" of the copolymer and the like used as component (E) means the value determined by gel permeation chromatography (GPC) (molecular weight obtained in standard polystyrene conversion).
  • GPC gel permeation chromatography
  • the additives that can be used in the gear oil composition of the present invention are not limited to the above-mentioned (D) and (E) components, and may include, within the scope that does not impair the effects of the present invention, for example, pour point depressants, metal deactivators, friction modifiers, dispersants other than the dispersants described above, antioxidants, rubber swelling agents, defoamers, Other known additive components such as diluent oil, rust inhibitor, demulsifier, colorant, corrosion inhibitor, antiwear agent, extreme pressure agent, metal detergent, acid scavenger, etc.
  • the total amount (total quantity) of the other additive components is more preferably 1.0 to 2.0 mass% based on the total amount of the gear oil composition.
  • the total amount of such other additive components is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of sludge dispersibility and corrosion prevention compared to when it is less than the lower limit, and on the other hand, when it is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of oxidation stability compared to when it exceeds the upper limit.
  • the various additives that can be used in such gear oil compositions may be prepared separately for each component and added, or may be prepared and added as a mixture with other components.
  • a commercially available package product e.g., an additive package containing a dispersant, friction modifier, corrosion inhibitor, etc.
  • the (D) and (E) components may be prepared individually, while a separate additive package containing a dispersant, friction modifier, corrosion inhibitor, etc. may be prepared and used in combination.
  • the gear oil composition of the present invention must have a kinetic viscosity of 36.0 mm 2 /s or less at 40° C.
  • the gear oil composition has a kinetic viscosity of 36.0 mm 2 /s or less at 40° C.
  • the lower limit of the kinetic viscosity of the gear oil composition at 40° C. is not particularly limited, it is preferable that the kinetic viscosity of the gear oil composition at 40° C. is 34.0 mm 2 /s or more.
  • the kinetic viscosity of the gear oil composition at 40°C is equal to or higher than the lower limit, the oil film forming and oil film retaining properties of the gear oil composition at lubricated points are improved in a relatively low temperature range around 40°C (preferably about 20 to 60°C), making it possible to maintain a better lubricated state and further improve fuel economy performance.
  • the kinetic viscosity of the gear oil composition at 40°C is more preferably 34.5 to 35.0 mm2 /s, since this provides a greater effect in improving anti-seizure performance and fuel economy performance.
  • the gear oil composition of the present invention must have a kinetic viscosity of 8.0 mm 2 /s or less at 100°C.
  • the gear oil composition has a kinetic viscosity of 8.0 mm 2 /s or less at 100°C, it can have a lower viscosity in a relatively high temperature range near 100°C compared to when the kinetic viscosity exceeds 8.0 mm 2 /s, and the stirring resistance can be reduced, so that the power transmission efficiency can be improved and the fuel saving performance can be improved.
  • the lower limit of the kinetic viscosity of such a gear oil composition at 100°C is not particularly limited, but the kinetic viscosity of the gear oil composition at 100°C is preferably 6.5 mm 2 /s or more.
  • the kinetic viscosity of the gear oil composition at 100°C is the lower limit or more, the oil film forming ability and oil film retention ability of the gear oil composition at the lubricated parts are further improved in a relatively high temperature range near 100°C (preferably about 80 to 120°C), and the oil film can be more uniformly maintained, so that the seizure resistance during use can be made more advanced.
  • the kinetic viscosity of the gear oil composition at 100° C. is more preferably 7.0 to 7.5 mm 2 /s, since this provides a greater effect in terms of improving anti-seizure performance and fuel economy performance.
  • the gear oil composition of the present invention preferably has a viscosity index greater than 170, and more preferably equal to or greater than 171.
  • a viscosity index greater than 170, it is possible to further improve the viscosity-temperature characteristics and anti-wear properties of the lubricating oil composition, as well as to further improve fuel economy performance, compared to when the viscosity index is 170 or less.
  • the gear oil composition of the present invention preferably has a Brookfield viscosity (BF viscosity) of 15 Pa ⁇ s or less at -40°C.
  • BF viscosity Brookfield viscosity
  • the Brookfield viscosity can be measured in accordance with ASTM D2983.
  • the method for producing the gear oil composition of the present invention is not particularly limited, and the gear oil composition may be prepared by appropriately selecting and mixing each of the components to be contained so as to obtain the gear oil composition of the present invention (satisfying the above conditions).
  • the use of the gear oil composition of the present invention is not particularly limited, and it can be suitably used, for example, as a lubricant for gear mechanisms such as transmissions (e.g., manual transmissions in various automobiles), differential gears, etc.
  • the gear oil composition of the present invention can also be used, for example, as a common lubricant (dual-purpose oil) for both the transmissions and differential gears in various automobiles.
  • the gear oil composition of the present invention is particularly preferably used as a gear oil composition for the transmissions of electric automobiles, from the viewpoint of excellent seizure resistance under poor lubrication.
  • Base oil ⁇ Base oil (A1)> Wax isomerized base oil (mineral hydrocarbon oil, API Group III, kinematic viscosity at 40° C. (KV40): 16.19 mm 2 /s, kinematic viscosity at 100° C. (KV100): 3.912 mm 2 /s, viscosity index (VI): 141, sulfur content in base oil (sulfur content in base oil): less than 10 ppm by mass).
  • Disposant ⁇ Dispersant (C1)> Bis-type boric acid modified succinimide [weight average molecular weight: 3000, nitrogen content: 2.2 mass%, boron content: 0.4 mass%] ⁇ Dispersant (C2)> Monotype boric acid modified succinimide [weight average molecular weight: 5000, nitrogen content: 2.0 mass%, boron content: 1.9 mass%] [Other added ingredients (additives)] Extreme Pressure Agent (D1) Dibutyl polysulfide [Sulfur content in compound: 29.09% by mass] ⁇ Extreme pressure agent (D2)> Polysulfide [Sulfur content in compound: 30.91% by mass] Viscosity Index Improver (E1) Copolymer of ethylene and ⁇ -olefin [number average molecular weight (Mn): 2600]
  • Examples 1 to 2 and Comparative Examples 1 to 9 The gear oil compositions of Examples 1 and 2 and Comparative Examples 1 to 9 were each prepared using the above-mentioned components so as to have the composition shown in Table 1.
  • Table 1 in the “Composition of gear oil composition” section, “-” indicates that the component was not used.
  • Table 1 in the “Composition of gear oil composition” section, “mass%” represents the content (mass%) of the base oil based on mass relative to the total amount of the base oil composition (mixed base oil), and “inmass%” represents the content (mass%) based on mass relative to the total amount of the gear oil composition.
  • a gear oil composition that satisfies the conditions (low viscosity conditions) of a kinematic viscosity at 40°C of 36.0 mm2 /s or less and a kinematic viscosity at 100°C of 8.0 mm2 /s or less is evaluated as a low-viscosity gear oil composition.
  • Table 1 includes an item for whether or not the low-viscosity condition is met, and those that meet the low-viscosity condition (low-viscosity ones) are indicated as "met", and those that do not meet the condition are indicated as "not met”. Since a gear oil composition is required to have a low viscosity, particularly from the viewpoint of fuel saving, when the low-viscosity condition is met (met), it can be evaluated that a higher effect is obtained in terms of fuel saving.
  • the drain cock was opened to extract all of the gear oil composition from the oil bath, creating a poor lubrication state (a state in which the gear oil composition was not replenished except for the gear oil composition spread during the break-in), and then the oil temperature of the gear oil composition was left to the course of the test, and the block-on-ring tester was operated (tested) under the conditions of a sliding speed of 2.5 m/s and a surface pressure (load) of the contact surface between the ring and the block of 0.25 GPa, and the time until seizure occurred (seizure time) was determined.
  • the base oil composition used in the gear oil composition contains 10 mass% or more of a mineral base oil (A1) that satisfies the conditions that the kinematic viscosity at 100°C is 3.5 to 4.5 mm2 /s and the viscosity index is 140 or more, and the content of the mineral base oil (base oil (A1) and base oil (A2)) in the base oil composition is 100 mass%.
  • the gear oil compositions obtained in Examples 1 and 2 contain 1 to 4 mass% of a thickener made of a poly(meth)acrylate having a weight average molecular weight of 15,000 or less based on the total amount of the gear oil composition.
  • the gear oil compositions obtained in Examples 1 and 2 contain 1.4 mass% of a bis-type succinimide dispersant (bis-type boric acid modified succinimide). Furthermore, the gear oil compositions obtained in Examples 1 and 2 satisfied the conditions that the kinematic viscosity at 40°C was 36.0 mm 2 /s or less and the kinematic viscosity at 100°C was 8.0 mm 2 /s or less (furthermore, the viscosity index also showed a value greater than 170). The gear oil compositions obtained in Examples 1 and 2 having such characteristics satisfied the low viscosity condition (conformed to the low viscosity condition) and had high seizure resistance.
  • a bis-type succinimide dispersant bis-type boric acid modified succinimide
  • gear oil compositions obtained in Examples 1 and 2 were not confirmed to have a strong acid value after the ISOT test, and it was also confirmed that they had excellent oxidation stability.
  • the gear oil compositions obtained in Examples 1 and 2 were low-viscosity and excellent seizure resistance gear oil compositions, as well as excellent oxidation stability.
  • the gear oil compositions obtained in Examples 1 and 2 had excellent wear resistance, with a wear scar diameter of 0.4 mm or less after a Shell four-ball test, and had a BF viscosity of 15 Pa s or less, indicating a high level of fluidity at low temperatures.
  • the gear oil composition obtained in Comparative Example 1 in which polymethacrylate with a weight-average molecular weight of 12,200 was used as a thickener but the content of said polymethacrylate was 5 mass% based on the total amount of the gear oil composition, satisfied the above-mentioned condition of low viscosity, but did not have sufficient seizure resistance, and was unable to achieve both low viscosity and excellent seizure resistance.
  • gear oil compositions obtained in Comparative Examples 2 and 3 in which polymethacrylate with a weight-average molecular weight of 17,600 was used as a thickener instead of polymethacrylate with a weight-average molecular weight of 12,200, met the low viscosity condition, but did not have sufficient seizure resistance, and were unable to achieve both low viscosity and excellent seizure resistance.
  • the gear oil composition obtained in Comparative Example 7 which did not use base oil (A1) but instead used a combination of base oil (A2) and base oil (A3) with a viscosity index of 124, achieved a sufficient level of seizure resistance, but did not satisfy the low viscosity condition, and was unable to achieve both low viscosity and excellent seizure resistance.
  • the gear oil composition obtained in Comparative Example 8 in which the base oil composition consisted only of base oil (A2), had a sufficient level of anti-seizure properties, but did not satisfy the low viscosity condition, and was unable to achieve both low viscosity and excellent anti-seizure properties.
  • the gear oil composition obtained in Comparative Example 9 which used base oil (A4) without using a thickener, achieved both low viscosity and excellent seizure resistance, but was confirmed to have a strong acid value after the ISOT test, and was not sufficient in terms of oxidation stability. Furthermore, when Comparative Example 4 and Comparative Example 9 are compared, they have similar compositions except for the composition of the base oil composition, so it was found that when the content of mineral oil-based base oil is less than 93 mass% (Comparative Example 9), the oxidation stability decreases.
  • the gear oil composition of the present invention is particularly useful as a gear oil composition for the transmission of an electric vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A gear oil composition comprising (A) a base oil composition, (B) a specific thickening agent, and (C) a specific dispersant, wherein the component (A) contains a specific base oil (A-1) at a specific proportion, the amount of a mineral oil-based base oil contained in the component (A) is at a specific proportion or more, the component (B) is a specific poly(meth)acrylate, the component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid-modified succinimides, the contained amounts of the component (B) and the component (C) are each in a specific range, and the kinematic viscosity of the gear oil composition at 40°C and the kinematic viscosity of the gear oil composition at 100°C are each not more than a specific value.

Description

ギヤ油組成物Gear Oil Composition
 本発明は、ギヤ油組成物に関する。 The present invention relates to a gear oil composition.
 潤滑油組成物は様々な用途に用いられており、その用途に応じた特性を発揮するために様々な種類の組成物が研究されてきた。このような状況の中、特に、歯車(ギヤ)装置に利用する潤滑油組成物(ギヤ油組成物)に対しては、環境適合性やエネルギー効率(省燃費性等)の観点等から、より低粘度の潤滑油組成物の利用が検討されている。 Lubricating oil compositions are used for a variety of purposes, and various types of compositions have been researched to exhibit characteristics suited to each application. In this context, the use of lower viscosity lubricating oil compositions is being considered, particularly for lubricating oil compositions (gear oil compositions) used in gear devices, from the standpoints of environmental compatibility and energy efficiency (fuel economy, etc.).
 例えば、国際公開第2017/073748号(特許文献1)には、潤滑油基油と;分散型ポリ(メタ)アクリレート化合物と;チアジアゾール化合物と;ポリサルファイド化合物と;摩擦調整剤と;を含有し、100℃における動粘度が7.0mm/s以上35.0mm/s以下である潤滑油組成物が、ギヤ油用の潤滑油組成物として好適であることが開示されている。 For example, International Publication No. 2017/073748 (Patent Document 1) discloses that a lubricating oil composition containing a lubricating base oil; a dispersant-type poly(meth)acrylate compound; a thiadiazole compound; a polysulfide compound; and a friction modifier and having a kinetic viscosity at 100°C of 7.0 mm2 /s or more and 35.0 mm2 /s or less is suitable as a lubricating oil composition for gear oil.
 また、特開2021-080429号公報(特許文献2)には、(A)潤滑油基油、(B)粘度指数向上剤、(C)硫黄系極圧剤、(D)リン系極圧剤、及び、(E)無灰分散剤を含む潤滑油組成物であって、100℃における動粘度が2~10mm/sである潤滑油組成物が、ギヤ油用の潤滑油組成物として好適なものである旨が開示されている。なお、特許文献2においては、前記粘度指数向上剤として、非分散型ポリメタクリレート及び分散型ポリメタクリレートから選ばれる少なくとも1種が好ましい旨も開示されている。 In addition, JP 2021-080429 A (Patent Document 2) discloses that a lubricating oil composition containing (A) a lubricating base oil, (B) a viscosity index improver, (C) a sulfur-based extreme pressure agent, (D) a phosphorus-based extreme pressure agent, and (E) an ashless dispersant, and having a kinetic viscosity of 2 to 10 mm 2 /s at 100 ° C., is suitable as a lubricating oil composition for gear oil. In addition, Patent Document 2 also discloses that at least one selected from non-dispersant polymethacrylate and dispersant polymethacrylate is preferable as the viscosity index improver.
 さらに、特開2007-284564号公報(特許文献3)には、(A1)100℃における動粘度が2.5~4.5mm/sの潤滑油基油および(A2)100℃における動粘度が10~40mm/sの潤滑油基油からなりかつ100℃における動粘度が3.7~4.1mm/sである潤滑油基油(A)に、(B)重量平均分子量が1.5万~3.0万のポリ(メタ)アクリレート系粘度指数向上剤を組成物全量基準で1~20質量%と、(C)炭素数8~30の炭化水素基を有するイミド系摩擦調整剤を組成物全量基準で2~4質量%と、(D)リン系極圧剤を組成物全量基準でリン量として0.01~0.04質量%と、(E)数平均分子量が2000以上のアルキル基又はアルケニル基を少なくとも1つ有する無灰分散剤を組成物全量基準で窒素含有量として0.01~0.04質量%とを配合した、100℃における動粘度が5.6~5.8mm/sである自動変速機用潤滑油組成物が開示されている。 Furthermore, JP 2007-284564 A (Patent Document 3) describes a lubricating oil composition comprising (A1) a lubricating base oil having a kinetic viscosity at 100° C. of 2.5 to 4.5 mm 2 /s and (A2) a lubricating base oil having a kinetic viscosity at 100° C. of 10 to 40 mm 2 /s and a lubricating base oil having a kinetic viscosity at 100° C. of 3.7 to 4.1 mm 2 The present invention discloses a lubricating oil composition for automatic transmissions having a kinetic viscosity at 100° C. of 5.6 to 5.8 mm 2 /s, which is prepared by blending lubricating base oil (A) having a kinetic viscosity of 100° C./s with 1 to 20 mass % of a poly(meth)acrylate viscosity index improver having a weight average molecular weight of 15,000 to 30,000, based on the total amount of the composition, (B) 2 to 4 mass % of an imide friction modifier having a hydrocarbon group having 8 to 30 carbon atoms, based on the total amount of the composition, (C) 0.01 to 0.04 mass % of a phosphorus-based extreme pressure agent in terms of phosphorus, based on the total amount of the composition, and ( E ) 0.01 to 0.04 mass % of an ashless dispersant having at least one alkyl or alkenyl group having a number average molecular weight of 2,000 or more, based on the total amount of the composition in terms of nitrogen content.
