Nothing Special   »   [go: up one dir, main page]

WO2024193260A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2024193260A1
WO2024193260A1 PCT/CN2024/076557 CN2024076557W WO2024193260A1 WO 2024193260 A1 WO2024193260 A1 WO 2024193260A1 CN 2024076557 W CN2024076557 W CN 2024076557W WO 2024193260 A1 WO2024193260 A1 WO 2024193260A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
electrode structure
sub
metal layer
Prior art date
Application number
PCT/CN2024/076557
Other languages
English (en)
French (fr)
Inventor
王海涛
刘宁
袁粲
成军
赵策
许程
周丹丹
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024193260A1 publication Critical patent/WO2024193260A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and in particular to a display panel and a manufacturing method thereof, and a display device.
  • Display devices are widely used in people's daily life, such as mobile phones, monitors, tablet computers, etc. Display panels are an important part of display devices.
  • the display panel includes a driving backplane, a first electrode layer and an auxiliary electrode structure.
  • the first electrode layer and the auxiliary electrode structure are located on the driving backplane, and the orthographic projection of the first electrode layer on the driving backplane does not overlap with the orthographic projection of the auxiliary electrode structure on the driving backplane.
  • the first electrode layer includes a first transparent conductive layer, a metal layer and a second transparent conductive layer sequentially stacked on the driving backplane
  • the auxiliary electrode structure includes a first transparent conductive layer, a metal layer and a second transparent conductive layer sequentially stacked on the driving backplane.
  • the metal layer of the auxiliary electrode structure is relatively thick.
  • the first electrode layer and the auxiliary electrode structure are usually manufactured in the same layer, so the metal layer of the first electrode layer is also relatively thick.
  • larger and more impurity particles will be introduced. The particles may pierce the light-emitting layer, causing a short circuit between the second electrode layer and the first electrode layer, resulting in dark spots and other defects, affecting the display effect.
  • the embodiments of the present disclosure provide a display panel and a manufacturing method thereof, and a display device, which can reduce the size of particles introduced when forming the first electrode layer by thinning the metal layer in the first electrode layer, thereby reducing dark spot defects.
  • the technical solution is as follows:
  • a display panel which includes: a driving backplane, a first electrode layer, a light-emitting layer, a second electrode layer and a plurality of auxiliary electrode structures; the first electrode layer and the plurality of auxiliary electrode structures are located on the driving backplane, the first electrode layer includes a plurality of first electrode structures, and the orthographic projection of the first electrode structure on the driving backplane has no overlap with the orthographic projection of the plurality of auxiliary electrode structures on the driving backplane; the light-emitting layer is located on the surface of the first electrode layer away from the driving backplane; the second electrode layer covers the light-emitting layer and the plurality of auxiliary electrode structures, and the second electrode layer is connected to the auxiliary electrode structures; wherein the first electrode structure includes a first conductive layer, a metal layer and a second conductive layer sequentially stacked on the driving backplane in a direction away from the driving backplane, and the plurality of auxiliary electrode structures include a first conductive layer,
  • the first conductive layer and the second conductive layer of the first electrode structure, and the first conductive layer and the second conductive layer of the auxiliary electrode structure are both made of transparent materials.
  • the metal layer of the auxiliary electrode structure includes a first sub-metal layer and a second sub-metal layer stacked in sequence in a direction away from the driving backplane, the thickness of the second sub-metal layer is the same as the thickness of the metal layer of the first electrode layer, and the material of the second sub-metal layer is the same as the material of the metal layer of the first electrode structure.
  • the thickness of the metal layer of the first electrode structure is greater than or equal to 400 angstroms and less than or equal to 1500 angstroms.
  • the first sub-metal layer is a single-layer structure.
  • both the metal layer of the first electrode structure and the second sub-metal layer are multi-layer stacked structures.
  • the first transparent conductive layer of the first electrode structure includes a first sublayer and a second sublayer sequentially stacked in a direction away from the driving backplane, the first sublayer is a crystallized indium tin oxide layer, and the second sublayer is a buffered indium tin oxide layer.
  • a middle portion of the first sublayer of the first electrode structure has a hollow structure, and at least a portion of the second sublayer of the first electrode structure is located in the hollow structure.
  • the thickness of the first sublayer of the first electrode structure is greater than or equal to the thickness of the second sublayer of the first electrode structure
  • the metal layer of the first electrode structure covers the hollow structure, and is at least 100 mm away from the surface of the first sublayer of the first electrode structure away from the driving backplane. Partially connected.
  • the first transparent conductive layer of the auxiliary electrode structure includes a first sublayer and a second sublayer stacked in sequence in a direction away from the driving backplane, and the first sublayer of the auxiliary electrode structure is arranged on the same layer as the first sublayer of the first electrode structure, and the material is the same; the second sublayer of the auxiliary electrode structure is arranged on the same layer as the second sublayer of the first electrode structure, and the material is the same.
  • the display panel includes a plurality of sub-pixels, and the plurality of sub-pixels are divided into a plurality of sub-pixel groups, and at least one sub-pixel in the sub-pixel group includes the auxiliary electrode structure; wherein each of the sub-pixel groups includes one sub-pixel; or, each of the sub-pixel groups includes M rows and N columns of the sub-pixels, wherein M and N are both positive integers.
  • the light-emitting layer includes multiple light-emitting structures
  • the driving backplane includes multiple driving units
  • the first sub-pixel among the multiple sub-pixels includes one auxiliary electrode structure, two first electrode structures, two light-emitting structures, part of the second electrode layer and a first driving unit, and the first driving unit is one of the multiple driving units; within the first sub-pixel, the first driving unit is electrically connected to the two first electrode structures.
  • the second conductive layer is close to an edge of any one of the first electrode structures, protrudes from an edge of the metal layer close to the same first electrode structure, forming a protruding structure, and the protruding structure disconnects the second electrode layer, and the disconnected portion of the second electrode layer is connected to the metal layer of the auxiliary electrode structure.
  • a method for manufacturing a display panel comprising: providing a driving backplane; forming a first electrode layer and a plurality of auxiliary electrode structures on the driving backplane, the first electrode layer comprising a plurality of first electrode structures, the orthographic projections of the plurality of first electrode structures on the driving backplane having no overlap with the orthographic projections of the plurality of auxiliary electrode structures on the driving backplane; forming a light-emitting layer on a surface of the first electrode layer away from the driving backplane; forming a second electrode layer on surfaces of the light-emitting layer and the plurality of auxiliary electrode structures, the second electrode layer being connected to the plurality of auxiliary electrode structures; wherein the first electrode structure comprises a first transparent conductive layer, a metal layer, and a second transparent conductive layer sequentially stacked on the driving backplane in a direction away from the driving backplane; the auxiliary electrode structure comprises a first transparent conductive layer, a metal layer, and
  • a display device comprising any one of the display panels described above.
  • a panel and a power supply circuit wherein the power supply circuit is used to supply power to the display panel.
  • the metal layer of the first electrode layer in the display panel is too thick, a large number of particles of larger size will be introduced when the metal layer of the first electrode layer is formed. These particles will pierce the light-emitting layer on the first electrode layer, causing a short circuit between the first electrode layer and the second electrode layer, and causing dark spot defects.
  • the thickness of the metal layer in the first electrode layer By reducing the thickness of the metal layer in the first electrode layer, the number and size of particles introduced when forming the metal layer in the first electrode layer are reduced, thereby improving dark spot defects.
  • FIG1 is a schematic cross-sectional view of a display panel provided in an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of the particle size introduced into the metal layer in the first electrode structure in the related art
  • FIG3 is a schematic diagram of the particle size introduced after the metal layer is thinned in the first electrode structure in the embodiment of the present disclosure
  • FIG4 is a schematic diagram of a cross-sectional structure of another display panel provided by an embodiment of the present disclosure.
  • FIG5 is a schematic cross-sectional view of a first electrode structure provided by an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a top view of a display panel provided in an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of the distribution of an auxiliary electrode structure provided by an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of the distribution of another auxiliary electrode structure provided by an embodiment of the present disclosure.
  • FIG9 is a schematic diagram of a top view of a sub-pixel including an auxiliary electrode structure provided by an embodiment of the present disclosure
  • FIG10 is a schematic diagram of a cross-sectional structure of another display panel provided in an embodiment of the present disclosure.
  • FIG. 11 is a flow chart of a method for manufacturing a display panel provided in an embodiment of the present disclosure.
  • Drive backplane 10. Drive unit 101, substrate 107, light shielding layer 108, buffer layer 102, active layer 103, gate insulating layer 104, gate layer 105, interlayer dielectric layer 106, source and drain layer 109, passivation layer 110, organic layer 2.
  • First electrode layer 3.
  • Second electrode layer 40 Part of the second electrode layer 5.
  • Auxiliary electrode structure 6.
  • Pixel definition layer 7 pixel 70, sub-pixel 700, sub-pixel group 71, first sub-pixel 72, second sub-pixel 73, third sub-pixel 21.
  • the display panel may be an OLED
  • OLED organic light-emitting diode
  • micro-LED display panels The differences between these display panels are mainly in the different materials of the light-emitting layer and the different structures of the pixel driving circuits. The following will take the OLED display panel as an example for explanation.
  • FIG1 is a schematic diagram of the cross-sectional structure of a display panel provided by an embodiment of the present disclosure.
