Nothing Special   »   [go: up one dir, main page]

WO2024181313A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2024181313A1
WO2024181313A1 PCT/JP2024/006592 JP2024006592W WO2024181313A1 WO 2024181313 A1 WO2024181313 A1 WO 2024181313A1 JP 2024006592 W JP2024006592 W JP 2024006592W WO 2024181313 A1 WO2024181313 A1 WO 2024181313A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
plunger
current value
time
electric motor
Prior art date
Application number
PCT/JP2024/006592
Other languages
French (fr)
Japanese (ja)
Inventor
祥太 鈴木
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Publication of WO2024181313A1 publication Critical patent/WO2024181313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/06Hand-held nailing tools; Nail feeding devices operated by electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27FDOVETAILED WORK; TENONS; SLOTTING MACHINES FOR WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES
    • B27F7/00Nailing or stapling; Nailed or stapled work
    • B27F7/02Nailing machines
    • B27F7/05Driving means
    • B27F7/11Driving means operated by electric power

Definitions

  • the present invention relates to a work machine.
  • Patent Document 1 discloses a work machine that stops the plunger that constitutes the striking part at a standby position after the striking part strikes a stopper.
  • This work machine is equipped with a position detection switch that detects the position of the plunger.
  • the plunger and counterweight move in conjunction with each other, and when the counterweight turns on the position detection switch, it is detected that the plunger has reached the standby position.
  • the working machine comprises a motor, an ejection unit that supports a stopper so that it can be ejected, an impact unit that is movable in a first direction and a second direction that is opposite to the first direction and that can strike the stopper supported by the ejection unit by moving in the first direction, a biasing unit that biases the impact unit in the first direction, an operating unit that is operated by an operator, a control unit that controls the drive of the motor, and a rotating unit that rotates by receiving the drive force of the motor.
  • the rotating unit rotates, moving from the first position to the second position in the second direction against the biasing force of the biasing unit, and disengaging from the rotating unit at the second position, moving from the second position to the third position in the first direction by the biasing force of the biasing unit to strike the stopper, and reengaging with the rotating unit at the third position, the rotating unit rotates, moving from the third position to the first position in the second direction against the biasing force of the biasing unit, and stopping the rotating unit in the first position while engaged with the rotating unit.
  • the control unit is capable of detecting a load on the motor, and stops the motor based on the load to stop the striking unit at the first position.
  • FIG. 2 is a front view showing the structure of the working machine according to the embodiment. 2 is a cross-sectional view showing a cross-sectional structure taken along line AA in FIG. 1. 4 is a cross-sectional view showing the state inside the working machine when the plunger is located at a standby position. FIG. 4 is a cross-sectional view showing the internal state of the working machine when the plunger is located at the top dead center. FIG. 4 is a cross-sectional view showing the internal state of the working machine when the plunger is located at the bottom dead center.
  • FIG. 2 is a block diagram showing an outline of the main configuration of a control system for a work machine.
  • FIG. 6 is a diagram showing a change in current of an electric motor accompanying the movement of a plunger.
  • FIG. 11 is a flowchart illustrating a process flow during operation control.
  • FIG. 13 is a diagram showing a change in a differential current value accompanying the movement of a plunger.
  • 11 is a flowchart illustrating a process flow at the time of motion determination. 13 is a diagram showing a change in current detected when the plunger moves from a position different from the standby position.
  • FIG. 11 is a block diagram showing an outline of the configuration of the main parts of a control unit of a work machine according to a second modified example.
  • FIG. 11 is a flowchart illustrating a processing flow for the operation of a work machine according to a second modified example.
  • FIG. 11 is a network configuration diagram showing the structure of a neural network of a work machine according to a second modified example.
  • Figure 1 is a front view of the driving machine 100
  • Figure 2 is a cross-sectional view of the driving machine 100 taken along line A-A in Figure 1.
  • the driving machine 100 includes a housing section 111, an impact mechanism 112, a magazine 113, an electric motor 114, a transmission mechanism 115, a control section 116, a battery pack 117, and a counterweight section 118.
  • the upper part of the paper in Figures 1 and 2 may be referred to as the top, and the lower part as the bottom.
  • the left part of Figure 1 may be referred to as the right, and the right part as the left.
  • the left part of Figure 2 may be referred to as the rear, and the right part as the front.
  • the vertical direction toward the bottom may be referred to as the first direction
  • the vertical direction toward the top may be referred to as the second direction.
  • the housing section 111 is an outer element of the driver 100.
  • the housing section 111 has a body section 119, a handle section 120 connected to the body section 119, and a motor case 121 connected to the body section 119.
  • An attachment section 122 is connected to the handle section 120 and the motor case 121.
  • the body 119 has a cylindrical shape that extends in the vertical direction.
  • the body 119 contains the impact mechanism 112, the transmission mechanism 115, the counterweight 118, etc., which will be described later.
  • An ejection section 123 with an ejection path 124 is provided at the tip of the body 119. That is, the ejection section 123 is fixed to the body 119.
  • a fastener 125 contained in a magazine 113, which will be described later, is supplied to and supported in the ejection path 124 of this ejection section 123.
  • the fastener 125 supplied to the ejection path 124 is struck by a driver blade 127, which will be described later, it is ejected toward and driven into the workpiece W1.
  • the ejection section 123 supports the fastener 125 so that it can be ejected.
  • An opening 139 (see Figures 3, 4, and 5) is formed on the front side of the body 119, which is used when replacing the driver blade 127 described below or when performing maintenance.
  • the body 119 is provided with a cover portion 135 that covers this opening 139.
  • the cover portion 135 is, for example, a resin member, and is attached so that the opening 139 can be opened and closed.
  • the cover portion 135 is removably fixed to the body 119 by a fastener such as a screw.
  • the handle portion 120 extends in the front-to-rear direction of the driving tool 100 at the rear of the body portion 119.
  • a trigger 142 and a trigger switch 143 are provided below the handle portion 120.
  • the push lever 133 provided at the bottom of the injection portion 123 descends, and when the push lever 133 abuts against the material to be driven W1, the trigger switch 143 turns on.
  • the trigger switch 143 turns off.
  • the motor case 121 has a cylindrical shape that extends in the front-to-rear direction of the driver 100 at the rear of the body 119.
  • the motor case 121 is a housing that houses the electric motor 114, the control unit 116, etc., which will be described later.
  • the mounting part 122 is disposed at the rear end of the handle part 120 and the motor case 121.
  • the battery pack 117 which will be described later, is removably attached to the mounting part 122.
  • a control part 116 that controls the operation of the driver 100 is provided within the mounting part 122.
  • the magazine 113 is disposed below the body 119 and the motor case 121.
  • the magazine 113 is a storage section that stores a plurality of fasteners 125.
  • the fasteners 125 are rod-shaped, for example, including nails.
  • the magazine 113 has a feeder. The feeder sends the fasteners 125 stored in the magazine 113 to the ejection path 124.
  • the impact mechanism 112 is provided on both the inside and outside of the body 119.
  • the impact mechanism 112 has a plunger 126 arranged inside the body 119, a driver blade 127 attached to the plunger 126, and a coil spring 136 that can expand and contract in the vertical direction.
  • the coil spring 136 abuts against the plunger 126 at its end in the first direction, which is the impact direction.
  • the coil spring 136 is a biasing part that applies a biasing force to the plunger 126 in the vertical downward direction (first direction).
  • the plunger 126 is made of, for example, metal or synthetic resin.
  • the plunger 126 is arranged on the first direction (downward) side relative to the coil spring 136.
  • the plunger 126 is arranged so that it can move in the first direction by receiving a biasing force from the coil spring 136.
  • the plunger 126 is also arranged so that it can move in the second direction (upward) against the biasing force of the coil spring 136 by the transmission mechanism 115 described later.
  • the driver blade 127 is a member that drives in the stopper 125, and is made of, for example, metal.
  • the driver blade 127 is attached to the plunger 126, and can move up and down along the injection path 124 of the injection part 123 described above.
  • the driver blade 127 moves in the first direction together with the plunger 126, and strikes the stopper 125 supplied to the injection path 124.
  • the plunger 126 and the driver blade 127 are movable in the first direction and in a second direction opposite to the first direction, and are an impact part that can strike the stopper 125 supported by the injection part 123 by moving in the first direction.
  • the electric motor 114 has a rotor and a stator (not shown), and a motor shaft 146 is attached to the rotor.
  • the motor shaft 146 is connected to an input element 148 of a reduction gear (not shown) disposed in the motor case 121.
  • This reduction gear further has multiple sets of planetary gear mechanisms and an output element 149.
  • the driving force generated by the rotation of the electric motor 114 i.e., the rotational force generated by the rotation of the motor shaft 146, rotates the transmission mechanism 115 (described later) via the input element 148 and the output element 149.
  • the transmission mechanism 115 is disposed within the body 119 and is a rotating part that rotates upon receiving the rotational driving force of the electric motor 114. Specifically, the transmission mechanism 115 converts the rotational force of the motor shaft 146 into the operating force of the impact mechanism 112 and the operating force of the counterweight part 118. The transmission mechanism 115 biases the plunger 126 upward (second direction), which is the return direction of the coil spring 136, and biases the counterweight part 118 downward (first direction), which is the impact direction of the coil spring 136. As a result, the transmission mechanism 115 compresses the coil spring 136.
  • the transmission mechanism 115 is composed of, for example, a first gear 150, a second gear 151, and a third gear 152.
  • a weight bumper 137 against which the counterweight portion 118 can come into contact when released from the biasing force of the transmission mechanism 115, and a plunger bumper 138 against which the plunger 126 can come into contact are provided inside the body portion 119.
  • the control unit 116 is a microcomputer having an input/output interface, a calculation processing unit, and a memory unit.
  • the control unit 116 controls the driving of the electric motor 114, as will be described in detail later.
  • the battery pack 117 can be detachably attached to the mounting portion 122.
  • the battery pack 117 is a DC power source, and the power of the battery pack 117 can be supplied to the electric motor 114.
  • the battery pack 117 is a power source unit that supplies power to the electric motor, and the electric motor 114 is driven by the power supplied from the battery pack 117.
  • Figures 3, 4, and 5 are cross-sectional views of the driving machine 100 similar to those in Figure 2, but show the driving machine 100 with the cover 135 removed.
  • Figure 3 shows the state in which the plunger 126 is in the standby position (first position)
  • Figure 4 shows the state in which the plunger 126 is in the top dead center (second position) above the standby position
  • Figure 5 shows the state in which the plunger 126 is in the bottom dead center (third position) below the standby position and the top dead center.
  • the operator grasps the handle portion 120 with his/her hand, presses the tip of the injection portion 123 against the workpiece W1, and applies an operating force to the trigger 142, causing the push lever 133 to descend.
  • the trigger switch 143 turns on.
  • the trigger 142 and the push lever 133 function as an operating unit that is operated by the operator.
  • the control unit 116 detects that the trigger switch 143 is on, it causes the battery pack 117 to supply power to the electric motor 114, causing the motor shaft 146 to rotate in the forward direction.
  • the rotational force of the motor shaft 146 is amplified by a reduction gear (not shown) and transmitted to the first gear 150.
  • a reduction gear (not shown)
  • the first gear 150 rotates
  • the second gear 151 also rotates
  • the third gear 152 also rotates.
  • the plunger 126 and the driver blade 127 move upward, i.e., in the second direction (rising).
  • the counterweight portion 118 moves downward, i.e., in the first direction (falling).
  • the plunger 126 further rises, and then the plunger 126 reaches the top dead center (see FIG. 4).
  • the transmission mechanism 115 rotates, and the plunger 126 and the driver blade 127 move in the second direction against the biasing force of the coil spring 136 from the standby position to the top dead center. At this time, the coil spring 136 contracts and is in a state where maximum energy is stored.
  • the driver blade 127 When the plunger 126 descends, the driver blade 127 also descends and strikes the stop 125 located in the injection path 124. As a result, the stop 125 is ejected from the ejection section 123 and driven into the workpiece W1.
  • the plunger 126 stops descending when it reaches the plunger bumper 138, i.e., when it reaches the bottom dead center (see FIG. 5). That is, the plunger 126 and the driver blade 127 move in the first direction (downward) from the top dead center to the bottom dead center by the biasing force of the coil spring 136 as the plunger 126 and the transmission mechanism 115 are disengaged at the top dead center, striking the stop 125.
  • the plunger 126 re-engages with the transmission mechanism 115.
  • the transmission mechanism 115 is rotated by the motor shaft 146, which rotates forward together with the electric motor 114, which rotates by the power supplied from the battery pack 117. This rotation of the transmission mechanism 115 causes the plunger 126 and the driver blade 127 to rise against the biasing force of the coil spring 136.
  • the control unit 116 stops the plunger 126 at a standby position on the second direction (upward) side of the bottom dead center (see FIG. 3).
  • the plunger 126 and the driver blade 127 re-engage with the transmission mechanism 115 at the bottom dead center, and then the transmission mechanism 115 rotates, causing the plunger 126 and the driver blade 127 to move in the second direction (upward) to the standby position against the biasing force of the coil spring 136.
  • the control unit 116 detects that the plunger 126 has reached the standby position based on the load on the electric motor 114, as described in detail below, and stops the operation of the electric motor 114. As a result, the plunger 126 and the driver blade 127 stop at the standby position as the rotation of the transmission mechanism 115 stops while they are engaged with the transmission mechanism 115 at the standby position.
  • Figure 6 is a block diagram showing an outline of the main configuration of the control system of the nail driver 100.
  • the nail driver 100 is equipped with a power switch circuit 200, a power supply voltage supply circuit 201, a voltage detection circuit 202, a current detection circuit 203, a trigger switch operation detection circuit 204, a push lever operation detection circuit 205, a nail remaining amount switch 207, a nail remaining amount switch operation detection circuit 208, a rotation position detection circuit 209, a rotation speed detection circuit 210, a control signal output circuit 211, an inverter circuit 212, a position detection switch 213, a position detection switch operation detection circuit 214, etc.
  • the power switch circuit 200 is a circuit that switches the connection between the battery pack 117 and the power supply voltage supply circuit 201 depending on the on/off state of the trigger switch 143 and instructions from the control unit 116.
  • the power supply voltage supply circuit 201 is a constant voltage circuit that supplies the driving power of the battery pack 117 to each part of the driving machine 100 when the power switch circuit 200 is turned on.
  • the voltage detection circuit 202 detects the voltage of the battery pack 117 and outputs a signal indicating the detected voltage to the control unit 116.
  • the current detection circuit 203 detects the current value of the driving current supplied from the battery pack 117 to the electric motor 114 via the inverter circuit 212, and outputs a signal indicating the detected current value to the control unit 116.
  • the trigger switch operation detection circuit 204 detects the operation of the trigger 142 by the operator and outputs a signal (operation signal) to the control unit 116.
  • the push lever operation detection circuit 205 detects that the push lever 133 has come into contact with the workpiece W1 and outputs a signal to the control unit 116.
  • the nail remaining amount switch 207 is provided to engage with a feeding member such as a feeder at the end of the magazine 113 on the ejection section 123 side, and detects the remaining amount (e.g., 0 to 5 nails remaining) of fasteners 125 (connected nails) loaded in the magazine 113.
  • the nail remaining amount switch operation detection circuit 208 detects the output of the nail remaining amount switch 207 and outputs a signal indicating the detection result to the control unit 116.
  • the rotational position detection circuit 209 is, for example, a Hall IC, which detects the position of the rotor and motor shaft 146 of the electric motor 114 in the rotational direction and outputs a signal indicating the rotational position to the control unit 116 and the rotation speed detection circuit 210.
  • the rotation speed detection circuit 210 detects the rotation speed of the electric motor 114 based on the number of signals output from the rotational position detection circuit 209 counted within a unit time and outputs it to the control unit 116.
  • the inverter circuit 212 is provided in the electric circuit between the stator of the electric motor 114 and the battery pack 117.
  • the control signal output circuit 211 is controlled by the control unit 116 and outputs signals that turn on and off the switching elements of the inverter circuit 212 individually.
  • the position detection switch 213 is a switch operated by the counterweight portion 118, which moves in conjunction with the plunger 126.
  • the position detection switch 213 is turned on when the counterweight portion 118, which has risen to the top dead center, comes into contact with it.
  • the position detection switch operation detection circuit 214 detects that the position detection switch 213 has been turned on, and outputs a signal to the control unit 116.
  • control unit 116 detects the load on the electric motor 114, and controls the operation of the electric motor 114 based on the detected load (operation control), determines the operation of the impact mechanism 112 (operation process determination), and determines whether there is an abnormality in the operation of the impact mechanism 112 (abnormality determination).
  • control unit 116 determines based on the detected load that the plunger 126 has reached the standby position after the fastener 125 has been driven in, it stops the operation of the electric motor 114.
  • the control unit 116 detects the load by detecting the drive current of the electric motor 114, which is driven by power supplied by the battery pack 117. In other words, the control unit 116 stops the operation of the electric motor 114 based on the current value detected by the current detection circuit 203.
  • the control unit 116 detects the drive current of the electric motor 114, for example, every 100 ⁇ s, and converts the 10 current values detected every 100 ⁇ s into a 1 ms current value. Specifically, the control unit 116 adopts the maximum value of the total of 10 current values detected every 100 ⁇ s as the 1 ms current value.
  • the adopted current value is stored in a storage medium such as a memory in the control unit 116.
  • Figure 7 is a diagram showing the current value detected when the plunger 126 moves from the standby position to the top dead center, the bottom dead center, and then back to the standby position.
  • the vertical axis represents the current value
  • the horizontal axis represents time.
  • Figure 7 shows the case where the trigger switch 143 is turned on at time 0 ms.
  • the electric motor 114 starts to rotate due to the power supplied from the battery pack 117 as described above.
  • the plunger 126 is stopped in the standby position (first position) and is biased downward (in the first direction) by the coil spring 136, so a large load is applied when the electric motor 114 starts to rotate, and the starting power (current) becomes large.
  • the detected current value increases.
  • time t1 when the plunger 126 starts to rise and the influence of the starting power becomes low, the increase in the detected current value is suppressed, and the current value then remains at an approximately constant value.
  • the plunger 126 When the plunger 126 reaches the top dead center (second position) and then disengages from the third gear 152 and the coil spring 136 is released, the plunger 126 starts to descend (time t2). When the plunger 126 descends, the load from the plunger 126 is no longer applied to the transmission mechanism 115, so the electric motor 114 rotates with a small load and the detected current value decreases rapidly. The current value decreases until the plunger 126 reaches the bottom dead center (third position) (time t5).
  • the control unit 116 stops the rotation of the electric motor 114 after a predetermined standby time has elapsed.
  • the standby time can be considered to be the delay time between when the current value becomes equal to or greater than the first threshold value th1 described below and when the control unit 116 stops the electric motor 114.
  • the control unit 116 uses the current value detected by the current detection circuit 203 to raise the plunger 126 that has reached the bottom dead center to the standby position (pre-winding) and stop it. Specifically, the control unit 116 uses a first threshold value th1 and a second threshold value th2 to compare the detected current value. The first threshold value th1 is used to determine whether the plunger 126 has reached the vicinity of the standby position due to pre-winding. Specifically, the control unit 116 determines that the plunger 126 has reached the vicinity of the standby position due to pre-winding when the state in which the detected current value is equal to or greater than the first threshold value th1 has elapsed for a first determination time (e.g., 5 ms) or more.
  • a first determination time e.g., 5 ms
  • control unit 116 detects that the current value has become equal to or greater than the first threshold value th1 at time t6, and determines that the plunger 126 has reached the vicinity of the standby position when the state in which the current value is equal to or greater than the first threshold value th1 continues until time t7 when the first determination time has elapsed.
  • the second threshold th2 is used to determine whether or not preliminary winding is possible after the plunger 126, which has reached the top dead center, descends toward the bottom dead center. Specifically, the control unit 116 determines that preliminary winding of the plunger 126 is possible when the state in which the detected current value is equal to or less than the second threshold th2 has elapsed for a second determination time (e.g., 10 ms) or more. That is, the control unit 116 detects that the current value has become equal to or less than the second threshold th2 at time t3, and determines that preliminary winding is possible when the current value remains equal to or less than the second threshold th2 until time t5, when the second determination time has elapsed.
  • the first threshold th1 and the second threshold th2 may be the same value or different values.
  • the control unit 116 changes the standby time when stopping the rotation of the electric motor 114 (i.e., the delay time after the current value becomes equal to or greater than the first threshold value th1) according to the voltage of the battery pack 117. In this case, the control unit 116 lengthens the standby time when the voltage value of the battery pack 117 detected by the voltage detection circuit 202 becomes smaller than a preset value.
  • control unit 116 detects the voltage value of the battery pack 117 before the plunger 126 starts to rise (start) from the standby position, that is, before the electric motor 114 starts to rotate.
  • the control unit 116 lengthens the standby time by 1 ms every time the detected voltage value becomes 0.4 V lower than the preset value. Additionally, the control unit 116 may linearly increase the standby time in response to a decrease in the detected voltage value.
  • control unit 116 The process steps performed by the control unit 116 in the operation control will be described with reference to the flowchart shown in FIG. 8.
  • the process steps shown in FIG. 8 are performed by the control unit 116 reading a program stored in the storage unit and executing the program.
  • step S10 the control unit 116 determines whether the current value detected by the current detection circuit 203 is equal to or less than the second threshold value th2. If the current value is equal to or less than the second threshold value th2, the control unit 116 makes a positive determination and the process proceeds to step S11. If the current value is greater than the second threshold value th2, the control unit 116 makes a negative determination and the process of step S10 is repeated.
  • step S11 the control unit 116 determines whether or not the second determination time of 10 ms has elapsed. If the second determination time has elapsed, the control unit 116 makes a positive determination. The control unit 116 then determines that pre-winding of the plunger 126 is possible. Processing then proceeds to step S12. If the second determination time has not elapsed, the control unit 116 makes a negative determination, and processing returns to step S10.
  • step S12 the control unit 116 obtains the current value, which is the load of the electric motor 114 performing the preliminary winding, from the current detection circuit 203, and determines whether the current value is equal to or greater than the first threshold value th1. If the current value is equal to or greater than the first threshold value th1, the control unit 116 makes a positive determination and the process proceeds to step S13. If the current value is less than the first threshold value th1, the control unit 116 makes a negative determination and the process of step S12 is repeated.
  • step S13 the control unit 116 determines whether or not the first determination time of 5 ms has elapsed. If the first determination time has elapsed, the control unit 116 makes a positive determination, and the process proceeds to step S14. If the first determination time has not elapsed, the control unit 116 makes a negative determination, and the process returns to step S12.
  • step S14 it is determined whether the waiting time has elapsed. If the waiting time has elapsed, the control unit 116 makes a positive determination, and the process proceeds to step S15. If the waiting time has not elapsed, the control unit 116 makes a negative determination, and the process of step S14 is repeated. In step S15, the control unit 116 stops the electric motor 114 and ends the process.
  • control unit 116 determines the operation step of the plunger 126 and the driver blade 127 based on the amount of change in the detected load. In this case, the control unit 116 also detects the load by detecting the drive current of the electric motor 114, which is driven by the power supplied by the battery pack 117. In other words, the control unit 116 determines the operation step of the plunger 126 and the driver blade 127 based on the amount of change in the current value detected by the current detection circuit 203.
  • control unit 116 detects the drive current of the electric motor 114, for example, every 100 ⁇ s, and converts the 10 current values detected every 100 ⁇ s into a current value for 1 ms. The control unit 116 then calculates the difference (differential current value) between a certain current value and the current value converted from that current value 10 ms earlier, a predetermined time interval, as the amount of change in the current value. The control unit 116 determines the operating process of the plunger 126 and the driver blade 127 based on the change in the differential current value obtained at each of the above-mentioned time intervals.
  • Figure 9 is a diagram showing the change in the differential current value when the plunger 126 moves from the standby position to the top dead center, the bottom dead center, and then back to the standby position.
  • the vertical axis represents the differential current value
  • the horizontal axis represents time.
  • Figure 9 shows the case where the trigger switch 143 is turned on at time 0 ms.
  • the starting power (current) is large immediately after the electric motor 114 starts to rotate. Therefore, at time t10, the differential current value increases sharply. Then, when the plunger 126 starts to rise, the influence of the starting power (current) decreases, and the differential current value decreases. Therefore, at time t10, the differential current value becomes a maximum value (up-peak). At time t10 when this up-peak is detected, the control unit 116 determines that the plunger 126 has started to rise (start) as an operating process.
  • the plunger 126 After the plunger 126 reaches the top dead center at time t12, the plunger 126 disengages from the transmission mechanism 115 and starts to descend, and the differential current value starts to increase. Therefore, at time t12, the differential current value becomes a minimum value (down peak). At time t12 when this down peak is detected, the control unit 116 determines that the start of the plunger 126 is complete as an operating process.
  • the control unit 116 detects that the differential current value decreases for a predetermined time (e.g., 5 ms) or more after the acceleration increase is determined, then increases once, and then increases again for a predetermined time (e.g., 5 ms) or more, the control unit 116 determines that the striking process in which the driver blade 127 strikes the stopper 125 is the operation process.
  • the differential current value decreases from time t11 to time t12, increases from time t12 to time t13, and decreases from time t13 to time t14. Therefore, the control unit 116 determines that the driver blade 127 strikes the stopper 125 and the stopper 125 is ejected.
  • control unit 116 The processes performed by the control unit 116 in the operation determination will be described with reference to the flowchart shown in FIG. 10. Each process shown in FIG. 10 is performed by the control unit 116 reading a program stored in the storage unit and executing the program.
  • step S20 the control unit 116 detects a steep increase in the calculated differential current value.
  • step S21 the control unit 116 determines whether or not an up-peak has occurred in the change in the differential current value. If an up-peak has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines the start of the plunger 126 as an operating step. The process then proceeds to step S22. If an up-peak has not occurred, the control unit 116 makes a negative determination, and the process of step S21 is repeated.
  • step S22 the control unit 116 determines whether or not a zero cross has occurred in the change in the calculated differential current value. If a zero cross has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the plunger 126 is accelerating upward as an operating step. The process then proceeds to step S23. If a zero cross has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S22 is repeated.
  • step S23 the control unit 116 determines whether a down-peak has occurred in the change in the calculated differential current value. If a down-peak has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the start of the plunger 126 has been completed as an operation step. Thereafter, the process proceeds to step S24. If a down-peak has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S23 is repeated.
  • step S24 the control unit 116 determines whether the change in the calculated differential current value increases once and then decreases, i.e., whether a peak occurs again due to an increase or decrease in the change in the differential current value after a down-peak. If a peak occurs in the change in the differential current value by increasing after a down-peak and then decreasing again, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the operation process is the striking process in which the driver blade 127 strikes the stopper 125. The process then proceeds to step S25. If a peak does not occur in the change in the differential current value after the down-peak, the control unit 116 makes a negative determination, and the process of step S24 is repeated.
  • step S25 the control unit 116 determines whether or not a zero cross has occurred in the change in the calculated differential current value. If a zero cross has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the preliminary winding of the plunger 126 has started as an operating process. Thereafter, the process proceeds to step S26. If a zero cross has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S25 is repeated. In step S26, the control unit 116 determines that the preliminary winding of the plunger 126 is in progress as an operating process based on the calculated differential current value, and ends the process when the plunger 126 reaches the standby position.
  • the control unit 116 determines whether or not an abnormality has occurred in the operation process of the impact mechanism 112 based on the detected load or change in load. Specifically, the control unit 116 determines whether or not an abnormality has occurred based on the change in the current value detected during operation control or the differential current value detected during operation determination. Specifically, the control unit 116 determines that an abnormality has occurred in the movement of the impact mechanism 112 when the current value becomes equal to or less than the second threshold value th2 after a predetermined response error timing.
  • control unit 116 determines whether or not an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or less than the second threshold value th2. In addition, the control unit 116 determines that an abnormality has occurred in the movement of the impact mechanism 112 when the current value becomes equal to or more than the first threshold value th1 after a predetermined timeout error timing. In other words, the control unit 116 determines whether there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs the operation until the detected current value becomes equal to or greater than the first threshold value th1.
  • the control unit 116 determines that an abnormality has occurred in the drive of the impact mechanism 112 when a waveform different from the waveform showing the change in the differential current value shown in FIG. 9 is detected. In other words, the control unit 116 determines whether the movement of the plunger 126 and the driver blade 127 has been performed normally based on the change in the differential current value, which is the amount of change in current at each predetermined time interval. For example, the control unit 116 determines that an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 when the above-mentioned impact process is not determined until the detected current value becomes equal to or greater than the first threshold value th1.
  • control unit 116 determines that an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 when the impact process is not determined between the time the operator performs the operation and the time the electric motor 114 is stopped based on the load and the plunger 126 and the driver blade 127 are stopped at the standby position.
  • the control unit 116 performs the abnormality determination after the current value becomes equal to or greater than the first threshold value th1 and the plunger 126 is stopped.
  • Figures 11 (A) to (D) are diagrams showing the waveforms of the current values detected when the plunger 126, which is not in the standby position, moves, with the vertical axis representing the differential current value and the horizontal axis representing time. Note that in Figures 11 (A) to (D), 100 ms is the timing for determining a response error, and 300 ms is the timing for determining a timeout error.
  • Figure 11 (A) shows the waveform of the current value when the plunger 126, which was located at the bottom dead center, starts due to a factor such as a voltage drop in the battery pack 117.
  • the plunger 126 starts starting from the bottom dead center, so it starts descending without reaching the top dead center.
  • the detected current value is equal to or less than the second threshold value th2 at time t20 before the response error.
  • the plunger 126 stops at the standby position.
  • the control unit 116 determines that an abnormality has occurred.
  • control unit 116 warns the operator that an abnormality has occurred using, for example, a warning unit such as a warning lamp (not shown). Then, the control unit 116 prevents the driving machine 100 from operating, such as by not driving the electric motor 114.
  • a warning unit such as a warning lamp (not shown).
  • Figure 11 (B) shows the waveform of the current value when the plunger 126, which was located above the bottom dead center, starts to start.
  • the plunger 126 starts to descend without reaching the top dead center.
  • the detected current value becomes equal to or less than the second threshold value th2 at time t21 before the response error.
  • the plunger 126 stops at the standby position.
  • the time required for the plunger 126 to stop at the standby position is shorter than in the case shown in Figure 11 (A).
  • control unit 116 determines that an abnormality has occurred if the impact process has not been determined based on the change in the differential current value. In this case, the control unit 116 warns the operator that an abnormality has occurred, for example, by turning on a warning lamp (not shown). The control unit 116 then prevents the driver 100 from operating, for example by not driving the electric motor 114.
  • Figure 11 (C) shows the waveform of the current value when the plunger 126 starts to move, which is located above the position where the plunger 126 stopped in Figure 11 (B) and below the standby position. Also, the control unit 116 is assumed to determine the impact process based on the change in the differential current value. In this case, the plunger 126 starts to move down after reaching the top dead center, since it starts to move up from near the standby position.
  • the detected current value becomes equal to or less than the second threshold value th2 at time t22 after the response error.
  • the detected current value becomes equal to or greater than the first threshold value th1 at time t23 after the timeout error.
  • the control unit 116 determines that an abnormality has occurred and stops driving the electric motor 114.
  • Figure 11 (D) shows the waveform of the current value when the plunger 126, which was located near the top dead center, begins to start. It is also assumed that the control unit 116 determines the impact process based on the change in the differential current value. In this case, the plunger 126 starts from near the standby position, so it begins to descend after reaching the top dead center. As shown in the figure, the detected current value is equal to or less than the second threshold value th2 at time t24 before the response error. Then, when the current value becomes equal to or greater than the first threshold value th1, the plunger 126 stops. In this case, the control unit 116 determines that there is no abnormality in the plunger 126.
  • the control unit 116 can detect the load of the electric motor 114.
  • the control unit 116 stops the electric motor 114 based on the detected load, thereby stopping the plunger 126 and the driver blade 127, which move in the vertical direction by the driving force of the electric motor 114 and the biasing force of the coil spring 136, at the standby position. This makes it possible to determine that the plunger 126 has reached the standby position based on the load of the electric motor 114, so that the plunger 126 and the driver blade 127 can be stopped at the standby position with high accuracy.
  • the variation in the time from when the trigger 142 and the push lever 133 are turned on and the electric motor 114 starts driving to when the fastener 125 is driven is reduced, which contributes to improving the workability of the worker using the driving machine 100.
  • a position detection switch such as the position detection switch 213
  • the position detection switch 213 may be eliminated, which reduces the number of parts and makes it possible to make the driver 100 lighter and smaller.
  • the control unit 116 detects the drive current of the electric motor 114 as the load of the electric motor 114. This makes it possible to detect the load of the electric motor 114 with a simple configuration.
  • the control unit 116 stops the electric motor 114. This makes it possible to detect that the electric motor 114 has reached the vicinity of the standby position, thereby enabling the plunger 126 to be stopped at the standby position with high accuracy.
  • the control unit 116 stops the electric motor 114. This makes it possible to determine that the plunger 126 has risen and reached the standby position after the stopper 125 has been ejected. As a result, erroneous determination of the position of the plunger 126 is suppressed, and the accuracy of position detection when stopping the plunger at the standby position can be improved.
  • the control unit 116 stops the electric motor 114 after a predetermined delay time has elapsed since the detected current value became equal to or greater than the first threshold value th1, i.e., after the first discrimination time has elapsed and the standby time has elapsed. This makes it possible to raise the plunger 126, which has risen close to the standby position, to the standby position and stop it there.
  • the control unit 116 changes the standby time based on the voltage value of the battery pack 117. This makes it possible to extend the time during which the plunger 126 can rise even when the rotation speed of the electric motor 114 decreases and the inertia becomes low due to a decrease in the remaining battery charge of the battery pack 117. As a result, it is possible to prevent the occurrence of a malfunction in which the preliminary winding ends before the plunger 126 reaches the standby position.
  • the control unit 116 determines whether or not there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or less than the second threshold value th2. This allows the presence or absence of an abnormality to be determined based on the time at which a characteristic point in the change in the current value appears, making it possible to determine whether or not the stopper 125 has been ejected using a simple configuration.
  • the control unit 116 determines whether or not there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or greater than the first threshold value th1. This makes it possible to determine whether or not there is an abnormality based on whether or not the plunger 126 reaches the standby position by the time set as the timeout error.
  • the control unit 116 determines whether the movement of the plunger 126 and the driver blade 127 is normal or not based on the amount of change in the load at each predetermined time interval, i.e., the differential current value which is the amount of change in the current. This makes it possible to determine whether there is an abnormality in the movement of the plunger 126 and the driver blade 127 with a simple configuration.
  • the control unit 116 determines the operation process of the plunger 126 and the driver blade 127 based on the amount of change in the load at each predetermined time interval, i.e., the differential current value, which is the amount of change in the current. This makes it possible to determine what operation the plunger 126 and the driver blade 127 have performed with a simple configuration.
  • the control unit 116 can determine that the striking process in which the driver blade 127 strikes the stopper 125 is an operation process.
  • the control unit 116 determines that there is an abnormality in the movement of the plunger 126 and the driver blade 127. This makes it possible to detect the current value of the electric motor 114 with a simple configuration, and to determine that there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the detected current value and the differential current value.
  • the control unit 116 determines that the driver blade 127 has struck the stopper 125 and the stopper 125 has been ejected. This makes it possible to determine, with a simple configuration, whether or not the stopper 125 has been ejected based on the change in the load on the electric motor 114.
  • the control unit 116 is not limited to detecting the drive current as the load of the electric motor 114, and may detect the rotation speed of the electric motor 114. In this case, the control unit 116 detects the rotation speed of the electric motor 114 based on a signal output from the rotation speed detection circuit 210. Then, based on the increase or decrease in the detected rotation speed, the control unit 116 determines whether or not the plunger 126 has been pre-wound after the stopper 125 is ejected and has reached the standby position. Specifically, the control unit 116 stores in advance the rotation speed of the electric motor 114 when the standby position is reached by pre-wounding as a threshold value, and stops the rotation of the electric motor 114 when the detected rotation speed becomes smaller than this threshold value.
  • the first threshold th1 or the second threshold th2 may be a variable value.
  • the control unit 116 may change the value of the first threshold th1 according to the remaining battery charge of the battery pack 117.
  • the control unit 116 detects the remaining battery charge of the battery pack 117 based on the voltage value of the battery pack 117 detected by the voltage detection circuit 202 when the plunger 126 is started.
  • the control unit 116 may calculate (detect) the remaining battery charge of the battery pack 117 based on the current value detected when the plunger 126 is started.
  • the control unit 116 increases the value of the first threshold th1.
  • the control unit 116 may increase the value of the first threshold th1 linearly or nonlinearly (e.g., stepwise) according to the decrease in the detected voltage value.
  • control unit 116 may change the first threshold th1 or the second threshold th2 according to the number of times the fasteners 125 have been ejected (the number of driving operations).
  • the control unit 116 can calculate the number of fasteners 125 used, i.e., the number of driving operations, based on the signal output from the nail remaining amount switch operation detection circuit 208, and increase the value of the first threshold th1 according to an increase in the number of driving operations.
  • the control unit 116 may vary the first threshold value th1 or the second threshold value th2 based on the deterioration of the coil spring 136. In this case, the control unit 116 determines the degree of deterioration of the coil spring 136 based on the value of the starting current of the electric motor 114. For example, if the coil spring 136 has become soft due to deterioration, the control unit 116 may reduce the first threshold value th1. Also, if the coil spring 136 has become hard due to deterioration, the control unit 116 may increase the first threshold value th1.
  • the control unit 116 may vary the first threshold value th1 or the second threshold value th2 based on the change in air pressure in the accumulator chamber. In this case, too, the control unit 116 determines the change in air pressure in the accumulator chamber based on the value of the starting current of the electric motor 114. For example, if compressed air is leaking from the accumulator chamber and the air pressure is decreasing, the control unit 116 may decrease the first threshold value th1. Also, if the air pressure in the accumulator chamber is increasing, such as when the outside temperature is high, the control unit 116 may increase the first threshold value th1.
  • the control unit 116 is not limited to determining whether the plunger 126 has reached the standby position based on the detected current value and the first threshold value th1.
  • the control unit 116 may learn the waveform of the detected current value as teacher data and use the waveform of the detected current value to determine whether the plunger 126 has reached the standby position based on the learning result.
  • the control unit 116 may perform control to gradually reduce the ascending speed of the plunger 126 when stopping the plunger 126 at the standby position.
  • multiple thresholds smaller than the first threshold th1 are set in advance, and the control unit 116 may reduce the number of rotations of the electric motor 114 by a predetermined rate each time the detected current value exceeds these multiple thresholds.
  • the control unit 116 may perform control to stop the plunger 126 at the bottom dead center.
  • a threshold value corresponding to the current value at time t5 shown in FIG. 7 is set, and when the control unit 116 determines that the detected current value has reached this threshold value, it may stop driving the electric motor 114.
  • the driving machine 100 which is a work machine of variation 2, uses artificial intelligence (AI) to determine when to stop the electric motor 114 in order to stop the plunger 126 at the standby position.
  • AI artificial intelligence
  • the current value is machine-learned by the artificial intelligence in advance, and the time to stop the electric motor 114 is determined based on the data obtained by the machine learning (learning model).
  • variation 2 uses a neural network (hereinafter also referred to as "NN”) to perform control by the control unit 316.
  • NN neural network
  • Figure 12 is a block diagram showing the main components of the control unit 316 of the driving machine 100 according to the second modified example.
  • the control unit 316 of the second modified example replaces the control unit 116 of the embodiment described above.
  • the trained model 301 is an example of a trained model, and is data used when determining the timing to stop the electric motor 114 based on changes in the current value.
  • the NN calculation unit 302 is an example of a calculation unit, and is a calculation circuit that controls the current supply pattern to the stator according to the timing to stop the electric motor 114 determined based on the trained model 301.
  • FIG. 13 is a flow chart showing the start and stop of the electric motor 114 in the driving machine 100 according to the second modified example.
  • the control unit 316 performs an NN calculation using the trained model 301 based on the changes in the current value data and the rotor position data stored in the data storage unit 303, and in step S322, it determines (estimates) the time to stop the electric motor 114 based on the results of the NN calculation.
  • the electric motor 114 is stopped at the determined time to stop the electric motor 114, and the process ends.
  • Figure 14 is a network configuration diagram showing the structure of the neural network of the driving machine 100 according to the second modification.
  • the NN calculation unit 302 determines the stop time of the electric motor 114 by using an NN with a predetermined number of sampled current values as input data 310 and the stop time of the electric motor 114 as output data 313.
  • Information regarding the stop time of the electric motor 114 is input to the motor discharge stop control unit 305 (see Figure 12), which sends a signal to the motor control unit 306 (see Figure 12) based on the information regarding the stop time of the electric motor 114.
  • the motor control unit 306 controls the control signal output circuit 211 based on the signal sent from the motor discharge stop control unit 305, and stops the electric motor 114 at the appropriate time.
  • the driving machine 100 can accurately determine the time to stop the electric motor 114 even when the waveform of the current value is complex and it is difficult to detect the inflection point, so that the driving machine 100 can be provided at low cost.
  • the input data 310 of the NN calculation unit 302 may also include other information such as the voltage value of the battery pack 117, which allows the time to stop the electric motor 114 to be determined even more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