国際公開第2017/073748号International Publication No. 2017/073748 特開2021-080429号公報JP 2021-080429 A 特開2007-284564号公報JP 2007-284564 A
 しかしながら、前記特許文献1~3に記載されているような潤滑油組成物は、その組成物を低粘度のものとしつつ、耐荷重性能(特に耐焼き付き性能)を優れたものとするといった点においては改良の余地があった。 However, the lubricating oil compositions described in Patent Documents 1 to 3 leave room for improvement in terms of improving load-bearing performance (particularly anti-seizure performance) while still achieving low viscosity.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、40℃および100℃における動粘度を基準として動粘度を低粘度とすることが可能でありながら、優れた耐焼き付き性能と優れた酸化安定性とを有することが可能なギヤ油組成物を提供することを目的とする。 The present invention was made in consideration of the problems with the above-mentioned conventional technology, and aims to provide a gear oil composition that can have a low kinetic viscosity based on the kinetic viscosity at 40°C and 100°C, while also having excellent anti-seizure performance and excellent oxidation stability.
 一般に、潤滑油組成物は、粘度を低下させるほど油膜の形成性能が低下して金属接触部位が生じ易くなり、これに起因して耐焼き付き性能が低下する。このように、潤滑油組成物において、低粘度化と耐焼き付き性能の向上とは、一方の特性が向上するともう一方の特性が低下してしまう相反関係(トレードオフの関係)にある。そのため、従来のギヤ油組成物においては、双方の特性を両立させることができず、組成物の動粘度を低粘度とすることは可能であっても、低粘度とした際に耐荷重性能(特に耐焼き付き性能)を優れたものとすることができなかった。 In general, the lower the viscosity of a lubricating oil composition, the lower the oil film forming ability and the more likely metal contact sites are to occur, which in turn reduces the anti-seizure performance. Thus, in a lubricating oil composition, lowering the viscosity and improving the anti-seizure performance are in a contradictory relationship (trade-off relationship) in which improving one characteristic reduces the other. For this reason, conventional gear oil compositions were unable to achieve both characteristics, and even if it was possible to reduce the kinetic viscosity of the composition, it was not possible to achieve excellent load-bearing performance (especially anti-seizure performance) when the viscosity was reduced.
 このような状況下、本発明者らが上記目的を達成すべく研究を重ね、先ず、潤滑油組成物に利用する基油組成物にエステル系の基油を含有させて、低粘度化と耐焼き付き性能の向上を図ることを検討したが、そのような処方では、低粘度化と耐焼き付き性能の向上を図ることが可能となっても、優れた酸化安定性を得ることが困難となり、実用性の点で必ずしも十分なものとはならないことが分かった(本願の比較例9参照)。そして、このような知見等も併せ鑑みて、本発明者らが更に鋭意研究を重ねたところ、ギヤ油組成物を(A)基油組成物、(B)ポリ(メタ)アクリレート系増粘剤、および、(C)コハク酸イミド分散剤を含むものとし;前記(A)成分を、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-1)を前記基油組成物の全量を基準として10質量%以上含有してなる基油組成物とし;前記(A)成分中の鉱油系基油の含有量を93質量%以上とし;前記(B)成分を、重量平均分子量が15000以下のポリ(メタ)アクリレートとし;前記(C)成分を、ビスタイプの無変性コハク酸イミド及びビスタイプのホウ酸変性コハク酸イミドからなる群から選択される少なくとも1種とし;前記ギヤ油組成物の全量を基準とした前記(B)成分の含有量を1~4質量%とし;前記ギヤ油組成物の全量を基準とした前記(C)成分の含有量を1~3質量%とし;前記ギヤ油組成物の40℃における動粘度を36.0mm/s以下とし;かつ、前記ギヤ油組成物の100℃における動粘度を8.0mm/s以下とすることにより、驚くべきことに、相反関係にある低粘度化と耐焼き付き性能の向上の両立を図ることを可能としながら、酸化安定性にも優れたものとすることが可能となり、40℃および100℃における動粘度を基準として動粘度を低粘度とすることが可能でありながら、優れた耐焼き付き性能と優れた酸化安定性とを有するものとすることが可能となることを見出し、本発明を完成するに至った。 Under these circumstances, the present inventors have conducted extensive research to achieve the above object, and first considered adding an ester-based base oil to the base oil composition used in the lubricating oil composition to reduce viscosity and improve anti-seizure performance, but it was found that such a formulation, even if it is possible to reduce viscosity and improve anti-seizure performance, makes it difficult to obtain excellent oxidation stability, and is not necessarily sufficient in terms of practical use (see Comparative Example 9 of the present application). Then, in light of such findings, the present inventors conducted further extensive research and found that a gear oil composition containing (A) a base oil composition, (B) a poly(meth)acrylate-based thickener, and (C) a succinimide dispersant; the (A) component is a poly(meth)acrylate-based thickener having a kinetic viscosity at 100°C of 3.5 to 4.5 mm2 a base oil composition containing 10 mass% or more of a mineral base oil (A-1) having a viscosity index of 140 or more based on the total amount of the base oil composition; the content of the mineral base oil in the (A) component is 93 mass% or more; the (B) component is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less; the (C) component is at least one selected from the group consisting of a bis-type unmodified succinimide and a bis-type boric acid modified succinimide; the content of the (B) component is 1 to 4 mass% based on the total amount of the gear oil composition; the content of the (C) component is 1 to 3 mass% based on the total amount of the gear oil composition; the kinetic viscosity of the gear oil composition at 40°C is 36.0 mm 2 /s or less; and the kinetic viscosity of the gear oil composition at 100°C is 8.0 mm 2 /s or less, it has surprisingly been found that it is possible to achieve both low viscosity and improved anti-seizure performance, which are in a contradictory relationship, while also achieving excellent oxidation stability, and that it is possible to achieve a low kinetic viscosity based on the kinetic viscosities at 40°C and 100°C, while also achieving excellent anti-seizure performance and excellent oxidation stability, and thus the present invention has been completed.
 すなわち、本発明は以下の態様を提供する。 In other words, the present invention provides the following aspects:
 [1](A)基油組成物、(B)ポリ(メタ)アクリレート系増粘剤、および、(C)コハク酸イミド分散剤を含むギヤ油組成物であり、
 前記(A)成分は、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-1)を、前記基油組成物の全量を基準として10質量%以上含有してなる基油組成物であり、
 前記(A)成分中の鉱油系基油の含有量は93質量%以上であり、
 前記(B)成分は、重量平均分子量が15000以下のポリ(メタ)アクリレートであり、
 前記(C)成分は、ビスタイプの無変性コハク酸イミド及びビスタイプのホウ酸変性コハク酸イミドからなる群から選択される少なくとも1種であり、
 前記ギヤ油組成物の全量を基準とした前記(B)成分の含有量は1~4質量%であり、
 前記ギヤ油組成物の全量を基準とした前記(C)成分の含有量は1~3質量%であり、
 前記ギヤ油組成物の40℃における動粘度は36.0mm/s以下であり、かつ、
 前記ギヤ油組成物の100℃における動粘度は8.0mm/s以下である、ギヤ油組成物。
[1] A gear oil composition comprising: (A) a base oil composition; (B) a poly(meth)acrylate thickener; and (C) a succinimide dispersant;
The component (A) is a base oil composition containing 10 mass % or more of a mineral base oil (A-1) having a kinematic viscosity at 100°C of 3.5 to 4.5 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition;
The content of the mineral oil base oil in the component (A) is 93% by mass or more,
The component (B) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less,
The component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid modified succinimides,
The content of the component (B) based on the total amount of the gear oil composition is 1 to 4 mass %,
The content of the component (C) based on the total amount of the gear oil composition is 1 to 3 mass %,
The gear oil composition has a kinematic viscosity at 40°C of 36.0 mm2 /s or less, and
The gear oil composition has a kinematic viscosity at 100° C. of 8.0 mm 2 /s or less.
 [2]前記(C)成分は、ビスタイプのコハク酸イミド化合物のホウ酸変性化合物である、[1]に記載のギヤ油組成物。 [2] The gear oil composition according to [1], wherein the component (C) is a boric acid modified compound of a bis-type succinimide compound.
 [3]前記(A)成分が、100℃における動粘度が6.0~7.0mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-2)を、前記基油組成物の全量を基準として40質量%以上含有する、[1]又は[2]に記載のギヤ油組成物。 [3] The gear oil composition according to [1] or [ 2 ], wherein the component (A) contains 40 mass% or more of a mineral base oil (A-2) having a kinematic viscosity at 100°C of 6.0 to 7.0 mm2/s and a viscosity index of 140 or more, based on the total amount of the base oil composition.
 [4]電気自動車の変速機用のギヤ油組成物である、[1]~[3]のうちのいずれか1項に記載のギヤ油組成物。 [4] A gear oil composition according to any one of [1] to [3], which is a gear oil composition for an electric vehicle transmission.
 本発明によれば、40℃および100℃における動粘度を基準として動粘度を低粘度とすることが可能でありながら、優れた耐焼き付き性能を有するものとすることが可能なギヤ油組成物を提供することが可能となる。 The present invention makes it possible to provide a gear oil composition that has a low kinetic viscosity based on the kinetic viscosity at 40°C and 100°C, while still having excellent anti-seizure performance.
 以下、本発明をその好適な実施形態に即して詳細に説明する。なお、本明細書においては、特に断らない限り、数値X及びYについて「X~Y」という表記は「X以上Y以下」を意味するものとする。かかる表記において数値Yのみに単位を付した場合には、当該単位が数値Xにも適用されるものとする。 The present invention will be described in detail below with reference to preferred embodiments. In this specification, unless otherwise specified, the expression "X to Y" for numerical values X and Y means "X or more and Y or less." In such expressions, when a unit is assigned only to numerical value Y, the unit is also applied to numerical value X.
 本発明のギヤ油組成物は、
 (A)基油組成物、(B)ポリ(メタ)アクリレート系増粘剤、および、(C)コハク酸イミド分散剤を含むギヤ油組成物であり、
 前記(A)成分は、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-1)を、前記基油組成物の全量を基準として10質量%以上含有してなる基油組成物であり、
 前記(A)成分中の鉱油系基油の含有量は93質量%以上であり、
 前記(B)成分は、重量平均分子量が15000以下のポリ(メタ)アクリレートであり、
 前記(C)成分は、ビスタイプの無変性コハク酸イミド及びビスタイプのホウ酸変性コハク酸イミドからなる群から選択される少なくとも1種であり、
 前記ギヤ油組成物の全量を基準とした前記(B)成分の含有量は1~4質量%であり、
 前記ギヤ油組成物の全量を基準とした前記(C)成分の含有量は1~3質量%であり、
 前記ギヤ油組成物の40℃における動粘度は36.0mm/s以下であり、かつ、
 前記ギヤ油組成物の100℃における動粘度は8.0mm/s以下である、ものである。
The gear oil composition of the present invention comprises
A gear oil composition comprising: (A) a base oil composition; (B) a poly(meth)acrylate thickener; and (C) a succinimide dispersant;
The component (A) is a base oil composition containing 10 mass % or more of a mineral base oil (A-1) having a kinematic viscosity at 100°C of 3.5 to 4.5 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition;
The content of the mineral oil base oil in the component (A) is 93% by mass or more,
The component (B) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less,
The component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid modified succinimides,
The content of the component (B) based on the total amount of the gear oil composition is 1 to 4 mass %,
The content of the component (C) based on the total amount of the gear oil composition is 1 to 3 mass %,
The gear oil composition has a kinematic viscosity at 40°C of 36.0 mm2 /s or less, and
The gear oil composition has a kinematic viscosity at 100° C. of 8.0 mm 2 /s or less.
  〔(A)成分:基油組成物〕
 本発明のギヤ油組成物は、(A)成分として基油組成物を含有する。このような(A)成分として利用する基油組成物は、前記鉱油系の基油(A-1)を基油組成物の全量を基準として10質量%以上含有してなる基油組成物である。すなわち、前記基油組成物(前記(A)成分)は、前記基油(A-1)を10質量%以上含む基油の組成物である。
[Component (A): Base oil composition]
The gear oil composition of the present invention contains a base oil composition as component (A). The base oil composition used as component (A) contains the mineral oil-based base oil (A-1). The base oil composition contains 10 mass % or more of the base oil (A-1) based on the total amount of the base oil composition. It is a composition containing a base oil containing at least 5% by mass of the base oil.
 このような基油組成物が含有する前記基油(A-1)は、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上であるという条件を満たす鉱油系の基油である。このように、前記基油(A-1)は、鉱油系の基油であって、100℃における動粘度が3.5~4.5mm/sと低くかつ粘度指数が140以上と極めて高い高性能の基油である。なお、本明細書において、基油や組成物の40℃又は100℃における動粘度は、JIS K 2283-2000に規定される各温度(40℃又100℃)での動粘度を意味する。また、本明細書において、基油や組成物の「粘度指数」は、JIS K 2283-2000に準拠して測定された粘度指数を意味する。 The base oil (A-1) contained in such a base oil composition is a mineral base oil that satisfies the conditions that the kinematic viscosity at 100°C is 3.5 to 4.5 mm 2 /s and the viscosity index is 140 or more. Thus, the base oil (A-1) is a mineral base oil, and is a high-performance base oil having a low kinematic viscosity at 100°C of 3.5 to 4.5 mm 2 /s and an extremely high viscosity index of 140 or more. In this specification, the kinematic viscosity of the base oil or composition at 40°C or 100°C means the kinematic viscosity at each temperature (40°C or 100°C) specified in JIS K 2283-2000. In addition, in this specification, the "viscosity index" of the base oil or composition means the viscosity index measured in accordance with JIS K 2283-2000.
 前記基油(A-1)は、前述のように、100℃における動粘度が3.5~4.5mm/sの鉱油系の基油である必要がある。このような基油(A-1)の100℃における動粘度を3.5mm/s以上とすることで潤滑箇所での油膜形成性能がより高くなり、耐焼き付き性を向上させることが可能となる。他方、基油(A-1)の100℃における動粘度を4.5mm/s以下とすることで、最終的に得られるギヤ油組成物をより低粘度のものとすることができ、使用時の撹拌損失を低減することが可能となる。このような基油(A-1)の100℃における動粘度は、油膜形成性能による耐焼き付き性の向上、および、低粘度化による省燃費性能の向上の観点でより高い効果が得られることから、3.7~4.3mm/sであることがより好ましい。 As described above, the base oil (A-1) must be a mineral oil-based base oil having a kinetic viscosity at 100°C of 3.5 to 4.5 mm2 /s. By making the kinetic viscosity at 100°C of such base oil (A-1) 3.5 mm2 /s or more, the oil film forming performance at the lubricated parts is improved, and it is possible to improve the seizure resistance. On the other hand, by making the kinetic viscosity at 100°C of the base oil (A-1) 4.5 mm2 /s or less, the finally obtained gear oil composition can be made lower in viscosity, and it is possible to reduce the stirring loss during use. The kinetic viscosity at 100°C of such base oil (A-1) is more preferably 3.7 to 4.3 mm2 /s, since a higher effect can be obtained in terms of improving the seizure resistance due to the oil film forming performance and improving the fuel saving performance due to the low viscosity.