  • the display panel includes a driving backplane 1, a first electrode layer 2, a light-emitting layer 3, a second electrode layer 4, and an auxiliary electrode structure 5.
  • the first electrode layer 2 and the auxiliary electrode structure 5 are located on the driving backplane 1.
  • the first electrode layer includes a plurality of first electrode structures arranged in an array, and the orthographic projections of these first electrode structures on the driving backplane 1 do not overlap with the orthographic projections of the auxiliary electrode structures 5 on the driving backplane 1, that is, the first electrode structures and the auxiliary electrode structures 5 are arranged at intervals on the driving backplane 1.
  • the light-emitting layer 3 is located on the surface of the first electrode layer 2 away from the driving backplane 1.
  • the second electrode layer 4 covers the light-emitting layer 3 and the auxiliary electrode structure 5, and the second electrode layer 4 is connected to the auxiliary electrode structure 5.
  • the first electrode structure includes a first transparent conductive layer 21, a metal layer 22, and a second transparent conductive layer 23 sequentially stacked on the driving backplane 1 in a direction away from the driving backplane 1, and the auxiliary electrode structure 5 includes a first transparent conductive layer 51, a metal layer 52, and a second transparent conductive layer 53 sequentially stacked on the driving backplane 1 in a direction away from the driving backplane 1.
  • the thickness of the metal layer 22 of the first electrode structure is less than the thickness of the metal layer 52 of the auxiliary electrode structure 5.
  • the auxiliary electrode structure and the first electrode of the first electrode structure are manufactured at the same time, and the metal layer of the auxiliary electrode structure and the metal layer of the first electrode layer are set to the same thickness.
  • the metal layer of the auxiliary electrode structure needs to have a larger thickness. Therefore, when forming the first electrode layer, since the thickness of the metal layer of the first electrode layer and the metal layer of the auxiliary electrode structure are both relatively thick, and the magnitude of the particles introduced when forming the metal layer is positively correlated with the thickness of the metal layer, larger-sized and larger-number particles will be introduced when forming the metal layer in the first electrode layer, causing poor display.
  • the embodiment of the present disclosure reduces the magnitude of particles introduced during the manufacture of the first electrode layer by making the thickness of the metal layer of the first electrode layer smaller than the thickness of the metal layer of the auxiliary electrode structure, that is, reducing the thickness of the metal layer of the first electrode layer, thereby reducing the possibility of short circuits between the first electrode layer and the second electrode layer caused by particles piercing the light-emitting layer, and improving dark spot-type defects.
  • the auxiliary electrode structure 5 is connected to the electrode auxiliary line on the source and drain layer located in the driving backplane 1, which is used to reduce the resistance of the entire second electrode layer 4 and reduce the voltage drop, so as to facilitate application in large-size transparent products, improve the uniformity of the voltage, and thus improve the display effect.
  • the first conductive layer 21 and the second conductive layer 23 of the first electrode layer 2 , and the first conductive layer 51 and the second conductive layer 53 of the auxiliary electrode structure 5 are all made of transparent materials.
  • the first electrode layer 2 may be an anode layer, and the second electrode layer 4 may be a cathode layer; or, the first electrode layer 2 may be a cathode layer, and the second electrode layer 4 may be an anode layer.
  • a plurality of auxiliary electrode structures 5 disconnect the second electrode layer 4, and the disconnection of the second electrode layer 4 is connected to the metal layer 52 of the auxiliary electrode structure 5.
  • the second conductive layer 53 near the edge of the first electrode structure protrudes from the edge of the metal layer 52 near the same first electrode structure, forming a protruding structure 531.
  • the protruding structure 531 disconnects the light-emitting layer 3, and the second electrode layer 4 is connected to the metal layer 52 of the auxiliary electrode structure 5 at the disconnection.
  • the protruding structure 531 can naturally disconnect the second electrode layer 4, so that the auxiliary electrode structure 5 is connected to the metal layer 52 of the second electrode layer 4, thereby simplifying the preparation process.
  • the auxiliary electrode structure 5 in the multiple auxiliary electrode structures 5, at least one side edge of the second transparent conductive layer protrudes from the metal layer 52 of the auxiliary electrode structure 5 along the direction parallel to the driving backplane 1 to form a protruding structure 531. As long as the second electrode layer 4 can be disconnected, the auxiliary electrode structure 5 can be connected to the metal layer 52 of the second electrode layer 4.
  • the thickness of the metal layer 52 of the auxiliary electrode structure 5 is relatively large, ranging from 6000 angstroms to 7000 angstroms, for example, about 6500 angstroms. In this way, after the auxiliary electrode structure 5 disconnects the second electrode layer 4, the disconnection portion of the second electrode layer 4 is connected to the metal layer 52 of the auxiliary electrode structure 5, thereby improving the reliability of the connection between the auxiliary electrode structure 5 and the second electrode layer 4.
  • the thickness of the metal layer 22 of the first electrode structure is not less than 400 angstroms and not more than 1500 angstroms, and is much less than 6500 angstroms.
  • the metal layer 52 of the plurality of auxiliary electrode structures 5 includes a first sub-metal layer 52a and a second sub-metal layer 52b sequentially stacked on the side of the first transparent conductive layer 51 away from the driving backplane 1, the thickness of the second sub-metal layer 52b is the same as the thickness of the metal layer 22 of the first electrode layer 2, and the material of the second sub-metal layer 52b is the same as the material of the metal layer 22 of the first electrode layer 2.
  • the second sub-metal layer 52b of the auxiliary electrode structure 5 and the metal layer 22 of the first electrode layer 2 can be manufactured simultaneously to save time, and at the same time, the thickness of the metal layer in the first electrode layer is reduced to improve dark spot defects.
  • the first conductive layer 21 of the first electrode structure includes a first sublayer 21a and a second sublayer 21b sequentially stacked in a direction away from the driving backplane 1.
  • the first conductive layer 51 of the auxiliary electrode structure 5 includes The first sublayer 51a and the second sublayer 51b are stacked in sequence in a direction away from the driving backplane 1.
  • the first sublayer 21a of the first electrode layer 2 and the first sublayer 51a of the auxiliary electrode structure 5 are crystallized ITO (Indium tin oxide) layers
  • the second sublayer 21b of the first electrode structure and the second sublayer 51b of the auxiliary electrode structure 5 are buffer ITO layers.
  • the crystallized ITO layer refers to a crystalline ITO layer with high light transmittance and high conductivity.
  • the buffer ITO layer refers to an ITO layer induced by annealing or crystallized ITO to improve the conductivity of the ITO layer.
  • the thickness of the first sublayer 21a of the first electrode structure is 1200 angstroms to 1600 angstroms, for example, 1400 angstroms; the thickness of the second sublayer 21b of the first electrode structure is 500 angstroms to 900 angstroms, for example, 700 angstroms.
  • the first conductive layer 21 of the first electrode layer 2 only includes a crystallized ITO layer.
  • the first sublayer 51a of the auxiliary electrode structure 5 and the first sublayer 21a of the first electrode layer 2 have the same material and thickness, so the first sublayer 51a of the auxiliary electrode structure 5 and the first sublayer 21a of the first electrode layer 2 can be manufactured simultaneously.
  • the second sublayer 51b of the auxiliary electrode structure 5 and the second sublayer 21b of the first electrode layer 2 have the same material and thickness, so the second sublayer 51b of the auxiliary electrode structure 5 and the second sublayer 21b of the first electrode layer 2 can be manufactured simultaneously.
  • the second conductive layer 53 of the auxiliary electrode structure 5 and the second conductive layer 23 of the first electrode layer 2 have the same material and thickness, so the second conductive layer 53 of the auxiliary electrode structure 5 and the second conductive layer 23 of the first electrode layer 2 can be manufactured simultaneously.
  • FIG2 is a schematic diagram of the particle size introduced into the metal layer in the first electrode structure in the related art.
  • the first electrode layer 2 includes a first sublayer 21a, a second sublayer 21b, a metal layer 22, and a second conductive layer 23 stacked in sequence.
  • the metal layer 22 of the first electrode layer 2 has the same thickness as the metal layer 52 of the auxiliary electrode structure 5, which is about 6500 angstroms.
  • the metal layer 22 of the first electrode structure Since the metal layer 22 of the first electrode structure is thick, the size of the particles introduced when forming the metal layer 22 is large, which can reach 1.2 microns; and the number of introduced particles is large, and most of the dark spots on a display panel, such as 83%, are caused by the particles introduced by the metal layer 22 forming the first electrode structure. In addition, because the metal layer 22 is thick, the particles embedded in the metal layer 22 are not easy to be washed away. These particles will pierce the light-emitting layer 3 after the second conductive layer 23, the light-emitting layer 3 and the second electrode layer 4 are subsequently formed, causing a short circuit between the first electrode layer 2 and the second electrode layer 4, resulting in dark spot defects.
  • FIG3 is a schematic diagram of the particle size introduced after the metal layer in the first electrode structure is thinned in the embodiment of the present disclosure.
  • the first electrode structure includes a first sublayer 21a, a second sublayer 21b, a metal layer 22, and a second conductive layer 23 stacked in sequence.
  • the particle size introduced when the metal layer 22 is formed is small, and the number is small, illustratively, accounting for about 10% of the total number of introduced particles.