Provided is a work machine with improved operability. A plunger 126 and a driver blade 127 of a driving machine 100 which is the work machine are: moved by rotation of a transmitting mechanism 115 upward to the top dead center against a downward biasing force upon operation of a trigger 142 and a push lever 133 while positioned at a standby position; moved downward from the top dead center to the bottom dead center, by the biasing force, to hit a catch 125 when engagement with the transmitting mechanism 115 has been released at the top dead center; moved by rotation of the transmitting mechanism 115 upward from the bottom dead center to the standby position against the biasing force after reengagement with the transmitting mechanism 115 at the bottom dead center; and stopped at the standby position upon stoppage of the transmitting mechanism 115 in a state of being engaged with the transmitting mechanism 115 at the standby position. A control unit 116 can detect a load on an electric motor 114, stops the electric motor 114 on the basis of the load, and stops the plunger 126 and the driver blade 127 at the standby position.

Description

作業機Work equipment
本発明は、作業機に関する。 The present invention relates to a work machine.
特許文献1には、打撃部が止具を打撃した後に、打撃部を構成するプランジャを待機位置で停止させる作業機が開示されている。この作業機は、プランジャの位置を検出する位置検出スイッチを備えている。この作業機では、プランジャとカウンタウエイトとは連動して移動し、カウンタウエイトが位置検出スイッチをオンすると、プランジャが待機位置に到達したことが検出される。 Patent Document 1 discloses a work machine that stops the plunger that constitutes the striking part at a standby position after the striking part strikes a stopper. This work machine is equipped with a position detection switch that detects the position of the plunger. In this work machine, the plunger and counterweight move in conjunction with each other, and when the counterweight turns on the position detection switch, it is detected that the plunger has reached the standby position.
国際公開第2022/114119号International Publication No. 2022/114119
しかしながら、プランジャの待機位置での停止精度が低い場合、トリガ及びプッシュレバーがオンされてモータが駆動を開始してから止具の打ち込みが行われるまでの時間にばらつきが生じ、作業性が低下するという問題があった。このため、作業機においては、プランジャを待機位置にて停止させる精度を向上したいという要望があった。 However, if the stopping accuracy of the plunger at the standby position is low, there is a problem that the time from when the trigger and push lever are turned on and the motor starts to drive until the fastener is driven varies, resulting in reduced workability. For this reason, there has been a demand for improving the accuracy of stopping the plunger at the standby position in work machines.
第1の態様による作業機は、モータと、止具を射出可能に支持する射出部と、第1方向及び前記第1方向と反対方向である第2方向へ移動可能であり、前記第1方向へ移動することにより、前記射出部に支持された前記止具を打撃可能な打撃部と、前記打撃部を前記第1方向へ付勢する付勢部と、作業者によって操作される操作部と、前記モータの駆動を制御する制御部と、前記モータの駆動力を受けて回転する回転部と、を備える。前記打撃部は、前記回転部と係合して第1位置に位置する状態において前記操作部が操作されると、前記回転部が回転することで、前記付勢部の付勢力に抗して前記第2方向へ前記第1位置から第2位置まで移動し、前記第2位置において前記回転部との係合が解除されることで、前記付勢部の付勢力によって前記第1方向へ前記第2位置から第3位置まで移動して前記止具を打撃し、前記第3位置において前記回転部と再度係合した後に前記回転部が回転することで、前記付勢部の付勢力に抗して前記第2方向へ前記第3位置から前記第1位置まで移動し、前記第1位置において前記回転部と係合した状態で前記回転部が停止することで、前記第1位置で停止する。前記制御部は、前記モータに係る負荷を検出可能であり、前記負荷に基づいて前記モータを停止させて、前記打撃部を前記第1位置で停止させる。 The working machine according to the first aspect comprises a motor, an ejection unit that supports a stopper so that it can be ejected, an impact unit that is movable in a first direction and a second direction that is opposite to the first direction and that can strike the stopper supported by the ejection unit by moving in the first direction, a biasing unit that biases the impact unit in the first direction, an operating unit that is operated by an operator, a control unit that controls the drive of the motor, and a rotating unit that rotates by receiving the drive force of the motor. When the operation unit is operated while the striking unit is engaged with the rotating unit and positioned at the first position, the rotating unit rotates, moving from the first position to the second position in the second direction against the biasing force of the biasing unit, and disengaging from the rotating unit at the second position, moving from the second position to the third position in the first direction by the biasing force of the biasing unit to strike the stopper, and reengaging with the rotating unit at the third position, the rotating unit rotates, moving from the third position to the first position in the second direction against the biasing force of the biasing unit, and stopping the rotating unit in the first position while engaged with the rotating unit. The control unit is capable of detecting a load on the motor, and stops the motor based on the load to stop the striking unit at the first position.
本発明によれば、作業性を向上した作業機を提供することができる。 The present invention provides a work machine with improved workability.
実施の形態の作業機の構造を示す正面図である。FIG. 2 is a front view showing the structure of the working machine according to the embodiment. 図1のA-A線における断面構造を示す断面図である。2 is a cross-sectional view showing a cross-sectional structure taken along line AA in FIG. 1. プランジャが待機位置に位置するときの作業機内部の状態を示す断面図である。4 is a cross-sectional view showing the state inside the working machine when the plunger is located at a standby position. FIG. プランジャが上死点に位置するときの作業機の内部の状態を示す断面図である。4 is a cross-sectional view showing the internal state of the working machine when the plunger is located at the top dead center. FIG. プランジャが下死点に位置するときの作業機の内部の状態を示す断面図である。4 is a cross-sectional view showing the internal state of the working machine when the plunger is located at the bottom dead center. FIG. 作業機の制御系の要部構成の概略を示すブロック図である。2 is a block diagram showing an outline of the main configuration of a control system for a work machine. FIG. プランジャの移動に伴う電動モータの電流変化を示す図である。6 is a diagram showing a change in current of an electric motor accompanying the movement of a plunger. FIG. 動作制御時の処理フローを説明するフローチャートである。11 is a flowchart illustrating a process flow during operation control. プランジャの移動に伴う差分電流値の変化を示す図である。FIG. 13 is a diagram showing a change in a differential current value accompanying the movement of a plunger. 動作判定時の処理フローを説明するフローチャートである。11 is a flowchart illustrating a process flow at the time of motion determination. 待機位置とは異なる位置からプランジャが移動を行った場合に検出される電流変化を示す図である。13 is a diagram showing a change in current detected when the plunger moves from a position different from the standby position. FIG. 変形例2の作業機が有する制御部の要部構成の概略を示すブロック図である。11 is a block diagram showing an outline of the configuration of the main parts of a control unit of a work machine according to a second modified example. FIG. 変形例2の作業機の動作の処理フローを説明するフローチャートである。11 is a flowchart illustrating a processing flow for the operation of a work machine according to a second modified example. 変形例2に作業機のニューラルネットワークの構造を示すネットワーク構成図である。FIG. 11 is a network configuration diagram showing the structure of a neural network of a work machine according to a second modified example.
図面を参照しながら、実施の形態の作業機について説明する。本実施の形態では、作業機の一例として打込機を取り上げて説明する。 The embodiment of the work machine will be described with reference to the drawings. In this embodiment, a driving machine will be used as an example of the work machine.
図1は打込機100の正面図であり、図2は図1のA-A線における打込機100の断面図である。打込機100は、ハウジング部111、打撃機構112、マガジン113、電動モータ114、伝達機構115、制御部116、電池パック117及びカウンタウエイト部118等を備える。 Figure 1 is a front view of the driving machine 100, and Figure 2 is a cross-sectional view of the driving machine 100 taken along line A-A in Figure 1. The driving machine 100 includes a housing section 111, an impact mechanism 112, a magazine 113, an electric motor 114, a transmission mechanism 115, a control section 116, a battery pack 117, and a counterweight section 118.
尚、以後の説明において、図1,図2の紙面上部を上方、紙面下部を下方と呼ぶことがある。また、図1の紙面に向かって左部を右方、紙面に向かって右部を左方と呼ぶことがある。また、図2の紙面に向かって左部を後方、紙面に向かって右部を前方と呼ぶことがある。さらに、上下方向のうち下部へ向かう方向を第1方向、上下方向のうち上部へ向かう方向を第2方向と呼ぶことがある。 In the following explanation, the upper part of the paper in Figures 1 and 2 may be referred to as the top, and the lower part as the bottom. Furthermore, the left part of Figure 1 may be referred to as the right, and the right part as the left. Furthermore, the left part of Figure 2 may be referred to as the rear, and the right part as the front. Furthermore, the vertical direction toward the bottom may be referred to as the first direction, and the vertical direction toward the top may be referred to as the second direction.
<ハウジング部111>ハウジング部111は、打込機100の外郭要素である。ハウジング部111は、胴部119と、胴部119に接続されたハンドル部120と、胴部119に接続されたモータケース121と、を有する。ハンドル部120及びモータケース121には装着部122が接続されている。 <Housing section 111> The housing section 111 is an outer element of the driver 100. The housing section 111 has a body section 119, a handle section 120 connected to the body section 119, and a motor case 121 connected to the body section 119. An attachment section 122 is connected to the handle section 120 and the motor case 121.
胴部119は、上下方向に伸びる筒形状を有する。胴部119内には、後述する打撃機構112、伝達機構115、カウンタウエイト部118等が収容される。胴部119の先端には、射出路124を備えた射出部123が設けられる。すなわち、射出部123は、胴部119に固定されている。この射出部123の射出路124には、後述するマガジン113内に収容された止具125が供給され、支持される。射出路124に供給された止具125は、後述するドライバブレード127により打撃されると、被打込材W1に向けて射出され、打ち込まれる。換言すると、射出部123は、止具125を射出可能に支持する。 The body 119 has a cylindrical shape that extends in the vertical direction. The body 119 contains the impact mechanism 112, the transmission mechanism 115, the counterweight 118, etc., which will be described later. An ejection section 123 with an ejection path 124 is provided at the tip of the body 119. That is, the ejection section 123 is fixed to the body 119. A fastener 125 contained in a magazine 113, which will be described later, is supplied to and supported in the ejection path 124 of this ejection section 123. When the fastener 125 supplied to the ejection path 124 is struck by a driver blade 127, which will be described later, it is ejected toward and driven into the workpiece W1. In other words, the ejection section 123 supports the fastener 125 so that it can be ejected.
胴部119内には、プランジャ支持軸であるガイドシャフト128が設けられる。中心線E1は、回転軸としてガイドシャフト128の中心を通る。ガイドシャフト128は、調整ダイヤル129及びアジャスタピース134に支持されている。アジャスタピース134は、胴部119に取り付けられたボトムホルダー130に固定されている。調整ダイヤル129は、可動部である後述するプランジャ126の上下方向における下死点側の停止位置を調整する部材であり、胴部119の上方の端部に設けられている。 A guide shaft 128, which is a plunger support shaft, is provided within the body 119. The center line E1 passes through the center of the guide shaft 128 as the rotation axis. The guide shaft 128 is supported by an adjustment dial 129 and an adjuster piece 134. The adjuster piece 134 is fixed to a bottom holder 130 attached to the body 119. The adjustment dial 129 is a member that adjusts the stopping position of the plunger 126, which is a movable part and will be described later, on the bottom dead center side in the vertical direction, and is provided at the upper end of the body 119.
胴部119の前方側には、後述するドライバブレード127を交換したり、メンテナンスを行う際に使用される開口部139(図3,4,5参照)が形成されている。胴部119には、この開口部139を覆うカバー部135が設けられている。カバー部135は、例えば樹脂製の部材であり、開口部139を開閉可能に取り付けられる。本実施の形態では、カバー部135は、ねじ等の固定具によって胴部119に着脱可能に固定されている。 An opening 139 (see Figures 3, 4, and 5) is formed on the front side of the body 119, which is used when replacing the driver blade 127 described below or when performing maintenance. The body 119 is provided with a cover portion 135 that covers this opening 139. The cover portion 135 is, for example, a resin member, and is attached so that the opening 139 can be opened and closed. In this embodiment, the cover portion 135 is removably fixed to the body 119 by a fastener such as a screw.
ハンドル部120は、胴部119の後部にて打込機100の前後方向に伸びる。ハンドル部120の下方にはトリガ142及びトリガスイッチ143が設けられている。作業者がトリガ142に操作力を加えると、射出部123の下部に設けられたプッシュレバー133が下降し、プッシュレバー133が被打込材W1に当接すると、トリガスイッチ143がオンする。作業者がトリガ142に加えた操作力を解除すると、トリガスイッチ143がオフする。 The handle portion 120 extends in the front-to-rear direction of the driving tool 100 at the rear of the body portion 119. A trigger 142 and a trigger switch 143 are provided below the handle portion 120. When the operator applies an operating force to the trigger 142, the push lever 133 provided at the bottom of the injection portion 123 descends, and when the push lever 133 abuts against the material to be driven W1, the trigger switch 143 turns on. When the operator releases the operating force applied to the trigger 142, the trigger switch 143 turns off.
モータケース121は、胴部119の後部にて打込機100の前後方向に伸びる筒形状を有する。モータケース121は、後述する電動モータ114、制御部116等を収容する収容部である。 The motor case 121 has a cylindrical shape that extends in the front-to-rear direction of the driver 100 at the rear of the body 119. The motor case 121 is a housing that houses the electric motor 114, the control unit 116, etc., which will be described later.
装着部122は、ハンドル部120及びモータケース121の後端に配置される。装着部122には、後述する電池パック117が着脱可能に取り付けられる。また、装着部122内には、打込機100の動作を制御する制御部116が設けられている。 The mounting part 122 is disposed at the rear end of the handle part 120 and the motor case 121. The battery pack 117, which will be described later, is removably attached to the mounting part 122. In addition, a control part 116 that controls the operation of the driver 100 is provided within the mounting part 122.
<マガジン113>マガジン113は、胴部119及びモータケース121の下方側に配置される。マガジン113は、止具125を複数収容する収容部である。止具125は、例えば釘を含む棒形状である。マガジン113はフィーダを有している。フィーダは、マガジン113に収容された止具125を射出路124に送る。 <Magazine 113> The magazine 113 is disposed below the body 119 and the motor case 121. The magazine 113 is a storage section that stores a plurality of fasteners 125. The fasteners 125 are rod-shaped, for example, including nails. The magazine 113 has a feeder. The feeder sends the fasteners 125 stored in the magazine 113 to the ejection path 124.
<打撃機構112>打撃機構112は、胴部119の内外にわたって設けられている。打撃機構112は、胴部119内に配置されたプランジャ126と、プランジャ126に取り付けられたドライバブレード127と、上下方向に伸縮可能なコイルスプリング136と、を有する。コイルスプリング136は、打撃方向である第1方向の端部にてプランジャ126と当接する。具体的には、コイルスプリング136は、上下方向の下方側(第1方向)へ向かう付勢力をプランジャ126に付与する付勢部である。 <Impact mechanism 112> The impact mechanism 112 is provided on both the inside and outside of the body 119. The impact mechanism 112 has a plunger 126 arranged inside the body 119, a driver blade 127 attached to the plunger 126, and a coil spring 136 that can expand and contract in the vertical direction. The coil spring 136 abuts against the plunger 126 at its end in the first direction, which is the impact direction. Specifically, the coil spring 136 is a biasing part that applies a biasing force to the plunger 126 in the vertical downward direction (first direction).
プランジャ126は、例えば金属製又は合成樹脂製である。プランジャ126は、コイルスプリング136に対して第1方向(下方)側に配置される。プランジャ126はコイルスプリング136からの付勢力を受けて第1方向に移動可能に配置される。また、プランジャ126は、後述する伝達機構115によりコイルスプリング136の付勢力に抗して第2方向(上方側)に移動可能に配置される。 The plunger 126 is made of, for example, metal or synthetic resin. The plunger 126 is arranged on the first direction (downward) side relative to the coil spring 136. The plunger 126 is arranged so that it can move in the first direction by receiving a biasing force from the coil spring 136. The plunger 126 is also arranged so that it can move in the second direction (upward) against the biasing force of the coil spring 136 by the transmission mechanism 115 described later.
ドライバブレード127は止具125を打ち込む部材であり、例えば金属製である。ドライバブレード127はプランジャ126に取り付けられ、上述した射出部123の射出路124を上下方向に沿って移動可能である。プランジャ126が第1方向に移動すると、ドライバブレード127は、プランジャ126とともに第1方向に移動して、射出路124に供給された止具125を打撃する。換言すると、プランジャ126及びドライバブレード127は、第1方向及び第1方向と反対方向である第2方向へ移動可能であり、第1方向へ移動することにより、射出部123に支持された止具125を打撃可能な打撃部である。 The driver blade 127 is a member that drives in the stopper 125, and is made of, for example, metal. The driver blade 127 is attached to the plunger 126, and can move up and down along the injection path 124 of the injection part 123 described above. When the plunger 126 moves in the first direction, the driver blade 127 moves in the first direction together with the plunger 126, and strikes the stopper 125 supplied to the injection path 124. In other words, the plunger 126 and the driver blade 127 are movable in the first direction and in a second direction opposite to the first direction, and are an impact part that can strike the stopper 125 supported by the injection part 123 by moving in the first direction.
<電動モータ114>電動モータ114は、図示しないロータ及びステータを有し、モータ軸146がロータに取り付けられている。電動モータ114が電池パック117から電力が供給されると、ロータが回転し、ロータに取り付けられたモータ軸146が回転する。モータ軸146は、モータケース121内に配置された不図示の減速機が有する入力要素148に接続されている。この減速機は、さらに、複数組の遊星歯車機構及び出力要素149を有している。電動モータ114の回転による駆動力、すなわちモータ軸146の回転による回転力は、入力要素148、出力要素149を介して、後述する伝達機構115を回転駆動させる。 <Electric motor 114> The electric motor 114 has a rotor and a stator (not shown), and a motor shaft 146 is attached to the rotor. When the electric motor 114 is supplied with power from the battery pack 117, the rotor rotates, and the motor shaft 146 attached to the rotor rotates. The motor shaft 146 is connected to an input element 148 of a reduction gear (not shown) disposed in the motor case 121. This reduction gear further has multiple sets of planetary gear mechanisms and an output element 149. The driving force generated by the rotation of the electric motor 114, i.e., the rotational force generated by the rotation of the motor shaft 146, rotates the transmission mechanism 115 (described later) via the input element 148 and the output element 149.
<伝達機構115>伝達機構115は、胴部119内に配置され、電動モータ114の回転駆動力を受けて回転する回転部である。具体的には、伝達機構115は、モータ軸146の回転力を、打撃機構112の作動力及びカウンタウエイト部118の作動力に変換する。伝達機構115は、プランジャ126をコイルスプリング136の復帰方向である上方(第2方向)側に向けて付勢し、かつ、カウンタウエイト部118をコイルスプリング136の打撃方向である下方(第1方向)側に向けて付勢する。これにより、伝達機構115は、コイルスプリング136を圧縮する。伝達機構115は、例えば、第1ギヤ150、第2ギヤ151及び第3ギヤ152により構成される。尚、胴部119内には、伝達機構115の付勢力から解放されたカウンタウエイト部118が当接可能なウエイトバンパ137と、プランジャ126が当接可能なプランジャバンパ138とが設けられている。 <Transmission mechanism 115> The transmission mechanism 115 is disposed within the body 119 and is a rotating part that rotates upon receiving the rotational driving force of the electric motor 114. Specifically, the transmission mechanism 115 converts the rotational force of the motor shaft 146 into the operating force of the impact mechanism 112 and the operating force of the counterweight part 118. The transmission mechanism 115 biases the plunger 126 upward (second direction), which is the return direction of the coil spring 136, and biases the counterweight part 118 downward (first direction), which is the impact direction of the coil spring 136. As a result, the transmission mechanism 115 compresses the coil spring 136. The transmission mechanism 115 is composed of, for example, a first gear 150, a second gear 151, and a third gear 152. In addition, a weight bumper 137 against which the counterweight portion 118 can come into contact when released from the biasing force of the transmission mechanism 115, and a plunger bumper 138 against which the plunger 126 can come into contact are provided inside the body portion 119.