 また、前記基油(A-1)は、粘度指数が140以上の基油である必要がある。このような基油(A-1)の粘度指数を140以上とすることで温度による粘度変化がより小さなギヤ油組成物を得ることが可能となり、使用条件下において粘度を低く維持して省燃費性能をより向上させることが可能となる。このような基油(A-1)の粘度指数は、省燃費性能の観点でより高い効果が得られることから、141以上であることがより好ましい。 The base oil (A-1) must have a viscosity index of 140 or more. By making the viscosity index of the base oil (A-1) 140 or more, it is possible to obtain a gear oil composition with smaller viscosity changes due to temperature, and it is possible to maintain a low viscosity under the conditions of use and further improve fuel economy performance. It is more preferable that the viscosity index of the base oil (A-1) is 141 or more, since this provides a greater effect in terms of fuel economy performance.
 また、前記基油(A-1)は、40℃における動粘度が15.8~16.5mm/s(さらに好ましくは16.0~16.3mm/s)の基油であることがより好ましい。このような基油(A-1)の40℃における動粘度が前記下限以上である場合には、前記下限未満の場合と比較して潤滑箇所での油膜形成性をより向上させて潤滑性をより優れたものとすることが可能となるとともに、ギヤ油組成物の蒸発損失がより低減されてギヤ油組成物の消費量をより低減させることが可能となる。他方、基油(A-1)の40℃における動粘度が前記上限以下である場合には、前記上限を超えた場合と比較してギヤ油組成物の低温粘度特性と省燃費性能の点でより高い効果を得ることが可能となる。 Moreover, the base oil (A-1) is more preferably a base oil having a kinetic viscosity at 40°C of 15.8 to 16.5 mm2 /s (more preferably 16.0 to 16.3 mm2 /s). When the kinetic viscosity at 40°C of such base oil (A-1) is not less than the lower limit, it is possible to improve the oil film forming ability at the lubricated parts and provide more excellent lubricity compared to when the kinetic viscosity is below the lower limit, and it is possible to reduce the evaporation loss of the gear oil composition and reduce the consumption of the gear oil composition. On the other hand, when the kinetic viscosity at 40°C of the base oil (A-1) is not more than the upper limit, it is possible to obtain a higher effect in terms of low temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to when the kinetic viscosity exceeds the upper limit.
 また、前記基油(A-1)は、硫黄の含有量が10質量ppm以下(より好ましくは8質量ppm以下、更に好ましくは5質量ppm以下)の基油であることが好ましい。このような硫黄の含有量が前記上限以下である場合には、前記上限を超えた場合と比較して、より高い酸化安定性を有するギヤ油組成物を得ることが可能となる。また、基油中の「硫黄の含有量」は、ASTM D4951に準拠して測定できる。 Furthermore, the base oil (A-1) is preferably a base oil having a sulfur content of 10 ppm by mass or less (more preferably 8 ppm by mass or less, and even more preferably 5 ppm by mass or less). When the sulfur content is below the upper limit, it is possible to obtain a gear oil composition having higher oxidation stability compared to when the sulfur content exceeds the upper limit. Furthermore, the "sulfur content" in the base oil can be measured in accordance with ASTM D4951.
 また、前記基油(A-1)は、流動点が-20℃以下の基油であることが好ましい。このような流動点が前記上限以下である場合には前記上限を超えた場合と比較して、最終的に得られるギヤ油組成物の低温流動性をより向上させることが可能となる。また、このような流動点の下限は特に制限されるものではないが、粘度指数をより高いものとすることが可能となるといった観点からは、流動点が-40℃以上であることがより好ましい。なお、本明細書において「流動点」とは、JIS K 2269-1987に準拠して測定された流動点を意味する。 The base oil (A-1) is preferably a base oil having a pour point of -20°C or less. When the pour point is equal to or less than the upper limit, the low-temperature fluidity of the final gear oil composition can be improved compared to when the pour point exceeds the upper limit. Although there is no particular restriction on the lower limit of the pour point, it is more preferable that the pour point is -40°C or more from the viewpoint of enabling a higher viscosity index. In this specification, "pour point" means the pour point measured in accordance with JIS K 2269-1987.
 さらに、前記基油(A-1)は、引火点が200℃以上の基油であることが好ましい。また、このような引火点を前記下限以上とすることで前記下限未満の場合と比較して、高温使用時の安全性がより向上する傾向にある。なお、本明細書において「引火点」とは、JIS K 2265-4-2007(クリーブランド開放法)に準拠して測定される引火点を意味する。 Furthermore, it is preferable that the base oil (A-1) is a base oil having a flash point of 200°C or higher. Furthermore, by setting the flash point at or above the lower limit, safety during use at high temperatures tends to be improved compared to when the flash point is below the lower limit. In this specification, "flash point" refers to the flash point measured in accordance with JIS K 2265-4-2007 (Cleveland Opening Method).
 また、前記基油(A-1)は、%Cが90~95の基油であることが好ましい。基油(A-1)の%Cを前記下限値以上とすることにより、粘度-温度特性、省燃費性能、及び、基油以外の他の成分(他の添加剤等を含む)を添加することにより得られる効果、等をさらに高めることが可能になる。他方、基油の%Cを上記上限値以下とすることにより、極圧剤等の他の成分の溶解性を高めることが可能になる。 The base oil (A-1) is preferably a base oil having a % CP of 90 to 95. By making the % CP of the base oil (A-1) equal to or greater than the lower limit, it becomes possible to further improve the viscosity-temperature characteristics, fuel saving performance, and effects obtained by adding components other than the base oil (including other additives, etc.). On the other hand, by making the % CP of the base oil equal to or less than the upper limit, it becomes possible to increase the solubility of other components such as extreme pressure agents.
 また、前記基油(A-1)は、%Cが0の基油であることが好ましい。基油(A-1)の%Cを0とすることにより、粘度-温度特性をより高めることが可能になるほか、省燃費性能をさらに高めることも可能になる。 The base oil (A-1) is preferably a base oil having a % CA of 0. By making the % CA of the base oil (A-1) 0, it is possible to further improve the viscosity-temperature characteristics and also to further improve the fuel economy performance.
 また、前記基油(A-1)は、%Cが5~10の基油であることが好ましい。基油(A-1)の%Cを上記上限値以下とすることにより、粘度-温度特性を高めることが可能になるとともに、省燃費性をさらに高めることが可能になる。また、%Cを上記下限値以上とすることにより、添加剤の溶解性を高めることが可能になる。 The base oil (A-1) is preferably a base oil having a % C N of 5 to 10. By making the % C N of the base oil (A-1) equal to or less than the upper limit, it is possible to improve the viscosity-temperature characteristics and further improve fuel economy. By making the % C N equal to or more than the lower limit, it is possible to increase the solubility of additives.
 なお、本明細書において%C、%Cおよび%Cとは、それぞれASTM D 3238-85に準拠した方法(n-d-M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、および芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%Cおよび%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えば、ナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cは0を超える値を示し得る。 In this specification, %C P , %C N and %C A respectively mean the percentage of paraffin carbon number to the total carbon number, the percentage of naphthene carbon number to the total carbon number and the percentage of aromatic carbon number to the total carbon number, which are determined by a method (nd-M ring analysis) in accordance with ASTM D 3238-85. In other words, the preferred ranges of %C P , %C N and %C A described above are based on the values determined by the above method, and for example, even in the case of a lubricating base oil that does not contain naphthene content, the %C N determined by the above method may show a value exceeding 0.
 また、前記基油(A-1)としては、鉱油系の基油であればよく、特に制限されるものではないが、鉱油系炭化水素油であることが好ましい。このような鉱油系炭化水素油としては、例えば、パラフィン系、ナフテン系、又は、芳香族系の原油の蒸留により得られる灯油留分;灯油留分からの抽出操作等により得られるノルマルパラフィン;及びパラフィン系、ナフテン系、又は芳香族系の原油の蒸留により得られる潤滑油留分、あるいは潤滑油脱ろう工程により得られる、スラックワックス等の原油由来のワックス及び/又はガストゥリキッド(GTL)プロセス等により得られる、フィッシャートロプシュワックス、GTLワックス等の合成ワックス;からなる群から選択される少なくとも1種を原料とし、溶剤脱れき、溶剤抽出、水素化分解、水素化異性化、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理を1つ又は2つ以上適宜組み合わせて精製したパラフィン系基油、ナフテン系基油、芳香族系基油、ワックス異性化基油、溶剤精製基油、水素化精製基油、水素化分解基油、ノルマルパラフィン、イソパラフィンが挙げられる。このような基油(A-1)としては、中でも、ワックス異性化基油であることが特に好ましい。なお、これらの鉱油系炭化水素油は単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。 Furthermore, the base oil (A-1) may be any mineral oil-based base oil, and is not particularly limited, but is preferably a mineral oil-based hydrocarbon oil. Examples of such mineral oil-based hydrocarbon oils include paraffinic base oils, naphthenic base oils, aromatic base oils, wax isomerized base oils, solvent refined base oils, hydrorefined base oils, hydrocracked base oils, normal paraffins, and isoparaffins, which are obtained by using at least one selected from the group consisting of kerosene fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; normal paraffins obtained by extraction operations from kerosene fractions; and lubricating oil fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; or wax derived from crude oils such as slack wax obtained by a lubricating oil dewaxing process and/or synthetic waxes such as Fischer-Tropsch wax and GTL wax obtained by a gas-to-liquid (GTL) process or the like; and refining the oils by one or a combination of two or more suitable refining treatments such as solvent deasphalting, solvent extraction, hydrocracking, hydroisomerization, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment. As such base oil (A-1), wax isomerized base oil is particularly preferred. These mineral oil-based hydrocarbon oils may be used alone or in combination of two or more in any ratio.
 また、前記基油(A-1)は、飽和分の含有量が90質量%以上(より好ましくは95質量%以上、さらに好ましくは99質量%以上)の鉱油系の基油であることが好ましい。飽和分の含有量が前記下限値以上であることにより、粘度-温度特性を向上させることができる。ここで、本明細書において飽和分の含有量は、ASTM D 2007-93に準拠して測定された値を意味する。 The base oil (A-1) is preferably a mineral oil-based base oil having a saturated content of 90% by mass or more (more preferably 95% by mass or more, and even more preferably 99% by mass or more). By having the saturated content be equal to or greater than the lower limit, the viscosity-temperature characteristics can be improved. Here, in this specification, the saturated content means a value measured in accordance with ASTM D 2007-93.
 さらに、前記基油(A-1)は、芳香族分の含有量が0~10質量%(より好ましくは0~5質量%、特に好ましくは0~1質量%以下)の鉱油系の基油であることが好ましい。なお、このような鉱油系の基油の一の実施形態において、芳香族分の含有量を0.1質量%以上としてもよい。このような芳香族分の含有量を上記上限値以下とすることにより、粘度-温度特性および低温粘度特性を高めることが可能になる。なお、本明細書において芳香族分の含有量は、ASTM D 2007-93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮環した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。 Furthermore, the base oil (A-1) is preferably a mineral oil-based base oil having an aromatic content of 0 to 10 mass% (more preferably 0 to 5 mass%, particularly preferably 0 to 1 mass% or less). In one embodiment of such a mineral oil-based base oil, the aromatic content may be 0.1 mass% or more. By setting the aromatic content to the above upper limit or less, it is possible to improve the viscosity-temperature characteristics and low-temperature viscosity characteristics. In this specification, the aromatic content means a value measured in accordance with ASTM D 2007-93. Aromatics usually include alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene and their alkylated products, compounds with 4 or more condensed benzene rings, pyridines, quinolines, phenols, naphthols and other aromatic compounds having heteroatoms.
 また、このような基油(A-1)としては、API(アメリカ石油協会:American Petroleum Institute)による基油の分類において、グループIIIの基油であることが好ましい(以下、APIによる基油分類のグループを場合により単に「APIグループ」と称する)。なお、APIグループIIIの基油は硫黄分0.03質量%以下、飽和分90質量%以上、かつ粘度指数120以上の鉱油系の基油である。 Furthermore, such base oil (A-1) is preferably a Group III base oil in the base oil classification by API (American Petroleum Institute) (hereinafter, the API base oil classification group may be simply referred to as "API group"). API Group III base oils are mineral oil-based base oils with a sulfur content of 0.03 mass% or less, a saturate content of 90 mass% or more, and a viscosity index of 120 or more.
 また、本発明にかかる基油組成物((A)成分)は、前述のように、前記基油(A-1)を基油組成物の全量を基準として10質量%以上含有してなるものである。このような基油(A-1)の含有量を前記基油組成物の全量を基準として10質量%以上とすることによって、粘度-温度特性を高めることが可能になるとともに、省燃費性をさらに高めることが可能となる。このような基油(A-1)の含有量は、燃費性をさらに高めることが可能となるといった観点からは、50~70質量%であることがより好ましく、50~60質量%であることが更に好ましい。 Furthermore, as described above, the base oil composition (component (A)) according to the present invention contains 10 mass% or more of the base oil (A-1) based on the total amount of the base oil composition. By making the content of such base oil (A-1) 10 mass% or more based on the total amount of the base oil composition, it becomes possible to improve the viscosity-temperature characteristics and further improve fuel economy. From the viewpoint of further improving fuel economy, the content of such base oil (A-1) is more preferably 50 to 70 mass%, and even more preferably 50 to 60 mass%.
 また、本発明にかかる基油組成物((A)成分)は、基油組成物(基油(A))中の鉱油系基油の含有量が93質量%以上(より好ましくは95~100質量%、更に好ましくは98~100質量%)である。すなわち、本発明にかかる基油組成物((A)成分)において、鉱油系基油の含有量は、基油組成物の全量を基準として93質量%以上である。このような鉱油系基油の含有量を前記下限以上とすることにより、酸化安定性をより向上させることが可能となる。 Furthermore, the base oil composition (component (A)) according to the present invention has a mineral base oil content of 93 mass% or more (more preferably 95 to 100 mass%, and even more preferably 98 to 100 mass%) in the base oil composition (base oil (A)). That is, in the base oil composition (component (A)) according to the present invention, the mineral base oil content is 93 mass% or more based on the total amount of the base oil composition. By setting the content of such mineral base oil to the above lower limit or more, it is possible to further improve oxidation stability.
 また、本発明にかかる基油組成物((A)成分)は、上記基油組成物の条件を満たすものとなるように、前記基油(A-1)以外にも、他の基油を適宜選択して含有させることができる。このような基油組成物に含有させる前記基油(A-1)以外の他の基油としては、得られる組成物が上記基油組成物の条件を満たすものとなるようにすることが可能なものであればよく、前記基油(A-1)の種類に応じて公知の基油の中から適宜選択して利用することが可能であり、例えば、他の鉱油系基油、ポリアルファオレフィン(PAO)からなる合成油等を適宜利用してもよい。 Furthermore, the base oil composition (component (A)) according to the present invention can contain other base oils selected appropriately in addition to the base oil (A-1) so that the base oil composition satisfies the above conditions. The base oil other than the base oil (A-1) to be contained in such a base oil composition may be any base oil that can cause the resulting composition to satisfy the above conditions of the base oil composition, and can be appropriately selected from known base oils depending on the type of base oil (A-1). For example, other mineral oil-based base oils, synthetic oils made of polyalphaolefins (PAO), etc. may be appropriately used.