  • the thickness of the metal layer 22 is thinned, the particles embedded in the metal layer 22 are easily washed away. Therefore, after the metal layer 22 of the first electrode layer 2 is thinned, dark spot defects can be improved.
  • FIG4 is a schematic diagram of the cross-sectional structure of another display panel provided by an embodiment of the present disclosure. Compared with FIG1, the difference of the embodiment shown in FIG4 is that, in the first electrode structure, the middle part of the first sublayer 21a has a hollow structure, and at least part of the second sublayer 21b is located in the hollow structure. The thickness of the second sublayer 21b is less than the thickness of the first sublayer 21a. The metal layer 22 of the first electrode structure covers the hollow structure and is connected to the second sublayer 21b.
  • the second sublayer 21b is located between the metal layer 22 of the first electrode layer 2 and the driving backplane 1, and plays a buffering role to prevent the metal layer 22 from being directly connected to the organic layer of the driving backplane, thereby preventing defects such as bulging from occurring at the connection.
  • FIG5 is a schematic diagram of the cross-sectional structure of a first electrode structure provided by an embodiment of the present disclosure.
  • the thickness of the second sublayer 21b is equal to the thickness of the first sublayer 21a, and at this time, the second sublayer 21b of the first electrode layer 2 is flush with the first sublayer 21a, and the metal layer of the first electrode layer 2 is simultaneously connected to the surfaces of the first sublayer 21a and the second sublayer 21b away from the substrate.
  • the second sublayer 21b of the first electrode layer 2 is flush with the first sublayer 21a, and “flush” includes a situation where there is a small height difference between the first sublayer 21a and the second sublayer 21b, and the height difference is 5% of the thickness of the first sublayer or the second sublayer.
  • auxiliary electrode structure 5 The distribution of the auxiliary electrode structure 5 is described below in conjunction with FIG. 6 to FIG. 8 .
  • Fig. 6 is a schematic diagram of a top view of a display panel provided by an embodiment of the present disclosure.
  • the display panel includes a plurality of pixels 7, and the plurality of pixels 7 are arranged in an array along a first direction x and a second direction y.
  • Each pixel 7 includes a plurality of sub-pixels 70 arranged along the first direction x.
  • the plurality of sub-pixels 70 include a first sub-pixel 71, a second sub-pixel 72, and a third sub-pixel 73 arranged along the first direction x.
  • the first sub-pixel 71, the second sub-pixel 72, and the third sub-pixel 73 correspond to The colors are red, green and blue.
  • some pixels may be cancelled and the positions of the cancelled pixels may be set as transparent materials, so that the display panel is a transparent display panel.
  • the odd-numbered rows of pixels may be cancelled and the positions of the odd-numbered rows of pixels may be set as transparent materials.
  • a pixel may include four sub-pixels, and the colors corresponding to the four sub-pixels may be red, blue, green, and white, or red, blue, green, and yellow, etc.
  • At least part of the sub-pixels include an auxiliary electrode structure.
  • a plurality of auxiliary electrode structures 5 are arranged in an array on the driving backplane 1 , a plurality of sub-pixels 70 are divided into a plurality of sub-pixel groups 700 , and each sub-pixel group 700 contains a sub-pixel including an auxiliary electrode structure 5 .
  • Fig. 7 is a schematic diagram of the distribution of an auxiliary electrode structure provided by an embodiment of the present disclosure.
  • each sub-pixel group 700 includes a sub-pixel 70, that is, each sub-pixel includes an auxiliary electrode structure.
  • each sub-pixel group 700 includes M rows and N columns of sub-pixels, where M and N are both positive integers.
  • FIG8 is a schematic diagram of the distribution of another auxiliary electrode structure provided in an embodiment of the present disclosure. For example, when M is 2 and N is 9, as shown in FIG8 , one of the 18 sub-pixels in a sub-pixel group 700 contains an auxiliary electrode structure. In each sub-pixel group 700, the relative positions of the sub-pixels 70 having the auxiliary electrode structure 5 in the sub-pixel group 700 are the same.
  • each sub-pixel group the relative positions of the sub-pixels 70 having the auxiliary electrode structure 5 in the sub-pixel group 700 are different.
  • the light emitting layer 3 includes a plurality of light emitting structures
  • the driving backplane 1 includes a substrate and a plurality of driving units 10 arranged in an array.
  • Fig. 9 is a schematic top view of a sub-pixel including an auxiliary electrode structure according to an embodiment of the present disclosure
  • Fig. 1 is a schematic cross-sectional view along line AA in Fig. 9.
  • the first electrode structure and the light-emitting structure are not shown because they are partially blocked by the second electrode layer 4.
  • a sub-pixel includes an auxiliary electrode structure 5, two first electrode structures, two light-emitting structures, a portion of the second electrode layer 40 and a driving unit 10, wherein a driving unit 10 is electrically connected to the two first electrodes. Therefore, in a sub-pixel having an auxiliary electrode structure, a The driving unit 10 is electrically connected to the two first electrode structures, and the two first electrode structures are respectively connected to the two light-emitting structures, so one driving unit 10 can control the two light-emitting structures. If one of the light-emitting structures cannot emit light normally, the driving unit can also be used to drive the other light-emitting structure in the sub-pixel to emit light, so as to ensure the normal display of the display panel as much as possible and improve product reliability.
  • one driving unit 10 may be electrically connected to one first electrode structure, and one first electrode structure is connected to one light-emitting structure, so that one driving unit 10 controls one light-emitting structure.
  • the first sub-metal layer 52a is a single-layer structure, such as copper, silver, aluminum, molybdenum or niobium.
  • the metal layer 22 of the first electrode structure and the second sub-metal layer 52b are both multi-layer stacked structures, such as a stacked structure formed by copper metal and copper alloy stacked in sequence, wherein the copper alloy includes an alloy material formed by copper and one or more metals such as silver, aluminum, molybdenum, niobium, etc., such as copper layers and molybdenum-niobium alloy layers stacked alternately in sequence.
  • the second conductive layer 23 of the first electrode structure and the second conductive layer 53 of the auxiliary electrode structure 5 are made of transparent conductive materials, such as ITO, IZO (Indium Zinc Oxide), etc.
  • the light emitting layer 3 may include a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), an electron injection layer (EIL), a hole blocking layer (HBL), an electron blocking layer (EBL) and a light emitting material layer.
  • HTL hole transport layer
  • HIL hole injection layer
  • ETL electron transport layer
  • EIL electron injection layer
  • HBL hole blocking layer
  • EBL electron blocking layer
  • EBL electron blocking layer
  • the second electrode layer 4 is made of a transparent conductive material, such as ITO, IZO, etc.
  • FIG10 is a schematic diagram of the cross-sectional structure of another display panel provided in an embodiment of the present disclosure
  • FIG10 is a schematic diagram of the cross-sectional structure along the BB line in FIG9.
  • the driving backplane 1 includes a base substrate 101, a light shielding layer 107, a buffer layer 108, an active layer 102, a gate insulating layer 103, a gate layer 104, an interlayer dielectric layer 105, a source and drain electrode layer 106, a passivation layer 109 and an organic layer 110 stacked in sequence.
  • the base substrate 101 may be any transparent substrate, such as a glass substrate, a quartz substrate, a plastic substrate, other transparent hard substrates or other transparent flexible substrates, and may be a single-layer or multi-layer structure.
  • the substrate includes a first PI (polyimide) layer, a first protective layer, a second PI (polyimide) layer, and a second protective layer stacked from bottom to top.
  • the two protective layers are used to protect the PI layer to prevent subsequent processes from damaging the PI layer.
  • the second protective layer is also covered with a buffer layer to block water oxygen and alkaline ions.
  • the substrate may also be a silicon substrate, such as single crystal silicon or high purity silicon.
  • the transistors included in the above pixel driving circuit are integrated in the silicon substrate, for example, the source, drain and gate of the transistor are formed in the silicon substrate by a doping process.
  • the active layer 102 may be made of amorphous silicon, polycrystalline silicon or metal oxide semiconductor, such as LTPS (Low Temperature Poly-Silicon) and LTPO (Low Temperature Polycrystalline Oxide); the gate insulating layer 103 may be made of silicon oxide or silicon nitride, silicon oxynitride, etc.
  • LTPS Low Temperature Poly-Silicon
  • LTPO Low Temperature Polycrystalline Oxide
  • the gate insulating layer 103 may be made of silicon oxide or silicon nitride, silicon oxynitride, etc.
  • the material used to make the gate layer 104 can be a single-layer metal film such as molybdenum, copper, aluminum, or titanium, or a molybdenum layer, an aluminum layer, and a molybdenum layer stacked in sequence, or a titanium layer, an aluminum layer, and a titanium layer stacked in sequence; the material used to make the interlayer dielectric layer 105 can be silicon oxide or silicon nitride, etc.
  • the source and drain layer 106 may be made of a single-layer metal film such as aluminum, molybdenum, copper, or titanium, or may be a molybdenum layer, an aluminum layer, and a molybdenum layer stacked in sequence, or a titanium layer, an aluminum layer, and a titanium layer stacked in sequence.
  • the material of the light shielding layer 107 can be metal, which not only shields the active layer 102 from light, but also serves as a capacitor plate.
  • the material of the passivation layer 109 may be silicon oxide.
  • the thickness of the passivation layer 109 is 3000 angstroms to 5000 angstroms.