<制御部116>制御部116は、入出力インタフィース、演算処理部及び記憶部を有するマイクロコンピュータである。制御部116は、詳細を後述するように、電動モータ114の駆動を制御する。 <Control unit 116> The control unit 116 is a microcomputer having an input/output interface, a calculation processing unit, and a memory unit. The control unit 116 controls the driving of the electric motor 114, as will be described in detail later.
<電池パック117>電池パック117は、装着部122に対して着脱可能に取付可能である。電池パック117は直流電源であり、電池パック117の電力は、電動モータ114に供給可能である。すなわち、電池パック117は電動モータへ電力を供給する電源部であり、電池パック117から供給される電力によって電動モータ114が駆動する。 <Battery pack 117> The battery pack 117 can be detachably attached to the mounting portion 122. The battery pack 117 is a DC power source, and the power of the battery pack 117 can be supplied to the electric motor 114. In other words, the battery pack 117 is a power source unit that supplies power to the electric motor, and the electric motor 114 is driven by the power supplied from the battery pack 117.
<打込機100の動作>図3、図4及び図5を参照して、打込機100の動作を説明する。図3、図4及び図5は、図2と同様の打込機100の断面図であるが、打込機100からカバー部135が取り外された状態が示されている。図3はプランジャ126が待機位置(第1位置)に位置する状態、図4はプランジャ126が待機位置よりも上方の上死点(第2位置)に位置する状態、図5はプランジャ126が待機位置及び上死点よりも下方の下死点(第3位置)に位置する状態を示している。尚、待機位置は、ドライバブレード127の下端が、射出路124に供給される止具125の上端よりも第2方向側(上方側)となる位置である。プランジャ126が待機位置に位置するときには、プランジャ126と伝達機構115とは係合している。 <Operation of the driving machine 100> The operation of the driving machine 100 will be described with reference to Figures 3, 4, and 5. Figures 3, 4, and 5 are cross-sectional views of the driving machine 100 similar to those in Figure 2, but show the driving machine 100 with the cover 135 removed. Figure 3 shows the state in which the plunger 126 is in the standby position (first position), Figure 4 shows the state in which the plunger 126 is in the top dead center (second position) above the standby position, and Figure 5 shows the state in which the plunger 126 is in the bottom dead center (third position) below the standby position and the top dead center. The standby position is a position in which the lower end of the driver blade 127 is on the second direction side (upper side) than the upper end of the stopper 125 supplied to the injection path 124. When the plunger 126 is in the standby position, the plunger 126 and the transmission mechanism 115 are engaged.
図3に示される状態のときに、作業者がハンドル部120を手で握り、射出部123の先端を被打込材W1に押し付け、トリガ142に操作力を加えると、プッシュレバー133が下降する。下降したプッシュレバー133が被打込材W1に当接すると、トリガスイッチ143がオンになる。すなわち、トリガ142及びプッシュレバー133は、作業者によって操作される操作部として機能する。制御部116は、トリガスイッチ143のオンを検出すると、電池パック117の電力を電動モータ114に供給させて、モータ軸146を正回転させる。 When in the state shown in FIG. 3, the operator grasps the handle portion 120 with his/her hand, presses the tip of the injection portion 123 against the workpiece W1, and applies an operating force to the trigger 142, causing the push lever 133 to descend. When the descended push lever 133 abuts against the workpiece W1, the trigger switch 143 turns on. In other words, the trigger 142 and the push lever 133 function as an operating unit that is operated by the operator. When the control unit 116 detects that the trigger switch 143 is on, it causes the battery pack 117 to supply power to the electric motor 114, causing the motor shaft 146 to rotate in the forward direction.
モータ軸146の回転力は、図示しない減速機で増幅されて第1ギヤ150に伝達される。第1ギヤ150が回転すると、第2ギヤ151も回転し、さらに第3ギヤ152も回転する。これにより、プランジャ126及びドライバブレード127が上方側、すなわち第2方向へ移動する(上昇)。一方、カウンタウエイト部118が下方側、すなわち第1方向へ移動する(下降)。カウンタウエイト部118が下死点に到達すると、プランジャ126は更に上昇し、その後、プランジャ126は上死点に到達する(図4参照)。すなわち、プランジャ126とドライバブレード127とは、待機位置で伝達機構115と係合しているときに作業者の操作が行われると、伝達機構115が回転することで、コイルスプリング136の付勢力に抗して第2方向へ、待機位置から上死点まで移動する。このとき、コイルスプリング136は収縮し、エネルギが最大に蓄えられた状態となる。 The rotational force of the motor shaft 146 is amplified by a reduction gear (not shown) and transmitted to the first gear 150. When the first gear 150 rotates, the second gear 151 also rotates, and the third gear 152 also rotates. This causes the plunger 126 and the driver blade 127 to move upward, i.e., in the second direction (rising). Meanwhile, the counterweight portion 118 moves downward, i.e., in the first direction (falling). When the counterweight portion 118 reaches the bottom dead center, the plunger 126 further rises, and then the plunger 126 reaches the top dead center (see FIG. 4). That is, when the plunger 126 and the driver blade 127 are engaged with the transmission mechanism 115 in the standby position and an operation is performed by the operator, the transmission mechanism 115 rotates, and the plunger 126 and the driver blade 127 move in the second direction against the biasing force of the coil spring 136 from the standby position to the top dead center. At this time, the coil spring 136 contracts and is in a state where maximum energy is stored.
その後、伝達機構115が回転し、プランジャ126と伝達機構115との係合が解除されると、コイルスプリング136が解放される。これにより、プランジャ126はコイルスプリング136の付勢力で下降する。プランジャ126が下降を開始すると、カウンタウエイト部118はコイルスプリング136の付勢力で上昇を開始する。 Then, when the transmission mechanism 115 rotates and the plunger 126 is disengaged from the transmission mechanism 115, the coil spring 136 is released. This causes the plunger 126 to descend due to the biasing force of the coil spring 136. When the plunger 126 begins to descend, the counterweight portion 118 begins to rise due to the biasing force of the coil spring 136.
プランジャ126が下降すると、ドライバブレード127も共に下降して、射出路124に位置する止具125を打撃する。これにより、止具125は射出部123から射出され、被打込材W1に打ち込まれる。プランジャ126は、下降してプランジャバンパ138に到達すると、すなわち下死点に到達すると下降を停止する(図5参照)。すなわち、プランジャ126とドライバブレード127とは、上死点にてプランジャ126と伝達機構115との係合が解除されることで、コイルスプリング136の付勢力によって第1方向(下方)へ、上死点から下死点まで移動し、止具125を打撃する。 When the plunger 126 descends, the driver blade 127 also descends and strikes the stop 125 located in the injection path 124. As a result, the stop 125 is ejected from the ejection section 123 and driven into the workpiece W1. The plunger 126 stops descending when it reaches the plunger bumper 138, i.e., when it reaches the bottom dead center (see FIG. 5). That is, the plunger 126 and the driver blade 127 move in the first direction (downward) from the top dead center to the bottom dead center by the biasing force of the coil spring 136 as the plunger 126 and the transmission mechanism 115 are disengaged at the top dead center, striking the stop 125.
プランジャ126は、ドライバブレード127による止具125の打ち込みが終わり下死点に到達すると、伝達機構115と再び係合する。電池パック117から供給される電力により回転する電動モータ114と共に正回転するモータ軸146によって、伝達機構115が回転する。この伝達機構115の回転により、プランジャ126及びドライバブレード127がコイルスプリング136の付勢力に抗して上昇する。制御部116は、プランジャ126を下死点よりも第2方向(上方)側の待機位置にて停止させる(図3参照)。すなわち、プランジャ126とドライバブレード127とは、下死点にて伝達機構115と再度係合した後、伝達機構115が回転することで、コイルスプリング136の付勢力に抗して第2方向(上方)側へ待機位置まで移動する。 When the driver blade 127 finishes driving the fastener 125 and reaches the bottom dead center, the plunger 126 re-engages with the transmission mechanism 115. The transmission mechanism 115 is rotated by the motor shaft 146, which rotates forward together with the electric motor 114, which rotates by the power supplied from the battery pack 117. This rotation of the transmission mechanism 115 causes the plunger 126 and the driver blade 127 to rise against the biasing force of the coil spring 136. The control unit 116 stops the plunger 126 at a standby position on the second direction (upward) side of the bottom dead center (see FIG. 3). That is, the plunger 126 and the driver blade 127 re-engage with the transmission mechanism 115 at the bottom dead center, and then the transmission mechanism 115 rotates, causing the plunger 126 and the driver blade 127 to move in the second direction (upward) to the standby position against the biasing force of the coil spring 136.
制御部116は、詳細を後述するように、電動モータ114に係る負荷に基づいて、プランジャ126が待機位置に到達したことを検出し、電動モータ114の動作を停止させる。これにより、プランジャ126とドライバブレード127とは、待機位置において伝達機構115と係合した状態で伝達機構115の回転が停止することで、待機位置で停止する。 The control unit 116 detects that the plunger 126 has reached the standby position based on the load on the electric motor 114, as described in detail below, and stops the operation of the electric motor 114. As a result, the plunger 126 and the driver blade 127 stop at the standby position as the rotation of the transmission mechanism 115 stops while they are engaged with the transmission mechanism 115 at the standby position.
<制御系の構成>図6は、打込機100の制御系の要部構成の概略を示すブロック図である。図6に示されるように、打込機100は、上述した構成に加えて、電源スイッチ回路200、電源電圧供給回路201、電圧検出回路202、電流検出回路203、トリガスイッチ操作検出回路204、プッシュレバー操作検出回路205、釘残量スイッチ207、釘残量スイッチ操作検出回路208、回転位置検出回路209、回転数検出回路210、制御信号出力回路211、インバータ回路212、位置検出スイッチ213、位置検出スイッチ操作検出回路214等を備えている。 <Control system configuration> Figure 6 is a block diagram showing an outline of the main configuration of the control system of the nail driver 100. As shown in Figure 6, in addition to the configuration described above, the nail driver 100 is equipped with a power switch circuit 200, a power supply voltage supply circuit 201, a voltage detection circuit 202, a current detection circuit 203, a trigger switch operation detection circuit 204, a push lever operation detection circuit 205, a nail remaining amount switch 207, a nail remaining amount switch operation detection circuit 208, a rotation position detection circuit 209, a rotation speed detection circuit 210, a control signal output circuit 211, an inverter circuit 212, a position detection switch 213, a position detection switch operation detection circuit 214, etc.
電源スイッチ回路200は、トリガスイッチ143のオン又はオフ状態と、制御部116からの指示とに応じて、電池パック117と電源電圧供給回路201との接続をスイッチングする回路である。電源電圧供給回路201は、電源スイッチ回路200がオンとなると、電池パック117の駆動電力を打込機100の各部へ供給する定電圧回路である。電圧検出回路202は、電池パック117の電圧を検出して、制御部116へ検出した電圧を示す信号を出力する。電流検出回路203は、電池パック117からインバータ回路212を介して電動モータ114に供給される駆動電流の電流値を検出して、検出した電流値を示す信号を制御部116へ出力する。 The power switch circuit 200 is a circuit that switches the connection between the battery pack 117 and the power supply voltage supply circuit 201 depending on the on/off state of the trigger switch 143 and instructions from the control unit 116. The power supply voltage supply circuit 201 is a constant voltage circuit that supplies the driving power of the battery pack 117 to each part of the driving machine 100 when the power switch circuit 200 is turned on. The voltage detection circuit 202 detects the voltage of the battery pack 117 and outputs a signal indicating the detected voltage to the control unit 116. The current detection circuit 203 detects the current value of the driving current supplied from the battery pack 117 to the electric motor 114 via the inverter circuit 212, and outputs a signal indicating the detected current value to the control unit 116.
トリガスイッチ操作検出回路204は、トリガスイッチ143がオンになると、作業者によるトリガ142への操作を検出して、信号(操作信号)を制御部116へ出力する。プッシュレバー操作検出回路205は、プッシュレバー133が被打込材W1に当接したことを検出して、信号を制御部116へ出力する。 When the trigger switch 143 is turned on, the trigger switch operation detection circuit 204 detects the operation of the trigger 142 by the operator and outputs a signal (operation signal) to the control unit 116. The push lever operation detection circuit 205 detects that the push lever 133 has come into contact with the workpiece W1 and outputs a signal to the control unit 116.
釘残量スイッチ207は、マガジン113の射出部123側端部においてフィーダ等の給送部材に係合するように設けられ、マガジン113に装填された止具125(連接釘)の残量(例えば、残量0~5本)を検出する。釘残量スイッチ操作検出回路208は、釘残量スイッチ207の出力を検知し、検知結果を示す信号を制御部116へ出力する。 The nail remaining amount switch 207 is provided to engage with a feeding member such as a feeder at the end of the magazine 113 on the ejection section 123 side, and detects the remaining amount (e.g., 0 to 5 nails remaining) of fasteners 125 (connected nails) loaded in the magazine 113. The nail remaining amount switch operation detection circuit 208 detects the output of the nail remaining amount switch 207 and outputs a signal indicating the detection result to the control unit 116.
回転位置検出回路209は、例えばホールICであり、電動モータ114のロータ及びモータ軸146の回転方向における位置を検出して、回転位置を示す信号を制御部116及び回転数検出回路210へ出力する。回転数検出回路210は、単位時間内にカウントされる回転位置検出回路209から出力される信号の数に基づいて、電動モータ114の回転数を検出して制御部116へ出力する。インバータ回路212は、電動モータ114のステータと電池パック117との間の電気回路に設けられる。制御信号出力回路211は、制御部116により制御されて、インバータ回路212のスイッチング素子をそれぞれ単独でオン及びオフさせる信号を出力する。 The rotational position detection circuit 209 is, for example, a Hall IC, which detects the position of the rotor and motor shaft 146 of the electric motor 114 in the rotational direction and outputs a signal indicating the rotational position to the control unit 116 and the rotation speed detection circuit 210. The rotation speed detection circuit 210 detects the rotation speed of the electric motor 114 based on the number of signals output from the rotational position detection circuit 209 counted within a unit time and outputs it to the control unit 116. The inverter circuit 212 is provided in the electric circuit between the stator of the electric motor 114 and the battery pack 117. The control signal output circuit 211 is controlled by the control unit 116 and outputs signals that turn on and off the switching elements of the inverter circuit 212 individually.
位置検出スイッチ213は、プランジャ126と連動して移動するカウンタウエイト部118によって操作されるスイッチである。位置検出スイッチ213は、上死点まで上昇したカウンタウエイト部118が当接するとオン操作される。位置検出スイッチ操作検出回路214は、位置検出スイッチ213がオン操作されたことを検出して、信号を制御部116へ出力する。 The position detection switch 213 is a switch operated by the counterweight portion 118, which moves in conjunction with the plunger 126. The position detection switch 213 is turned on when the counterweight portion 118, which has risen to the top dead center, comes into contact with it. The position detection switch operation detection circuit 214 detects that the position detection switch 213 has been turned on, and outputs a signal to the control unit 116.
<制御部116の処理>制御部116は、電動モータ114にかかる負荷を検出し、検出した負荷に基づいて電動モータ114の動作の制御(動作制御)と、打撃機構112の動作の判定(動作工程判定)及び打撃機構112の動作に異常があるか否かの判定(異常判定)と、を行う。 <Processing of control unit 116> The control unit 116 detects the load on the electric motor 114, and controls the operation of the electric motor 114 based on the detected load (operation control), determines the operation of the impact mechanism 112 (operation process determination), and determines whether there is an abnormality in the operation of the impact mechanism 112 (abnormality determination).
<動作制御>動作制御においては、制御部116は、検出した負荷に基づいて、止具125の打ち込みが行われた後にプランジャ126が待機位置に到達したと判定すると、電動モータ114の動作を停止させる。本実施の形態では、制御部116は、電池パック117によって供給された電力で駆動する電動モータ114の駆動電流を検出することにより、負荷を検出する。すなわち、制御部116は、電流検出回路203により検出された電流値に基づいて、電動モータ114の動作を停止する。 <Operation Control> In operation control, when the control unit 116 determines based on the detected load that the plunger 126 has reached the standby position after the fastener 125 has been driven in, it stops the operation of the electric motor 114. In this embodiment, the control unit 116 detects the load by detecting the drive current of the electric motor 114, which is driven by power supplied by the battery pack 117. In other words, the control unit 116 stops the operation of the electric motor 114 based on the current value detected by the current detection circuit 203.
制御部116は、電動モータ114の駆動電流を、例えば100μs毎に検出し、100μs毎に検出した10個の電流値を1msの電流値に変換する。具体的には、制御部116は、100μs毎に検出された合計で10個の電流値の中の最大値を1msの電流値として採用する。採用された電流値は、制御部116内のメモリ等の記憶媒体に格納される。 The control unit 116 detects the drive current of the electric motor 114, for example, every 100 μs, and converts the 10 current values detected every 100 μs into a 1 ms current value. Specifically, the control unit 116 adopts the maximum value of the total of 10 current values detected every 100 μs as the 1 ms current value. The adopted current value is stored in a storage medium such as a memory in the control unit 116.
図7は、プランジャ126が待機位置から上死点、下死点を介して再び待機位置へ戻るときに検出される電流値を示す図である。尚、図7では、縦軸を電流値、横軸を時刻とする。図7は、時刻0msにてトリガスイッチ143がオンとなった場合を示している。 Figure 7 is a diagram showing the current value detected when the plunger 126 moves from the standby position to the top dead center, the bottom dead center, and then back to the standby position. In Figure 7, the vertical axis represents the current value, and the horizontal axis represents time. Figure 7 shows the case where the trigger switch 143 is turned on at time 0 ms.
トリガスイッチ143がオンとなると、上述したように電池パック117から供給された電力によって電動モータ114が回転を開始する。このとき、プランジャ126は待機位置(第1位置)にて停止し、コイルスプリング136により下方(第1方向)に付勢されているため、電動モータ114が回転を開始する際に大きな負荷がかかり、起動電力(電流)が大きくなる。このため、検出される電流値が増加する。プランジャ126が上昇を開始し、起動電力の影響が低くなった時刻t1では、検出される電流値の増加は抑制され、その後、電流値は略一定の値で推移する。 When the trigger switch 143 is turned on, the electric motor 114 starts to rotate due to the power supplied from the battery pack 117 as described above. At this time, the plunger 126 is stopped in the standby position (first position) and is biased downward (in the first direction) by the coil spring 136, so a large load is applied when the electric motor 114 starts to rotate, and the starting power (current) becomes large. As a result, the detected current value increases. At time t1 when the plunger 126 starts to rise and the influence of the starting power becomes low, the increase in the detected current value is suppressed, and the current value then remains at an approximately constant value.
プランジャ126が上死点(第2位置)に到達し、その後、プランジャ126と第3ギヤ152との係合が外れコイルスプリング136が解放されると、プランジャ126は下降を開始する(時刻t2)。プランジャ126が下降すると、伝達機構115にはプランジャ126からの負荷がかからなくなるので、電動モータ114は少ない負荷で回転し、検出される電流値は急激に減少する。電流値は、プランジャ126が下死点(第3位置)に到達するまで減少する(時刻t5)。 When the plunger 126 reaches the top dead center (second position) and then disengages from the third gear 152 and the coil spring 136 is released, the plunger 126 starts to descend (time t2). When the plunger 126 descends, the load from the plunger 126 is no longer applied to the transmission mechanism 115, so the electric motor 114 rotates with a small load and the detected current value decreases rapidly. The current value decreases until the plunger 126 reaches the bottom dead center (third position) (time t5).