 また、このような他の基油の中でも、粘度-温度特性を高めることが可能となることから、前記基油(A-1)と組み合わせて利用する基油としては、100℃における動粘度が6.0~7.0mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-2)を利用することが特に好ましい。前記基油(A-1)とともに基油(A-2)を利用することで、より効率よく粘度-温度特性を高めることが可能となる。以下、基油組成物((A)成分)に前記基油(A-1)と組み合わせて好適に利用可能な前記基油(A-2)について説明する。 Among these other base oils, it is particularly preferable to use a mineral oil-based base oil (A-2) having a kinematic viscosity at 100° C. of 6.0 to 7.0 mm 2 /s and a viscosity index of 140 or more as the base oil to be used in combination with the base oil (A-1), since it is possible to improve the viscosity-temperature characteristics. By using the base oil (A-2) together with the base oil (A-1), it is possible to improve the viscosity-temperature characteristics more efficiently. Hereinafter, the base oil (A-2) that can be suitably used in combination with the base oil (A-1) in the base oil composition (component (A)) will be described.
 このような基油(A-2)は、100℃における動粘度が6.0~7.0mm/sの鉱油系の基油である。このような基油(A-2)の100℃における動粘度が前記下限以上である場合には、前記下限未満である場合と比較して潤滑箇所での油膜形成性をより向上させて潤滑性をより優れたものとすることが可能となるとともに、ギヤ油組成物の蒸発損失がより低減されてギヤ油組成物の消費量をより低減させることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較してギヤ油組成物の低温粘度特性と省燃費性能を向上させる点でより高い効果を得ることが可能となる。このような基油(A-2)の100℃における動粘度は、ギヤ油組成物の低粘度化、省燃費性、および、油膜形成性の観点でより高い効果が得られることから、6.0~6.5mm/s(さらに好ましくは6.1~6.5mm/s)であることがより好ましい。 Such a base oil (A-2) is a mineral oil-based base oil having a kinetic viscosity at 100 ° C. of 6.0 to 7.0 mm 2 /s. When the kinetic viscosity at 100 ° C. of such a base oil (A-2) is equal to or higher than the lower limit, it is possible to improve the oil film forming property at the lubricated portion and to make the lubrication property more excellent compared to the case where it is below the lower limit, and it is possible to reduce the evaporation loss of the gear oil composition and to reduce the consumption amount of the gear oil composition. On the other hand, when it is equal to or lower than the upper limit, it is possible to obtain a higher effect in terms of improving the low-temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to the case where it exceeds the upper limit. The kinetic viscosity at 100 ° C. of such a base oil (A-2) is more preferably 6.0 to 6.5 mm 2 / s (more preferably 6.1 to 6.5 mm 2 / s) because a higher effect is obtained in terms of the low viscosity, fuel saving, and oil film forming property of the gear oil composition.
 また、前記基油(A-2)は、粘度指数が140以上の鉱油系の基油である。このような基油(A-2)の粘度指数を140以上とすることで温度による粘度変化がより小さなギヤ油組成物を得ることが可能となり、使用条件下において低粘度の状態を維持して省燃費性能をより向上させることが可能となる。このような基油(A-2)の粘度指数は、省燃費性能の観点でより高い効果が得られることから、140~145であることがより好ましい。 The base oil (A-2) is a mineral oil-based base oil with a viscosity index of 140 or more. By making the viscosity index of such base oil (A-2) 140 or more, it is possible to obtain a gear oil composition with smaller viscosity changes due to temperature, and it is possible to maintain a low viscosity state under usage conditions and further improve fuel efficiency performance. The viscosity index of such base oil (A-2) is more preferably 140 to 145, as this provides a greater effect in terms of fuel efficiency performance.
 また、前記基油(A-2)は、40℃における動粘度が33.5~34.5mm/s(さらに好ましくは34.0~34.3mm/s)の基油であることがより好ましい。このような基油(A-2)の40℃における動粘度が前記下限以上である場合には、前記下限未満の場合と比較して油膜形成の点でより高い効果が得られる傾向にあり、他方、基油(A-2)の40℃における動粘度が前記上限以下である場合には、前記上限を超えた場合と比較してギヤ油組成物の低粘度化、省燃費性の点でより高い効果が得られる傾向にある。 Moreover, the base oil (A-2) is more preferably a base oil having a kinetic viscosity at 40° C. of 33.5 to 34.5 mm 2 /s (more preferably 34.0 to 34.3 mm 2 /s). When the kinetic viscosity at 40° C. of such base oil (A-2) is not less than the above-mentioned lower limit, a higher effect in terms of oil film formation tends to be obtained compared to when the kinetic viscosity is below the above-mentioned lower limit, while when the kinetic viscosity at 40° C. of base oil (A-2) is not more than the above-mentioned upper limit, a higher effect in terms of lowering the viscosity of the gear oil composition and fuel saving tends to be obtained compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
 また、前記基油(A-2)は、硫黄の含有量が1質量ppm以下の基油であることが好ましい。このような硫黄の含有量が前記上限以下である場合には、前記上限を超えた場合と比較して酸化安定性を向上することが可能となる。 Furthermore, it is preferable that the base oil (A-2) is a base oil having a sulfur content of 1 mass ppm or less. When the sulfur content is equal to or less than the upper limit, it is possible to improve oxidation stability compared to when the sulfur content exceeds the upper limit.
 また、前記基油(A-2)は、流動点が-10℃以下の基油であることが好ましい。このような流動点が前記上限以下である場合には前記上限を超えた場合と比較してギヤ油組成物全体の低温流動性を向上させることが可能となる。また、このような流動点の下限は特に制限されるものではないが、粘度指数をより高いものとすることが可能となるといった観点からは、流動点が-40℃以上であることがより好ましい。さらに、前記基油(A-2)は、引火点が200℃以上(より好ましくは230℃以上)の基油であることが好ましい。また、このような引火点を前記下限以上とすることで前記下限未満の場合と比較して、高温使用時の安全性がより向上する傾向にある。 The base oil (A-2) is preferably a base oil having a pour point of -10°C or lower. When the pour point is equal to or lower than the upper limit, it is possible to improve the low-temperature fluidity of the entire gear oil composition compared to when the pour point exceeds the upper limit. The lower limit of the pour point is not particularly limited, but from the viewpoint of enabling a higher viscosity index, it is more preferable that the pour point is -40°C or higher. Furthermore, the base oil (A-2) is preferably a base oil having a flash point of 200°C or higher (more preferably 230°C or higher). By setting the flash point at or above the lower limit, safety during high-temperature use tends to be improved compared to when the flash point is below the lower limit.
 また、前記基油(A-2)は、%Cが70~90の基油であることが好ましい。基油(A-2)の%Cを前記下限値以上とすることにより、粘度-温度特性、省燃費性能、及び、基油以外の他の成分(他の添加剤等を含む)を添加することにより得られる効果、等をさらに高めることが可能になる。他方、基油の%Cを上記上限値以下とすることにより、極圧剤等の他の成分の溶解性を高めることが可能になる。 The base oil (A-2) is preferably a base oil having a % CP of 70 to 90. By making the % CP of the base oil (A-2) equal to or greater than the lower limit, it becomes possible to further improve the viscosity-temperature characteristics, fuel saving performance, and effects obtained by adding components other than the base oil (including other additives, etc.). On the other hand, by making the % CP of the base oil equal to or less than the upper limit, it becomes possible to increase the solubility of other components such as extreme pressure agents.
 また、前記基油(A-2)は、%Cが0~30の基油であることが好ましい。基油(A-2)の%Cを上記上限値以下とすることにより、粘度-温度特性をより高めることが可能になるほか、省燃費性能をさらに高めることも可能になる。 The base oil (A-2) is preferably a base oil having a % CA of 0 to 30. By setting the % CA of the base oil (A-2) to the above upper limit or less, it is possible to further improve the viscosity-temperature characteristics and also to further improve the fuel economy performance.
 また、前記基油(A-2)は、%Cが0~30の基油であることが好ましい。基油(A-2)の%Cを上記上限値以下とすることにより、粘度-温度特性を高めることが可能になるとともに、省燃費性をさらに高めることが可能になる。 The base oil (A-2) is preferably a base oil having a % CN of 0 to 30. By setting the % CN of the base oil (A-2) to the above upper limit or less, it is possible to improve the viscosity-temperature characteristics and further improve fuel economy.
 また、前記基油(A-2)は、飽和分の含有量が90質量%以上(より好ましくは95質量%以上、さらに好ましくは99質量%以上)の鉱油系の基油であることが好ましい。飽和分の含有量が前記下限値以上であることにより、粘度-温度特性を向上させることができる。ここで、本明細書において飽和分の含有量は、ASTM D 2007-93に準拠して測定された値を意味する。 Furthermore, the base oil (A-2) is preferably a mineral oil-based base oil having a saturated content of 90% by mass or more (more preferably 95% by mass or more, and even more preferably 99% by mass or more). By having the saturated content be equal to or greater than the lower limit, it is possible to improve the viscosity-temperature characteristics. Here, in this specification, the saturated content means a value measured in accordance with ASTM D 2007-93.
 さらに、前記基油(A-2)は、芳香族分の含有量が0~10質量%(より好ましくは0~5質量%、特に好ましくは0~1質量%以下)の鉱油系の基油であることが好ましい。なお、このような鉱油系の基油の一の実施形態において、芳香族分の含有量を0.1質量%以上としてもよい。このような芳香族分の含有量を上記上限値以下とすることにより、粘度-温度特性および低温粘度特性を高めることが可能になる。なお、本明細書において芳香族分の含有量は、ASTM D 2007-93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮環した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。 Furthermore, the base oil (A-2) is preferably a mineral oil-based base oil having an aromatic content of 0 to 10 mass% (more preferably 0 to 5 mass%, particularly preferably 0 to 1 mass% or less). In one embodiment of such a mineral oil-based base oil, the aromatic content may be 0.1 mass% or more. By setting the aromatic content to the above upper limit or less, it is possible to improve the viscosity-temperature characteristics and low-temperature viscosity characteristics. In this specification, the aromatic content means a value measured in accordance with ASTM D 2007-93. Aromatics usually include alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene and their alkylated products, compounds with 4 or more condensed benzene rings, pyridines, quinolines, phenols, naphthols, and other aromatic compounds having heteroatoms.
 また、前記基油(A-2)としては、鉱油系のものであればよく、特に制限されるものではないが、鉱油系炭化水素油(例えば、水素化精製基油等)であることが好ましい。また、このような基油(A-2)としては、APIグループIIIの基油であることが好ましい。 The base oil (A-2) may be a mineral oil, and is not particularly limited, but is preferably a mineral hydrocarbon oil (e.g., hydrotreated base oil, etc.). Furthermore, such a base oil (A-2) is preferably an API Group III base oil.
 また、本発明にかかる基油組成物((A)成分)において、前記基油(A-1)とともに前記基油(A-2)を利用する場合、前記基油(A-2)の含有量は、前記基油組成物の全量を基準として30質量%以上(より好ましくは30~50質量%、さらに好ましくは40~50質量%)とすることが好ましい。前記基油(A-2)の含有量を前記下限以上とすることで、前記下限未満の場合と比較して潤滑箇所での油膜形成性をより向上させて潤滑性をより優れたものとすることが可能となるとともに、ギヤ油組成物の蒸発損失がより低減されてギヤ油組成物の消費量をより低減させることが可能となる。他方、前記基油(A-2)の含有量を前記上限以下とすることで、前記上限未満の場合と比較して、ギヤ油組成物の低温粘度特性と省燃費性能の点でさらに高い効果を得ることが可能となる。 In addition, in the base oil composition (component (A)) according to the present invention, when the base oil (A-2) is used together with the base oil (A-1), the content of the base oil (A-2) is preferably 30 mass% or more (more preferably 30 to 50 mass%, and even more preferably 40 to 50 mass%) based on the total amount of the base oil composition. By making the content of the base oil (A-2) equal to or more than the lower limit, it is possible to improve the oil film forming ability at the lubricated parts and provide better lubricity compared to when it is less than the lower limit, and it is possible to reduce the evaporation loss of the gear oil composition and reduce the consumption of the gear oil composition. On the other hand, by making the content of the base oil (A-2) equal to or less than the upper limit, it is possible to obtain a higher effect in terms of low-temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to when it is less than the upper limit.
 また、このような基油組成物((A)成分)は、前記基油(A-2)を含む場合、潤滑箇所での油膜形成性をより向上させて潤滑性をより優れたものとすることが可能となるとともに、省燃費性能をより向上させることが可能となるといった観点から、基油組成物の全量に対する前記基油(A-1)及び前記基油(A-2)の含有量(総量)が、93質量%以上(さらに好ましくは95~100質量%、特に好ましくは98~100質量%)であることがより好ましい。なお、このような基油組成物((A)成分)は、その好適な一の実施形態として、例えば、前記基油(A-1)および前記基油(A-2)のみからなるものを利用してもよい。 Furthermore, when such a base oil composition (component (A)) contains the base oil (A-2), it is possible to further improve the oil film forming ability at the lubricated parts, thereby making the lubrication more excellent, and it is also possible to further improve the fuel saving performance. From this viewpoint, it is more preferable that the content (total amount) of the base oil (A-1) and the base oil (A-2) relative to the total amount of the base oil composition is 93 mass% or more (more preferably 95 to 100 mass%, and particularly preferably 98 to 100 mass%). Note that, as a preferred embodiment of such a base oil composition (component (A)), for example, one consisting only of the base oil (A-1) and the base oil (A-2) may be used.
 また、本発明にかかる基油組成物((A)成分)は、鉱油系の炭化水素系基油の混合物であることがより好ましい。このような炭化水素系基油の混合物である基油組成物は、例えば、基油組成物中に含有させる全ての基油成分(基油組成物が前記基油(A-1)と前記基油(A-2)のみからなるものである場合、前記基油(A-1)と前記基油(A-2)の全て)を鉱油系炭化水素油として混合したものを、その好適な一実施形態として挙げることができる。 Moreover, the base oil composition (component (A)) according to the present invention is more preferably a mixture of mineral oil-based hydrocarbon base oils. A preferred embodiment of such a base oil composition that is a mixture of hydrocarbon base oils is, for example, a mixture of all base oil components contained in the base oil composition (when the base oil composition consists only of the base oil (A-1) and the base oil (A-2), all of the base oil (A-1) and the base oil (A-2)) as mineral hydrocarbon oils.
 また、本発明にかかる基油組成物((A)成分)は、40℃における動粘度が34.0~36.0mm/s(より好ましくは34.5~36.0mm/s)であることが好ましい。このような基油組成物の40℃における動粘度が前記下限以上である場合には、潤滑箇所での油膜形成性をより向上させて潤滑性をより優れたものとすることが可能となるとともに、ギヤ油組成物の蒸発損失がより低減されてギヤ油組成物の消費量をより低減させることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較してギヤ油組成物の低温粘度特性と省燃費性能をさらに向上させることが可能となる。 The base oil composition (component (A)) according to the present invention preferably has a kinetic viscosity at 40° C. of 34.0 to 36.0 mm 2 /s (more preferably 34.5 to 36.0 mm 2 /s). When the kinetic viscosity at 40° C. of such a base oil composition is not less than the above-mentioned lower limit, it is possible to further improve the oil film formability at lubricated parts and provide more excellent lubricity, and it is possible to further reduce the evaporation loss of the gear oil composition and thus reduce the consumption of the gear oil composition. On the other hand, when the kinetic viscosity is not more than the above-mentioned upper limit, it is possible to further improve the low temperature viscosity characteristics and fuel saving performance of the gear oil composition compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
 また、本発明にかかる基油組成物((A)成分)は、100℃における動粘度が6.0~8.0mm/s(より好ましくは7.0~8.0mm/s)であることが好ましい。このような基油組成物の100℃における動粘度が前記下限以上である場合には、前記下限未満の場合と比較して潤滑箇所での油膜形成性能がより高くなり、耐焼き付き性をより向上させることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較して、ギヤ油組成物が低粘度のものとなり、使用時の撹拌損失をより低減することが可能となる。 The base oil composition (component (A)) according to the present invention preferably has a kinetic viscosity at 100° C. of 6.0 to 8.0 mm 2 /s (more preferably 7.0 to 8.0 mm 2 /s). When the kinetic viscosity at 100° C. of such a base oil composition is not less than the above-mentioned lower limit, the oil film forming performance at lubricated points is higher and seizure resistance can be further improved compared to when the kinetic viscosity is below the above-mentioned lower limit, and on the other hand, when the kinetic viscosity is not more than the above-mentioned upper limit, the gear oil composition has a lower viscosity and it is possible to further reduce stirring loss during use compared to when the kinetic viscosity exceeds the above-mentioned upper limit.