  • the organic layer 110 may be made of resin or the like.
  • the display panel further includes a color filter layer, which is located on the side of the second electrode layer 4 away from the driving backplane 1.
  • the color filter layer includes a black matrix and a plurality of color resist blocks, the black matrix is located between any two adjacent color resist blocks, and the plurality of color resist blocks correspond to the plurality of sub-pixels 70 one by one.
  • the display panel also includes an encapsulation layer, which can be located between the second electrode layer and the color filter layer.
  • This setting can be called COE (Color On Encapsulation, integrating the color film or color filter into the encapsulation layer); the encapsulation layer can also be located on the side of the color filter layer away from the second electrode layer.
  • FIG11 is a flow chart of a method for manufacturing a display panel provided by the present disclosure.
  • the manufacturing method can be used to manufacture any of the above-mentioned display panels. As shown in FIG11 , the manufacturing method includes:
  • step 111 a driving backplane is provided.
  • step 112 a first electrode layer and a plurality of auxiliary electrode structures are formed on the driving backplane.
  • the first electrode layer includes a plurality of first electrode structures, and the orthographic projections of the plurality of first electrode structures on the driving backplane do not overlap with the orthographic projections of the plurality of auxiliary electrode structures on the driving backplane.
  • a light-emitting layer is formed on a surface of the first electrode layer away from the driving backplane.
  • a second electrode layer is formed on the surfaces of the light emitting layer and the plurality of auxiliary electrode structures, and the second electrode layer is connected to the plurality of auxiliary electrode structures.
  • the first electrode structure includes a first transparent conductive layer, a metal layer, and a second transparent conductive layer sequentially stacked on the driving backplane in a direction away from the driving backplane.
  • the auxiliary electrode structure includes a first transparent conductive layer, a metal layer, and a second transparent conductive layer sequentially stacked on the driving backplane in a direction away from the driving backplane, and the thickness of the metal layer of the first electrode structure is less than the thickness of the metal layer of the auxiliary electrode structure.
  • step 111 includes forming a driving backplane in the following manner:
  • the first step is to provide a substrate.
  • the second step is to deposit a light-shielding metal layer on the substrate, and then obtain a photoresist structure through processes such as photoresist coating, exposure, and development, and then etch the light-shielding metal layer using the photoresist structure as a mask to obtain a light-shielding layer.
  • the third step is to deposit a buffer layer on the light-shielding layer.
  • Step 4 deposit a semiconductor material layer, an insulating layer and a gate metal layer on the buffer layer in sequence, then obtain a photoresist structure through photoresist coating, exposure, development and other processes, and etch the gate metal layer using the photoresist structure as a mask to obtain a gate layer.
  • the gate layer includes a plurality of block gates.
  • Step 5 Obtain a gate insulating layer from the insulating layer, and obtain an active layer from the semiconductor material layer. Conductorize the portion of the active layer not covered by the gate layer to ensure good ohmic contact between the active layer and the subsequently formed source and drain layers.
  • Step 6 deposit an initial interlayer dielectric layer on the gate layer, and form multiple vias exposing the light shielding layer through a series of processes such as photoresist coating, exposure, etching, and stripping; then form multiple vias exposing the active layer through a series of processes such as photoresist coating, exposure, etching, and stripping to obtain an interlayer dielectric layer.
  • a series of processes such as photoresist coating, exposure, etching, and stripping
  • Step 7 deposit source and drain metal layers on the interlayer dielectric layer, and obtain source and drain layers through a series of processes such as photoresist coating, exposure, etching, and stripping.
  • Step 8 Form an initial passivation layer on the source and drain electrode layer, and form a plurality of vias exposing the source and drain electrode layer through a series of processes such as photoresist coating, exposure, etching, and stripping to obtain a passivation layer.
  • Step 9 depositing an initial organic layer on the passivation layer, and forming an organic layer by coating and exposing a photoresist.
  • step 112 includes forming the first conductive layer of the first electrode structure and the first conductive layer of the auxiliary electrode structure in the following manner:
  • the first step is to form a first conductive pattern layer on the driving backplane, wherein the first conductive pattern layer includes a first sublayer of a first electrode structure and a first sublayer of an auxiliary electrode structure formed on the driving backplane, wherein the first sublayer of the first electrode layer has a hollow structure.