下死点に到達した時刻t5以後、上述したようにプランジャ126は、伝達機構115と再び係合し、電動モータ114の回転によって再び上昇する。このため、電動モータ114の回転にかかる負荷が増加するため、プランジャ126の上昇に伴い、検出される電流値も再び上昇する。ただし、電動モータ114は既に回転を行っているので起動電力はかからない。このため、時刻0から時刻t1までのときのように、検出される電流値の急激な増加は見られない。 After time t5 when the plunger 126 reaches bottom dead center, as described above, it re-engages with the transmission mechanism 115 and rises again due to the rotation of the electric motor 114. This increases the load on the rotation of the electric motor 114, and as the plunger 126 rises, the detected current value also rises again. However, since the electric motor 114 is already rotating, no startup power is required. For this reason, there is no sudden increase in the detected current value, as there was from time 0 to time t1.
プランジャ126が下死点から上昇すると、コイルスプリング136が圧縮され下方への付勢力が増加するため、電動モータ114の回転に要する負荷が徐々に増加する。すなわち、検出される電流値が徐々に増加する。そして、プランジャ126が待機位置の近傍に到達したことが時刻t7にて判定されると、制御部116は、所定の待機時間が経過した後、電動モータ114の回転を停止させる。すなわち、待機時間は、電流値が後述する第1閾値th1以上となってから制御部116が電動モータ114を停止させるまでの間の遅延時間と言うことができる。 When the plunger 126 rises from the bottom dead center, the coil spring 136 is compressed and the downward biasing force increases, so the load required to rotate the electric motor 114 gradually increases. That is, the detected current value gradually increases. Then, when it is determined at time t7 that the plunger 126 has reached the vicinity of the standby position, the control unit 116 stops the rotation of the electric motor 114 after a predetermined standby time has elapsed. In other words, the standby time can be considered to be the delay time between when the current value becomes equal to or greater than the first threshold value th1 described below and when the control unit 116 stops the electric motor 114.
制御部116は、下死点に到達したプランジャ126を待機位置へ上昇させ(予備巻上)、停止させるために、電流検出回路203により検出された電流値を用いる。具体的には、制御部116は、第1閾値th1と第2閾値th2とを用いて、検出された電流値との比較を行う。第1閾値th1は、予備巻上によるプランジャ126が待機位置の近傍に到達したか否かを判定するために用いられる。具体的には、制御部116は、検出した電流値が第1閾値th1以上の状態が第1判定時間(例えば、5ms)以上経過した場合に、プランジャ126が予備巻上によって待機位置の近傍に到達したことを判定する。すなわち、制御部116は、時刻t6にて電流値が第1閾値th1以上となったことを検出し、第1判定時間が経過した時刻t7まで電流値が第1閾値th1以上の状態が継続すると、プランジャ126が待機位置の近傍に到達したことを判定する。 The control unit 116 uses the current value detected by the current detection circuit 203 to raise the plunger 126 that has reached the bottom dead center to the standby position (pre-winding) and stop it. Specifically, the control unit 116 uses a first threshold value th1 and a second threshold value th2 to compare the detected current value. The first threshold value th1 is used to determine whether the plunger 126 has reached the vicinity of the standby position due to pre-winding. Specifically, the control unit 116 determines that the plunger 126 has reached the vicinity of the standby position due to pre-winding when the state in which the detected current value is equal to or greater than the first threshold value th1 has elapsed for a first determination time (e.g., 5 ms) or more. That is, the control unit 116 detects that the current value has become equal to or greater than the first threshold value th1 at time t6, and determines that the plunger 126 has reached the vicinity of the standby position when the state in which the current value is equal to or greater than the first threshold value th1 continues until time t7 when the first determination time has elapsed.
第2閾値th2は、上死点に到達したプランジャ126が下死点に向けて下降した後に予備巻上が可能か否かを判定するために用いられる。具体的には、制御部116は、検出した電流値が第2閾値th2以下の状態が第2判定時間(例えば、10ms)以上経過した場合に、プランジャ126の予備巻上が可能と判定する。すなわち、制御部116は、時刻t3にて電流値が第2閾値th2以下となったことを検出し、第2判定時間が経過した時刻t5まで電流値が第2閾値th2以下の状態が継続すると、予備巻上可能と判定する。尚、第1閾値th1と第2閾値th2とは同じ値であってもよいし、異なる値であってもよい。 The second threshold th2 is used to determine whether or not preliminary winding is possible after the plunger 126, which has reached the top dead center, descends toward the bottom dead center. Specifically, the control unit 116 determines that preliminary winding of the plunger 126 is possible when the state in which the detected current value is equal to or less than the second threshold th2 has elapsed for a second determination time (e.g., 10 ms) or more. That is, the control unit 116 detects that the current value has become equal to or less than the second threshold th2 at time t3, and determines that preliminary winding is possible when the current value remains equal to or less than the second threshold th2 until time t5, when the second determination time has elapsed. Note that the first threshold th1 and the second threshold th2 may be the same value or different values.
また、電池パック117の電圧の値が低下すると、電動モータ114の回転数が低下し、イナーシャが低くなるので、プランジャ126が待機時間の間に上昇できる距離が短くなる。すなわち、プランジャ126が待機位置に到達することなく予備巻上が終了してしまう。このような不具合の発生を抑制するため、制御部116は、電動モータ114の回転を停止させる際の待機時間(すなわち、電流値が第1閾値th1以上となってからの遅延時間)を、電池パック117の電圧に応じて変更する。この場合、制御部116は、電圧検出回路202によって検出された電池パック117の電圧の値が予め設定された値よりも小さくなった場合には、待機時間を長くする。例えば、制御部116は、プランジャ126が待機位置から上昇を開始(始動)する前、すなわち電動モータ114が回転駆動を開始する前における電池パック117の電圧の値を検出する。制御部116は、検出された電圧の値が予め設定された値よりも0.4V低くなるごとに、待機時間を1msずつ長くする。尚、制御部116は、検出された電圧の値の減少に応じて、待機時間を線形的に長くしてもよい。 Also, when the voltage value of the battery pack 117 decreases, the number of rotations of the electric motor 114 decreases and the inertia decreases, so the distance that the plunger 126 can rise during the standby time becomes shorter. That is, the preliminary winding ends without the plunger 126 reaching the standby position. In order to suppress the occurrence of such a malfunction, the control unit 116 changes the standby time when stopping the rotation of the electric motor 114 (i.e., the delay time after the current value becomes equal to or greater than the first threshold value th1) according to the voltage of the battery pack 117. In this case, the control unit 116 lengthens the standby time when the voltage value of the battery pack 117 detected by the voltage detection circuit 202 becomes smaller than a preset value. For example, the control unit 116 detects the voltage value of the battery pack 117 before the plunger 126 starts to rise (start) from the standby position, that is, before the electric motor 114 starts to rotate. The control unit 116 lengthens the standby time by 1 ms every time the detected voltage value becomes 0.4 V lower than the preset value. Additionally, the control unit 116 may linearly increase the standby time in response to a decrease in the detected voltage value.
図8に示されるフローチャートを参照して、制御部116が動作制御において行う各処理について説明する。図8に示される各処理は、制御部116が記憶部に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The process steps performed by the control unit 116 in the operation control will be described with reference to the flowchart shown in FIG. 8. The process steps shown in FIG. 8 are performed by the control unit 116 reading a program stored in the storage unit and executing the program.
ステップS10では、制御部116は、電流検出回路203により検出された電流値が第2閾値th2以下であるか否かを判定する。電流値が第2閾値th2以下の場合には、制御部116により肯定判定が行われ、処理はステップS11へ進む。電流値が第2閾値th2よりも大きい場合には、制御部116により否定判定が行われ、ステップS10の処理が繰り返される。 In step S10, the control unit 116 determines whether the current value detected by the current detection circuit 203 is equal to or less than the second threshold value th2. If the current value is equal to or less than the second threshold value th2, the control unit 116 makes a positive determination and the process proceeds to step S11. If the current value is greater than the second threshold value th2, the control unit 116 makes a negative determination and the process of step S10 is repeated.
ステップS11では、制御部116は、第2判定時間である10msが経過したか否かを判定する。第2判定時間が経過すると、制御部116により肯定判定が行われる。そして、制御部116は、プランジャ126の予備巻上が可能であると判定する。その後、処理はステップS12へ進む。第2判定時間が経過していない場合には、制御部116により否定判定が行われ、処理はステップS10へ戻る。 In step S11, the control unit 116 determines whether or not the second determination time of 10 ms has elapsed. If the second determination time has elapsed, the control unit 116 makes a positive determination. The control unit 116 then determines that pre-winding of the plunger 126 is possible. Processing then proceeds to step S12. If the second determination time has not elapsed, the control unit 116 makes a negative determination, and processing returns to step S10.
ステップS12では、制御部116は、予備巻上を行っている電動モータ114の負荷である電流値を電流検出回路203から取得し、その電流値が第1閾値th1以上であるか否かを判定する。電流値が第1閾値th1以上の場合には、制御部116により肯定判定が行われ、処理はステップS13へ進む。電流値が第1閾値th1未満の場合には、制御部116により否定判定が行われ、ステップS12の処理が繰り返される。 In step S12, the control unit 116 obtains the current value, which is the load of the electric motor 114 performing the preliminary winding, from the current detection circuit 203, and determines whether the current value is equal to or greater than the first threshold value th1. If the current value is equal to or greater than the first threshold value th1, the control unit 116 makes a positive determination and the process proceeds to step S13. If the current value is less than the first threshold value th1, the control unit 116 makes a negative determination and the process of step S12 is repeated.
ステップS13では、制御部116は、第1判定時間である5msが経過したか否かを判定する。第1判定時間が経過すると、制御部116により肯定判定が行われ、処理はステップS14へ進む。第1判定時間が経過していない場合には、制御部116により否定判定が行われ、処理はステップS12へ戻る。 In step S13, the control unit 116 determines whether or not the first determination time of 5 ms has elapsed. If the first determination time has elapsed, the control unit 116 makes a positive determination, and the process proceeds to step S14. If the first determination time has not elapsed, the control unit 116 makes a negative determination, and the process returns to step S12.
ステップS14では、待機時間が経過したか否かを判定する。待機時間が経過した場合には、制御部116により肯定判定が行われ、処理はステップS15へ進む。待機時間が経過していない場合には、制御部116により否定判定が行われ、ステップS14の処理が繰り返される。ステップS15では、制御部116は、電動モータ114を停止させて処理を終了する。 In step S14, it is determined whether the waiting time has elapsed. If the waiting time has elapsed, the control unit 116 makes a positive determination, and the process proceeds to step S15. If the waiting time has not elapsed, the control unit 116 makes a negative determination, and the process of step S14 is repeated. In step S15, the control unit 116 stops the electric motor 114 and ends the process.
<動作工程判定>動作工程判定においては、制御部116は、検出した負荷の変化量に基づいて、プランジャ126とドライバブレード127との動作工程を把握する。この場合も、制御部116は、電池パック117によって供給された電力で駆動する電動モータ114の駆動電流を検出することにより、負荷を検出する。すなわち、制御部116は、電流検出回路203により検出された電流値の変化量に基づいて、プランジャ126とドライバブレード127との動作工程を判定する。 <Operation Step Determination> In operation step determination, the control unit 116 determines the operation step of the plunger 126 and the driver blade 127 based on the amount of change in the detected load. In this case, the control unit 116 also detects the load by detecting the drive current of the electric motor 114, which is driven by the power supplied by the battery pack 117. In other words, the control unit 116 determines the operation step of the plunger 126 and the driver blade 127 based on the amount of change in the current value detected by the current detection circuit 203.
上述したように、制御部116は、電動モータ114の駆動電流を、例えば100μs毎に検出し、100μs毎に検出した10個の電流値を1msの電流値に変換する。そして、制御部116は、ある電流値と、その電流値に対して所定の時間間隔として10ms前に変換された電流値との差分(差分電流値)を電流値の変化量として算出する。制御部116は、上記の時間間隔毎に得られた差分電流値の変化に基づいて、プランジャ126とドライバブレード127との動作工程を判定する。 As described above, the control unit 116 detects the drive current of the electric motor 114, for example, every 100 μs, and converts the 10 current values detected every 100 μs into a current value for 1 ms. The control unit 116 then calculates the difference (differential current value) between a certain current value and the current value converted from that current value 10 ms earlier, a predetermined time interval, as the amount of change in the current value. The control unit 116 determines the operating process of the plunger 126 and the driver blade 127 based on the change in the differential current value obtained at each of the above-mentioned time intervals.
図9は、プランジャ126が待機位置から上死点、下死点を介して再び待機位置へ戻るときの差分電流値の変化を示す図である。尚、図9では、縦軸を差分電流値、横軸を時刻とする。図9は、時刻0msにてトリガスイッチ143がオンとなった場合を示している。 Figure 9 is a diagram showing the change in the differential current value when the plunger 126 moves from the standby position to the top dead center, the bottom dead center, and then back to the standby position. In Figure 9, the vertical axis represents the differential current value, and the horizontal axis represents time. Figure 9 shows the case where the trigger switch 143 is turned on at time 0 ms.
上述したように、電動モータ114が回転を開始した直後は起動電力(電流)が大きい。このため、時刻t10にて、差分電流値が急激に増加する。そして、プランジャ126が上昇を開始すると、起動電力(電流)の影響が減少するため、差分電流値は減少する。このため、時刻t10にて、差分電流値は極大値(アップピーク)となる。制御部116は、このアップピークが検出される時刻t10にて、動作工程としてプランジャ126の上昇開始(始動)を判定する。 As described above, the starting power (current) is large immediately after the electric motor 114 starts to rotate. Therefore, at time t10, the differential current value increases sharply. Then, when the plunger 126 starts to rise, the influence of the starting power (current) decreases, and the differential current value decreases. Therefore, at time t10, the differential current value becomes a maximum value (up-peak). At time t10 when this up-peak is detected, the control unit 116 determines that the plunger 126 has started to rise (start) as an operating process.
プランジャ126が始動すると、電動モータ114の回転に係る負荷が低くなるので、プランジャ126の上昇は加速し、差分電流値も減少する。差分電流値は、プランジャ126が上死点に到達する時刻t12まで減少する。時刻t10と時刻t12との間の時刻t11にて、差分電流値が0Aとなる。制御部116は、時刻t11にて差分電流値が0Aとなりさらに減少すること(ゼロクロス)を検出すると、動作工程としてプランジャ126の加速上昇を判定する。 When the plunger 126 starts, the load associated with the rotation of the electric motor 114 decreases, so the rise of the plunger 126 accelerates and the differential current value also decreases. The differential current value decreases until time t12 when the plunger 126 reaches top dead center. At time t11 between time t10 and time t12, the differential current value becomes 0 A. When the control unit 116 detects that the differential current value becomes 0 A at time t11 and then decreases further (zero crossing), it determines that the operation process is an accelerating rise of the plunger 126.
時刻t12にてプランジャ126が上死点に到達した後、プランジャ126と伝達機構115との係合が外れてプランジャ126が下降を開始すると、差分電流値は増加を開始する。このため、時刻t12にて、差分電流値は極小値(ダウンピーク)となる。制御部116は、このダウンピークが検出される時刻t12にて、動作工程としてプランジャ126の始動完了を判定する。 After the plunger 126 reaches the top dead center at time t12, the plunger 126 disengages from the transmission mechanism 115 and starts to descend, and the differential current value starts to increase. Therefore, at time t12, the differential current value becomes a minimum value (down peak). At time t12 when this down peak is detected, the control unit 116 determines that the start of the plunger 126 is complete as an operating process.
制御部116は、加速上昇が判定された後に差分電流値が所定時間(例えば5ms)以上減少した後に、一端増加し、その後さらに所定時間(例えば5ms)以上上昇したことを検出すると、ドライバブレード127が止具125を打撃した打撃工程を動作工程として判定する。図9においては、時刻t11から時刻t12までの差分電流値が減少した後、時刻t12から時刻t13まで増加し、時刻t13から時刻t14まで減少する。このため、制御部116は、ドライバブレード127が止具125を打撃し、止具125が射出されたと判定する。換言すると、制御部116は、差分電流値が所定時間減少し時刻t12のダウンピークを検出した後、再度差分電流値が増加した後に、再度所定時間減少し時刻t14でのピークを検出すると、打撃工程を判定する。 When the control unit 116 detects that the differential current value decreases for a predetermined time (e.g., 5 ms) or more after the acceleration increase is determined, then increases once, and then increases again for a predetermined time (e.g., 5 ms) or more, the control unit 116 determines that the striking process in which the driver blade 127 strikes the stopper 125 is the operation process. In FIG. 9, the differential current value decreases from time t11 to time t12, increases from time t12 to time t13, and decreases from time t13 to time t14. Therefore, the control unit 116 determines that the driver blade 127 strikes the stopper 125 and the stopper 125 is ejected. In other words, the control unit 116 determines that the striking process is performed when the differential current value decreases for a predetermined time, detects a down peak at time t12, and then increases again, decreases for a predetermined time, and detects a peak at time t14.
時刻t14以後、差分電流値は、プランジャ126が伝達機構115との再係合を開始すると再び増加し始める。増加を開始した差分電流値は、時刻t15にて0Aを超える(ゼロクロス)。このため、制御部116は、時刻t15にてゼロクロスが検出されると、動作工程としてプランジャ126の予備巻上開始を判定する。その後、予備巻上によってプランジャ126が待機位置に到達すると、制御部116は、上述したように電動モータ114の回転を停止する(時刻t16)。 After time t14, the differential current value starts to increase again when the plunger 126 starts to re-engage with the transmission mechanism 115. The differential current value that starts to increase exceeds 0 A (zero cross) at time t15. Therefore, when the zero cross is detected at time t15, the control unit 116 determines that the preliminary winding of the plunger 126 has started as an operating process. After that, when the plunger 126 reaches the standby position due to the preliminary winding, the control unit 116 stops the rotation of the electric motor 114 as described above (time t16).
図10に示されるフローチャートを参照して、制御部116が動作判定において行う各処理について説明する。図10に示される各処理は、制御部116が記憶部に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The processes performed by the control unit 116 in the operation determination will be described with reference to the flowchart shown in FIG. 10. Each process shown in FIG. 10 is performed by the control unit 116 reading a program stored in the storage unit and executing the program.
ステップS20では、制御部116は、算出した差分電流値の急峻な増加を検出する。ステップS21では、制御部116は、差分電流値の変化にアップピークが生じたか否かを判定する。差分電流値の変化にアップピークが生じた場合、制御部116は肯定判定を行う。このとき、制御部116は、動作工程としてプランジャ126の始動を判定する。その後、処理はステップS22へ進む。アップピークが生じない場合、制御部116は否定判定を行い、ステップS21の処理が繰り返される。 In step S20, the control unit 116 detects a steep increase in the calculated differential current value. In step S21, the control unit 116 determines whether or not an up-peak has occurred in the change in the differential current value. If an up-peak has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines the start of the plunger 126 as an operating step. The process then proceeds to step S22. If an up-peak has not occurred, the control unit 116 makes a negative determination, and the process of step S21 is repeated.
ステップS22では、制御部116は、算出した差分電流値の変化にゼロクロスが生じたか否かを判定する。差分電流値の変化にゼロクロスが生じた場合、制御部116は肯定判定をする。このとき、制御部116は、動作工程としてプランジャ126の加速上昇を判定する。その後、処理はステップS23へ進む。差分電流値の変化にゼロクロスが生じていない場合には、制御部116は否定判定をして、ステップS22の処理が繰り返される。 In step S22, the control unit 116 determines whether or not a zero cross has occurred in the change in the calculated differential current value. If a zero cross has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the plunger 126 is accelerating upward as an operating step. The process then proceeds to step S23. If a zero cross has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S22 is repeated.