 さらに、本発明にかかる基油組成物((A)成分)は、粘度指数が140以上の基油であることが好ましい。このような基油組成物の粘度指数を140以上とすることで温度による粘度変化がより小さなギヤ油組成物を得ることが可能となり、使用条件下において低粘度の状態を維持して省燃費性能をより向上させることが可能となる。 Furthermore, the base oil composition (component (A)) according to the present invention is preferably a base oil having a viscosity index of 140 or more. By making the viscosity index of such a base oil composition 140 or more, it is possible to obtain a gear oil composition with smaller viscosity changes due to temperature, and it is possible to maintain a low viscosity state under usage conditions and further improve fuel economy performance.
 また、本発明にかかる基油組成物((A)成分)は、基油組成物中の硫黄の含有量が10質量ppm未満(より好ましくは0~5質量ppm)のものが好ましい。このような基油組成物中の硫黄の含有量が前記上限以下である場合には前記上限を超えた場合と比較して、酸化安定性の点でより高い効果が得られる傾向にある。 Furthermore, the base oil composition (component (A)) according to the present invention preferably has a sulfur content of less than 10 ppm by mass (more preferably 0 to 5 ppm by mass). When the sulfur content in such a base oil composition is equal to or less than the upper limit, there is a tendency for a higher effect in terms of oxidation stability to be obtained compared to when the sulfur content exceeds the upper limit.
  〔(B)成分:ポリ(メタ)アクリレート系増粘剤〕
 本発明のギヤ油組成物は、(B)成分としてポリ(メタ)アクリレート系増粘剤を含有する。本発明において、ポリ(メタ)アクリレート系増粘剤((B)成分)は、重量平均分子量が15000以下のポリ(メタ)アクリレートである。このような(B)成分として利用するポリ(メタ)アクリレートの重量平均分子量が15000以下である場合には、15000を超えた場合と比較して、貧潤滑時における耐焼付き性をより向上させることが可能となる。なお、このようなポリ(メタ)アクリレートの「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で求められる値(標準ポリスチレン換算により得られた分子量)を意味する。
[Component (B): Poly(meth)acrylate-based thickener]
The gear oil composition of the present invention contains a poly(meth)acrylate thickener as component (B). In the present invention, the poly(meth)acrylate thickener (component (B)) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less. When the weight average molecular weight of the poly(meth)acrylate used as component (B) is 15,000 or less, it is possible to further improve the seizure resistance under poor lubrication conditions compared to when the weight average molecular weight exceeds 15,000. The "weight average molecular weight" of such a poly(meth)acrylate means the value determined by gel permeation chromatography (GPC) (the molecular weight obtained by standard polystyrene conversion).
 また、前記(B)成分として利用するポリ(メタ)アクリレートは、重量平均分子量が11000~13000のポリ(メタ)アクリレートであることがより好ましい。ポリ(メタ)アクリレートの重量平均分子量を前記範囲内とすることで貧潤滑時における耐焼付き性向上の点でさらに高い効果が得られる傾向にある。 Moreover, it is more preferable that the poly(meth)acrylate used as component (B) has a weight-average molecular weight of 11,000 to 13,000. By setting the weight-average molecular weight of the poly(meth)acrylate within the above range, there is a tendency for even greater effects to be obtained in terms of improving seizure resistance under poor lubrication conditions.
 このような(B)成分として利用するポリ(メタ)アクリレートは、重量平均分子量が15000以下のものであればよく、それ以外の条件等(例えば構造等)は特に制限されず、潤滑油の分野において増粘剤(いわゆる粘度指数向上剤であってもよい)として利用可能なものとして公知のポリ(メタ)アクリレート化合物(例えば、特開2010-195894号公報の段落[0079]~段落[0096]に記載されているポリ(メタ)アクリレート化合物等)であって、重量平均分子量が15000以下のものを適宜利用できる。なお、本明細書において「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。また、このようなポリ(メタ)アクリレートは、非分散型のものであっても、あるいは、分散型のものであってもよい。また、このような(B)成分は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The poly(meth)acrylate used as component (B) may have a weight average molecular weight of 15,000 or less, and other conditions (e.g., structure, etc.) are not particularly limited. Any poly(meth)acrylate compound known to be usable as a thickener (which may be a so-called viscosity index improver) in the field of lubricating oils (e.g., poly(meth)acrylate compounds described in paragraphs [0079] to [0096] of JP 2010-195894 A) having a weight average molecular weight of 15,000 or less may be used. In this specification, "(meth)acrylate" means acrylate and/or methacrylate. Such poly(meth)acrylate may be either non-dispersed or dispersed. Such component (B) may be used alone or in combination of two or more.
  〔(C)成分:コハク酸イミド分散剤〕
 本発明のギヤ油組成物は、(C)成分としてコハク酸イミド分散剤を含有する。本発明において、コハク酸イミド分散剤((C)成分)は、ビスタイプの無変性コハク酸イミド)及びビスタイプのホウ酸変性コハク酸イミドからなる少なくとも1種であればよく、特に制限されないが、耐摩耗性の更なる向上の観点から、ビスタイプのホウ酸変性コハク酸イミドであることが特に好ましい。なお、このようなビスタイプの無変性コハク酸イミド及びビスタイプのホウ酸変性コハク酸イミドとしては、特に制限されず、無灰分散剤等として、公知のもの(例えば、特開2022-041877公報に記載されている無変性コハク酸イミド、ホウ酸変性コハク酸イミドのうちビスタイプのもの等)を適宜利用できる。
[Component (C): Succinimide Dispersant]
The gear oil composition of the present invention contains a succinimide dispersant as component (C). In the present invention, the succinimide dispersant (component (C)) may be at least one of bis-type unmodified succinimide and bis-type boric acid modified succinimide, and is not particularly limited. However, from the viewpoint of further improving wear resistance, it is particularly preferable that the succinimide is a bis-type boric acid modified succinimide. In addition, such bis-type unmodified succinimide and bis-type boric acid modified succinimide are not particularly limited, and known ashless dispersants (for example, unmodified succinimide described in JP 2022-041877 A, bis-type among boric acid modified succinimides, etc.) can be appropriately used.
 このようなビスタイプの無変性コハク酸イミドとしては、アルキル基もしくはアルケニル基を分子中に少なくとも1個有する、ビスタイプのコハク酸イミドが好ましく、下記式(I): As such a bis-type unmodified succinimide, a bis-type succinimide having at least one alkyl or alkenyl group in the molecule is preferred, and is represented by the following formula (I):
(式中、R及びRは、それぞれ独立に、炭素数40~400(より好ましくは60~350)のアルキル基又は炭素数40~400(より好ましくは60~350)のアルケニル基を示し、nは0~4(より好ましくは1~4、更に好ましくは1~3)の整数を示す)
で表される化合物がより好ましい。このような式(I)中のR及びRとして選択され得るアルキル基又はアルケニル基としては、ポリイソブチレンと呼ばれるイソブテンのオリゴマーから誘導される分枝状アルキル基またはアルケニル基や、ポリブテニル基がより好ましい。また、このような式(I)中のR及びRとして選択され得るアルキル基又はアルケニル基は、数平均分子量が800~3500であることが好ましい。このようなビスタイプのコハク酸イミドを製造するための方法は特に制限されず、公知の方法を適宜採用でき、例えば、炭素数40~400のアルキル基又はアルケニル基を有するアルキル若しくはアルケニルコハク酸又はその無水物と、ポリアミンとの反応により、ポリアミン鎖の両末端をイミド化することにより、縮合反応生成物として得ることができる。
(In the formula, R 1 and R 2 each independently represent an alkyl group having 40 to 400 carbon atoms (more preferably 60 to 350) or an alkenyl group having 40 to 400 carbon atoms (more preferably 60 to 350), and n represents an integer of 0 to 4 (more preferably 1 to 4, even more preferably 1 to 3).)
More preferred are compounds represented by the formula (I). As the alkyl or alkenyl group that can be selected as R 1 and R 2 in the formula (I), a branched alkyl or alkenyl group derived from an oligomer of isobutene called polyisobutylene, or a polybutenyl group is more preferred. In addition, the alkyl or alkenyl group that can be selected as R 1 and R 2 in the formula (I) preferably has a number average molecular weight of 800 to 3500. There is no particular restriction on the method for producing such a bis-type succinimide, and a known method can be appropriately adopted. For example, a condensation reaction product can be obtained by reacting an alkyl or alkenyl succinic acid having an alkyl or alkenyl group having 40 to 400 carbon atoms or an anhydride thereof with a polyamine to imidize both ends of the polyamine chain.
 また、本発明において、「ビスタイプのホウ酸変性コハク酸イミド」は、前記ビスタイプの無変性コハク酸イミドにホウ酸を作用させることにより、ビスタイプの無変性コハク酸イミド中のアミノ基および/またはイミノ基の一部又は全部を、中和またはアミド化することにより変性した化合物である。 In addition, in the present invention, a "bis-type boric acid modified succinimide" is a compound modified by allowing boric acid to act on the bis-type unmodified succinimide, thereby neutralizing or amidating some or all of the amino groups and/or imino groups in the bis-type unmodified succinimide.
 このようなコハク酸イミド分散剤((C)成分)としては、酸化安定性の更なる向上の観点から、重量平均分子量(Mw)が2500~3500(より好ましくは2800~3200)のものであることが好ましい。このようなコハク酸イミド分散剤の「重量平均分子量」や、上記式(I)で表される化合物中のアルキル基又はアルケニル基(R及びR)の「数平均分子量」は、それぞれ、ゲルパーミエーションクロマトグラフィー(GPC)で求められる値(標準ポリスチレン換算により得られた分子量)を意味する。 From the viewpoint of further improving oxidation stability, such a succinimide dispersant (component (C)) preferably has a weight average molecular weight (Mw) of 2500 to 3500 (more preferably 2800 to 3200). The "weight average molecular weight" of such a succinimide dispersant and the "number average molecular weight" of the alkyl or alkenyl groups ( R1 and R2 ) in the compound represented by formula (I) above each mean a value determined by gel permeation chromatography (GPC) (a molecular weight obtained in terms of standard polystyrene).
 また、このようなコハク酸イミド分散剤((C)成分)としては、酸化安定性の観点から、窒素の含有量が1.8~2.4質量%(さらに好ましくは2.0~2.3質量%)のものがより好ましい。さらに、このようなコハク酸イミド分散剤((C)成分)としては、耐摩耗性の観点から、ビスタイプのホウ酸変性コハク酸イミドが好ましく、中でも、ビスタイプのアルケニルコハク酸イミドのホウ酸変性化合物(ビスタイプのアルケニルコハク酸イミドをホウ酸で中和またはアミド化することにより変性した化合物)を特に好適に用いることができる。 Furthermore, from the viewpoint of oxidation stability, such a succinimide dispersant (component (C)) is more preferably one having a nitrogen content of 1.8 to 2.4 mass% (more preferably 2.0 to 2.3 mass%). Furthermore, from the viewpoint of abrasion resistance, such a succinimide dispersant (component (C)) is preferably a bis-type boric acid modified succinimide, and among these, a boric acid modified compound of a bis-type alkenyl succinimide (a compound modified by neutralizing or amidating a bis-type alkenyl succinimide with boric acid) can be particularly preferably used.
  〔ギヤ油組成物の組成について〕
 本発明のギヤ油組成物は、前記(A)成分、前記(B)成分、および、前記(C)成分を含むギヤ油組成物(ギヤ油用の潤滑油組成物)である。
[Gear Oil Composition]
The gear oil composition of the present invention is a gear oil composition (a lubricating oil composition for gear oils) containing the above-mentioned component (A), component (B), and component (C).
 本発明のギヤ油組成物において、前記(A)成分の含有量は特に制限されないが、前記ギヤ油組成物の全量を基準として75~95質量%(より好ましくは80~90質量%)であることが好ましい。このような(A)成分の含有量が前記下限以上である場合には、前記下限未満である場合と比較して酸化安定性の点でより高い効果を得ることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較して潤滑箇所での添加剤効果をより向上させて潤滑性をより優れたものとする点でより高い効果を得ることが可能となる。 In the gear oil composition of the present invention, the content of the component (A) is not particularly limited, but is preferably 75 to 95 mass % (more preferably 80 to 90 mass %) based on the total amount of the gear oil composition. When the content of the component (A) is equal to or greater than the lower limit, a higher effect in terms of oxidation stability can be obtained compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, a higher effect can be obtained in terms of improving the additive effect at the lubricated points and improving lubricity compared to when the content exceeds the upper limit.
 このような本発明のギヤ油組成物において、前記(B)成分の含有量は、前記ギヤ油組成物の全量を基準として1~4質量%(より好ましくは2~3質量%)である必要がある。このような(B)成分の含有量が1質量%以上である場合には、1質量%未満である場合と比較して油膜形成性を向上させることが可能となるため、耐焼き付き性を優れたものとすることが可能となり、他方、(B)成分の含有量が4質量%以下である場合には、4質量%を超えた場合と比較して添加剤の被膜形成の阻害を抑制することが可能となるため、やはり耐焼き付き性を優れたものとすることが可能となる。 In such a gear oil composition of the present invention, the content of the (B) component must be 1 to 4 mass % (more preferably 2 to 3 mass %) based on the total amount of the gear oil composition. When the content of the (B) component is 1 mass % or more, it is possible to improve the oil film forming ability compared to when it is less than 1 mass %, and it is possible to achieve excellent seizure resistance. On the other hand, when the content of the (B) component is 4 mass % or less, it is possible to suppress the inhibition of film formation of the additive compared to when it exceeds 4 mass %, and it is also possible to achieve excellent seizure resistance.
 また、本発明のギヤ油組成物において、前記(C)成分の含有量((C)成分の総量)は、前記ギヤ油組成物の全量を基準として1~3質量%であることが好ましい。このような(C)成分の含有量が前記下限以上である場合には、前記下限未満である場合と比較してスラッジ分散性や腐食防止性の点でより高い効果を得ることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較して電気絶縁性の点でより高い効果を得ることが可能となる。 In addition, in the gear oil composition of the present invention, the content of the (C) component (total amount of the (C) components) is preferably 1 to 3 mass% based on the total amount of the gear oil composition. When the content of the (C) component is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of sludge dispersibility and corrosion prevention compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of electrical insulation compared to when the content exceeds the upper limit.
 また、本発明のギヤ油組成物においては、前記ギヤ油組成物の全量を基準とした硫黄の含有量が2.0~2.3質量%であることが好ましい。また、本発明のギヤ油組成物においては、前記ギヤ油組成物の全量を基準としたリンの含有量が1400~1800質量ppmであることがより好ましい。さらに、本発明のギヤ油組成物においては、前記ギヤ油組成物の全量を基準としたホウ素の含有量が50~70質量ppmであることがより好ましい。なお、前記ギヤ油組成物中の硫黄、リン及びホウ素の含有量は、ASTM D4951に準拠して測定できる。 In the gear oil composition of the present invention, the sulfur content based on the total amount of the gear oil composition is preferably 2.0 to 2.3 mass%. In the gear oil composition of the present invention, the phosphorus content based on the total amount of the gear oil composition is more preferably 1400 to 1800 mass ppm. In the gear oil composition of the present invention, the boron content based on the total amount of the gear oil composition is more preferably 50 to 70 mass ppm. The sulfur, phosphorus and boron contents in the gear oil composition can be measured in accordance with ASTM D4951.