  • the second step is to form a second conductive pattern layer on the first conductive pattern layer to obtain the first conductive layer of the first electrode structure and the first conductive layer of the auxiliary electrode structure, wherein the second conductive pattern layer includes the second sublayer of the first electrode structure and the second sublayer of the auxiliary electrode structure, wherein at least part of the second sublayer of the first electrode layer is located in the hollow structure, and the second sublayer of the auxiliary electrode structure is on the first sublayer of the auxiliary electrode structure.
  • a layer of transparent conductive material is first formed, and then a photoresist structure is obtained through processes such as photoresist coating, exposure, and development, and the transparent conductive material layer is etched using the photoresist structure as a mask to remove the transparent conductive material layer except for the first electrode structure area and the auxiliary electrode structure area to obtain a first conductive pattern layer.
  • the formation method of the second conductive pattern layer may refer to the first conductive pattern layer.
  • step 112 includes forming a metal layer of the first electrode structure and a metal layer of the auxiliary electrode structure in the following manner:
  • the first step is to form a first metal pattern layer, wherein the first metal pattern layer includes a first sub-metal layer of an auxiliary electrode structure;
  • the second step is to form a second metal pattern layer on the first metal pattern layer to obtain a metal layer of the first electrode structure and a metal layer of the auxiliary electrode structure, wherein the second metal pattern layer includes the metal layer of the first electrode structure and a second sub-metal layer of the auxiliary electrode structure.
  • the first step includes forming a metal layer; then coating with a photoresist, exposing, developing A photoresist structure is obtained by processes such as lithography, and the metal layer is etched using the photoresist structure as a mask to remove the metal layer except for the auxiliary electrode structure area to form a first metal pattern layer.
  • the formation method of the second metal pattern layer may refer to the formation method of the first metal pattern layer.
  • a pixel definition layer is deposited.
  • An embodiment of the present disclosure further provides a display device, which includes any one of the aforementioned display panels and a power supply circuit, wherein the power supply circuit is used to supply power to the display panel.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a laptop computer, a digital photo frame, a navigator, or the like.
  • the display device has the same effect as the above-mentioned display panel, which will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供了一种显示面板及其制作方法、显示装置,属于显示技术领域。该显示面板包括驱动背板、第一电极层、发光层、第二电极层和多个辅助电极结构,第一电极层和多个辅助电极结构位于驱动背板上。第一电极层包括多个第一电极结构,第一电极结构包括沿远离驱动背板的方向依次层叠在驱动背板上的第一导电层、金属层和第二导电层,辅助电极结构包括沿远离驱动背板的方向依次层叠在驱动背板上的第一导电层、金属层和第二导电层。其中,第一电极结构的金属层的厚度小于辅助电极结构的金属层的厚度。本公开实施例可以改善由于形成第一电极层中过厚的金属层时引入的颗粒导致的暗点类不良。

Description

显示面板及其制作方法、显示装置
本申请要求于2023年3月20日提交的申请号为202310284020.5、发明名称为“显示面板及其制作方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及显示技术领域,特别涉及一种显示面板及其制作方法、显示装置。
背景技术
显示装置广泛应用于人们的日常生活中,例如手机、显示器或者平板电脑等设备中。显示面板为显示装置的重要组成部分。
相关技术中,显示面板包括驱动背板、第一电极层和辅助电极结构。第一电极层和辅助电极结构位于驱动背板上,且第一电极层在驱动背板上的正投影与辅助电极结构在驱动背板上的正投影无重叠。其中,第一电极层包括依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层,辅助电极结构包括依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层。
为了保证辅助电极结构与第二电极层的可靠连接,辅助电极结构的金属层较厚。而为了简化制作工艺流程,第一电极层和辅助电极结构通常同层制作,所以第一电极层的金属层也较厚。在形成第一电极层中较厚的金属层时,会引入较大、较多的杂质颗粒,该颗粒可能会刺破发光层,引起第二电极层和第一电极层之间发生短路,产生暗点类不良,影响显示效果。
发明内容
本公开实施例提供了一种显示面板及其制作方法、显示装置,可以利用减薄第一电极层内金属层的方式,减小形成第一电极层时引入的颗粒大小,进而减少暗点类不良,所述技术方案如下:
一方面,提供了一种显示面板,所述显示面板包括:驱动背板、第一电极层、发光层、第二电极层和多个辅助电极结构;所述第一电极层和所述多个辅助电极结构位于所述驱动背板上,所述第一电极层包括多个第一电极结构,所述第一电极结构在所述驱动背板上的正投影与所述多个辅助电极结构在所述驱动背板上的正投影无重叠;所述发光层位于所述第一电极层远离所述驱动背板的表面;所述第二电极层覆盖所述发光层和所述多个辅助电极结构,所述第二电极层与所述辅助电极结构连接;其中,所述第一电极结构包括沿远离所述驱动背板的方向依次层叠在所述驱动背板上的第一导电层、金属层和第二导电层,所述多个辅助电极结构包括沿远离所述驱动背板的方向依次层叠在所述驱动背板上的第一导电层、金属层和第二导电层;所述第一电极结构的金属层的厚度小于所述辅助电极结构的金属层的厚度。
可选地,所述第一电极结构的第一导电层和第二导电层,以及所述辅助电极结构的第一导电层和第二导电层均为透明材料。
可选地,所述辅助电极结构的金属层包括沿远离所述驱动背板的方向依次层叠的第一子金属层和第二子金属层,所述第二子金属层的厚度与所述第一电极层的金属层的厚度相同,所述第二子金属层的材料与所述第一电极结构的金属层的材料相同。
可选地,所述第一电极结构的金属层的厚度大于或等于400埃且小于或等于1500埃。
可选地,所述第一子金属层为单层结构。
可选地,所述第一电极结构的金属层和所述第二子金属层均为多层层叠结构。
可选地,所述第一电极结构的第一透明导电层包括沿远离所述驱动背板的方向依次层叠的第一子层和第二子层,所述第一子层为晶化氧化铟锡层,所述第二子层为缓冲氧化铟锡层。
可选地,所述第一电极结构的所述第一子层的中部具有镂空结构,所述第一电极结构的所述第二子层的至少部分位于所述镂空结构内。
可选地,所述第一电极结构的所述第一子层的厚度大于或者等于所述第一电极结构的所述第二子层的厚度,所述第一电极结构的所述金属层覆盖所述镂空结构,且与所述第一电极结构的所述第一子层远离所述驱动背板的表面至少 部分相连。
可选地,所述辅助电极结构的第一透明导电层包括沿远离所述驱动背板的方向依次层叠的第一子层和第二子层,所述辅助电极结构的所述第一子层与所述第一电极结构的第一子层同层设置,且材料相同;所述辅助电极结构的所述第二子层与所述第一电极结构的第二子层同层设置,且材料相同。
可选地,所述显示面板包括多个子像素,所述多个子像素分为多个子像素组,所述子像素组中至少一个子像素包括所述辅助电极结构;其中,每个所述子像素组包括一个所述子像素;或者,每个所述子像素组包括M行N列个所述子像素,其中,M和N均为正整数。
可选地,所述发光层包括多个发光结构,所述驱动背板包括多个驱动单元;所述多个子像素中的第一子像素包括一个所述辅助电极结构、两个所述第一电极结构、两个所述发光结构、部分所述第二电极层和第一驱动单元,所述第一驱动单元为所述多个驱动单元中的一个;所述第一子像素内,所述第一驱动单元与两个所述第一电极结构电连接。