ステップS23では、制御部116は、算出した差分電流値の変化にダウンピークが生じたか否かを判定する。差分電流値の変化にダウンピークが生じた場合には、制御部116は肯定判定を行う。このとき、制御部116は、動作工程としてプランジャ126の始動完了を判定する。その後、処理はステップS24へ進む。差分電流値の変化にダウンピークが生じていない場合には、制御部116は否定判定を行い、ステップS23の処理が繰り返される。 In step S23, the control unit 116 determines whether a down-peak has occurred in the change in the calculated differential current value. If a down-peak has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the start of the plunger 126 has been completed as an operation step. Thereafter, the process proceeds to step S24. If a down-peak has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S23 is repeated.
ステップS24では、制御部116は、算出した差分電流値の変化が一端増加した後に減少、すなわちダウンピーク後に再度差分電流値の変化の増減によるピークが生じたか否かを判定する。差分電流値の変化にダウンピーク後に増加し再度減少することでピークが生じた場合には、制御部116は肯定判定を行う。このとき、制御部116は、動作工程としてドライバブレード127が止具125を打撃する打撃工程を判定する。その後、処理はステップS25へ進む。差分電流値の変化にダウンピーク後のピークが生じていない場合には、制御部116は否定判定を行い、ステップS24の処理が繰り返される。 In step S24, the control unit 116 determines whether the change in the calculated differential current value increases once and then decreases, i.e., whether a peak occurs again due to an increase or decrease in the change in the differential current value after a down-peak. If a peak occurs in the change in the differential current value by increasing after a down-peak and then decreasing again, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the operation process is the striking process in which the driver blade 127 strikes the stopper 125. The process then proceeds to step S25. If a peak does not occur in the change in the differential current value after the down-peak, the control unit 116 makes a negative determination, and the process of step S24 is repeated.
ステップS25では、制御部116は、算出した差分電流値の変化にゼロクロスが生じたか否かを判定する。差分電流値の変化にゼロクロスが生じた場合には、制御部116は肯定判定を行う。このとき、制御部116は、動作工程としてプランジャ126の予備巻上開始を判定する。その後、処理はステップS26へ進む。差分電流値の変化にゼロクロスが生じていない場合には、制御部116は否定判定を行い、ステップS25の処理が繰り返される。ステップS26では、制御部116は、算出した差分電流値に基づいて、動作工程としてプランジャ126の予備巻上中を判定し、プランジャ126が待機位置に到達すると、処理を終了する。 In step S25, the control unit 116 determines whether or not a zero cross has occurred in the change in the calculated differential current value. If a zero cross has occurred in the change in the differential current value, the control unit 116 makes a positive determination. At this time, the control unit 116 determines that the preliminary winding of the plunger 126 has started as an operating process. Thereafter, the process proceeds to step S26. If a zero cross has not occurred in the change in the differential current value, the control unit 116 makes a negative determination, and the process of step S25 is repeated. In step S26, the control unit 116 determines that the preliminary winding of the plunger 126 is in progress as an operating process based on the calculated differential current value, and ends the process when the plunger 126 reaches the standby position.
<異常判定>異常判定においては、制御部116は、検出した負荷又は負荷の変化に基づいて、打撃機構112の動作工程に異常が生じたか否かを判定する。具体的には、制御部116は、動作制御の際に検出された電流値又は動作判定の際に検出された差分電流値の変化に基づいて、異常の有無を判定する。具体的には、制御部116は、予め定められたレスポンスエラーのタイミングより後に電流値が第2閾値th2以下となる場合に、打撃機構112の移動に異常が生じたと判定する。換言すると、制御部116は、作業者による操作が行われてから、検出した電流値が第2閾値th2以下となるまでの時間に基づいて、プランジャ126とドライバブレード127との移動に異常があるか否かを判定する。また、制御部116は、予め定められたタイムアウトエラーのタイミングよりも後に電流値が第1閾値th1以上となる場合に、打撃機構112の移動に異常が生じたと判定する。換言すると、制御部116は、作業者による操作が行われてから、検出した電流値が第1閾値th1以上となるまでの時間に基づいて、プランジャ126とドライバブレード127との移動に異常があるか否かを判定する。 <Abnormality determination> In abnormality determination, the control unit 116 determines whether or not an abnormality has occurred in the operation process of the impact mechanism 112 based on the detected load or change in load. Specifically, the control unit 116 determines whether or not an abnormality has occurred based on the change in the current value detected during operation control or the differential current value detected during operation determination. Specifically, the control unit 116 determines that an abnormality has occurred in the movement of the impact mechanism 112 when the current value becomes equal to or less than the second threshold value th2 after a predetermined response error timing. In other words, the control unit 116 determines whether or not an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or less than the second threshold value th2. In addition, the control unit 116 determines that an abnormality has occurred in the movement of the impact mechanism 112 when the current value becomes equal to or more than the first threshold value th1 after a predetermined timeout error timing. In other words, the control unit 116 determines whether there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs the operation until the detected current value becomes equal to or greater than the first threshold value th1.
または、制御部116は、図9に示される差分電流値の変化を示す波形と異なる波形が検出される場合に、打撃機構112の駆動に異常が生じたと判定する。換言すると、制御部116は、所定の時間間隔毎の電流の変化量である差分電流値の変化に基づいて、プランジャ126とドライバブレード127との移動が正常に行われたか否かを判定する。たとえば、制御部116は、検出した電流値が第1閾値th1以上となるまでの間に、上述した打撃工程が判定されない場合には、プランジャ126とドライバブレード127との移動に異常があったと判定する。すなわち、制御部116は、作業者による操作が行われてから、負荷に基づいて電動モータ114を停止させてプランジャ126とドライバブレード127とを待機位置で停止させるまでの間に打撃工程が判定されない場合に、プランジャ126とドライバブレード127との移動に異常があったと判定する。制御部116は、異常判定を、電流値が第1閾値th1以上となり、プランジャ126が停止した後に行う。 Alternatively, the control unit 116 determines that an abnormality has occurred in the drive of the impact mechanism 112 when a waveform different from the waveform showing the change in the differential current value shown in FIG. 9 is detected. In other words, the control unit 116 determines whether the movement of the plunger 126 and the driver blade 127 has been performed normally based on the change in the differential current value, which is the amount of change in current at each predetermined time interval. For example, the control unit 116 determines that an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 when the above-mentioned impact process is not determined until the detected current value becomes equal to or greater than the first threshold value th1. That is, the control unit 116 determines that an abnormality has occurred in the movement of the plunger 126 and the driver blade 127 when the impact process is not determined between the time the operator performs the operation and the time the electric motor 114 is stopped based on the load and the plunger 126 and the driver blade 127 are stopped at the standby position. The control unit 116 performs the abnormality determination after the current value becomes equal to or greater than the first threshold value th1 and the plunger 126 is stopped.
図11(A)~(D)は、待機位置に位置していないプランジャ126が移動を行った場合に検出される電流値の波形を示す図であり、縦軸を差分電流値、横軸を時刻とする。尚、図11(A)~(D)において、100msがレスポンスエラーを判定するタイミングであり、300msがタイムアウトエラーを判定するタイミングであるものとする。 Figures 11 (A) to (D) are diagrams showing the waveforms of the current values detected when the plunger 126, which is not in the standby position, moves, with the vertical axis representing the differential current value and the horizontal axis representing time. Note that in Figures 11 (A) to (D), 100 ms is the timing for determining a response error, and 300 ms is the timing for determining a timeout error.
図11(A)は、例えば、電池パック117の電圧低下等の要因により下死点に位置していたプランジャ126が始動した場合の電流値の波形を示す。この場合、プランジャ126が下死点から始動を開始するため、上死点に到達することなく下降を開始する。図に示されるように、検出される電流値はレスポンスエラー前の時刻t20で第2閾値th2以下となる。その後、電流値が第1閾値th1以上となるとプランジャ126が待機位置で停止する。このとき、制御部116は、差分電流値の変化に基づいて打撃工程が判定されていない場合には、異常が生じていることを判定する。この場合、制御部116は、例えば、不図示の警告ランプの点灯等の警告報知部を用いて異常が発生したことを作業者に警告する。そして、制御部116は、電動モータ114の駆動を行わせない等の打込機100の動作を行わせないようにする。 Figure 11 (A) shows the waveform of the current value when the plunger 126, which was located at the bottom dead center, starts due to a factor such as a voltage drop in the battery pack 117. In this case, the plunger 126 starts starting from the bottom dead center, so it starts descending without reaching the top dead center. As shown in the figure, the detected current value is equal to or less than the second threshold value th2 at time t20 before the response error. After that, when the current value becomes equal to or greater than the first threshold value th1, the plunger 126 stops at the standby position. At this time, if the impact process has not been determined based on the change in the differential current value, the control unit 116 determines that an abnormality has occurred. In this case, the control unit 116 warns the operator that an abnormality has occurred using, for example, a warning unit such as a warning lamp (not shown). Then, the control unit 116 prevents the driving machine 100 from operating, such as by not driving the electric motor 114.
図11(B)は、下死点よりも上方に位置していたプランジャ126が始動を開始した場合の電流値の波形を示す。この場合も、図11(A)のときと同様に、プランジャ126は上死点に到達することなく下降を開始する。図に示されるように、検出される電流値はレスポンスエラー前の時刻t21で第2閾値th2以下となる。その後、電流値が第1閾値th1以上となるとプランジャ126が待機位置で停止する。ただし、プランジャ126が始動を開始する位置は、図11(A)のときよりも上方であるため、プランジャ126が待機位置で停止するまでに要する時間は、図11(A)に示される場合よりも短くなる。このとき、制御部116は、差分電流値の変化に基づいて打撃工程が判定されていない場合には、異常が生じていることを判定する。この場合、制御部116は、例えば、不図示の警告ランプの点灯等により異常が発生したことを作業者に警告する。そして、制御部116は、電動モータ114の駆動を行わせない等の打込機100の動作を行わせないようにする。 Figure 11 (B) shows the waveform of the current value when the plunger 126, which was located above the bottom dead center, starts to start. In this case, as in Figure 11 (A), the plunger 126 starts to descend without reaching the top dead center. As shown in the figure, the detected current value becomes equal to or less than the second threshold value th2 at time t21 before the response error. After that, when the current value becomes equal to or more than the first threshold value th1, the plunger 126 stops at the standby position. However, since the position at which the plunger 126 starts to start is higher than in Figure 11 (A), the time required for the plunger 126 to stop at the standby position is shorter than in the case shown in Figure 11 (A). At this time, the control unit 116 determines that an abnormality has occurred if the impact process has not been determined based on the change in the differential current value. In this case, the control unit 116 warns the operator that an abnormality has occurred, for example, by turning on a warning lamp (not shown). The control unit 116 then prevents the driver 100 from operating, for example by not driving the electric motor 114.
図11(C)は、図11(B)にてプランジャ126が停止していた位置よりも上方であり、待機位置よりも下方に位置していたプランジャ126が始動を開始した場合の電流値の波形を示す。また、制御部116は、差分電流値の変化に基づいて打撃工程を判定しているものとする。この場合、プランジャ126は待機位置の近傍から始動しているために上死点に到達してから下降を開始する。 Figure 11 (C) shows the waveform of the current value when the plunger 126 starts to move, which is located above the position where the plunger 126 stopped in Figure 11 (B) and below the standby position. Also, the control unit 116 is assumed to determine the impact process based on the change in the differential current value. In this case, the plunger 126 starts to move down after reaching the top dead center, since it starts to move up from near the standby position.
図11(C)に示されるように、検出される電流値はレスポンスエラー後の時刻t22で第2閾値th2以下となる。また、検出される電流値は、タイムアウトエラー後の時刻t23にて第1閾値th1以上となる。このように、電流値がレスポンスエラーのタイミングの前に第2閾値th2以下とならない場合、または、電流値がタイムアウトエラー後に第1閾値th1以上となる場合には、制御部116は、異常を判定し、電動モータ114の駆動を停止させる。 As shown in FIG. 11(C), the detected current value becomes equal to or less than the second threshold value th2 at time t22 after the response error. The detected current value becomes equal to or greater than the first threshold value th1 at time t23 after the timeout error. In this way, if the current value does not become equal to or less than the second threshold value th2 before the timing of the response error, or if the current value becomes equal to or greater than the first threshold value th1 after the timeout error, the control unit 116 determines that an abnormality has occurred and stops driving the electric motor 114.
図11(D)は、上死点の近傍に位置していたプランジャ126が始動を開始した場合の電流値の波形を示す。また、制御部116は、差分電流値の変化に基づいて打撃工程を判定しているものとする。この場合、プランジャ126は待機位置の近傍から始動しているために上死点に到達してから下降を開始する。図に示されるように、検出される電流値はレスポンスエラー前の時刻t24で第2閾値th2以下となる。そして、電流値が第1閾値th1以上となると、プランジャ126が停止する。この場合、制御部116は、プランジャ126に異常がないものと判定する。 Figure 11 (D) shows the waveform of the current value when the plunger 126, which was located near the top dead center, begins to start. It is also assumed that the control unit 116 determines the impact process based on the change in the differential current value. In this case, the plunger 126 starts from near the standby position, so it begins to descend after reaching the top dead center. As shown in the figure, the detected current value is equal to or less than the second threshold value th2 at time t24 before the response error. Then, when the current value becomes equal to or greater than the first threshold value th1, the plunger 126 stops. In this case, the control unit 116 determines that there is no abnormality in the plunger 126.
以上で説明した実施の形態によれば、以下の作用効果の少なくとも一つが得られる。 The embodiment described above provides at least one of the following effects:
(1)制御部116は、電動モータ114の負荷を検出可能である。制御部116は、検出した負荷に基づいて、電動モータ114を停止させることにより、電動モータ114の駆動力とコイルスプリング136の付勢力とによって上下方向に移動するプランジャ126とドライバブレード127とを待機位置で停止させる。これにより、電動モータ114の負荷に基づいてプランジャ126が待機位置に到達したことを判定できるので、プランジャ126とドライバブレード127とを待機位置にて高い精度で停止させることができる。このため、トリガ142及びプッシュレバー133がオンされて電動モータ114が駆動を開始してから止具125の打ち込みが行われるまでの時間にばらつきが小さくなり、作業者による打込機100を用いた作業の作業性向上に寄与する。また、位置検出スイッチ213等の位置検出スイッチとともに用いる場合には、プランジャ126とドライバブレード127とを待機位置で停止させる精度をより向上させることが可能となる。また、位置検出スイッチ213が故障しているような場合であっても、プランジャ126とドライバブレード127とを待機位置で停止させることが可能となるため、位置検出スイッチ213を削除してもよく、この場合には部品点数の減少による打込機100の軽量化や小型化も可能となる。 (1) The control unit 116 can detect the load of the electric motor 114. The control unit 116 stops the electric motor 114 based on the detected load, thereby stopping the plunger 126 and the driver blade 127, which move in the vertical direction by the driving force of the electric motor 114 and the biasing force of the coil spring 136, at the standby position. This makes it possible to determine that the plunger 126 has reached the standby position based on the load of the electric motor 114, so that the plunger 126 and the driver blade 127 can be stopped at the standby position with high accuracy. Therefore, the variation in the time from when the trigger 142 and the push lever 133 are turned on and the electric motor 114 starts driving to when the fastener 125 is driven is reduced, which contributes to improving the workability of the worker using the driving machine 100. In addition, when used together with a position detection switch such as the position detection switch 213, it is possible to further improve the accuracy of stopping the plunger 126 and the driver blade 127 at the standby position. Furthermore, even if the position detection switch 213 is broken, it is possible to stop the plunger 126 and the driver blade 127 in the standby position, so the position detection switch 213 may be eliminated, which reduces the number of parts and makes it possible to make the driver 100 lighter and smaller.
(2)制御部116は、電動モータ114の負荷として、電動モータ114の駆動電流を検出する。これにより、簡単な構成により、電動モータ114の負荷を検出することが可能となる。 (2) The control unit 116 detects the drive current of the electric motor 114 as the load of the electric motor 114. This makes it possible to detect the load of the electric motor 114 with a simple configuration.
(3)制御部116は、検出した電流値が第1閾値th1以上となると、電動モータ114を停止させる。これにより、電動モータ114が待機位置の近傍に到達したことを検出できるので、プランジャ126を待機位置に精度よく停止させることが可能となる。 (3) When the detected current value becomes equal to or greater than the first threshold value th1, the control unit 116 stops the electric motor 114. This makes it possible to detect that the electric motor 114 has reached the vicinity of the standby position, thereby enabling the plunger 126 to be stopped at the standby position with high accuracy.
(4)制御部116は、検出した電流値が第2閾値th2以下となった後に第1閾値th1以上となると、電動モータ114を停止させる。これにより、止具125の射出が行われた後にプランジャ126が上昇して待機位置に到達したことを判定することができる。この結果、プランジャ126の位置が誤って判定されることが抑制され、待機位置にて停止させる際の位置検出精度を向上させることができる。 (4) When the detected current value becomes equal to or less than the second threshold value th2 and then equal to or greater than the first threshold value th1, the control unit 116 stops the electric motor 114. This makes it possible to determine that the plunger 126 has risen and reached the standby position after the stopper 125 has been ejected. As a result, erroneous determination of the position of the plunger 126 is suppressed, and the accuracy of position detection when stopping the plunger at the standby position can be improved.
(5)制御部116は、検出した電流値が第1閾値th1以上となってから所定の遅延時間が経過した後、すなわち第1判別時間の経過後に待機時間が経過した後、電動モータ114を停止させる。これにより、待機位置の近傍まで上昇したプランジャ126を待機位置まで上昇させて停止させることが可能となる。 (5) The control unit 116 stops the electric motor 114 after a predetermined delay time has elapsed since the detected current value became equal to or greater than the first threshold value th1, i.e., after the first discrimination time has elapsed and the standby time has elapsed. This makes it possible to raise the plunger 126, which has risen close to the standby position, to the standby position and stop it there.
(6)制御部116は、電池パック117の電圧の値に基づいて、待機時間を変更する。これにより、電池パック117の電池残量の減少によって電動モータ114の回転数が低下し、イナーシャが低くなった場合であっても、プランジャ126が上昇可能な時間を延長することが可能となる。この結果、プランジャ126が待機位置に到達することなく予備巻上が終了するという不具合の発生を抑制できる。 (6) The control unit 116 changes the standby time based on the voltage value of the battery pack 117. This makes it possible to extend the time during which the plunger 126 can rise even when the rotation speed of the electric motor 114 decreases and the inertia becomes low due to a decrease in the remaining battery charge of the battery pack 117. As a result, it is possible to prevent the occurrence of a malfunction in which the preliminary winding ends before the plunger 126 reaches the standby position.
(7)制御部116は、作業者による操作が行われてから、検出した電流値が第2閾値th2以下となるまでの時間に基づいて、プランジャ126とドライバブレード127との移動に異常があるか否かを判定する。これにより、電流値の変化の特徴点が現れる時間に基づいて異常の有無が判定できるため、簡単な構成を用いて止具125の射出が行われたか否かを判定することができる。 (7) The control unit 116 determines whether or not there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or less than the second threshold value th2. This allows the presence or absence of an abnormality to be determined based on the time at which a characteristic point in the change in the current value appears, making it possible to determine whether or not the stopper 125 has been ejected using a simple configuration.