 また、本発明のギヤ油組成物は、前記(A)~(C)成分以外に、添加剤を更に含んでいてもよい。このような添加剤としては、潤滑油組成物(より好ましくはギヤ油組成物)の分野において利用されている公知の添加剤を適宜利用でき、特に制限されないが、(D)極圧剤;(E)エチレンとα-オレフィンのコポリマーおよびその水素化物のうちの少なくとも1種よりなる粘度指数向上剤;を好適なものとして挙げることができる。 The gear oil composition of the present invention may further contain additives in addition to the components (A) to (C). Such additives may be any known additive used in the field of lubricating oil compositions (more preferably gear oil compositions), and are not particularly limited. Preferred examples include, but are not limited to, (D) an extreme pressure agent; and (E) a viscosity index improver consisting of at least one of an ethylene and α-olefin copolymer and its hydrogenated product.
 前記極圧剤((D)成分)としては、公知の極圧剤(公知の硫黄系極圧剤やリン系極圧剤等)を適宜利用でき、特に制限されるものではないが、極圧性、耐摩耗性の観点から、中でも、硫黄系極圧剤を好適に利用できる。 As the extreme pressure agent (component (D)), any known extreme pressure agent (such as a known sulfur-based extreme pressure agent or phosphorus-based extreme pressure agent) can be used as appropriate, and is not particularly limited. However, from the viewpoint of extreme pressure properties and wear resistance, it is particularly preferable to use a sulfur-based extreme pressure agent.
 このような硫黄系極圧剤としては、潤滑油組成物の分野において公知の硫黄系極圧剤(例えば、ポリサルファイド化合物、硫化エステル、硫化油脂およびチアジアゾール化合物等)を適宜利用可能であり、特に制限されるものではないが、中でも、耐焼付き性の更なる向上の観点から、ポリサルファイド化合物からなる硫黄系極圧剤が好ましい。なお、本明細書において、ポリサルファイド化合物は2個以上の硫黄によって架橋された化合物全般をいう。 As such sulfur-based extreme pressure agents, sulfur-based extreme pressure agents known in the field of lubricating oil compositions (e.g., polysulfide compounds, sulfurized esters, sulfurized oils and fats, thiadiazole compounds, etc.) can be appropriately used and are not particularly limited, but from the viewpoint of further improving seizure resistance, sulfur-based extreme pressure agents made of polysulfide compounds are preferred. In this specification, polysulfide compounds refer to all compounds crosslinked by two or more sulfurs.
 また、このようなポリサルファイド化合物としては、その化合物中の硫黄の含有量が30~65質量%(より好ましくは30~50質量%)であるポリサルファイド化合物が好ましい。このようなポリサルファイド化合物中の硫黄の含有量が前記下限以上である場合には、前記下限未満の場合と比較して極圧性の点でより高い効果が得ることが可能となり、他方、前前記上限以下である場合には、前記上限を超えた場合と比較して酸化安定性の点でより高い効果が得ることが可能となる。 Furthermore, as such polysulfide compounds, polysulfide compounds having a sulfur content of 30 to 65 mass % (more preferably 30 to 50 mass %) are preferred. When the sulfur content in such polysulfide compounds is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of extreme pressure properties compared to when the content is below the lower limit, and on the other hand, when the content is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of oxidation stability compared to when the content exceeds the upper limit.
 また、前記硫黄系極圧剤として用いられるポリサルファイド化合物の中でも、ジヒドロカルビルポリサルファイド化合物がより好ましい。ここで、このようなジヒドロカルビルポリサルファイド化合物としては、例えば、ジブチルポリサルファイド、ジヘキシルポリサルファイド、ジオクチルポリサルファイド、ジノニルポリサルファイド、ジデシルポリサルファイド、ジドデシルポリサルファイド、ジテトラデシルポリサルファイド、ジヘキサデシルポリサルファイド、ジオクタデシルポリサルファイド、ジエイコシルポリサルファイド、ジフェニルポリサルファイド、ジベンジルポリサルファイド、ジフェネチルポリサルファイド、ポリプロペニルポリサルファイド、ポリブテニルポリサルファイド及びこれらの混合物などが挙げられる。なお、このような硫黄系極圧剤は1種を単独で、あるいは、2種以上を組み合わせて利用できる。 Among the polysulfide compounds used as the sulfur-based extreme pressure agents, dihydrocarbyl polysulfide compounds are more preferred. Examples of such dihydrocarbyl polysulfide compounds include dibutyl polysulfide, dihexyl polysulfide, dioctyl polysulfide, dinonyl polysulfide, didecyl polysulfide, didodecyl polysulfide, ditetradecyl polysulfide, dihexadecyl polysulfide, dioctadecyl polysulfide, dieicosyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, diphenethyl polysulfide, polypropenyl polysulfide, polybutenyl polysulfide, and mixtures thereof. These sulfur-based extreme pressure agents can be used alone or in combination of two or more.
 また、前記粘度指数向上剤((E)成分)に用いられるコポリマーおよびその水素化物は、いわゆる非分散型のものであっても、分散型のものであってもよい。また、(E)粘度指数向上剤に用いられる前記コポリマーおよびその水素化物は、数平均分子量が2,000~10,000のものが好ましい。このような数平均分子量が前記下限以上である場合には、前記下限未満である場合と比較して粘度-温度特性を高めるといった点でより高い効果を得ることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較してせん断安定性の点でより高い効果を得ることが可能となる。なお、(E)成分として利用されるコポリマー等の「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で求められる値(標準ポリスチレン換算により得られた分子量)を意味する。また、本発明のギヤ油組成物において(E)成分を利用する場合、前記ギヤ油組成物の全量を基準とした(E)成分の含有量が3.0~4.5質量%であることがより好ましい。 The copolymer and its hydrogenated product used in the viscosity index improver (component (E)) may be of the so-called non-dispersion type or of the dispersion type. The copolymer and its hydrogenated product used in the viscosity index improver (E) preferably have a number average molecular weight of 2,000 to 10,000. If the number average molecular weight is equal to or greater than the lower limit, a higher effect can be obtained in terms of improving the viscosity-temperature characteristics compared to when the number average molecular weight is less than the lower limit, and if the number average molecular weight is equal to or less than the upper limit, a higher effect can be obtained in terms of shear stability compared to when the number average molecular weight exceeds the upper limit. The "number average molecular weight" of the copolymer and the like used as component (E) means the value determined by gel permeation chromatography (GPC) (molecular weight obtained in standard polystyrene conversion). When component (E) is used in the gear oil composition of the present invention, it is more preferable that the content of component (E) based on the total amount of the gear oil composition is 3.0 to 4.5 mass%.
 なお、本発明のギヤ油組成物に好適に利用可能な添加剤として、前記(D)成分や前記(E)成分を好適なものとして例示して説明したが、本発明のギヤ油組成物に利用可能な添加剤は、前記(D)成分や(E)成分に限定されるものではなく、本発明の効果を損なわない範囲において、例えば、流動点降下剤、金属不活性化剤、摩擦調整剤、前記分散剤以外の他の分散剤、酸化防止剤、ゴム膨潤剤、消泡剤、希釈油、防錆剤、抗乳化剤、着色剤、腐食防止剤、摩耗防止剤、極圧剤、金属系清浄剤、酸捕捉剤等のような公知の他の添加成分(例えば、特開2016-3258号公報、国際公開2015/056783号、特開2016‐160312号公報、特開2003-155492号公報、国際公開2017/073748号、特開2020-76004号公報等に記載されているようなもの等)も適宜利用できる。 Although the above-mentioned (D) and (E) components have been described as suitable additives that can be suitably used in the gear oil composition of the present invention, the additives that can be used in the gear oil composition of the present invention are not limited to the above-mentioned (D) and (E) components, and may include, within the scope that does not impair the effects of the present invention, for example, pour point depressants, metal deactivators, friction modifiers, dispersants other than the dispersants described above, antioxidants, rubber swelling agents, defoamers, Other known additive components such as diluent oil, rust inhibitor, demulsifier, colorant, corrosion inhibitor, antiwear agent, extreme pressure agent, metal detergent, acid scavenger, etc. (for example, those described in JP 2016-3258 A, WO 2015/056783 A, WO 2016-160312 A, WO 2003-155492 A, WO 2017/073748 A, WO 2020-76004 A, etc.) can also be used as appropriate.
 また、前記(D)成分や(E)成分以外の他の添加成分を利用する場合、他の添加成分の総量(合計量)は、前記ギヤ油組成物の全量を基準として1.0~2.0質量%であることがより好ましい。このような他の添加成分の総量が前記下限以上である場合には、前記下限未満である場合と比較してスラッジ分散性や腐食防止性の点でより高い効果を得ることが可能となり、他方、前記上限以下である場合には、前記上限を超えた場合と比較して酸化安定性の点でより高い効果を得ることが可能となる。 In addition, when additive components other than the (D) and (E) components are used, the total amount (total quantity) of the other additive components is more preferably 1.0 to 2.0 mass% based on the total amount of the gear oil composition. When the total amount of such other additive components is equal to or greater than the lower limit, it is possible to obtain a higher effect in terms of sludge dispersibility and corrosion prevention compared to when it is less than the lower limit, and on the other hand, when it is equal to or less than the upper limit, it is possible to obtain a higher effect in terms of oxidation stability compared to when it exceeds the upper limit.
 なお、このようなギヤ油組成物に利用し得る各種の添加剤は、それぞれ成分ごとに別々に準備して添加してもよいし、あるいは、他の成分の混合物として準備して添加してもよい。このような他の成分の混合物としては、市販のパッケージ品(例えば、分散剤、摩擦調整剤、腐食防止剤を含む添加剤パッケージ等)を適宜利用してもよい。この点に関して、例えば、一の実施形態として、前記(D)成分や(E)成分を個々に準備しつつ、分散剤、摩擦調整剤、腐食防止剤等を含む添加剤パッケージを別途準備して、これらを組み合わせて利用してもよい。 The various additives that can be used in such gear oil compositions may be prepared separately for each component and added, or may be prepared and added as a mixture with other components. As such a mixture of other components, a commercially available package product (e.g., an additive package containing a dispersant, friction modifier, corrosion inhibitor, etc.) may be appropriately used. In this regard, for example, as one embodiment, the (D) and (E) components may be prepared individually, while a separate additive package containing a dispersant, friction modifier, corrosion inhibitor, etc. may be prepared and used in combination.
  〔ギヤ油組成物の特性、製法、用途等について〕
 本発明のギヤ油組成物は、40℃における動粘度が36.0mm/s以下である必要がある。前記ギヤ油組成物の40℃における動粘度が36.0mm/s以下である場合には、36.0mm/sを超えた場合と比較して、40℃近傍の比較的低温の温度域(好ましくは20~60℃程度)において、撹拌抵抗をより小さくすることが可能となり、使用開始直後などの低温状態においても動力伝達効率をより向上させることが可能となるため、省燃費性能をさらに向上させることが可能となる。また、前記ギヤ油組成物の40℃における動粘度の下限値は特に制限されないが、前記ギヤ油組成物の40℃における動粘度は34.0mm/s以上であることが好ましい。前記ギヤ油組成物の40℃における動粘度が前記下限値以上である場合には、40℃近傍の比較的低温の温度域(好ましくは20~60℃程度)において潤滑箇所でのギヤ油組成物の油膜形成性及び油膜保持性がより向上して、より良好な潤滑状態を保持することを可能として省燃費性能をさらに向上させることが可能となる。また、前記ギヤ油組成物の40℃における動粘度は、耐焼き付き性能の向上及び省燃費性能の向上の点でより高い効果が得られることから、34.5~35.0mm/sであることがより好ましい。
[Gear oil composition characteristics, manufacturing method, uses, etc.]
The gear oil composition of the present invention must have a kinetic viscosity of 36.0 mm 2 /s or less at 40° C. When the gear oil composition has a kinetic viscosity of 36.0 mm 2 /s or less at 40° C., it is possible to reduce the stirring resistance in a relatively low temperature range near 40° C. (preferably about 20 to 60° C.) compared with a case where the kinetic viscosity exceeds 36.0 mm 2 /s, and it is possible to further improve the power transmission efficiency even in a low temperature state such as immediately after the start of use, and it is possible to further improve the fuel saving performance. In addition, although the lower limit of the kinetic viscosity of the gear oil composition at 40° C. is not particularly limited, it is preferable that the kinetic viscosity of the gear oil composition at 40° C. is 34.0 mm 2 /s or more. When the kinetic viscosity of the gear oil composition at 40°C is equal to or higher than the lower limit, the oil film forming and oil film retaining properties of the gear oil composition at lubricated points are improved in a relatively low temperature range around 40°C (preferably about 20 to 60°C), making it possible to maintain a better lubricated state and further improve fuel economy performance. In addition, the kinetic viscosity of the gear oil composition at 40°C is more preferably 34.5 to 35.0 mm2 /s, since this provides a greater effect in improving anti-seizure performance and fuel economy performance.
 本発明のギヤ油組成物は、100℃における動粘度が8.0mm/s以下である必要がある。前記ギヤ油組成物の100℃における動粘度が8.0mm/s以下である場合には、8.0mm/sを超えた場合と比較して、100℃近傍の比較的高温の温度域において、より低粘度のものとすることができ、撹拌抵抗をより小さくすることが可能となるため、動力伝達効率をより向上させることが可能となり、省燃費性能を向上させることが可能となる。また、このようなギヤ油組成物の100℃における動粘度の下限値は特に制限されないが、前記ギヤ油組成物の100℃における動粘度は6.5mm/s以上であることが好ましい。前記ギヤ油組成物の100℃における動粘度が前記下限以上である場合には、100℃近傍の比較的高温の温度域(好ましくは80~120℃程度)において、潤滑箇所でのギヤ油組成物の油膜形成性及び油膜保持性がより向上して、油膜をより均一に保持できるため、使用時の耐焼き付き性能をより高度なものとすることが可能となる。また、前記ギヤ油組成物の100℃における動粘度は、耐焼き付き性能の向上及び省燃費性能の向上の点でより高い効果が得られることから、7.0~7.5mm/sであることがより好ましい。 The gear oil composition of the present invention must have a kinetic viscosity of 8.0 mm 2 /s or less at 100°C. When the gear oil composition has a kinetic viscosity of 8.0 mm 2 /s or less at 100°C, it can have a lower viscosity in a relatively high temperature range near 100°C compared to when the kinetic viscosity exceeds 8.0 mm 2 /s, and the stirring resistance can be reduced, so that the power transmission efficiency can be improved and the fuel saving performance can be improved. In addition, the lower limit of the kinetic viscosity of such a gear oil composition at 100°C is not particularly limited, but the kinetic viscosity of the gear oil composition at 100°C is preferably 6.5 mm 2 /s or more. When the kinetic viscosity of the gear oil composition at 100°C is the lower limit or more, the oil film forming ability and oil film retention ability of the gear oil composition at the lubricated parts are further improved in a relatively high temperature range near 100°C (preferably about 80 to 120°C), and the oil film can be more uniformly maintained, so that the seizure resistance during use can be made more advanced. The kinetic viscosity of the gear oil composition at 100° C. is more preferably 7.0 to 7.5 mm 2 /s, since this provides a greater effect in terms of improving anti-seizure performance and fuel economy performance.
 また、本発明のギヤ油組成物は、粘度指数が170よりも大きな値であることが好ましく、171以上であることがより好ましい。このような粘度指数が170よりも大きな値である場合、170以下の場合と比較して、潤滑油組成物の粘度-温度特性、および、摩耗防止性をより向上させることが可能となるとともに、省燃費性能をさらに向上させることが可能となる。 The gear oil composition of the present invention preferably has a viscosity index greater than 170, and more preferably equal to or greater than 171. When the viscosity index is greater than 170, it is possible to further improve the viscosity-temperature characteristics and anti-wear properties of the lubricating oil composition, as well as to further improve fuel economy performance, compared to when the viscosity index is 170 or less.
 また、本発明のギヤ油組成物は、-40℃におけるブルックフィールド粘度(BF粘度)が15Pa・s以下であることが好ましい。BF粘度を前記上限以下とすることで、低温流動性をより向上させることが可能となる。このようなブルックフィールド粘度(BF粘度)は、ASTM D2983に準拠して測定できる。 The gear oil composition of the present invention preferably has a Brookfield viscosity (BF viscosity) of 15 Pa·s or less at -40°C. By setting the BF viscosity to the above upper limit or less, it is possible to further improve low-temperature fluidity. Such a Brookfield viscosity (BF viscosity) can be measured in accordance with ASTM D2983.