可选地,所述多个辅助电极结构中,沿平行于驱动背板的方向,所述第二导电层靠近任一所述第一电极结构的边沿,凸出于所述金属层靠近同一个第一电极结构的边沿,形成凸出结构,所述凸出结构将所述第二电极层断开,所述第二电极层的断开处与所述辅助电极结构的金属层连接。
另一方面,提供了一种显示面板的制作方法,所述制作方法包括:提供驱动背板;在所述驱动背板上形成第一电极层和多个辅助电极结构,所述第一电极层包括多个第一电极结构,所述多个第一电极结构在所述驱动背板上的正投影与所述多个辅助电极结构在所述驱动背板上的正投影无重叠;在所述第一电极层远离所述驱动背板的表面形成发光层;在所述发光层和所述多个辅助电极结构的表面形成第二电极层,所述第二电极层与所述多个辅助电极结构连接;其中,所述第一电极结构包括沿远离所述驱动背板的方向依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层;所述辅助电极结构包括沿远离所述驱动背板的方向依次层叠在所述驱动背板上的第一透明导电层、金属层和第二透明导电层,所述第一电极结构的金属层的厚度小于所述辅助电极结构的金属层的厚度。
另一方面,提供了一种显示装置,所述显示装置包括如前述任一种显示面 板和供电电路,所述供电电路用于为所述显示面板供电。
本公开提供的技术方案带来的有益效果至少包括:
如果显示面板内第一电极层的金属层过厚,在形成第一电极层的金属层时会引入较多数量、较大尺寸的颗粒,这些颗粒会刺破第一电极层上的发光层,导致第一电极层和第二电极层之间发生短路,引发暗点类不良。通过将第一电极层中的金属层的厚度减薄,使得形成第一电极层中的金属层时引入的颗粒的数量减少、尺寸减小,改善暗点类不良。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示面板的截面结构示意图;
图2是相关技术中第一电极结构内金属层中引入的颗粒尺寸的示意图;
图3是本公开实施例中第一电极结构内金属层减薄后引入的颗粒尺寸的示意图;
图4是本公开实施例提供的另一种显示面板的截面结构示意图;
图5是本公开实施例提供的一种第一电极结构的截面结构示意图;
图6是本公开实施例提供的一种显示面板的俯视结构示意图;
图7是本公开实施例提供的一种辅助电极结构的分布示意图;
图8是本公开实施例提供的另一种辅助电极结构的分布示意图;
图9是本公开实施例提供的一种包含辅助电极结构的子像素的俯视结构示意图;
图10是本公开实施例提供的另一种显示面板的截面结构示意图;
图11是本公开实施例提供的一种显示面板的制作方法的流程图。
图例说明:
1、驱动背板  10、驱动单元
101、衬底基板  107、遮光层  108、缓冲层  102、有源层  103、栅
极绝缘层  104、栅极层  105、层间介电层  106、源漏极层  109、钝化层  110、有机层
2、第一电极层  3、发光层
4、第二电极层  40、部分第二电极层  5、辅助电极结构  6、像素定
义层
7、像素  70、子像素  700、子像素组
71、第一子像素  72、第二子像素  73、第三子像素
21、第一电极结构的第一导电层
21a、第一电极结构的第一子层  21b、第一电极结构的第二子层
22、第一电极结构的金属层  23、第一电极结构的第二导电层
51、辅助电极结构的第一导电层
51a、辅助电极结构的第一子层  51b、辅助电极结构的第二子层
52、辅助电极结构的金属层  52a、第一子金属层  52b、第二子金属层
53、辅助电极结构的第二导电层  531、凸出结构
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本公开的实施方式部分使用的术语仅用于对本公开的实施例进行解释,而非旨在限定本公开。除非另作定义,本公开的实施方式使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
本公开实施例提供了一种显示面板。示例性地,显示面板可以为OLED (Organic Light-Emitting Diode,有机发光二极管)显示面板或者微型发光二极管显示面板等其他类型的显示面板。这些显示面板的区别主要在于发光层的材料不同,以及像素驱动电路的结构不同。下面将以OLED显示面板为例进行说明。
图1是本公开实施例提供的一种显示面板的截面结构示意图。如图1所示,显示面板包括驱动背板1、第一电极层2、发光层3、第二电极层4和辅助电极结构5。第一电极层2和辅助电极结构5位于驱动背板1上。第一电极层包括阵列布置的多个第一电极结构,这些第一电极结构在驱动背板1上的正投影与辅助电极结构5在驱动背板1上的正投影无重叠,即第一电极结构和辅助电极结构5间隔布置在驱动背板1上。发光层3位于第一电极层2远离驱动背板1的表面。第二电极层4覆盖发光层3和辅助电极结构5,第二电极层4与辅助电极结构5连接。
其中,第一电极结构包括沿远离驱动背板1的方向依次层叠在驱动背板1上的第一透明导电层21、金属层22和第二透明导电层23,辅助电极结构5包括沿远离驱动背板1的方向依次层叠在驱动背板1上的第一透明导电层51、金属层52和第二透明导电层53。第一电极结构的金属层22的厚度小于辅助电极结构5的金属层52的厚度。
在相关技术中,为了简化工艺,同时制作辅助电极结构和第一电极结构第一电极,将辅助电极结构的金属层和第一电极层的金属层设置为相同厚度。但为了实现辅助电极结构断开第二电极层的目的,辅助电极结构的金属层的需要较大的厚度尺寸。因此在形成第一电极层时,由于第一电极层的金属层与辅助电极结构的金属层的厚度均较厚,且形成金属层时引入的颗粒量级与金属层的厚度正相关,因此会在形成第一电极层内的金属层时引入尺寸较大、数量较多的颗粒,引起显示不良。本公开实施例通过使第一电极层的金属层的厚度小于辅助电极结构的金属层的厚度,即减小第一电极层的金属层的厚度,可以减小在第一电极层的制作过程中引入的颗粒的量级,从而减小颗粒刺破发光层导致的第一电极层和第二电极层之间的短路的可能,改善暗点类不良。
在本公开实施例中,辅助电极结构5与位于驱动背板1内的源漏极层上的电极辅助线相连,用于减小整面第二电极层4的电阻,减小电压降,便于在大尺寸透明产品上应用,提高电压的均一性,进而提高显示效果。
可选地,第一电极层2的第一导电层21和第二导电层23,以及辅助电极结构5的第一导电层51和第二导电层53均为透明材料。
在本公开实施例中,第一电极层2可以为阳极层,第二电极层4可以为阴极层;或者,第一电极层2可以为阴极层,第二电极层4可以为阳极层。
在一种可能的实施方式中,如图1所示,多个辅助电极结构5将第二电极层4断开,第二电极层4的断开处与辅助电极结构5的金属层52连接。如图1所示,多个辅助电极结构5中,沿平行于驱动背板1的方向,的第二导电层53靠近第一电极结构的边沿凸出于金属层52靠近同一第一电极结构的边沿,形成凸出结构531。凸出结构531将发光层3断开,第二电极层4在断开处与辅助电极结构5的金属层52连接。在第二电极层4的形成过程中,凸出结构531可以将第二电极层4自然断开,使得辅助电极结构5与第二电极层4的金属层52连接,从而简化制备工艺。
在其他可能的实施方式中,多个辅助电极结构5中,沿平行于驱动背板1的方向,第二透明导电层的至少一侧边凸出于辅助电极结构5的金属层52,形成凸出结构531,只要能够断开第二电极层4,使辅助电极结构5与第二电极层4的金属层52连接即可。
在一些示例中,辅助电极结构5的金属层52的厚度较大,在6000埃~7000埃,例如约为6500埃。这样,辅助电极结构5断开第二电极层4后,第二电极层4的断开处与辅助电极结构5的金属层52相接,提高辅助电极结构5与第二电极层4连接的可靠性。
在本公开实施例中,第一电极结构的金属层22的厚度不小于400埃且不大于1500埃,远小于6500埃。
本公开实施例中,多个辅助电极结构5的金属层52包括依次层叠在第一透明导电层51远离驱动背板1一侧的第一子金属层52a和第二子金属层52b,第二子金属层52b的厚度与第一电极层2的金属层22的厚度相同,第二子金属层52b的材料与第一电极层2的金属层22的材料相同。这样,可以同步制作辅助电极结构5的第二子金属层52b和第一电极层2的金属层22,以节省时间,同时起到减薄第一电极层内金属层厚度的作用,改善暗点类不良。
示例性地,第一电极结构的第一导电层21包括沿远离驱动背板1的方向依次层叠的第一子层21a和第二子层21b。辅助电极结构5的第一导电层51包括 沿远离驱动背板1的方向依次层叠的第一子层51a和第二子层51b。第一电极层2的第一子层21a和辅助电极结构5的第一子层51a为晶化ITO(Indium tin oxide,氧化铟锡)层,第一电极结构的第二子层21b和辅助电极结构5的第二子层51b为缓冲ITO层。晶化ITO层是指结晶态的ITO层,具有高透光性和高导电性。缓冲ITO层是指经过退火处理或者已晶化的ITO诱导的ITO层,以提高ITO层的导电性。
在一种可能的实施方式中,第一电极结构的第一子层21a厚度为1200埃~1600埃,例如为1400埃;第一电极结构的第二子层21b的厚度为500埃~900埃,例如为700埃。
在其他可能的实施方式中,第一电极层2的第一导电层21仅包括晶化ITO层。
本公开实施例中,辅助电极结构5的第一子层51a和第一电极层2的第一子层21a的材料和厚度相同,因此可同步制作辅助电极结构5的第一子层51a和第一电极层2的第一子层21a。辅助电极结构5的第二子层51b和第一电极层2的第二子层21b的材料和厚度相同,因此可同步制作辅助电极结构5的第二子层51b和第一电极层2的第二子层21b。
可选地,辅助电极结构5的第二导电层53和第一电极层2的第二导电层23的材料和厚度相同,因此可同步制作辅助电极结构5的第二导电层53和第一电极层2的第二导电层23。
图2是相关技术中第一电极结构内金属层中引入的颗粒尺寸的示意图。如图2所示,第一电极层2包括依次层叠的第一子层21a、第二子层21b、金属层22和第二导电层23。其中,第一电极层2的金属层22与辅助电极结构5的金属层52厚度相同,约为6500埃。在形成第一电极层2内的第一子层21a、第二子层21b、金属层22时,均会引入不同数量、不同尺寸的颗粒。
由于第一电极结构的金属层22的厚度较厚,在形成金属层22时引入的颗粒尺寸较大,可达到1.2微米;且引入的颗粒数量较多,一块显示面板上的大部分暗点,如83%的暗点,是由形成第一电极结构的金属层22引入的颗粒引起的。而且因为金属层22的厚度较厚,导致嵌入在金属层22内的颗粒不易被清洗掉,这些颗粒会在后续形成第二导电层23、发光层3和第二电极层4后,刺破发光层3导致第一电极层2和第二电极层4之间发生短路,引发暗点不良。
图3是本公开实施例中第一电极结构内金属层减薄后引入的颗粒尺寸的示意图。如图3所示,第一电极结构包括依次层叠的第一子层21a、第二子层21b、金属层22和第二导电层23。其中,减薄金属层22之后,在形成金属层22时引入的颗粒尺寸较小,且数量较少,示例性地,约占引入颗粒总数量的10%。而且因为金属层22厚度减薄,导致嵌入在金属层22内的颗粒易被清洗掉。因此,第一电极层2的金属层22减薄后,可以改善暗点类不良。
图4是本公开实施例提供的另一种显示面板的截面结构示意图。与图1相比,图4所示实施例的不同之处在于,第一电极结构内,第一子层21a的中部具有镂空结构,第二子层21b的至少部分位于镂空结构内。第二子层21b的厚度小于第一子层21a的厚度。第一电极结构的金属层22覆盖镂空结构且与第二子层21b相连。这是因为若仅减薄第一电极结构的金属层,有可能因为形成第一子层21a时引入的颗粒刺破较薄的金属层22、第二导电层23、发光层3导致第二电极层4和第一电极层2之间发生短路。因此在减薄金属层22后,还需在第一子层21a做镂空结构,并使第二子层21b位于镂空结构内,从而尽可能去掉形成第一子层21a引入的颗粒,改善暗点类不良。其中,第二子层21b位于第一电极层2的金属层22和驱动背板1之间,起到缓冲作用,防止金属层22与驱动背板的有机层直接相连,在连接处产生鼓包等不良。
图5是本公开实施例提供的一种第一电极结构的截面结构示意图。在其他可能的实施方式中,如图5所示,第二子层21b的厚度等于第一子层21a的厚度,此时第一电极层2的第二子层21b与第一子层21a平齐,第一电极层2的金属层同时与第一子层21a和第二子层21b远离衬底基板的表面连接。这里,第一电极层2的第二子层21b与第一子层21a平齐,“平齐”包括第一子层21a和第二子层21b的存在少量高度差的情况,高度差为第一子层或第二子层厚度尺寸的5%。