(8)制御部116は、作業者による操作が行われてから、検出した電流値が第1閾値th1以上となるまでの時間に基づいて、プランジャ126とドライバブレード127との移動に異常があるか否かを判定する。これにより、タイムアウトエラーとして設定された時刻までにプランジャ126が待機位置に到達したか否かに基づいて異常の有無を判定することが可能となる。 (8) The control unit 116 determines whether or not there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the time from when the operator performs an operation until the detected current value becomes equal to or greater than the first threshold value th1. This makes it possible to determine whether or not there is an abnormality based on whether or not the plunger 126 reaches the standby position by the time set as the timeout error.
(9)制御部116は、所定の時間間隔毎の負荷の変化量、すなわち電流の変化量である差分電流値に基づいて、プランジャ126とドライバブレード127との移動が正常に行われたか否かを判定する。これにより、簡単な構成により、プランジャ126とドライバブレード127との移動に異常の有無があったか否かを判定することが可能となる。 (9) The control unit 116 determines whether the movement of the plunger 126 and the driver blade 127 is normal or not based on the amount of change in the load at each predetermined time interval, i.e., the differential current value which is the amount of change in the current. This makes it possible to determine whether there is an abnormality in the movement of the plunger 126 and the driver blade 127 with a simple configuration.
(10)制御部116は、所定の時間間隔毎の負荷の変化量、すなわち電流の変化量である差分電流値に基づいて、プランジャ126とドライバブレード127との動作工程を判定する。これにより、簡単な構成により、プランジャ126とドライバブレード127とがどのような動作を行ったかを判定することが可能となる。 (10) The control unit 116 determines the operation process of the plunger 126 and the driver blade 127 based on the amount of change in the load at each predetermined time interval, i.e., the differential current value, which is the amount of change in the current. This makes it possible to determine what operation the plunger 126 and the driver blade 127 have performed with a simple configuration.
(11)制御部116は、差分電流値の変化が所定時間減少した後に増加してから再度所定時間減少した場合に、ドライバブレード127が止具125を打撃する打撃工程を動作工程として判定可能である。制御部116は、作業者による操作が行われてから、電動モータ114を停止させてプランジャ126とドライバブレード127とを待機位置で停止させるまでの間に、打撃工程が行われない場合には、プランジャ126とドライバブレード127との移動に異常があると判定する。これにより、簡単な構成により電動モータ114の電流値を検出して、検出した電流値及び差分電流値に基づいて、プランジャ126とドライバブレード127との移動に異常があることを判定できる。 (11) When the change in the differential current value decreases for a predetermined time, then increases, and then decreases again for a predetermined time, the control unit 116 can determine that the striking process in which the driver blade 127 strikes the stopper 125 is an operation process. When the striking process is not performed between the time the operator performs an operation and the time the electric motor 114 is stopped and the plunger 126 and the driver blade 127 are stopped at the standby position, the control unit 116 determines that there is an abnormality in the movement of the plunger 126 and the driver blade 127. This makes it possible to detect the current value of the electric motor 114 with a simple configuration, and to determine that there is an abnormality in the movement of the plunger 126 and the driver blade 127 based on the detected current value and the differential current value.
(12)制御部は116、差分電流値の変化が極小となった後に増加し再度減少すると、ドライバブレード127が止具125を打撃して、止具125が射出されたと判定する。これにより、簡単な構成により、電動モータ114の負荷の変化に基づいて止具125の射出の有無を判定することが可能となる。 (12) When the change in the differential current value becomes minimal, then increases and decreases again, the control unit 116 determines that the driver blade 127 has struck the stopper 125 and the stopper 125 has been ejected. This makes it possible to determine, with a simple configuration, whether or not the stopper 125 has been ejected based on the change in the load on the electric motor 114.
上述した実施の形態を次のように変形することができる。 The above-described embodiment can be modified as follows:
<変形例>(1)制御部116は、電動モータ114の負荷として駆動電流を検出するものに限定されず、電動モータ114の回転数を検出してもよい。この場合、制御部116は、回転数検出回路210から出力された信号に基づいて電動モータ114の回転数を検出する。そして、制御部116は、検出した回転数の増減に基づいて、止具125の射出後にプランジャ126の予備巻上が行われ、待機位置に到達したか否かを判定する。具体的には、制御部116は、予め予備巻上により待機位置に到達する場合の電動モータ114の回転数を閾値として記憶しておき、検出した回転数がこの閾値より小さくなると、電動モータ114の回転を停止させればよい。 <Modifications> (1) The control unit 116 is not limited to detecting the drive current as the load of the electric motor 114, and may detect the rotation speed of the electric motor 114. In this case, the control unit 116 detects the rotation speed of the electric motor 114 based on a signal output from the rotation speed detection circuit 210. Then, based on the increase or decrease in the detected rotation speed, the control unit 116 determines whether or not the plunger 126 has been pre-wound after the stopper 125 is ejected and has reached the standby position. Specifically, the control unit 116 stores in advance the rotation speed of the electric motor 114 when the standby position is reached by pre-wounding as a threshold value, and stops the rotation of the electric motor 114 when the detected rotation speed becomes smaller than this threshold value.
(2)第1閾値th1又は第2閾値th2を可変な値としてもよい。例えば、制御部116は、電池パック117の電池残量に応じて、第1閾値th1の値を変更してもよい。この場合、制御部116は、プランジャ126の始動時に電圧検出回路202により検出された電池パック117の電圧の値に基づいて、電池パック117の電池残量を検出する。または、制御部116は、プランジャ126の始動時に検出された電流値に基づいて、電池パック117の電池残量を算出(検出)してもよい。制御部116は、検出された電池残量の値が予め設定された値よりも小さくなった場合には、第1閾値th1の値を増加させる。このとき、制御部116は、検出された電圧の値の減少に応じて、第1閾値th1の値を線形的に増加させてもよいし、非線形的(例えば段階的)に増加させてもよい。 (2) The first threshold th1 or the second threshold th2 may be a variable value. For example, the control unit 116 may change the value of the first threshold th1 according to the remaining battery charge of the battery pack 117. In this case, the control unit 116 detects the remaining battery charge of the battery pack 117 based on the voltage value of the battery pack 117 detected by the voltage detection circuit 202 when the plunger 126 is started. Alternatively, the control unit 116 may calculate (detect) the remaining battery charge of the battery pack 117 based on the current value detected when the plunger 126 is started. When the detected remaining battery charge value becomes smaller than a preset value, the control unit 116 increases the value of the first threshold th1. At this time, the control unit 116 may increase the value of the first threshold th1 linearly or nonlinearly (e.g., stepwise) according to the decrease in the detected voltage value.
または、制御部116は、止具125が射出された回数(打込回数)に応じて、第1閾値th1又は第2閾値th2を変更してもよい。この場合、制御部116は、釘残量スイッチ操作検出回路208から出力された信号に基づいて、使用された止具125の数、すなわち打込回数を算出し、打込回数の増加に応じて、第1閾値th1の値を増加させることができる。 Alternatively, the control unit 116 may change the first threshold th1 or the second threshold th2 according to the number of times the fasteners 125 have been ejected (the number of driving operations). In this case, the control unit 116 can calculate the number of fasteners 125 used, i.e., the number of driving operations, based on the signal output from the nail remaining amount switch operation detection circuit 208, and increase the value of the first threshold th1 according to an increase in the number of driving operations.
または、制御部116は、コイルスプリング136の劣化に基づいて第1閾値th1又は第2閾値th2を可変としてもよい。この場合、制御部116は、電動モータ114の起動電流の値に基づいて、コイルスプリング136の劣化度を判定する。例えば、コイルスプリング136が劣化により柔らかくなっている場合には、制御部116は、第1閾値th1を小さくしてもよい。また、コイルスプリング136が劣化により硬くなっている場合には、制御部116は、第1閾値th1を大きくしてもよい。 Alternatively, the control unit 116 may vary the first threshold value th1 or the second threshold value th2 based on the deterioration of the coil spring 136. In this case, the control unit 116 determines the degree of deterioration of the coil spring 136 based on the value of the starting current of the electric motor 114. For example, if the coil spring 136 has become soft due to deterioration, the control unit 116 may reduce the first threshold value th1. Also, if the coil spring 136 has become hard due to deterioration, the control unit 116 may increase the first threshold value th1.
または、打込機100がコイルスプリング136に代えてガススプリングを備えている場合には、制御部116は、蓄圧室内の空気圧の変化に基づいて第1閾値th1又は第2閾値th2を可変としてもよい。この場合も、制御部116は、電動モータ114の起動電流の値に基づいて、蓄圧室内の空気圧の変化を判定する。例えば、蓄圧室から圧縮空気が抜けて空気圧が低下している場合には、制御部116は、第1閾値th1を小さくしてもよい。また、外気温が高い場合のように蓄圧室内の空気圧が上昇している場合には、制御部116は、第1閾値th1を大きくしてもよい。 Alternatively, if the driving tool 100 is equipped with a gas spring instead of the coil spring 136, the control unit 116 may vary the first threshold value th1 or the second threshold value th2 based on the change in air pressure in the accumulator chamber. In this case, too, the control unit 116 determines the change in air pressure in the accumulator chamber based on the value of the starting current of the electric motor 114. For example, if compressed air is leaking from the accumulator chamber and the air pressure is decreasing, the control unit 116 may decrease the first threshold value th1. Also, if the air pressure in the accumulator chamber is increasing, such as when the outside temperature is high, the control unit 116 may increase the first threshold value th1.
(3)制御部116は、プランジャ126が待機位置に到達した否かの判定は、検出した電流値と第1閾値th1とに基づいて行うものに限定されない。例えば、制御部116は、検出される電流値の波形を教師データとして学習し、検出された電流値の波形を用いて、プランジャ126が待機位置に到達したことを学習結果に基づいて判定してもよい。 (3) The control unit 116 is not limited to determining whether the plunger 126 has reached the standby position based on the detected current value and the first threshold value th1. For example, the control unit 116 may learn the waveform of the detected current value as teacher data and use the waveform of the detected current value to determine whether the plunger 126 has reached the standby position based on the learning result.
(4)制御部116は、プランジャ126を待機位置で停止させる際に、プランジャ126の上昇速度を徐々に低下させる制御を行ってもよい。この場合、第1閾値th1よりも小さい値の複数の閾値が予め設定され、制御部116は、検出した電流値がこれらの複数の閾値を超えるごとに、電動モータ114の回転数を所定の割合にて減少させればよい。 (4) The control unit 116 may perform control to gradually reduce the ascending speed of the plunger 126 when stopping the plunger 126 at the standby position. In this case, multiple thresholds smaller than the first threshold th1 are set in advance, and the control unit 116 may reduce the number of rotations of the electric motor 114 by a predetermined rate each time the detected current value exceeds these multiple thresholds.
(5)制御部116は、プランジャ126を下死点で停止させる制御を行ってもよい。この場合、例えば、図7に示される時刻t5のときの電流値に対応する閾値が設定され、制御部116は、検出した電流値がこの閾値となったことを判定すると、電動モータ114の駆動を停止させればよい。 (5) The control unit 116 may perform control to stop the plunger 126 at the bottom dead center. In this case, for example, a threshold value corresponding to the current value at time t5 shown in FIG. 7 is set, and when the control unit 116 determines that the detected current value has reached this threshold value, it may stop driving the electric motor 114.
<変形例2>変形例2の作業機である打込機100は、プランジャ126を待機位置で停止させるために電動モータ114を停止させる時期の決定を、人工知能(AI)により行うものである。例えば、電流値を予め人工知能に機械学習させ、機械学習によって得られたデータ(学習モデル)を基に、電動モータ114の停止時期が決定される。一例として、変形例2は、制御部316によって、ニューラルネットワーク(以下、「NN」とも呼ぶ)を用いた制御を行う。 <Variation 2> The driving machine 100, which is a work machine of variation 2, uses artificial intelligence (AI) to determine when to stop the electric motor 114 in order to stop the plunger 126 at the standby position. For example, the current value is machine-learned by the artificial intelligence in advance, and the time to stop the electric motor 114 is determined based on the data obtained by the machine learning (learning model). As an example, variation 2 uses a neural network (hereinafter also referred to as "NN") to perform control by the control unit 316.
図12は、変形例2に係る打込機100の制御部316の要部構成を示すブロック図である。変形例2の制御部316は、上述した実施の形態の制御部116を置き換えた構成となっている。学習済みモデル301は、学習モデルの一例であって、電流値の変化に基づいて電動モータ114の停止時期を決定する際に用いられるデータである。また、NN演算部302は、演算部の一例であって、学習済みモデル301に基づいて決定された電動モータ114の停止時期に応じてステータへの通電パターンを制御する演算回路である。 Figure 12 is a block diagram showing the main components of the control unit 316 of the driving machine 100 according to the second modified example. The control unit 316 of the second modified example replaces the control unit 116 of the embodiment described above. The trained model 301 is an example of a trained model, and is data used when determining the timing to stop the electric motor 114 based on changes in the current value. The NN calculation unit 302 is an example of a calculation unit, and is a calculation circuit that controls the current supply pattern to the stator according to the timing to stop the electric motor 114 determined based on the trained model 301.
図13は、変形例2に係る打込機100における電動モータ114の始動から停止を示すフローチャートである。制御部316は、ステップS321で、データ記憶部303で記憶している電流値データの変化と回転子位置データとに基づいて、学習済みモデル301によりNN演算を行い、ステップS322では、該NN演算の結果により、電動モータ114の停止時期を決定(推定)する。ステップS323では、決定された電動モータ114の停止時期にて電動モータ114を停止させて処理を終了する。 Figure 13 is a flow chart showing the start and stop of the electric motor 114 in the driving machine 100 according to the second modified example. In step S321, the control unit 316 performs an NN calculation using the trained model 301 based on the changes in the current value data and the rotor position data stored in the data storage unit 303, and in step S322, it determines (estimates) the time to stop the electric motor 114 based on the results of the NN calculation. In step S323, the electric motor 114 is stopped at the determined time to stop the electric motor 114, and the process ends.
図14は、変形例2に係る打込機100のニューラルネットワークの構造を示すネットワーク構成図である。NN演算部302は、所定のサンプル数の電流値を入力データ310とし、電動モータ114の停止時期を出力データ313としたNNによって、電動モータ114の停止時期の決定を行う。電動モータ114の停止時期に関する情報はモータ放電停止制御部305(図12参照)に入力され、モータ放電停止制御部305は電動モータ114の停止時期に関する情報に基づきモータ制御部306(図12参照)に信号を送出する。モータ制御部306は、モータ放電停止制御部305から送出された信号に基づいて制御信号出力回路211を制御し、電動モータ114を適切な時期に停止させる。 Figure 14 is a network configuration diagram showing the structure of the neural network of the driving machine 100 according to the second modification. The NN calculation unit 302 determines the stop time of the electric motor 114 by using an NN with a predetermined number of sampled current values as input data 310 and the stop time of the electric motor 114 as output data 313. Information regarding the stop time of the electric motor 114 is input to the motor discharge stop control unit 305 (see Figure 12), which sends a signal to the motor control unit 306 (see Figure 12) based on the information regarding the stop time of the electric motor 114. The motor control unit 306 controls the control signal output circuit 211 based on the signal sent from the motor discharge stop control unit 305, and stops the electric motor 114 at the appropriate time.
図14に示されるNNを用いた推定制御では、一例として、機械学習により複数の入力データ310が第1次絞り込みデータ311に絞り込まれ、さらに、第2次絞り込みデータ312に絞り込まれる等して、電動モータ114の停止時期の出力データ313が算出される。機械学習による複数の入力データ310の絞り込みは、因子の影響や関係性の高さ等によって行われる。すなわち、絞り込みが1次、2次と進むにつれて、影響の小さいものが係数を小さくすること等によって取り除かれ、最終的にモータ通電停止位置の出力データ313が算出される。尚、複数の入力データ310の絞り込みが行われる回数は、2回に限定されることはなく、3回以上行われてもよい。 In the estimation control using NN shown in FIG. 14, as an example, multiple input data 310 are narrowed down by machine learning to primary narrowed down data 311, and further narrowed down to secondary narrowed down data 312, and output data 313 of the stop timing of the electric motor 114 is calculated. The multiple input data 310 are narrowed down by machine learning based on the influence of factors, the degree of relationship, and the like. In other words, as the narrowing down progresses to the primary and secondary stages, data with less influence are removed by reducing the coefficients, and finally the output data 313 of the motor power supply stop position is calculated. Note that the number of times the multiple input data 310 are narrowed down is not limited to two, and may be three or more times.
この変形例2に係る打込機100によれば、電流値の波形が複雑で変曲点の検出が困難な場合にも精度よく電動モータ114の停止時期の決定を行うことが可能になるため、安価に打込機100を提供することができる。尚、NN演算部302の入力データ310に電池パック117の電圧値等、他の情報を含めてもよく、これにより、電動モータ114の停止時期をさらに精度良く決定することができる。 The driving machine 100 according to this second modification can accurately determine the time to stop the electric motor 114 even when the waveform of the current value is complex and it is difficult to detect the inflection point, so that the driving machine 100 can be provided at low cost. The input data 310 of the NN calculation unit 302 may also include other information such as the voltage value of the battery pack 117, which allows the time to stop the electric motor 114 to be determined even more accurately.
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Various embodiments and modifications have been described above, but the present invention is not limited to these. Other embodiments that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention.
100…打込機、111…ハウジング部、112…打撃機構、113…マガジン、114…電動モータ、115…伝達機構、116,316…制御部、117…電池パック、118…カウンタウエイト部、119…胴部、120…ハンドル部、121…モータケース、122…装着部、123…射出部、124…射出路、125…止具、126…プランジャ、127…ドライバブレード、136…コイルスプリング、137…ウエイトバンパ、138…プランジャバンパ、142…トリガ、143…トリガスイッチ、146…モータ軸、148…入力要素、149…出力要素、150…第1ギヤ、151…第2ギヤ、152…第3ギヤ、200…電源スイッチ回路、201…電源電圧供給回路、202…電圧検出回路、203…電流検出回路、204…トリガスイッチ操作検出回路、205…プッシュレバー操作検出回路、207…釘残量スイッチ、208…釘残量スイッチ操作検出回路、209…回転位置検出回路、210…回転数検出回路、211…制御信号出力回路、212…インバータ回路、213…位置検出スイッチ、214…位置検出スイッチ操作検出回路、301…学習済みモデル、302…NN演算部、303…データ記憶部、310…入力データ、311…第1次絞り込みデータ、312…第2次絞り込みデータ、313…出力データ 100...driver, 111...housing section, 112...impact mechanism, 113...magazine, 114...electric motor, 115...transmission mechanism, 116, 316...control section, 117...battery pack, 118...counterweight section, 119...body section, 120...handle section, 121...motor case, 122...mounting section, 123...ejection section, 124...ejection path, 125...stopper, 126...plunger, 127...driver blade, 136...coil spring, 137...weight bumper, 138...plunger bumper, 142...trigger, 143...trigger switch, 146...motor shaft, 148...input element, 149...output element, 150...first gear, 151...second gear, 152...second 3 gears, 200...power switch circuit, 201...power supply voltage supply circuit, 202...voltage detection circuit, 203...current detection circuit, 204...trigger switch operation detection circuit, 205...push lever operation detection circuit, 207...nail remaining amount switch, 208...nail remaining amount switch operation detection circuit, 209...rotation position detection circuit, 210...rotation speed detection circuit, 211...control signal output circuit, 212...inverter circuit, 213...position detection switch, 214...position detection switch operation detection circuit, 301...trained model, 302...NN calculation unit, 303...data storage unit, 310...input data, 311...first refined data, 312...second refined data, 313...output data