 本発明のギヤ油組成物を製造するための方法としては特に制限されず、前記本発明のギヤ油組成物を得ることが可能となるように(前記条件を満たすように)、含有させる各成分を適宜選択して混合することにより調製すればよい。 The method for producing the gear oil composition of the present invention is not particularly limited, and the gear oil composition may be prepared by appropriately selecting and mixing each of the components to be contained so as to obtain the gear oil composition of the present invention (satisfying the above conditions).
 本発明のギヤ油組成物の用途は特に制限されず、例えば、変速機(例えば各種自動車の手動変速機等)、ディファレンシャルギヤ等の歯車機構用の潤滑油等の用途に好適に利用できる。また、本発明のギヤ油組成物は、例えば、各種自動車の変速機とディファレンシャルギヤの双方に用いる共通潤滑油(兼用油)等として利用することもできる。このような用途の中でも、本発明のギヤ油組成物は、貧潤滑時における耐焼付き性に優れるといった観点から、電気自動車の変速機用のギヤ油組成物として利用することが特に好ましい。 The use of the gear oil composition of the present invention is not particularly limited, and it can be suitably used, for example, as a lubricant for gear mechanisms such as transmissions (e.g., manual transmissions in various automobiles), differential gears, etc. The gear oil composition of the present invention can also be used, for example, as a common lubricant (dual-purpose oil) for both the transmissions and differential gears in various automobiles. Among such uses, the gear oil composition of the present invention is particularly preferably used as a gear oil composition for the transmissions of electric automobiles, from the viewpoint of excellent seizure resistance under poor lubrication.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples.
 (各実施例等で利用した成分について)
 先ず、各実施例等において利用した基油、増粘剤、極圧剤およびその他の添加剤を以下に示す。
(Ingredients used in each example)
First, the base oils, thickeners, extreme pressure agents and other additives used in the examples are shown below.
 〔基油〕
  〈基油(A1)〉
 ワックス異性化基油[鉱油系炭化水素油、APIグループIII、40℃における動粘度(KV40):16.19mm/s、100℃における動粘度(KV100):3.912mm/s、粘度指数(VI):141、基油中の硫黄の含有量(基油中の硫黄分):10質量ppm未満]
  〈基油(A2)〉
 水素化精製基油[鉱油系炭化水素油、APIグループIII、40℃における動粘度(KV40):34.1mm/s、100℃における動粘度(KV100):6.437mm/s、粘度指数(VI):144、基油中の硫黄の含有量(基油中の硫黄分):1質量ppm未満]
  〈基油(A3)〉
 水素化精製基油[鉱油系炭化水素油、APIグループIII、40℃における動粘度(KV40):19.4mm/s、100℃における動粘度(KV100):4.23mm/s、粘度指数(VI):124、基油中の硫黄の含有量(基油中の硫黄分):1質量ppm未満]。
[Base oil]
<Base oil (A1)>
Wax isomerized base oil (mineral hydrocarbon oil, API Group III, kinematic viscosity at 40° C. (KV40): 16.19 mm 2 /s, kinematic viscosity at 100° C. (KV100): 3.912 mm 2 /s, viscosity index (VI): 141, sulfur content in base oil (sulfur content in base oil): less than 10 ppm by mass).
<Base oil (A2)>
Hydrotreated base oil [mineral hydrocarbon oil, API Group III, kinematic viscosity at 40° C. (KV40): 34.1 mm 2 /s, kinematic viscosity at 100° C. (KV100): 6.437 mm 2 /s, viscosity index (VI): 144, sulfur content in base oil (sulfur content in base oil): less than 1 ppm by mass]
<Base oil (A3)>
Hydrotreated base oil [mineral hydrocarbon oil, API Group III, kinematic viscosity at 40°C (KV40): 19.4 mm2 /s, kinematic viscosity at 100°C (KV100): 4.23 mm2 /s, viscosity index (VI): 124, sulfur content in base oil (sulfur content in base oil): less than 1 ppm by mass].
  〈基油(A4)〉
 エステル油[日油株式会社製、商品名「ユニスターH381R」、40℃における動粘度(KV40):48.7mm/s、100℃における動粘度(KV100):9.8mm/s、粘度指数(VI):192]。
<Base oil (A4)>
Ester oil (manufactured by NOF Corporation, trade name "Unistar H381R", kinematic viscosity at 40° C. (KV40): 48.7 mm 2 /s, kinematic viscosity at 100° C. (KV100): 9.8 mm 2 /s, viscosity index (VI): 192).
 〔ポリ(メタ)アクリレート系増粘剤〕
  〈増粘剤(B1)〉
 重量平均分子量(Mw)が12200のポリメタクリレート[非分散型]
  〈増粘剤(B2):比較用の成分〉
 重量平均分子量(Mw)が17600のポリメタクリレート[非分散型]
  〈増粘剤(B3):比較用の成分〉
 重量平均分子量(Mw)が9610のポリメタクリレート[非分散型]。
[Poly(meth)acrylate-based thickener]
<Thickener (B1)>
Polymethacrylate with a weight average molecular weight (Mw) of 12,200 [non-dispersed type]
<Thickener (B2): Comparative component>
Polymethacrylate with a weight average molecular weight (Mw) of 17,600 [non-dispersed type]
<Thickener (B3): Comparative component>
Polymethacrylate [non-dispersed type] with a weight average molecular weight (Mw) of 9610.
 〔分散剤〕
  〈分散剤(C1)〉
 ビスタイプのホウ酸変性コハク酸イミド[重量平均分子量:3000、窒素の含有量:2.2質量%、ホウ素の含有量:0.4質量%]
  〈分散剤(C2)〉
 モノタイプのホウ酸変性コハク酸イミド[重量平均分子量:5000、窒素の含有量:2.0質量%、ホウ素の含有量:1.9質量%]
 〔その他の添加成分(添加剤)〕
  〈極圧剤(D1)〉
 ジブチルポリサルファイド[化合物中の硫黄の含有量:29.09質量%]
  〈極圧剤(D2)〉
 ポリサルファイド[化合物中の硫黄の含有量:30.91質量%]
  〈粘度指数向上剤(E1)〉
 エチレンとα-オレフィンとのコポリマー[数平均分子量(Mn):2600]
[Dispersant]
<Dispersant (C1)>
Bis-type boric acid modified succinimide [weight average molecular weight: 3000, nitrogen content: 2.2 mass%, boron content: 0.4 mass%]
<Dispersant (C2)>
Monotype boric acid modified succinimide [weight average molecular weight: 5000, nitrogen content: 2.0 mass%, boron content: 1.9 mass%]
[Other added ingredients (additives)]
Extreme Pressure Agent (D1)
Dibutyl polysulfide [Sulfur content in compound: 29.09% by mass]
<Extreme pressure agent (D2)>
Polysulfide [Sulfur content in compound: 30.91% by mass]
Viscosity Index Improver (E1)
Copolymer of ethylene and α-olefin [number average molecular weight (Mn): 2600]
 (実施例1~2および比較例1~9)
 表1に示す組成となるように、前述の各成分を利用して、実施例1~2および比較例1~9のギヤ油組成物をそれぞれ調製した。なお、表1中の「ギヤ油組成物の組成」の項目に関して「-」はその成分を利用していないことを示す。また、表1中の「ギヤ油組成物の組成」の項目において、「mass%」は基油組成物(混合基油)の全量に対する質量基準の基油の含有量(質量%)を表し、「inmass%」はギヤ油組成物の全量に対する質量基準の含有量(質量%)を表す。
(Examples 1 to 2 and Comparative Examples 1 to 9)
The gear oil compositions of Examples 1 and 2 and Comparative Examples 1 to 9 were each prepared using the above-mentioned components so as to have the composition shown in Table 1. In Table 1, in the "Composition of gear oil composition" section, "-" indicates that the component was not used. In Table 1, in the "Composition of gear oil composition" section, "mass%" represents the content (mass%) of the base oil based on mass relative to the total amount of the base oil composition (mixed base oil), and "inmass%" represents the content (mass%) based on mass relative to the total amount of the gear oil composition.
 [各実施例等で得られたギヤ油組成物の特性の評価方法について]
 <ギヤ油組成物の動粘度および粘度指数の測定>
 各実施例等で得られたギヤ油組成物について、40℃における動粘度、100℃における動粘度、および、粘度指数をそれぞれ、JIS K2283-2000に準拠して測定した。表1に測定結果を示す。なお、本明細書においては、40℃における動粘度が36.0mm/s以下でありかつ100℃における動粘度が8.0mm/s以下であるという条件(低粘度の条件)を満たすものを、低粘度のギヤ油組成物と評価する。表1に低粘度の条件に適合するか否かについての項目を設け、前述の低粘度の条件を満たすもの(低粘度のもの)を「適合」と表記し、前記条件を満たさないものを「不適合」と表記する。なお、ギヤ油組成物においては、特に省燃費性の観点から低粘度であることが求められるため、前記低粘度の条件を満たす場合(適合の場合)には、省燃費性の観点でより高い効果が得られるものと評価することができる。
[Method for evaluating the characteristics of the gear oil compositions obtained in each example, etc.]
<Measurement of kinematic viscosity and viscosity index of gear oil composition>
The gear oil compositions obtained in each Example were measured for kinematic viscosity at 40°C, kinematic viscosity at 100°C, and viscosity index in accordance with JIS K2283-2000. The measurement results are shown in Table 1. In this specification, a gear oil composition that satisfies the conditions (low viscosity conditions) of a kinematic viscosity at 40°C of 36.0 mm2 /s or less and a kinematic viscosity at 100°C of 8.0 mm2 /s or less is evaluated as a low-viscosity gear oil composition. Table 1 includes an item for whether or not the low-viscosity condition is met, and those that meet the low-viscosity condition (low-viscosity ones) are indicated as "met", and those that do not meet the condition are indicated as "not met". Since a gear oil composition is required to have a low viscosity, particularly from the viewpoint of fuel saving, when the low-viscosity condition is met (met), it can be evaluated that a higher effect is obtained in terms of fuel saving.
 <ギヤ油組成物のブルックフィールド粘度(BF粘度)の測定>
 各実施例等で得られたギヤ油組成物の-40℃におけるBF粘度を、ASTM D2983に準拠して、測定装置としてブルックフィールド粘度用恒温槽/ブルックフィールド粘度計を用いて、温度:-40℃の条件で測定した。得られた結果を表1に示す。なお、BF粘度の値が15Pa・s以下となる場合には、低温での流動性が高い水準にあると評価できる。
<Measurement of Brookfield Viscosity (BF Viscosity) of Gear Oil Composition>
The BF viscosity at -40°C of the gear oil compositions obtained in each Example was measured in accordance with ASTM D2983 using a Brookfield viscosity thermostat/Brookfield viscometer as the measuring device at a temperature of -40°C. The results are shown in Table 1. Note that when the BF viscosity value is 15 Pa s or less, it can be evaluated that the fluidity at low temperatures is at a high level.
 <ギヤ油組成物の耐焼き付き性の評価試験>
 ASTM D 2174に準拠したブロックオンリング試験機(LFW-1)を用いて、ブロック状の試験片(Falex H-60 Test Block、SAE01 Steel:以下、単に「ブロック」と称する)と、リング状の試験片(Falex S-10 Test Ring、SAE4620 Steel:以下、単に「リング」と称する)が、線接触(ブロックオンリング)の接触形態となるようにして、先ず、油浴槽にギヤ油組成物を供給して、油浴槽中のギヤ油組成物にリングが接触する状態(リングの半分程度が油浴に浸る状態)で、油温:室温(25℃程度)、すべり速度1m/s、リングとブロックの間の接触面の面圧(荷重):0GPa(無負荷)の条件(慣らし条件)で慣らし運転を1分間行って、無負荷でギヤ油組成物をリングの表面及びリングに対するブロックの接触面に行き渡らせた後、ドレンコックを開いて油浴槽からギヤ油組成物を全て抜き出すことにより貧潤滑状態(慣らし運転で行き渡らせたギヤ油組成物以外、ギヤ油組成物が補充されない状態)とし、次いで、ギヤ油組成物の油温を試験中の成り行きに任せて、すべり速度2.5m/s、リングとブロックの間の接触面の面圧(荷重):0.25GPaの条件でブロックオンリング試験機の運転(試験)を行い、焼き付きが起こるまでの時間(焼き付き時間)を求めた。なお、焼き付きが起こるとブロックオンリング試験機で測定できる摩擦係数μや振動が上昇するため、本試験においては、前述の慣らし運転後、上記運転(試験)を開始してから、摩擦係数μの上昇が起こるまでの経過時間を「焼き付き時間」として求めた。得られた結果を表1に示す。なお、焼き付き時間が900秒以上のものは耐焼き付き性に優れたものであると評価できる。
<Evaluation test of seizure resistance of gear oil composition>
Using a block-on-ring tester (LFW-1) conforming to ASTM D 2174, a block-shaped test piece (Falex H-60 Test Block, SAE01 Steel: hereinafter simply referred to as "block") and a ring-shaped test piece (Falex S-10 Test Ring, SAE4620 First, the gear oil composition was supplied to an oil bath so that the ring was in line contact (block-on-ring) with the gear oil composition in the oil bath (about half of the ring was immersed in the oil bath), and a break-in was carried out for 1 minute under the following conditions (break-in conditions): oil temperature: room temperature (about 25° C.), sliding speed: 1 m/s, surface pressure (load) on the contact surface between the ring and the block: 0 GPa (no load). After spreading over the contact surface of the block, the drain cock was opened to extract all of the gear oil composition from the oil bath, creating a poor lubrication state (a state in which the gear oil composition was not replenished except for the gear oil composition spread during the break-in), and then the oil temperature of the gear oil composition was left to the course of the test, and the block-on-ring tester was operated (tested) under the conditions of a sliding speed of 2.5 m/s and a surface pressure (load) of the contact surface between the ring and the block of 0.25 GPa, and the time until seizure occurred (seizure time) was determined. Note that, since the friction coefficient μ and vibration that can be measured by the block-on-ring tester increase when seizure occurs, in this test, the elapsed time from the start of the above operation (test) after the break-in operation described above until the increase in the friction coefficient μ occurs was determined as the "seizure time". The results obtained are shown in Table 1. Note that a seizure time of 900 seconds or more can be evaluated as excellent seizure resistance.
 <耐摩耗性試験>
 各実施例等で得られたギヤ油組成物について、シェル四球試験(ASTM D4172)を、荷重:392N、回転数:100rpm、温度:40℃、試験時間:1時間の条件で行い、摩耗痕径(mm)を測定した。得られた結果を表1に示す。なお、摩耗痕径が0.4mm以下のものは耐摩耗性に優れたものであると評価できる。
<Wear resistance test>
The gear oil compositions obtained in each Example were subjected to a Shell four-ball test (ASTM D4172) under the conditions of load: 392 N, rotation speed: 100 rpm, temperature: 40° C., and test time: 1 hour, and the wear scar diameter (mm) was measured. The results are shown in Table 1. A wear scar diameter of 0.4 mm or less can be evaluated as having excellent wear resistance.
 <ISOT試験後の強酸価の有無の確認試験>
 JIS K 2514-1に準拠してISOT試験(温度:135℃、時間:96時間の条件)を行い、ISOT試験後のギヤ油組成物について、JIS K2501:2003に準拠して強酸価を確認した。このような確認試験の結果を表1に示す。なお、表1には、強酸価が確認されるものを「有」と示し、強酸価が確認されなかったものを「無」と示す。
<Test to confirm the presence or absence of strong acid value after ISOT test>
An ISOT test (temperature: 135°C, time: 96 hours) was conducted in accordance with JIS K 2514-1, and the gear oil composition after the ISOT test was confirmed for strong acid number in accordance with JIS K2501:2003. The results of such confirmation tests are shown in Table 1. In Table 1, those in which a strong acid number was confirmed are indicated as "Yes", and those in which a strong acid number was not confirmed are indicated as "No".