下面结合图6至图8对辅助电极结构5的分布方式进行说明。
图6是本公开实施例提供的一种显示面板的俯视结构示意图。如图6所示,显示面板包括多个像素7,多个像素7沿着第一方向x和第二方向y阵列布置。每个像素7中包括沿第一方向x排布的多个子像素70。
多个子像素70包括沿第一方向x排布的第一子像素71、第二子像素72和第三子像素73。可选地,第一子像素71、第二子像素72和第三子像素73对应 的颜色分别为红色、绿色和蓝色。
可选地,图6所示的多行像素中,可取消部分像素并将被取消像素处设为透明材料,从而使该显示面板为透明显示面板。例如,取消奇数行像素并将奇数行像素的位置设为透明材料。
本公开实施例对每个像素中包含的子像素的数量、颜色和排列方式不做限制。在另一些示例中,一个像素可以包括四个子像素,四个子像素对应的颜色分别可以是红色、蓝色、绿色和白色或者红色、蓝色、绿色和黄色等。
在本公开实施例中,至少部分子像素包括辅助电极结构。
本公开实施例中,多个辅助电极结构5阵列布置于驱动背板1上,多个子像素70分为多个子像素组700,每个子像素组700中存在一个包括辅助电极结构5的子像素。
图7是本公开实施例提供的一种辅助电极结构的分布示意图。在一种可能的实施方式中,如图7所示,每个子像素组700包括一个子像素70,即,每个子像素均含有一个辅助电极结构。
在另一种可能的实施方式中,每个子像素组700包括M行N列子像素,其中,M和N均为正整数。图8是本公开实施例提供的另一种辅助电极结构的分布示意图。例如,当M为2,N为9时,如图8所示,一个子像素组700内18个子像素中存在一个子像素含有一个辅助电极结构。在每个子像素组700中,具有辅助电极结构5的子像素70在该子像素组700中的相对位置是相同的。
在其他可能的实施方式中,在每个子像素组中,具有辅助电极结构5的子像素70在该子像素组700中的相对位置是不同的。
本公开实施例中,发光层3包括多个发光结构,驱动背板1包括衬底基板和阵列布置的多个驱动单元10。
图9是本公开实施例提供的一种包含辅助电极结构的子像素的俯视结构示意图,且图1为图9中沿AA线的截面结构示意图。在图9中,第一电极结构和发光结构因被部分第二电极层4遮挡,所以未示出。
结合图1和图9,一个子像素包括一个辅助电极结构5、两个第一电极结构、两个发光结构、部分第二电极层40和一个驱动单元10,其中,一个驱动单元10与两个第一电极电连接。因此,在一个具有辅助电极结构的子像素内,一个 驱动单元10和两个第一电极结构电连接,两个第一电极结构分别与两个发光结构相连,因此一个驱动单元10可以控制两个发光结构。若其中一个发光结构不能正常发光,还可以使用驱动单元驱动该子像素内另一个发光结构进行发光,尽可能保证显示面板的正常显示,提升产品可靠性。
在其他可能的实施方式中,一个驱动单元10可以与一个第一电极结构电连接,一个第一电极结构与一个发光结构相连,以实现一个驱动单元10控制一个发光结构。
示例性地,第一子金属层52a为单层结构,如:铜、银、铝、钼或者铌。第一电极结构的金属层22和第二子金属层52b均为多层层叠结构,如:铜金属与铜合金依次交叠形成的层叠结构,其中,铜合金包括铜与银、铝、钼、铌等金属中的一种或多种形成的合金材料,比如依次交替叠放的铜层和钼铌合金层。
示例性地,第一电极结构的第二导电层23和辅助电极结构5的第二导电层53采用透明导电材料制成,例如ITO、IZO(Indium Zinc Oxide,氧化铟锡)等。
示例性地,发光层3可以包括空穴传输层(Hole Transport Layer,简称HTL)、空穴注入层(Hole Injection Layer,简称HIL)、电子传输层(Electron Transport Layer,简称ETL)、电子注入层(Electron Injection Layer,简称EIL)、空穴阻挡层(Hole Block Layer,简称HBL)、电子阻挡层(Electron Blocking Layer,简称EBL)和发光材料层。电子注入层、电子传输层、空穴阻挡层、发光材料层、空穴传输层、空穴注入层和电子阻挡层依次层叠。
示例性地,第二电极层4采用透明导电材料制成,例如ITO、IZO等。
下面对驱动背板1的结构进行示例性说明。图10是本公开实施例提供的另一种显示面板的截面结构示意图,且图10为图9中沿BB线的截面结构示意图。可选地,如图10所示,驱动背板1包括依次层叠的衬底基板101、遮光层107、缓冲层108、有源层102、栅极绝缘层103、栅极层104、层间介电层105、源漏极层106、钝化层109和有机层110。
本公开实施例中,衬底基板101可以为任意呈透明的基板,例如玻璃基板、石英基板、塑胶基板、其他透明的硬质基板或者其他透明的可挠式基板,其可以是单层或多层结构。
以多层结构为例,衬底基板包括由下至上依次层叠设置的第一PI(聚酰亚胺)层、第一保护层、第二PI(聚酰亚胺)层、第二保护层,两个保护层用于保护PI层,防止后续工艺对PI层的破坏。第二保护层上还覆盖有缓冲层,可以阻挡水氧和阻隔碱性离子。
当然,衬底基板也可以为硅基板,例如为单晶硅或者高纯度硅。硅基板内集成有上述的像素驱动电路包括的各晶体管,例如,通过掺杂工艺在硅基板中形成晶体管的源极、漏极和栅极。
示例性地,有源层102的制作材料可以是非晶硅、多晶硅或金属氧化物半导体等,例如LTPS(Low Temperature Poly-Silicon,低温多晶硅)和LTPO(Low Temperature Polycrystalline Oxide,低温多晶氧化物);栅极绝缘层103的制作材料可以是硅氧化物或硅氮化物,硅氮氧化物等。
示例性地,栅极层104的制作材料可以是钼、铜、、铝、钛等单层金属薄膜,也可以是依次层叠的钼层、铝层和钼层,或者是依次层叠的钛层、铝层和钛层等多层金属薄膜;层间介电层105的制作材料可以是硅氧化物或硅氮化物等。
示例性地,源漏极层106的制作材料可以是铝、钼、铜、钛等单层金属薄膜,也可以是依次层叠的钼层、铝层和钼层,或者是依次层叠的钛层、铝层和钛层等多层金属薄膜。
示例性地,遮光层107的制作材料可以是金属,除了起到为有源层102遮光的作用,也起到了电容板的作用。
示例性地,钝化层109的制作材料可以是硅氧化物。
示例性地,钝化层109的厚度为3000埃~5000埃。
示例性地,有机层110的制作材料可以是树脂等。
可选地,显示面板还包括彩膜层,彩膜层位于第二电极层4背离驱动背板1的一侧。彩膜层包括黑矩阵和多个色阻块,黑矩阵位于任意相邻的两个色阻块之间,多个色阻块与多个子像素70一一对应。
可选地,显示面板还包括封装层,封装层可以位于第二电极层与彩膜层之间,这种设置方式可以称为COE(Color On Encapsulation,将彩膜或彩色滤光片集成于封装层);封装层也可以位于彩膜层远离第二电极层的一侧。
本公开实施例还提供了一种显示面板的制作方法,图11是本公开实施例提供的一种显示面板的制作方法的流程图。该制作方法可以用于制作前述任一种显示面板。如图11所示,该制作方法包括:
在步骤111中,提供驱动背板。
在步骤112中,在驱动背板上形成第一电极层和多个辅助电极结构。
其中,第一电极层包括多个第一电极结构,多个第一电极结构在驱动背板上的正投影与多个辅助电极结构在驱动背板上的正投影无重叠。
在步骤113中,在第一电极层远离驱动背板的表面形成发光层。
在步骤114中,在发光层和多个辅助电极结构的表面形成第二电极层,第二电极层与多个辅助电极结构连接。
其中,第一电极结构包括沿远离驱动背板的方向依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层。辅助电极结构包括沿远离驱动背板的方向依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层,第一电极结构的金属层的厚度小于辅助电极结构的金属层的厚度。
示例性地,步骤111中,包括采用以下方式形成驱动背板:
第一步、提供衬底基板。
第二步、在衬底基板上沉积遮光金属层,然后通过光刻胶涂覆、曝光、显影等工艺得到光刻胶结构,并以该光刻胶结构为掩膜对遮光金属层进行刻蚀,得到遮光层。
第三步、在遮光层上沉积缓冲层。
第四步、在缓冲层上依次沉积一层半导体材料层、绝缘层和栅极金属层,然后通过光刻胶涂覆、曝光、显影等工艺得到光刻胶结构,并以该光刻胶结构为掩膜对栅极金属层进行刻蚀,得到栅极层。其中,栅极层包括多个块状栅极。
第五步、由绝缘层得到栅极绝缘层,由半导体材料层得到有源层。再对于未被栅极层覆盖的部分有源层进行导体化,以保证有源层与后续形成的源漏极层之间具有良好的欧姆接触。
第六步、在栅极层上沉积初始层间介电层,通过光刻胶涂覆、曝光、刻蚀、剥离等一系列工序,形成多个暴露出遮光层的过孔;再通过光刻胶涂覆、曝光、刻蚀、剥离等一系列工序,形成多个暴露出有源层的过孔,得到层间介电层。
第七步、在层间介电层上沉积源漏极金属层,通过光刻胶涂覆、曝光、刻蚀、剥离等一系列工序,得到源漏极层。
第八步、在源漏极层上形成初始钝化层,通过光刻胶的涂覆、曝光、刻蚀、剥离等一系列工序,形成多个暴露出源漏极层的过孔,得到钝化层。
第九步、在钝化层上沉积初始有机层,通过光刻胶的涂覆和曝光,形成有机层。
示例性地,步骤112中,包括采用以下方式形成第一电极结构的第一导电层和辅助电极结构的第一导电层:
第一步、在驱动背板上形成第一导电图案层,第一导电图案层包括在驱动背板上形成第一电极结构的第一子层和辅助电极结构的第一子层,其中,第一电极层的第一子层具有镂空结构。
第二步、在第一导电图案层上形成第二导电图案层,得到第一电极结构的第一导电层和辅助电极结构的第一导电层,第二导电图案层包括第一电极结构的第二子层和辅助电极结构的第二子层,其中,第一电极层的第二子层的至少部分位于镂空结构中,辅助电极结构的第二子层在辅助电极结构的第一子层上。
可选地,该第一步中,先形成一层透明导电材料层,然后通过光刻胶涂覆、曝光、显影等工艺得到光刻胶结构,并以该光刻胶结构为掩膜对透明导电材料层进行刻蚀,将除了第一电极结构区域和辅助电极结构区域以外的透明导电材料层去除,得到第一导电图案层。
第二导电图案层的形成方式可以参见第一导电图案层。
示例性地,步骤112中,包括采用以下方式形成第一电极结构的金属层和辅助电极结构的金属层:
第一步、形成第一金属图案层,第一金属图案层包括辅助电极结构的第一子金属层;
第二步、在第一金属图案层上形成第二金属图案层,得到第一电极结构的金属层和辅助电极结构的金属层,第二金属图案层包括第一电极结构的金属层和辅助电极结构的第二子金属层。
可选地,该第一步包括形成一层金属层;然后通过光刻胶涂覆、曝光、显 影等工艺得到光刻胶结构,并以该光刻胶结构为掩膜对金属层进行刻蚀,将除了辅助电极结构区域以外的金属层进行去除,形成第一金属图案层。
第二金属图案层的形成方式可以参见第一金属图案层的形成方式。
示例性地,在步骤112和步骤113之间,还包括沉积得到像素定义层。
本公开实施例还提供了一种显示装置,该显示装置包括前述任一种显示面板和供电电路,供电电路用于为显示面板供电。
示例性的,本公开实施例提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置具有前述显示面板相同的效果,在此不再赘述。
以上仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种显示面板,其特征在于,所述显示面板包括:驱动背板(1)、第一电极层(2)、发光层(3)、第二电极层(4)和多个辅助电极结构(5);
    所述第一电极层(2)和所述多个辅助电极结构(5)位于所述驱动背板(1)上,所述第一电极层(2)包括多个第一电极结构,所述第一电极结构在所述驱动背板(1)上的正投影与所述多个辅助电极结构(5)在所述驱动背板(1)上的正投影无重叠;
    所述发光层(3)位于所述第一电极层(2)远离所述驱动背板(1)的表面;
    所述第二电极层(4)覆盖所述发光层(3)和所述多个辅助电极结构(5),所述第二电极层(4)与所述辅助电极结构(5)连接;
    其中,所述第一电极结构包括沿远离所述驱动背板(1)的方向依次层叠在所述驱动背板(1)上的第一导电层(21)、金属层(22)和第二导电层(23),所述多个辅助电极结构(5)包括沿远离所述驱动背板(1)的方向依次层叠在所述驱动背板(1)上的第一导电层(51)、金属层(52)和第二导电层(53);所述第一电极结构的金属层(22)的厚度小于所述辅助电极结构(5)的金属层(52)的厚度。