Claims (12)

  1. モータと、
    止具を射出可能に支持する射出部と、
    第1方向及び前記第1方向と反対方向である第2方向へ移動可能であり、前記第1方向へ移動することにより、前記射出部に支持された前記止具を打撃可能な打撃部と、
    前記打撃部を前記第1方向へ付勢する付勢部と、
    作業者によって操作される操作部と、
    前記モータの駆動を制御する制御部と、
    前記モータの駆動力を受けて回転する回転部と、を備え、
    前記打撃部は、
    前記回転部と係合して第1位置に位置する状態において前記操作部が操作されると、
    前記回転部が回転することで、前記付勢部の付勢力に抗して前記第2方向へ前記第1位置から第2位置まで移動し、
    前記第2位置において前記回転部との係合が解除されることで、前記付勢部の付勢力によって前記第1方向へ前記第2位置から第3位置まで移動して前記止具を打撃し、
    前記第3位置において前記回転部と再度係合した後に前記回転部が回転することで、前記付勢部の付勢力に抗して前記第2方向へ前記第3位置から前記第1位置まで移動し、
    前記第1位置において前記回転部と係合した状態で前記回転部が停止することで、前記第1位置で停止し、
    前記制御部は、前記モータに係る負荷を検出可能であり、前記負荷に基づいて前記モータを停止させて、前記打撃部を前記第1位置で停止させる、作業機。
    A motor;
    an ejection section that supports the fastener so as to be ejectable;
    a striking portion that is movable in a first direction and a second direction opposite to the first direction and that strikes the stopper supported by the ejection portion by moving in the first direction;
    a biasing portion that biases the striking portion in the first direction;
    An operation unit operated by an operator;
    A control unit that controls the driving of the motor;
    a rotating unit that rotates by receiving a driving force of the motor,
    The striking part is
    When the operating portion is operated in a state where the operating portion is engaged with the rotating portion and positioned at a first position,
    When the rotating portion rotates, the rotating portion moves in the second direction against the biasing force of the biasing portion from the first position to the second position,
    When the engagement with the rotating portion is released at the second position, the biasing force of the biasing portion moves the stopper from the second position to a third position in the first direction to strike the stopper,
    the rotating portion rotates after re-engaging with the rotating portion at the third position, thereby moving in the second direction from the third position to the first position against the biasing force of the biasing portion;
    the rotating portion stops in a state of being engaged with the rotating portion at the first position, thereby stopping at the first position;
    The control unit is capable of detecting a load on the motor, and stops the motor based on the load, thereby stopping the impact unit at the first position.
  2. 請求項1に記載の作業機において、
    前記負荷は電流である、作業機。
    The working machine according to claim 1,
    The load is an electric current.
  3. 請求項2に記載の作業機において、
    前記制御部は、検出した電流の値が第1閾値以上となると、前記モータを停止させる、作業機。
    In the work machine according to claim 2,
    The control unit stops the motor when the detected current value becomes equal to or greater than a first threshold value.
  4. 請求項3に記載の作業機において、
    前記制御部は、検出した電流の値が第2閾値以下となった後に前記第1閾値以上となると、前記モータを停止させる、作業機。
    In the working machine according to claim 3,
    The control unit stops the motor when the detected current value becomes equal to or less than a second threshold and then becomes equal to or greater than the first threshold.
  5. 請求項3または4に記載の作業機において、
    前記制御部は、検出した電流の値が前記第1閾値以上となってから所定の遅延時間が経過した後、前記モータを停止させる、作業機。
    In the working machine according to claim 3 or 4,
    The control unit stops the motor after a predetermined delay time has elapsed since the detected current value became equal to or greater than the first threshold value.
  6. 請求項5に記載の作業機において、
    前記制御部は、前記モータへ電力を供給する電源部の電圧を検出可能であり、検出した前記電源部の電圧に基づいて、前記遅延時間を変更する、作業機。
    In the work machine according to claim 5,
    The control unit is capable of detecting a voltage of a power supply unit that supplies power to the motor, and changes the delay time based on the detected voltage of the power supply unit.
  7. 請求項4に記載の作業機において、
    前記制御部は、前記操作部に対する操作が行われてから、検出した電流の値が前記第2閾値以下となるまでの時間に基づいて、前記打撃部の移動に異常があるか否かを判定する、作業機。
    In the working machine according to claim 4,
    The control unit determines whether or not there is an abnormality in the movement of the impact part based on the time from when an operation is performed on the operating part to when the detected current value becomes equal to or less than the second threshold value.
  8. 請求項3に記載の作業機において、
    前記制御部は、前記操作部に対する操作が行われてから、検出した電流の値が前記第1閾値以上となるまでの時間に基づいて、前記打撃部の移動に異常があるか否かを判定する、作業機。
    In the working machine according to claim 3,
    The control unit determines whether or not there is an abnormality in the movement of the impact part based on the time from when an operation is performed on the operating part to when the detected current value becomes equal to or greater than the first threshold value.
  9. 請求項1に記載の作業機において、
    前記制御部は、所定の時間間隔毎の前記負荷の変化量に基づいて、前記打撃部の移動が正常に行われたか否かを判定する、作業機。
    The working machine according to claim 1,
    The control unit determines whether or not the movement of the striking unit has been performed normally based on an amount of change in the load at each predetermined time interval.
  10. 請求項1に記載の作業機において、
    前記制御部は、所定の時間間隔毎の前記負荷の変化量に基づいて、前記打撃部の動作工程を判定する、作業機。
    The working machine according to claim 1,
    The control unit determines an operation step of the impact unit based on an amount of change in the load at each predetermined time interval.
  11. 請求項10に記載の作業機において、
    前記制御部は、
    前記動作工程として、前記打撃部が前記止具を打撃する打撃工程を判定可能であり、前記打撃工程において、所定の時間間隔毎の前記負荷の変化量が所定時間減少した後に、増加した後、再度所定時間減少した場合に、前記打撃部が前記止具を打撃したと判定し、
    前記制御部は、前記操作部に対する操作が行われてから、前記負荷に基づいた前記モータを停止させて前記打撃部を前記第1位置で停止させるまでの間に、前記打撃工程が行われたことが判定されない場合に、前記打撃部の移動に異常があると判定する、作業機。
    The work machine according to claim 10,
    The control unit is
    As the operation process, a striking process in which the striking part strikes the fastener can be determined, and in the striking process, if an amount of change in the load at each predetermined time interval decreases for a predetermined period of time, increases, and then decreases again for a predetermined period of time, it is determined that the striking part strikes the fastener,
    A work machine in which the control unit determines that there is an abnormality in the movement of the impact part if it is not determined that the impact process has been performed between the time an operation is performed on the operating unit and the time the motor is stopped based on the load and the impact part is stopped at the first position.
  12. 請求項7に記載の作業機において、
    前記制御部は、前記電流の変化量が極小となった後に増加し再度減少すると、前記打撃部が前記止具を打撃して、前記止具が射出されたと判定する、作業機。
    In the work machine according to claim 7,
    When the amount of change in the current becomes minimal, then increases and decreases again, the control unit determines that the striking unit has struck the fastener and the fastener has been ejected.
PCT/JP2024/006592 2023-02-28 2024-02-22 Work machine WO2024181313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023029666 2023-02-28
JP2023-029666 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024181313A1 true WO2024181313A1 (en) 2024-09-06