 表1に示した結果から明らかなように、先ず、実施例1~2においては、ギヤ油組成物に利用する基油組成物が、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上であるという条件を満たす鉱油系の基油(A1)を10質量%以上含有してなるものであり、かつ、基油組成物中の鉱油系基油(基油(A1)及び基油(A2))の含有量が100質量%のものである。また、実施例1~2で得られたギヤ油組成物は、重量平均分子量が15000以下のポリ(メタ)アクリレートからなる増粘剤をギヤ油組成物の全量を基準として1~4質量%含有している。また、実施例1~2で得られたギヤ油組成物は、ビスタイプのコハク酸イミド分散剤(ビスタイプのホウ酸変性コハク酸イミド)を1.4質量%含有している。さらに、実施例1~2で得られたギヤ油組成物は、40℃における動粘度が36.0mm/s以下であり、かつ、100℃における動粘度が8.0mm/s以下であるという条件を満たすものとなっていた(さらに、粘度指数も170よりも大きな値を示すものとなっていた)。このような特性を有する実施例1~2で得られたギヤ油組成物は、前記低粘度の条件を満たすもの(低粘度の条件に適合したもの)であって、かつ、耐焼き付き性が高いものとなった。また、実施例1~2で得られたギヤ油組成物はISOT試験後に強酸価が確認されず、優れた酸化安定性を有するものであることも確認された。このように、実施例1~2で得られたギヤ油組成物は、低粘度でかつ耐焼き付き性に優れたギヤ油組成物であるとともに、酸化安定性にも優れたものとなることが確認された。なお、実施例1~2で得られたギヤ油組成物は、シェル四球試験後の摩耗痕径が0.4mm以下となっており耐摩耗性にも優れるものであること、BF粘度の値が15Pa・s以下となっており低温での流動性も高い水準にあること、も併せて確認された。 As is clear from the results shown in Table 1, first, in Examples 1 and 2, the base oil composition used in the gear oil composition contains 10 mass% or more of a mineral base oil (A1) that satisfies the conditions that the kinematic viscosity at 100°C is 3.5 to 4.5 mm2 /s and the viscosity index is 140 or more, and the content of the mineral base oil (base oil (A1) and base oil (A2)) in the base oil composition is 100 mass%. Furthermore, the gear oil compositions obtained in Examples 1 and 2 contain 1 to 4 mass% of a thickener made of a poly(meth)acrylate having a weight average molecular weight of 15,000 or less based on the total amount of the gear oil composition. Furthermore, the gear oil compositions obtained in Examples 1 and 2 contain 1.4 mass% of a bis-type succinimide dispersant (bis-type boric acid modified succinimide). Furthermore, the gear oil compositions obtained in Examples 1 and 2 satisfied the conditions that the kinematic viscosity at 40°C was 36.0 mm 2 /s or less and the kinematic viscosity at 100°C was 8.0 mm 2 /s or less (furthermore, the viscosity index also showed a value greater than 170). The gear oil compositions obtained in Examples 1 and 2 having such characteristics satisfied the low viscosity condition (conformed to the low viscosity condition) and had high seizure resistance. In addition, the gear oil compositions obtained in Examples 1 and 2 were not confirmed to have a strong acid value after the ISOT test, and it was also confirmed that they had excellent oxidation stability. Thus, it was confirmed that the gear oil compositions obtained in Examples 1 and 2 were low-viscosity and excellent seizure resistance gear oil compositions, as well as excellent oxidation stability. It was also confirmed that the gear oil compositions obtained in Examples 1 and 2 had excellent wear resistance, with a wear scar diameter of 0.4 mm or less after a Shell four-ball test, and had a BF viscosity of 15 Pa s or less, indicating a high level of fluidity at low temperatures.
 一方、増粘剤として重量平均分子量が12200のポリメタクリレートを利用しているものの、かかるポリメタクリレートの含有量がギヤ油組成物の全量を基準として5質量%となっている比較例1で得られたギヤ油組成物は、前記低粘度の条件を満たすものとはなったが、耐焼き付き性が十分なものとはならず、低粘度と、優れた耐焼き付き性とを両立することができなかった。 On the other hand, the gear oil composition obtained in Comparative Example 1, in which polymethacrylate with a weight-average molecular weight of 12,200 was used as a thickener but the content of said polymethacrylate was 5 mass% based on the total amount of the gear oil composition, satisfied the above-mentioned condition of low viscosity, but did not have sufficient seizure resistance, and was unable to achieve both low viscosity and excellent seizure resistance.
 また、重量平均分子量が12200のポリメタクリレートの代わりに、重量平均分子量が17600ポリメタクリレートを増粘剤として利用した、比較例2~3で得られたギヤ油組成物は、前記低粘度の条件を満たすものとはなったが、耐焼き付き性が十分なものとはならず、低粘度と、優れた耐焼き付き性とを両立することができなかった。 In addition, the gear oil compositions obtained in Comparative Examples 2 and 3, in which polymethacrylate with a weight-average molecular weight of 17,600 was used as a thickener instead of polymethacrylate with a weight-average molecular weight of 12,200, met the low viscosity condition, but did not have sufficient seizure resistance, and were unable to achieve both low viscosity and excellent seizure resistance.
 また、増粘剤を利用していない比較例4~6で得られたギヤ油組成物は、前記低粘度の条件を満たすものとはなったが、耐焼き付き性が十分なものとはならず、低粘度と、優れた耐焼き付き性とを両立することができなかった。 In addition, the gear oil compositions obtained in Comparative Examples 4 to 6, which did not use a thickener, met the low viscosity requirement, but did not have sufficient seizure resistance, and were unable to achieve both low viscosity and excellent seizure resistance.
 さらに、基油(A1)を利用せず、基油(A2)と粘度指数が124となっている基油(A3)を組み合わせて利用した比較例7で得られたギヤ油組成物は、耐焼き付き性は十分な水準となったものの、前記低粘度の条件を満たさず、低粘度と、優れた耐焼き付き性とを両立することができなかった。 Furthermore, the gear oil composition obtained in Comparative Example 7, which did not use base oil (A1) but instead used a combination of base oil (A2) and base oil (A3) with a viscosity index of 124, achieved a sufficient level of seizure resistance, but did not satisfy the low viscosity condition, and was unable to achieve both low viscosity and excellent seizure resistance.
 また、基油組成物を基油(A2)のみからなるものとした比較例8で得られたギヤ油組成物は、耐焼き付き性は十分な水準となったものの、前記低粘度の条件を満たさず、低粘度と、優れた耐焼き付き性とを両立することができなかった。 In addition, the gear oil composition obtained in Comparative Example 8, in which the base oil composition consisted only of base oil (A2), had a sufficient level of anti-seizure properties, but did not satisfy the low viscosity condition, and was unable to achieve both low viscosity and excellent anti-seizure properties.
 さらに、増粘剤を利用せずに、基油(A4)を利用した比較例9で得られたギヤ油組成物は、低粘度と、優れた耐焼き付き性とを両立できたものの、ISOT試験後に強酸価が確認され、酸化安定性の点で十分なものとはならなかった。なお、比較例4と比較例9とを対比すると、基油組成物の組成以外は同様の組成となっていることから、鉱油系基油の含有量が93質量%未満である場合(比較例9)には、酸化安定性が低下してしまうことが分かった。 Furthermore, the gear oil composition obtained in Comparative Example 9, which used base oil (A4) without using a thickener, achieved both low viscosity and excellent seizure resistance, but was confirmed to have a strong acid value after the ISOT test, and was not sufficient in terms of oxidation stability. Furthermore, when Comparative Example 4 and Comparative Example 9 are compared, they have similar compositions except for the composition of the base oil composition, so it was found that when the content of mineral oil-based base oil is less than 93 mass% (Comparative Example 9), the oxidation stability decreases.
 このような表1に示す実施例1~2及び比較例1~9で得られたギヤ油組成物の特性から、本発明によれば、ギヤ油組成物を、低粘度で省燃費性能の高いものとしながら、耐焼き付き性能にも優れたものとすることができること、さらには、酸化安定性にも優れたものとすることができることが明らかとなった。 The characteristics of the gear oil compositions obtained in Examples 1-2 and Comparative Examples 1-9 shown in Table 1 demonstrate that the present invention can provide a gear oil composition that has low viscosity and excellent fuel economy performance while also having excellent anti-seizure performance and excellent oxidation stability.
 以上説明したように、本発明によれば、40℃および100℃における動粘度を基準として動粘度を低粘度とすることが可能でありながら、優れた耐焼き付き性能と優れた酸化安定性とを有することが可能なギヤ油組成物を提供することが可能となる。このような本発明のギヤ油組成物は、その特性から、特に電気自動車の変速機用のギヤ油組成物として有用である。 As explained above, according to the present invention, it is possible to provide a gear oil composition that can have a low kinetic viscosity based on the kinetic viscosity at 40°C and 100°C, while having excellent anti-seizure performance and excellent oxidation stability. Due to its properties, the gear oil composition of the present invention is particularly useful as a gear oil composition for the transmission of an electric vehicle.

Claims (4)

  1.  (A)基油組成物、(B)ポリ(メタ)アクリレート系増粘剤、および、(C)コハク酸イミド分散剤を含むギヤ油組成物であり、
     前記(A)成分は、100℃における動粘度が3.5~4.5mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-1)を、前記基油組成物の全量を基準として10質量%以上含有してなる基油組成物であり、
     前記(A)成分中の鉱油系基油の含有量は93質量%以上であり、
     前記(B)成分は、重量平均分子量が15000以下のポリ(メタ)アクリレートであり、
     前記(C)成分は、ビスタイプの無変性コハク酸イミド及びビスタイプのホウ酸変性コハク酸イミドからなる群から選択される少なくとも1種であり、
     前記ギヤ油組成物の全量を基準とした前記(B)成分の含有量は1~4質量%であり、
     前記ギヤ油組成物の全量を基準とした前記(C)成分の含有量は1~3質量%であり、
     前記ギヤ油組成物の40℃における動粘度は36.0mm/s以下であり、かつ、
     前記ギヤ油組成物の100℃における動粘度は8.0mm/s以下である、ギヤ油組成物。
    A gear oil composition comprising: (A) a base oil composition; (B) a poly(meth)acrylate thickener; and (C) a succinimide dispersant;
    The component (A) is a base oil composition containing 10 mass % or more of a mineral base oil (A-1) having a kinematic viscosity at 100°C of 3.5 to 4.5 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition;
    The content of the mineral oil base oil in the component (A) is 93% by mass or more,
    The component (B) is a poly(meth)acrylate having a weight average molecular weight of 15,000 or less,
    The component (C) is at least one selected from the group consisting of bis-type unmodified succinimides and bis-type boric acid modified succinimides,
    The content of the component (B) based on the total amount of the gear oil composition is 1 to 4 mass %,
    The content of the component (C) based on the total amount of the gear oil composition is 1 to 3 mass %,
    The gear oil composition has a kinematic viscosity at 40°C of 36.0 mm2 /s or less, and
    The gear oil composition has a kinematic viscosity at 100° C. of 8.0 mm 2 /s or less.
  2.  前記(C)成分は、ビスタイプのホウ酸変性コハク酸イミドである、請求項1に記載のギヤ油組成物。 The gear oil composition according to claim 1, wherein component (C) is a bis-type boric acid modified succinimide.
  3.  前記(A)成分が、100℃における動粘度が6.0~7.0mm/sでありかつ粘度指数が140以上である鉱油系の基油(A-2)を、前記基油組成物の全量を基準として40質量%以上含有する、請求項1に記載のギヤ油組成物。 2. The gear oil composition according to claim 1, wherein the component (A) contains 40 mass% or more of a mineral base oil (A-2) having a kinematic viscosity at 100°C of 6.0 to 7.0 mm2 /s and a viscosity index of 140 or more, based on the total amount of the base oil composition.
  4.  電気自動車の変速機用のギヤ油組成物である、請求項1に記載のギヤ油組成物。 The gear oil composition according to claim 1, which is a gear oil composition for an electric vehicle transmission.
PCT/JP2024/008237 2023-03-20 2024-03-05 Gear oil composition WO2024195513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023044162 2023-03-20
JP2023-044162 2023-03-20

Publications (1)

Publication Number Publication Date
WO2024195513A1 true WO2024195513A1 (en) 2024-09-26

Family

ID=92841932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008237 WO2024195513A1 (en) 2023-03-20 2024-03-05 Gear oil composition

Country Status (1)

Country Link
WO (1) WO2024195513A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127789A (en) * 1994-09-05 1996-05-21 Honda Motor Co Ltd Lubricating oil composition
JPH11189782A (en) * 1997-12-25 1999-07-13 Cosmo Oil Co Ltd Gear oil composition
WO2000029523A1 (en) * 1998-11-13 2000-05-25 Japan Energy Corporation Oil composition for non-stage transmission
WO2014003162A1 (en) * 2012-06-29 2014-01-03 出光興産株式会社 Lubricant composition
WO2018190431A1 (en) * 2017-04-13 2018-10-18 Jxtgエネルギー株式会社 Lubricant composition
WO2022075085A1 (en) * 2020-10-09 2022-04-14 Eneos株式会社 Lubricant composition
WO2022075088A1 (en) * 2020-10-09 2022-04-14 Eneos株式会社 Lubricating oil composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127789A (en) * 1994-09-05 1996-05-21 Honda Motor Co Ltd Lubricating oil composition
JPH11189782A (en) * 1997-12-25 1999-07-13 Cosmo Oil Co Ltd Gear oil composition
WO2000029523A1 (en) * 1998-11-13 2000-05-25 Japan Energy Corporation Oil composition for non-stage transmission
WO2014003162A1 (en) * 2012-06-29 2014-01-03 出光興産株式会社 Lubricant composition
WO2018190431A1 (en) * 2017-04-13 2018-10-18 Jxtgエネルギー株式会社 Lubricant composition
WO2022075085A1 (en) * 2020-10-09 2022-04-14 Eneos株式会社 Lubricant composition
WO2022075088A1 (en) * 2020-10-09 2022-04-14 Eneos株式会社 Lubricating oil composition

Similar Documents

Publication Publication Date Title
JP4907074B2 (en) Lubricating oil composition for transmission
JP5108200B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
EP1920035B1 (en) Gear oil composition
JP5789111B2 (en) Lubricating oil composition
JP5329067B2 (en) Automatic transmission oil and manufacturing method thereof
JP5390737B2 (en) Lubricating oil composition
CN109689844B (en) Lubricating oil composition for automatic transmission
JP2009511728A (en) Lubricating oil composition
JP4583138B2 (en) Lubricating oil composition for transmission
WO2014013975A1 (en) Lubricating oil composition for continuously variable transmission
WO2012132055A1 (en) Lubricating oil composition
CN102300971A (en) Lubricating oil composition for automatic transmission
JP2012530830A (en) Lubricating composition
JP2007284564A (en) Lubricating oil composition for automatic variable-speed gear
WO2011099207A1 (en) Lubricating oil composition
JP5248022B2 (en) Lubricating oil composition for automatic transmission
JP2012211338A (en) Lubricant base oil and method of producing the same, and lubricant composition that contains the base oil
JP4583137B2 (en) Lubricating oil composition for transmission
JP2010189639A (en) Lubricating composition
JP6302371B2 (en) Low viscosity lubricant composition
JP5542322B2 (en) Lubricating oil composition for agricultural machinery
CN105026534A (en) Lubricating composition
JP2006117852A (en) Lubricating oil composition for transmission
WO2024195513A1 (en) Gear oil composition
JP2012180535A (en) Lubricant base oil and method for producing the same, and lubricant composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24774656

Country of ref document: EP

Kind code of ref document: A1