  2. 根据权利要求1所述的显示面板,其特征在于,所述第一电极结构的第一导电层(21)和第二导电层(23),以及所述辅助电极结构(5)的第一导电层(51)和第二导电层(53)均为透明材料。
  3. 根据权利要求2所述的显示面板,其特征在于,所述辅助电极结构(5)的金属层(52)包括沿远离所述驱动背板(1)的方向依次层叠的第一子金属层(52a)和第二子金属层(52b),所述第二子金属层(52b)的厚度与所述第一电极层(2)的金属层(22)的厚度相同,所述第二子金属层(52b)的材料与所述第一电极结构的金属层(22)的材料相同。
  4. 根据权利要求3所述的显示面板,其特征在于,所述第一电极结构的金属层(22)的厚度大于或等于400埃且小于或等于1500埃。
  5. 根据权利要求3所述的显示面板,其特征在于,所述第一子金属层(52a)为单层结构。
  6. 根据权利要求3所述的显示面板,其特征在于,所述第一电极结构的金属 层(22)和所述第二子金属层(52b)均为多层层叠结构。
  7. 根据权利要求1至6中任一项所述的显示面板,其特征在于,所述第一电极结构的第一透明导电层(21)包括沿远离所述驱动背板(1)的方向依次层叠的第一子层(21a)和第二子层(21b),所述第一子层(21a)为晶化氧化铟锡层,所述第二子层(21b)为缓冲氧化铟锡层。
  8. 根据权利要求7所述的显示面板,其特征在于,所述第一电极结构的所述第一子层(21a)的中部具有镂空结构,所述第一电极结构的所述第二子层(21b)的至少部分位于所述镂空结构内。
  9. 根据权利要求8所述的显示面板,其特征在于,所述第一电极结构的所述第一子层(21a)的厚度大于或者等于所述第一电极结构的所述第二子层(21b)的厚度,所述第一电极结构的所述金属层(22)覆盖所述镂空结构,且与所述第一电极结构的所述第一子层(21a)远离所述驱动背板(1)的表面至少部分相连。
  10. 根据权利要求1至6和权利要求8至9中任一项所述的显示面板,其特征在于,所述辅助电极结构(5)的第一透明导电层(51)包括沿远离所述驱动背板(1)的方向依次层叠的第一子层(51a)和第二子层(51b),所述辅助电极结构(5)的所述第一子层(51a)与所述第一电极结构的第一子层(21a)同层设置,且材料相同;所述辅助电极结构(5)的所述第二子层(51b)与所述第一电极结构的第二子层(21b)同层设置,且材料相同。
  11. 根据权利要求1至6和权利要求8至9中任一项所述的显示面板,其特征在于,所述显示面板包括多个子像素(70),所述多个子像素(70)分为多个子像素组(700),所述子像素组(700)中至少一个子像素(70)包括所述辅助电极结构(5);
    其中,每个所述子像素组(700)包括一个所述子像素(7);或者,每个所述子像素组(700)包括M行N列个所述子像素(70),其中,M和N均为正整数。
  12. 根据权利要求11所述的显示面板,其特征在于,所述发光层(3)包括多个发光结构,所述驱动背板(1)包括多个驱动单元(10);
    所述多个子像素(70)中的第一子像素包括一个所述辅助电极结构(5)、两个所述第一电极结构、两个所述发光结构、部分所述第二电极层(40)和第 一驱动单元,所述第一驱动单元为所述多个驱动单元中的一个;
    所述第一子像素内,所述第一驱动单元与两个所述第一电极结构电连接。
  13. 根据权利要求1至6、权利要求8至9和权利要求12中任一项所述的显示面板,其特征在于,所述多个辅助电极结构(5)中,沿平行于驱动背板(1)的方向,所述第二导电层(53)靠近任一所述第一电极结构的边沿,凸出于所述金属层(52)靠近同一个第一电极结构的边沿,形成凸出结构(531),所述凸出结构(531)将所述第二电极层(4)断开,所述第二电极层(4)的断开处与所述辅助电极结构(5)的金属层(52)连接。
  14. 一种显示面板的制作方法,其特征在于,所述制作方法包括:
    提供驱动背板;
    在所述驱动背板上形成第一电极层和多个辅助电极结构,所述第一电极层包括多个第一电极结构,所述多个第一电极结构在所述驱动背板上的正投影与所述多个辅助电极结构在所述驱动背板上的正投影无重叠;
    在所述第一电极层远离所述驱动背板的表面形成发光层;
    在所述发光层和所述多个辅助电极结构的表面形成第二电极层,所述第二电极层与所述多个辅助电极结构连接;
    其中,所述第一电极结构包括沿远离所述驱动背板的方向依次层叠在驱动背板上的第一透明导电层、金属层和第二透明导电层;所述辅助电极结构包括沿远离所述驱动背板的方向依次层叠在所述驱动背板上的第一透明导电层、金属层和第二透明导电层,所述第一电极结构的金属层的厚度小于所述辅助电极结构的金属层的厚度。
  15. 一种显示装置,其特征在于,所述显示装置包括如权利要求1至13中任一项所述的显示面板和供电电路,所述供电电路用于为所述显示面板供电。
PCT/CN2024/076557 2023-03-20 2024-02-07 显示面板及其制作方法、显示装置 WO2024193260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310284020.5A CN116322160A (zh) 2023-03-20 2023-03-20 显示面板及其制作方法、显示装置
CN202310284020.5 2023-03-20

Publications (1)

Publication Number Publication Date
WO2024193260A1 true WO2024193260A1 (zh) 2024-09-26

Family

ID=86812948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/076557 WO2024193260A1 (zh) 2023-03-20 2024-02-07 显示面板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN116322160A (zh)
WO (1) WO2024193260A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116322160A (zh) * 2023-03-20 2023-06-23 合肥鑫晟光电科技有限公司 显示面板及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728054A (zh) * 2019-01-02 2019-05-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN112103399A (zh) * 2020-09-23 2020-12-18 合肥鑫晟光电科技有限公司 显示面板及其制造方法、显示装置
WO2021093687A1 (zh) * 2019-11-13 2021-05-20 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN116322160A (zh) * 2023-03-20 2023-06-23 合肥鑫晟光电科技有限公司 显示面板及其制作方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728054A (zh) * 2019-01-02 2019-05-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
WO2021093687A1 (zh) * 2019-11-13 2021-05-20 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112103399A (zh) * 2020-09-23 2020-12-18 合肥鑫晟光电科技有限公司 显示面板及其制造方法、显示装置
CN116322160A (zh) * 2023-03-20 2023-06-23 合肥鑫晟光电科技有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN116322160A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11121198B2 (en) Organic light emitting display device having auxiliary connection electrode and method of manufacturing the same
US20220384531A1 (en) Display substrate and manufacturing method therefor, and display panel and display device
US10615231B2 (en) Organic light emitting diode substrate, method for manufacturing the same, and display panel
US9062852B2 (en) Organic light emitting display panel and method of manufacturing the same
US8926390B2 (en) Method for manufacturing organic EL display and organic EL display
CN112490272B (zh) 一种显示基板及其制备方法、显示装置
CN109244269B (zh) 显示面板及其制造方法、显示装置
WO2020192051A1 (zh) 显示面板及其制备方法
US10403696B2 (en) Organic light emitting display device and method of fabricating the same
JP2003179069A (ja) 薄膜トランジスタ、液晶表示装置、有機エレクトロルミネッセンス素子、ならびに表示装置用基板およびその製造方法
KR20180068634A (ko) 유기 발광 표시 장치
JP2005045242A (ja) 電界発光装置の薄膜トランジスタ、これを利用した電界発光装置及びこれの製造方法
US20240164179A1 (en) Light-emitting substrate and manufacturing method thereof, and light-emitting apparatus
WO2024193260A1 (zh) 显示面板及其制作方法、显示装置
CN111554722A (zh) 显示基板及显示装置
US20080197354A1 (en) Thin film transistor, an organic light emitting device including the same, and a manufacturing method thereof
US20220293704A1 (en) Display substrate and manufacturing method therefor, and display device
CN113471384A (zh) 一种显示面板及其制备方法、显示装置
WO2024159999A1 (zh) 显示基板及其制备方法、显示装置
US20230422561A1 (en) Flexible Display Device and Method of Manufacturing the Same
GB2614941A (en) Light emitting display apparatus
WO2023097716A1 (zh) 显示面板及显示装置
US20230369539A1 (en) Display Panel and Manufacturing Method Therefor, and Display Device
WO2024197585A1 (zh) 显示面板及其制备方法、显示装置
WO2024222317A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24773828

Country of ref document: EP

Kind code of ref document: A1