Family

ID=92590532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006592 WO2024181313A1 (en) 2023-02-28 2024-02-22 Work machine

Country Status (1)

Country Link
WO (1) WO2024181313A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030052A (en) * 2013-07-31 2015-02-16 日立工機株式会社 Fastening tool driving machine
JP2017170530A (en) * 2016-03-18 2017-09-28 日立工機株式会社 Driving machine
JP2017213666A (en) * 2016-06-02 2017-12-07 日立工機株式会社 Driving machine
JP2022173772A (en) * 2021-05-10 2022-11-22 マックス株式会社 driving tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030052A (en) * 2013-07-31 2015-02-16 日立工機株式会社 Fastening tool driving machine
JP2017170530A (en) * 2016-03-18 2017-09-28 日立工機株式会社 Driving machine
JP2017213666A (en) * 2016-06-02 2017-12-07 日立工機株式会社 Driving machine
JP2022173772A (en) * 2021-05-10 2022-11-22 マックス株式会社 driving tool

Similar Documents

Publication Publication Date Title
TWI781941B (en) nailing machine
CN107020674B (en) Fastener driving tool
JP6690710B2 (en) Driving machine
JP5424105B2 (en) Electric driving machine
WO2016199670A1 (en) Driving machine
WO2018198672A1 (en) Driver
US10442066B2 (en) Driver
US20090255972A1 (en) Electric driving machine
EP3156180B1 (en) Fastener driving machine
JP2008068354A (en) Electric driver
JP7095698B2 (en) Driving machine
JP2014172163A (en) Electric tool
WO2024181313A1 (en) Work machine
JP7205617B2 (en) hammer
CN111315537A (en) Driving machine
JP6689087B2 (en) Driving tool
JP6903890B2 (en) Driving machine
JP5288322B2 (en) Driving machine
US20230137720A1 (en) Working tool
WO2024090434A1 (en) Work machine
JP7359219B2 (en) driving machine
EP3785859A1 (en) Driving machine
JP6972981B2 (en) Driving machine
JP7099138B2 (en) Driving machine
JP6656941B2 (en) Driving tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763793

Country of ref document: EP

Kind code of ref document: A1